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Insertion and Deletion Correction in
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Abstract— Synthetic polymer-based data storage seems to be
a particularly promising candidate that could help to cope with
the ever-increasing demand for archival storage requirements.
It involves designing molecules of distinct masses to represent
the respective bits {0, 1}, followed by the synthesis of a polymer
of molecular units that reflects the order of bits in the information
string. Reading out the stored data requires the use of a
tandem mass spectrometer, that fragments the polymer into
shorter substrings and provides their corresponding masses, from
which the composition, i.e. the number of 1s and 0s in the
concerned substring can be inferred. Prior works have dealt
with the problem of unique string reconstruction from the set
of all possible compositions, called composition multiset. This
was accomplished either by determining which string lengths
always allow unique reconstruction, or by formulating coding
constraints to facilitate the same for all string lengths. Addition-
ally, error-correcting schemes to deal with substitution errors
caused by imprecise fragmentation during the readout process,
have also been suggested. This work builds on this research by
extending previously considered error models, mainly confined
to substitution of compositions. To this end, we define new error
models that consider insertions of spurious compositions and
deletions of existing ones, thereby corrupting the composition
multiset. We analyze if the reconstruction codebook proposed by
Pattabiraman et al. is indeed robust to such errors, and if not,
propose new coding constraints to remedy this.

Index Terms— Polymer-based data storage, string reconstruc-
tion, composition errors, insertions, deletions.

I. INTRODUCTION

AS WE progress through this digital age, our rate of
data generation continues to rise unhindered, and with

it, so do our storage requirements. Since current data stor-
age media are not particularly advantageous in regard to
longevity or density, several molecular storage techniques
[2], [3], [4], [5], [6], [7], [8], [9] have been proposed. The
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work in [2] involving synthetic polymer-based data storage
systems appears to be especially favorable, given its promise
of efficient synthesis, low read latency and cost. Under this
paradigm, a string of information bits is encoded into a
chain of molecules linked by means of phosphate bonds, such
that the component molecules may only assume one of two
significantly differing masses, which represent the bits 0 and
1 respectively. The stored data can be read out by employing a
tandem mass (MS/MS) spectrometer, which essentially splits
the synthesized polymer at the phosphate linkages and outputs
the masses of the resulting fragments. In this manner, the user
is given access to the masses of all substrings in the encoded
string.

A previous work [10] dealt with the problem of reconstruct-
ing a binary string from such an MS/MS readout, under the
following modeling assumptions:

Assumption 1: Masses of the component molecules are
chosen such that one can always uniquely infer the composi-
tion, i.e., the number of 0s and 1s forming a certain fragment,
from its mass.

Assumption 2: While fragmenting a polymer for the pur-
pose of mass spectrometry analysis, the masses of all con-
stituent substrings are observed with identical frequency.

This proposed setting simplifies the recovery of the original
information string into the problem of binary string recon-
struction from its composition multiset. More specifically, the
reconstruction process now involves determining the binary
string from a set of compositions of all of its substrings of
each possible length. It is worth noting that this setup does
not allow for differentiation between a string and its reversal,
since their sets of substring compositions would be identical.

While the authors of [10] primarily focused on string lengths
that ensured unique reconstruction from a composition multi-
set, subsequent works [11], [12], [13] extended this research by
building a code that allows for unique reconstruction of each
member codeword from its composition multiset alone, regard-
less of the string length. It was found that a redundancy propor-
tional to the logarithm of the information length is sufficient to
guarantee unique reconstruction. The authors also considered
the problem of correcting potential errors in composition
multisets. In particular, the error models involved substitution
of one or more compositions in the composition multiset of
a string. Such errors were treated under the ‘asymmetric’ and
‘symmetric’ settings. In the former case, the occurrence of
a substitution error in one of the compositions of a certain
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length, say k, should not accompanied by another substitution
of a composition of length n− k +1. The opposite is true for
the symmetric case. A more general setting for composition
substitutions was also considered. Suitable coding constraints
to cope with such errors in the composition multiset were
proposed. Most notably, it was found that a redundancy of
O(log n+t) is sufficient to correct t composition substitutions
in a composition multiset. The work in [14] takes a step further
by dealing with the recovery of multiple strings from the mass
spectrometry readout of a mixture of synthesized polymers.
In order to provide a brief overview of the best known
constructions that allow unique string reconstruction from
composition multisets, error-free or otherwise, we have men-
tioned a few constructions from [11], [12], and [13] in Table I.

Since the errors introduced during an MS/MS readout are
often context-dependent, we devote this work to the extension
of the error model considered in [11] and [12]. Specifically,
we investigate the impact of inserting and deleting one or
more compositions on the reconstructability of the encoded
strings. This may be motivated by possible shortcomings of
Assumption 2, due to which some compositions may escape
the readout process. While this situation is equivalent to
the deletion of a few compositions, we instead consider a
more severe error model, i.e., deletions of complete multisets.
This is done on account of the fact that all compositions
in a multiset are not equally valuable to the reconstruction
algorithm (more details in Section II-B), and most of them
can be inferred directly from other multisets corresponding to
greater substring lengths. As a consequence, the deletion of a
few compositions from a single multiset is equivalent to the
deletion of a complete multiset, under certain circumstances.
Moreover, having a stronger code capable of correcting such
a severe error allows for fast reconstruction.

For these reasons, we focus on error models that cause
the deletions of complete multisets, under asymmetric and
symmetric settings, similar to how substitution errors were
categorized in [11]. We also propose new coding constraints
to enable the correction of such errors. Specifically, we derive
that redundancies of O(log n + t) and O(t log n) are suffi-
cient to correct the deletion of t asymmetric multisets and t
symmetric multisets, respectively.

We also establish an equivalence between codes that correct
composition insertions and composition deletions. A special
kind of substitution error, namely a skewed substitution error is
also studied. This category of errors is motivated by imperfect
fragmentations of a given polymer during the MS/MS readout
process, as a result of which the observed molecular mass
of a shorter monomer chain is lower than what the true
mass of its perfectly fragmented version would have been.
In this scenario, errors occur only in one direction, i.e., the
measured mass can only be lower than the true mass, not
higher. We prove that a code that corrects the asymmetric
deletion of t multisets, can also correct t-asymmetric skewed
composition substitutions. A summary of the constructions
proposed in this work has been included in Table I.

The organization of this work is as follows. Section II
introduces relevant terminology, notations and some pre-
liminary results to be exploited subsequently. The error

models considered previously, are also briefly discussed, while
Section III describes the error models pertaining to inser-
tions, deletions and skewed substitutions of one or multiple
compositions and also briefly summarizes error-correcting
codes to deal with the same. We demonstrate the equivalence
between codes correcting deletions and insertions of multisets
in Section IV. Sections V and VI delve deeper into the con-
structions capable of correcting deletions of multiple multisets.
We also talk about skewed substitution errors and related
coding constructions in Section VII. Finally, we conclude with
Section VIII, where a few open problems are discussed.

II. PRELIMINARIES

Let s = s1s2 . . . sn denote a binary string of n bits. Any
substring si . . . sj where i ≤ j, may be indicated by sj

i . The
composition of this substring, denoted by c(sj

i ), is said to be
0z1w, where z and w refer to the number of 0s and 1s in sj

i

respectively, such that z+w = j−i+1. We also define Ck(s)
as the multiset of compositions of all length-k substrings in s.
Evidently, Ck(s) should contain n− k + 1 compositions.

Example 1: Consider s = 001010111. Then, the multi-
set of compositions for substrings of length 7 is given by:
C7(s) = {0413, 0314, 0215}.

Upon combining the multisets for all 1 ≤ k ≤ n, we obtain
the composition multiset of s:

C(s) =
⋃

k∈[n]

Ck(s).

where [n] = {1, . . . , n}. As stated earlier, [10] determined
string lengths for which unique reconstruction (up to reversal)
from such sets is possible. For the remaining string lengths,
the authors exploited a bivariate generating polynomial repre-
sentation, to find strings that are equicomposable with a given
string. Here, two distinct strings s, t ∈ {0, 1}n are said to be
equicomposable if a common composition multiset is shared,
i.e., C(s) = C(t).

A code C is called a composition-reconstructable code if for
all s, t ∈ C, it holds that C(s) ̸= C(t). For all n, denote by
A(n) the size of the largest composition reconstructable code.
Since composition multisets are identical for a binary string
and its reversal, it holds that

A(n) ≤ 2⌈
n
2 ⌉ +

1
2
(2n − 2⌈

n
2 ⌉) = 2n−1 + 2⌈

n
2 ⌉−1,

where the term 2⌈
n
2 ⌉ describes the number of palindromic

strings of length n, and [10] determined string lengths n where
it is possible to achieve this bound with equality. Specifically,
it was shown that binary strings of length ≤ 7, one less
than a prime, or one less than twice a prime, are uniquely
reconstructable up to reversal. It is worth pointing out that a
better bound for A(n) is not known.

A. Unique Reconstruction Codes

For values of n where it is not possible to achieve the
aforementioned bound, it is necessary to formulate a code,
as done in [11] and [12].

The first major coding-theoretic problem concerning
polymer-based data storage involved designing constraints in
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TABLE I
SUMMARY OF CONSTRUCTIONS

order to guarantee unique reconstruction for codewords of a
fixed length, i.e., to formulate a composition-reconstructable
code. To this end, [12] introduced the following composition-
reconstructable code for even codeword lengths.

Construction 1 [12]:

SR(n) = {s ∈ {0, 1}n : s1 = 0, sn = 1, and
∃I ⊂ {2, . . . , n− 1} such that

for all i ∈ I, si ̸= sn+1−i,

for all i /∈ I, si = sn+1−i,

s[n/2]∩I is a Catalan-Bertrand string.} (1)

In this context, a Catalan-Bertrand string refers to any binary
vector wherein each prefix contains strictly more 0s than 1s.
When n is odd, the codebook SR(n) is defined as:

SR(n) =
⋃

s∈SR(n−1)

{s(n−1)/2
1 0 sn

(n+1)/2, s
(n−1)/2
1 1 sn

(n+1)/2}.

(2)
The number of redundant bits can thus be upper-bounded

in terms of n as 1/2 log(n) + 5 [11]. Alternatively, [12] also
states the following.

Theorem 1: [12, pg. 3] There exist efficiently encodable
and decodable reconstruction codes with k information bits
and redundancy at most 1

2 log(k) + 6.
From the definition of A(n), we can also deduce that,

|SR(n)| ≤ A(n).

For each s ∈ SR(n), this construction sets s1 = 0 and sn =
1 to avoid confusion among reversals, while the remaining bits
are chosen such that the weights of a prefix and a suffix of

equal length are unequal if the said prefix includes a Catalan-
Bertrand string, i.e.,

wt(si
2)

{
= wt(sn−1

n−i+1), if [i] ∩ I = ∅,
< wt(sn−1

n−i+1), otherwise,
(3)

where i < ⌈n
2 ⌉, wt(·) denotes the Hamming weight of the

argument and I is defined as in (1). The latter inequality
stems from the fact that if s[i]∩I has strictly more 0s than 1s,
then s{n−i+1,...,n−1}∩I contains strictly more 1s than 0s, thus
causing a weight mismatch. Here, we note that the embedded
Catalan-Bertrand string may begin from index 2 at the earliest.

B. Reconstruction from Error-Free Composition Multisets

The decoder of the composition-reconstructable code SR(n)
recovers a string from its composition multiset by employing
the approach outlined in [10] and [11]. Since the underlying
principles of this process help us in formulating coding con-
structions for the newer error models involving insertions and
deletions, we briefly discuss it in this subsection. For further
details, the reader is referred to [10] and [11].

The algorithm begins by deducing the following sequence
that characterizes the string to be recovered, say s ∈ SR(n),

σs = (σ1, . . . , σ⌈n/2⌉),

where σi = wt(sisn−i+1) for i ∈ {1, . . . , ⌊n/2⌋}. When n is
odd, we set σ⌈n

2 ⌉ = wt(s⌈n
2 ⌉), i.e., the weight of the central

element.
Example 2: For s = 001010111. the sequence of σi’s is

σs = (1, 1, 2, 0, 1).
These values can be computed by exploiting some inherent

properties of composition multisets. In particular, we make

Authorized licensed use limited to: Eitan Yaakobi. Downloaded on December 04,2023 at 04:05:54 UTC from IEEE Xplore.  Restrictions apply. 



BANERJEE et al.: INSERTION AND DELETION CORRECTION IN POLYMER-BASED DATA STORAGE 4387

use of cumulative weights, which are defined for each multiset
Ck(s) as:

wk(s) =
∑

0z1w∈Ck(s)

w.

Example 3: For instance, the multiset C7(s) =
{0413, 0314, 0215} has a cumulative weight w7(s) = 12.

It is easy to see that for all k ≤ ⌈n
2 ⌉, these weights obey

the following relations.

w1(s) =
⌈n

2 ⌉∑
i=1

σi, (4)

wk(s) =
k∑

i=1

iσi + k

⌈n/2⌉∑
i=k+1

σi (5)

= kw1(s)−
k−1∑
i=1

iσk−i. (6)

We also observe a symmetry relation for any given set of
cumulative weights:

wk(s) = wn−k+1(s), ∀ k ∈ [n]. (7)

In light of this, the multisets Ci and Cn−i+1 are henceforth
said to be symmetric. For notational convenience, we also
define

C̃i(s) = Ci(s) ∪ Cn−i+1(s).

Now to demonstrate how the reconstruction algorithm func-
tions, we consider the following example.

Example 4: In this example, we reconstruct the string s =
001010111 from its composition multiset C(s), which is stated
below:

C(s) = {0, 0, 1, 0, 1, 0, 1, 1, 1, 02, 0111, 0111, 0111, 0111,

0111, 12, 12, 0211, 0211, 0112, 0211, 0112, 0112,

13, 0311, 0212, 0212, 0212, 0113, 0113, 0312,

0312, 0213, 0213, 0114, 0412, 0313, 0214, 0214,

0413, 0314, 0215, 0414, 0315, 0415}. (8)

The reconstruction process involves the following steps.
1) Firstly, we deduce its σs sequence from (4) and (6):

σs = (1, 1, 2, 0, 1).

2) We create a multiset T to include all compositions that
can be determined from σs. More explicitly, one can
infer the compositions c(s5), c(s6

4), . . . , c(s
9
1) by noting

that for any i < ⌈n/2⌉,

c(sisn−i+1) =


02, if σi = 0.

0111, if σi = 1.

12, if σi = 2.

T = {1, 021, 0213, 0314, 0415}.

3) The process now assigns the bits of s pairwise, in an
inward manner, starting with bit pair (s1, s9). Since
σ1 = 1, we could set s1 = 0 and s9 = 1 or vice-versa.
Due to (1), we opt for the former, i.e. (s1, s9) = (0, 1).

4) Using the reconstructed prefix and suffix, we update T :

T = {0, 1, 1, 021, 0213, 0314, 0415, 0315, 0414}.

5) The two longest compositions in the multiset C(s)\T
are {0413, 0215}. These denote the compositions of
substrings s7

1 and s9
3. Conversely, their complements

{12, 02} correspond to compositions c(s2
1) and c(s9

8).
Combining this with the knowledge of bits s1 and s9,
we reconstruct s up to its prefix-suffix pair of length 2,
i.e. (s2

1, s
9
8) = (00, 11).

6) To recover the remaining bits, we simply repeat
steps 4 and 5.

C. Previous Error Models

We now turn our attention to the problem of reconstruc-
tion from erroneous composition multisets. Substitution errors
were considered in [11] under the asymmetric and symmetric
setting. In this error model, some compositions in C(s) are
arbitrarily altered. If the errors occur such that each multiset
C̃i includes at most one substituted composition, then they
are said to be asymmetric. On the contrary, a pair of sym-
metric substitution errors would occur in the multisets Ci and
Cn−i+1, for any i ∈ [n].

Definition 1: A composition multiset C(s) of the string s ∈
{0, 1}n is said to have suffered an asymmetric substitution
error, if for some i ∈ [n], a single composition of the multiset
Ci(s) is modified, but its symmetric counterpart Cn−i+1(s)
remains unaffected.

Definition 2: If a composition multiset C(s) is corrupted
by having one composition substituted in each of the multisets
Ci(s) and Cn−i+1(s) for some i ∈ [n] such that 2i ̸= n + 1,
then two symmetric substitution errors are said to have
occurred.

To exemplify this, we consider the following.
Example 5: Let s = 001010111. The symmetric multiset

pair C3(s) and C7(s) is given by

C3(s) = {021, 021, 012, 021, 012, 012, 13},
C7(s) = {0413, 0314, 0215}.

For instance, an asymmetric substitution error is said to have
occurred if C7(s) is corrupted to

C ′7(s) = {0413, 0314, 0314}.

On the contrary, if C3(s) is also corrupted in addition to C7(s)
as follows,

C ′3(s) = {13, 021, 012, 021, 012, 012, 13},

then two symmetric substitution errors are said to have
occurred.

For multiple asymmetric and symmetric substitution errors,
the aforementioned definitions are extended as follows.

Definition 3: A composition multiset C(s) of the string s ∈
{0, 1}n is said to have suffered t asymmetric substitution
errors, if for some I ∈ [n] where |I| = t, a single composition
in each of the multisets Ci(s) for i ∈ I, is modified, but
the symmetric counterpart of this multiset, i.e., Cn−i+1(s),
remains unaffected.
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Definition 4: If a composition multiset C(s) is corrupted
by having one composition substituted in each of the multisets
Ci(s) and Cn−i+1(s) for some i ∈ I ⊂

[⌊
n
2

⌋]
, where |I| = t,

then t pairs of symmetric substitution errors are said to have
occurred.

Besides introducing two distinct constructions aimed at cor-
recting asymmetric and symmetric substitutions respectively,
the authors of [11] and [13] also investigated a more natural
error setting for composition substitutions and proposed a code
capable of correcting t substitutions in a composition multiset.
Formally, a code is said to be a t composition substitution-
correcting code, if for any s, v that belong to the code, it holds
that |C(s)\C(v)| > 2t. A known instantiation is stated in
Table I.

III. NEW ERROR MODELS

The subsequent sections explore error models that involve
corrupting a valid composition multiset via the insertion or
deletion of one or more multisets.

Definition 5: An asymmetric multiset deletion is said to
have occurred in the composition multiset C(s) of a string
s ∈ {0, 1}n, if for some i ∈ [n], the multiset Ci(s) is entirely
missing, while Cn−i+1(s) is uncorrupted.

Definition 6: A pair of symmetric multiset deletions is
said to have occurred if the composition multiset C(s) of a
string s ∈ {0, 1}n, if for some i ∈ [n] such that i ̸= n− i+1,
the multisets Ci(s) and Cn−i+1(s) are entirely eliminated.

Example 6: Let s = 001010111. If the composition multi-
set C(s) is corrupted to

C ′(s) =
⋃

i∈[n]\{3}

Ci(s),

= {0, 0, 1, 0, 1, 0, 1, 1, 1, 02, 0111, 0111, 0111, 0111,

0111, 12, 12, 0311, 0212, 0212, 0212, 0113, 0113,

0312, 0312, 0213, 0213, 0114, 0412, 0313, 0214,

0214, 0413, 0314, 0215, 0414, 0315, 0415}.

then an asymmetric multiset deletion is said to
have occurred. More specifically, the multiset
C3(s) = {0211, 0211, 0112, 0211, 0112, 0112, 13} has been
deleted. On the other hand, if

C ′(s) =
⋃

i∈[n]\{3,7}

Ci(s),

= {0, 0, 1, 0, 1, 0, 1, 1, 1, 02, 0111, 0111, 0111, 0111,

0111, 12, 12, 0311, 0212, 0212, 0212, 0113, 0113,

0312, 0312, 0213, 0213, 0114, 0412, 0313, 0214,

0214, 0414, 0315, 0415}.

we say that a pair of symmetric multiset deletions has
occurred. Here compared to C(s), we are missing the mul-
tisets C3(s) = {0211, 0211, 0112, 0211, 0112, 0112, 13} and
C7(s) = {0413, 0314, 0215}.

Definition 7: A composition multiset C(s) of a string s ∈
{0, 1}n is said to have suffered a composition insertion error,
if for some i ∈ [n] the multiset Ci(s) is replaced by C ′i(s),

such that Ci(s) ⊂ C ′i(s) and |C ′i(s)| = n − i + 2, i.e.
an unknown and invalid composition has been registered.

Example 7: Once again, let s = 001010111. If C7(s) has
been altered as follows,

C ′7(s) = {0413, 0314, 0215, 0116}.

we say that a composition insertion error has taken place.
The main contribution of this work consists of studying

the aforementioned error models and proposing new coding
constraints to combat the same. We also establish an equiv-
alence between codes that correct composition insertions and
composition deletions. Consequently, we restrict our attention
to the latter for the remainder of this paper.

To this end, we first propose the following composition
reconstruction code that allows for the correction of t asym-
metric multiset deletions. Specifically, a code is termed as a
t-asymmetric multiset deletion code, if for any s, v that belong
to this code, there exists no I ⊆ [n] with |I| ≤ t such that,

Ci(s) ̸= Ci(v),
Cn−i+1(s) = Cn−i+1(v) ∀ i ∈ I,

Cj(s) = Cj(v) ∀ j ∈ [n] \ I.

We suggest the following instantiation for a t-asymmetric
multiset deletion code.

Construction 2:

S(t)
DA(n) ={s ∈ {0, 1}n : s1 = 0, sn = 1, and

∃ I ⊂ {2, . . . ,
n

2
}, |I| ≥ t, such that

∀ i ∈ I, si ̸= sn+1−i, and ∀ i /∈ I, si = sn+1−i,

(sn
2
, sn

2 +1) ̸= (1, 0),

s[n/2]∩I is a string wherein each
prefix has at least t more 0s than 1s.} (9)

The corresponding proof follows behind Theorem 2. Evi-
dently, this construction is inspired from S(t)

R (n) [11], in that
it requires at least t 0s in s

n/2
1 and at least t 1s in sn

n/2+1,
however their locations are not necessarily restricted as in
S(t)

R (n). The extension to odd codeword lengths is similar
to (2).

Following this, we investigate the case of symmetric multi-
set deletions, and discover that when two or more symmetric
multiset pairs are missing, additional constraints are needed
to bolster the code SR(n) so as to guarantee unique recon-
structability. In this context, a code is termed as a t-symmetric
multiset deletion code, if for any s, v that belong to this code,
there exists no I ⊆

[⌈
n
2

⌉]
with |I| ≤ t such that

C̃i(s) ̸= C̃i(v),∀ i ∈ I

Ci(s) = Ci(v) ∀ i ∈
[⌈n

2

⌉]
\ I.

For the elementary case of two deleted symmetric multiset
pairs, we propose the following code.
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Construction 3:

S(2)
DS(n) ={s ∈ SR(n) :

⌈n
2 ⌉∑

i=1

wi(s) mod 7 = a, a ∈ {0, 1, . . . , 6}}. (10)

Theorem 4 proves that this code can indeed correct the
deletion of two symmetric multiset pairs. We also generalize
this construction to accommodate for the deletion of any t
symmetric multiset pairs, where t ≥ 2.

Construction 4:

S(t)
DS(n) ={s ∈ {0, 1}n : s1 = 0, sn = 1,

∃ I ⊂
{

2, . . . ,
n

2
− t− 1

}
, |I| ≥ t where

∀i ∈ I, si ̸= sn−i+1, and ∀i /∈ I, si = sn−i+1,

s[ n
2 ]∩I is a string where each prefix

has at least t more 0s than 1s,
σs ∈ 3t-erasure-correcting code,

∀i ∈
{n

2
− t, . . .

n

2

}
, (si, sn−i+1) ̸= (1, 0).}

(11)

where t ≥ 2, n is even and n > 6t. For odd values of n,
a similar construction exists. Evidently, S(t)

DS(n) ⊂ S(t)
DA(n).

Theorem 5 proves that S(t)
DS(n) is capable of correcting the

deletion of t symmetric multiset pairs.
Definition 8: A composition multiset C(s) of the string

s ∈ {0, 1}n is said to have suffered an asymmetric skewed
substitution error, if for some i ∈ [n], a single composition
of multiset Ci(s) is replaced with one of a lower Ham-
ming weight, such that the symmetric counterpart Cn−i+1(s)
remains unaffected.

Example 8: For instance, if an erroneous measurement cor-
rupts the composition 0214, the measured compositions could
be 0313 or 0412, but not 0115.

To formally define a t-asymmetric skewed composition code,
we first define the t-asymmetric skewed error ball of a string
s ∈ {0, 1}n as

Bt(s) ={C ′(s) =
⋃

i∈[n]

C ′i(s) : I ⊆ [n], |I| ≤ t,

|Ci(s)\C ′i(s)| = 1,
∑

0i−w1w

∈C′i(s)

w <
∑

0i−w1w

∈Ci(s)

w ∀ i ∈ I,

C ′j(s) = Cj(s) ∀ j ∈ [n]\I}.

We can now define a code as a t-asymmetric skewed
composition code, if for any s, v that belong to this code,
it holds that Bt(s) ∩Bt(v) = ∅.

We subsequently prove in Lemma 6 of Section VII that
the code S(t)

DA(n) (Construction 2) can correct t skewed
asymmetric substitution errors in its composition multiset.

These results, along with some of the earlier constructions
proposed in [11], [12], and [13], have been summarized in
Table I.

IV. CODE EQUIVALENCE: INSERTION AND
DELETION OF MULTISETS

In this section, we demonstrate how codes which can correct
the deletion of a group of t multisets, can also correct the
occurrence of insertion errors in those t multisets.

Lemma 1: A code can correct the deletion of t composition
multisets, if and only if it can correct any number of compo-
sition insertion errors in those t multisets.

Proof: We prove this by contradiction. Let there be two
binary strings s, v ∈ SR(n), such that

Dt(s) ∩Dt(v) ̸= ∅. (12)

where Dt(s) is termed as the t-multiset deletion ball of s, and
constitutes all possible versions of the composition multiset
of s, or C(s), after corruption by the deletion of up to any t
multisets. To put it more explicitly,

Dt(s) = {C ′(s) =
⋃

i∈[n]\I

Ci(s) : I ⊆ [n], |I| ≤ t}. (13)

Similarly, we also define a t-multiset insertion ball It(s),
as the set of all corrupted compositions multisets of s, that are
formed from C(s) through insertion of compositions in up to
t multisets, i.e.,

It(s) ={C ′(s) =
⋃

i∈[n]

C ′i(s) : I ⊆ [n], |I| ≤ t,

Ci(s) ⊂ C ′i(s) ∀i ∈ I, C ′i(s)=Ci(s) ∀i ∈ [n]\I}.

Equation (12) implies that at least n− t composition multisets
of s and v are identical. In other words, when a specific group
of t multisets disappears from the multiset information of
s and v, they become indistinguishable. Let these differing
multisets correspond to substring lengths i1, i2, . . . it. This
allows us to write that:⋃

j∈[n]\{i1,...it}

Cj(s) =
⋃

j∈[n]\{i1,...it}

Cj(v).

If we perform a set union operation on both sides of the
previous equation with

⋃
i∈{i1,...it} Ci(s) ∪ Ci(v), then we

get: ⋃
i∈{i1,...it}

(Cj(v)\Cj(s)) ∪
⋃

j∈[n]

Cj(s)

=
⋃

i∈{i1,...it}

(Cj(s)\Cj(v)) ∪
⋃

j∈[n]

Cj(v).

This effectively means that if the multisets Ci1(s), . . . Cit(s)
are corrupted by the insertion of some specific erroneous
compositions, then the multiset information may correspond
to both s and v, and vice-versa. This lets us write that

It(s) ∩ It(v) ̸= ∅.

□
Owing to this result, we deem it sufficient to focus on

multiset deletion-correcting codes. The subsequent sections
examine how multiset deletions affect the reconstructability
of an encoded string drawn from SR(n). Similar to [11],
we categorize such deletion errors into two major settings.
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V. ASYMMETRIC MULTISET DELETION CODES

We begin by considering an error model where a complete
multiset Ck(s) can be deleted from the composition multi-
set C(s). This is formally referred to as a single asymmetric
multiset deletion [see Definition 5]. We investigate whether
the composition-reconstructable code [see Construction 1]
guarantees unique recoverability under this model. To proceed
in this direction, we first introduce a definition that is relevant
to the results that follow.

Definition 9: Consider any two binary strings s, v ∈
{0, 1}n. The length i-prefix-suffix pair of s is the vector
(si

1, s
n
n−i+1), where 1 ≤ i ≤ ⌈n

2 ⌉. The longest prefix-suffix
pair shared by s and v is said to be of length l, where 1 ≤
l < ⌈n

2 ⌉, if (sl
1, s

n
n−l+1) = (vl

1, v
n
n−l+1), and (sl+1, sn−l) ̸=

(vl+1, vn−l).
Next, we consider the following lemma, which results from

a specific case of [11, Lemma 4].
Lemma 2: Let s, v ∈ SR(m) share the same σ sequence

and satisfy |Cj(s)\Cj(v)| ≤ 2 for all j ∈ [m]. If the longest
prefix-suffix pair shared by s and v is of length i, then their
corresponding composition multisets Cm−i−1 and Cm−i−2

each differ in at least 2 compositions.
Example 9: To shortly highlight the implications of this

lemma, we consider the strings s = 001011101 and
v = 001110101. Clearly, they are both specified by σ =
(1, 0, 2, 1, 1). Since the longest prefix-suffix pair shared by
them is (001, 101), i.e., of length 3, their respective multisets
C4 and C5 differ by at least 2 compositions.

Lemma 3: SR(n) is a single asymmetric multiset deletion
code.

Proof: To prove the statement of the lemma, we intend
to establish that for any s ∈ SR(n), if one is given
C ′(s) =

⋃
i∈[n]\{k} Ci(s) where k ∈ [n], then s can be fully

recovered.
Case 1: n is even
From the steps of the reconstruction algorithm as described

in Section II-B, it is evident that we only require the com-
position multisets Cn(s), . . . , Cn

2
(s). Hence, if k < n

2 , the
reconstruction of s is straightforward. On the contrary, if k ≥
n
2 , one can still infer the cumulative weight of the missing
multiset Ck(s) from (7). Consequently, σs can be obtained
accurately.

In the absence of Ck(s), the prefix and suffix can be
constructed up to sn−k−1

1 and sn
k+2. When σn−k+1 ∈ {0, 2},

there remains no ambiguity concerning the bits sn−k and
sk+1. However, when σn−k+1 = 1, one can either have
(sn−k, sk+1) = (0, 1) or (sn−k, sk+1) = (1, 0) if both of
these possibilities guarantee weight mismatch between sn−k

1

and sn
k+1, as mandated by the constraints in (1). Now since

s ∈ SR(n), Lemma 2 tells us that choosing the bits sn−k

and sk+1 incorrectly, will lead to an incompatibility with the
multiset Ck−1(s). Thus, there exists only one valid choice for
these bits, implying that s is uniquely recoverable.

Case 2: n is odd
Similar to the previous case, it can be argued that for any

missing composition multiset Ck(s), where k ̸= ⌈n
2 ⌉, s can

be easily and uniquely determined. The more interesting case

Fig. 1. Strings s and v are such that (s
⌈n

2 ⌉−2

1 , sn
⌈n

2 ⌉+2
) =

(v
⌈n

2 ⌉−2

1 ,vn
⌈n

2 ⌉+2
), where v+ = 1− v−.

occurs when k = ⌈n
2 ⌉, since the absence of C⌈n

2 ⌉(s), and
thus w⌈n

2 ⌉(s), prevents us from computing σ⌈n
2 ⌉−1 and σ⌈n

2 ⌉.
However, their sum is known from (4), i.e.

σ⌈n
2 ⌉−1 + σ⌈n

2 ⌉ = w1(s)−
⌈n

2 ⌉−2∑
i=1

σi. (14)

Since σ⌈n
2 ⌉−1 = wt(s⌈n

2 ⌉−1s⌈n
2 ⌉+1) ∈ {0, 1, 2} and σ⌈n

2 ⌉ =
wt(s⌈n

2 ⌉) ∈ {0, 1}, these values can be inferred directly when
σ⌈n

2 ⌉−1 + σ⌈n
2 ⌉ ∈ {0, 3}. However, an ambiguity arises when

σ⌈n
2 ⌉−1 + σ⌈n

2 ⌉ ∈ {1, 2}.
Let v ∈ SR(n) be a string with which s becomes equicom-

posable when the multiset C⌈n/2⌉ is deleted, i.e.,⋃
i∈[n]\{⌈n

2 ⌉}

Ci(s) =
⋃

i∈[n]\{⌈n
2 ⌉}

Ci(v). (15)

Also, let v be specified by σv = (σ′1, . . . , σ
′
⌈n/2⌉). As a

consequence of (15), we can write:

σi = σ′i, ∀ 1 ≤ i ≤
⌈n

2

⌉
− 2

σ⌈n
2 ⌉−1 + σ⌈n

2 ⌉ = σ′⌈n
2 ⌉−1 + σ′⌈n

2 ⌉
. (16)

To verify whether the reconstructability of s is affected,
we simply check if there exists a suitable v that satis-
fies (15) and (16). We also note that (15) directly implies
the equality of the prefix-suffix pairs (s⌈

n
2 ⌉−2

1 , sn
⌈n

2 ⌉+2) =

(v⌈
n
2 ⌉−2

1 , vn
⌈n

2 ⌉+2).
We jointly depict the specific subcases in Fig. 1, wherein

we allow for σ⌈n
2 ⌉−1 + σ⌈n

2 ⌉ ∈ {1, 2} since for both s and v,
we have:

σ⌈n
2 ⌉−1 + σ⌈n

2 ⌉ = 2− b.

where b ∈ {0, 1}. To proceed with the proof, we try to deter-
mine the conditions under which C⌈n

2 ⌉−1(s) = C⌈n
2 ⌉−1(v)

holds. This would require the following set equality:
{c(s⌈

n
2 ⌉−2

1 ), 1− b},

{c(s⌈
n
2 ⌉−2

2 ), b, 1− b},
{c(sn

⌈n
2 ⌉+2), 1− b},

{c(sn−1
⌈n

2 ⌉+2), b, 1− b}


=


{c(s⌈

n
2 ⌉−2

1 ), v+},

{c(s⌈
n
2 ⌉−2

2 ), v+, 1− b},
{c(sn

⌈n
2 ⌉+2), 1− v+},

{c(sn−1
⌈n

2 ⌉+2), 1− v+, 1− b}


.

By checking the above relation exhaustively for all pos-
sibilities of (b, v+) ∈ {0, 1}2, we conclude that the
multisets C⌈n/2⌉−1(s) and C⌈n/2⌉−1(s) can never match.
Therefore, v does not exist and s retains its unique
reconstructability.

□
As a second step, SR(n) is now generalized to S(t)

DA(n)
[see Construction 2] to allow correcting the deletion of t
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Fig. 2. Strings s and v are related such that (sk
1 , sn

n−k+1) = (vk
1 ,vn

n−k+1)
and σs = σv .

asymmetric multisets. To prove why this construction works,
we first make the following observation.

Remark 1: Consider any s ∈ {0, 1}n, whose composition
multiset C(s) suffers t asymmetric multiset deletions and is
thereby modified to some C ′(s) =

⋃
i∈[n]\I Ci(s), where

I = {i1, i2, . . . i|I|} such that for all j ∈ [|I|], it holds that
n− ij +1 /∈ I. Since at least one multiset from each possible
symmetric multiset pair is preserved, the cumulative weights
w1(s), w2(s), . . . , w⌈n

2 ⌉(s) can be uniquely determined by
virtue of (7), and in turn, σs can be uniquely recovered
through (4) and (6).

Lemma 4: For even n, let s, v ∈ S(t)
DA(n) be specified by

an identical σ sequence, such that the longest prefix-suffix
pair shared by them is of length k.1 Then their correspond-
ing multisets Cn−k−1, . . . , Cn−k−t−1 differ by at least two
compositions.

Proof: Given that (sk
1 , sn

n−k+1) = (vk
1 , vn

n−k+1), σs =
σv and sk+1 ̸= vk+1, it must hold that σk+1 = 1. Addi-
tionally, as a consequence of σs = σv , we can infer that
c(sn−k−1

k+2 ) = c(vn−k−1
k+2 ). Now, without loss of generality,

we assume (sk+1, vk+1) = (0, 1). This situation is depicted in
Fig. 2.

The approach of this proof essentially centers around the
constraints imposed by S(t)

DA(n), to which s and v belong,
and the aforementioned relations between s and v. In the
following, we seek to establish that when s and v are
characterized as in Fig. 2, the mismatch between (sk+1, sn−k)
and (vk+1, vn−k) will guarantee that the corresponding mul-
tisets Cn−k−1, Cn−k−2, . . . , Cn−k−t−1 cannot match for any
realization of s and v. Most crucially, this is a consequence
of the fact that for any u ∈ S(t)

DA(n) that is characterized by
the index set I = {i : i ∈ [n

2 ], ui ̸= un−i+1}, each prefix of
the subsequence uI (with length greater than t) contains at
least t more 0s than 1s.

To proceed with the proof along this line of reasoning,
consider the set of indices I = {i1, i2, . . . i|I|} ⊂ {2, . . . , n

2 −
1} for s ∈ S(t)

DA(n), such that for any i ∈ I, we have
si ̸= sn−i+1, or equivalently, σi = 1, and i1 < i2 < . . . < i|I|.
Owing to the construction of S(t)

DA(n), it evidently holds that
|I| ≥ t.

By virtue of the constraints of S(t)
DA(n), we know that

v{2,...,k+1}∩I must have at least t more 0s than 1s. Also due
to (vk+1, vn−k) = (1, 0), we have k + 1 ∈ I. Thus, it can be
deduced that v{2,...,k}∩I must have at least t+1 more 0s than
1s. This lead us to

(si1 , sn−i1+1) = (si2 , sn−i2+1) = . . . = (sit+1 , sn−it+1+1)
= (0, 1). (17)

1For details, refer to Example 9.

Evidently, it+1 ≤ k. Since (sk
1 , sn

n−k+1) = (vk
1 , vn

n−k+1),
we can also write

(vi1 , vn−i1+1) = (vi2 , vn−i2+1) = . . . = (vit+1 , vn−it+1+1)
= (0, 1). (18)

Also it must hold that k +1 > it+1 ≥ t+2, i.e., k ≥ t+2,
since otherwise, (vk+1, vn−k) = (1, 0) would not be a valid
choice according to (18).

Furthermore, we have k ≤ n
2 − 2 since n

2 is the maximum
length of a prefix-suffix pair of s, and k = n

2 − 1, would
lead to (vn

2−1, vn
2 +2) = (1, 0), which is prohibited by the

construction of S(t)
DA(n).

It is evident that |Cn−k−1(s)\Cn−k−1(v)| = 2. For the
remainder of this proof, we strive to find if Cn−k−j(s) =
Cn−k−j(v)2 might hold for any 2 ≤ j ≤ t + 1 < k. When
n−k−j ≥ k+1, the satisfaction of Cn−k−j(s) = Cn−k−j(v)
essentially requires that

{c(sk
1), 0, c(sn−k−j

k+2 )},
{c(sk

2), 0, c(sn−k−j+1
k+2 )},

...

{c(sk
j ), 0, c(sn−k−1

k+2 )},
{c(sn

n−k+1), 1, c(sn−k−1
k+j+1 )},

{c(sn−1
n−k+1), 1, c(sn−k−1

k+j )},
...

{c(sn−j+1
n−k+1), 1, c(sn−k−1

k+2 )}



=



{c(vk
1), 1, c(vn−k−j

k+2 )},
{c(vk

2), 1, c(vn−k−j+1
k+2 )},

...

{c(vk
j ), 1, c(vn−k−1

k+2 )},
{c(vn

n−k+1), 0, c(vn−k−1
k+j+1 )},

{c(vn−1
n−k+1), 0, c(vn−k−1

k+j )},
...

{c(vn−j+1
n−k+1), 0, c(vn−k−1

k+2 )}



, (19)

since one can surmise from Fig. 2 that any composition of s
in Cn−k−j(s), say c(sn−k−j+p−1

p ), such that p ≤ k + 1 and
n−k−j+p−1 ≥ n−k, will be identical to c(vn−k−j+p−1

p ).
The proof for the case when n− k − j ≤ k runs in a similar
fashion, and is thus ignored in this analysis. By setting a =
wt(sn−k

j+1 ) = wt(vn−k
j+1 )3 and b = wt(sn−j

k+1) = wt(vn−j
k+1),4 and

additionally exploiting (sk
1 , sn

n−k+1) = (vk
1 , vn

n−k+1), we can

2|Cn−k−j(s)\Cn−k−j(v)| = 1 is not a possibility due to
wn−k−j(s) = wn−k−j(v) which is a consequence of σs = σv

and (6). Therefore Cn−k−j(s) ̸= Cn−k−j(v) automatically implies that
|Cn−k−j(s)\Cn−k−j(v)| ≥ 2.

3The expression wt(sn−k
j+1 ) = wt(vn−k

j+1 ) follows from sk
1 = vk

1 and
c(sn−k

k+1 ) = c(vn−k
k+1 ).

4The expression wt(sn−j
k+1) = wt(vn−j

k+1) follows from sn
n−k+1 =

vn
n−k+1 and c(sn−k

k+1 ) = c(vn−k
k+1 ).
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transform (19) into an equivalent representation in terms of
Hamming weights.

a + wt(sj
1)− wt(sn−k−1

n−k−j+1)− 1,

a + wt(sj
2)− wt(sn−k−1

n−k−j+2)− 1,

...

a + wt(sj
j−1)− sn−k−1 − 1,

a + sj − 1,

b + wt(sn
n−j+1)− wt(sk+j

k+2),

b + wt(sn−1
n−j+1)− wt(sk+j−1

k+2 ),
...

b + wt(sn−j+2
n−j+1)− sk+2,

b + sn−j+1



=



a + wt(sj
1)− wt(vn−k−1

n−k−j+1),

a + wt(sj
2)− wt(vn−k−1

n−k−j+2),
...

a + wt(sj
j−1)− vn−k−1,

a + sj ,

b + wt(sn
n−j+1)− wt(vk+j

k+2)− 1,

b + wt(sn−1
n−j+1)− wt(vk+j−1

k+2 )− 1,

...

b + wt(sn−j+2
n−j+1)− vk+2 − 1,

b + sn−j+1 − 1



, (20)

Due to (17) and (18), we may deduce that for all p ∈
[j], it should hold that sp ≤ sn−p+1 and vp ≤ vn−p+1.
In particular, we define a set of indices K as

K = {2, . . . , j} \ I.

This set essentially contains all p ∈ [j] for which σp ∈
{0, 2}, i.e., sp = sn−p+1. Since j < k and (sk

1 , sn
n−k+1) =

(vk
1 , vn

n−k+1), it also holds that for all p ∈ K, vp = vn−p+1.
Finally, we require the following observations, which follow

directly from the constraints of S(t)
DA(n).

wt(vn−1
n−k) ≥ wt(vk+1

2 ) + t,

=⇒ wt(vn
n−k+1) ≥ wt(vk

1) + t + 2,

=⇒ wt(sn
n−k+1) ≥ wt(sk

1) + t + 2.

This inequality also leads us to

b− a = wt(sn−j
k+1)− wt(sn−k

j+1 )

= wt(sn
k+1)− wt(sn−k

1 )− wt(sn
n−j+1) + wt(sj

1)

= wt(sn
n−k+1)− wt(sk

1)− (j − |K|)
≥ t + 2− j + |K| ≥ |K|+ 1, (21)

where the final inequality follows from j ≤ t + 1. Next,
we introduce the following notations for all p ∈ [j] to simplify

the exposition.

γp(s) = wt(sn−k−j+p−1
p )

=

{
a + wt(sj

p)− wt(sn−k−1
n−k−j+p)− 1, if p ≤ j − 1

a + sj − 1, if p = j

ωn−p+1(s) = wt(sn+1−p
k+j+2−p)

=

{
b + wt(sn−p+1

n−j+1)− wt(sk+j+1−p
k+2 ), if p ≤ j − 1

b + sn−j+1, if p = j.

and similarly for v. Additionally, let C(1)(s) =
{γ1(s), . . . γj(s)} and C(2)(s) = {ωn(s), . . . , ωn−j+1(s)}.
We define C(1)(v) and C(2)(v) analogously. This lets us
rewrite (20) in short, as

C(1)(s) ∪ C(2)(s) = C(1)(v) ∪ C(2)(v).

Now since for all p ∈ [j] \ K we have sp = vp = 0 and
sn−p+1 = vn−p+1 = 1, it is possible to infer the following
bounds for any α ∈ [j],

ωn−α+1(s) ≥ b + 1− |K \ [α− 1]|+ wt(sK\[α−1])
ωn−α+1(v) ≥ b− |K \ [α− 1]|+ wt(sK\[α−1]).

γα(s) ≤ a− 1 + wt(sK\[α−1]),
γα(v) ≤ a + wt(sK\[α−1]),

From the preceding inequalities along with (21), it is
possible to deduce that there exists no α1, α2 ∈ [j], for
which γα1(v) = ωn−α2+1(s). Similarly, there exists no
α1, α2 ∈ [j], for which γα1(s) = ωn−α2+1(v). Thus, in order
for Cn−k−j(s) = Cn−k−j(v), or alternatively (20) to hold,
we require

{γ1(s), . . . γj(s)} = {γ1(v), . . . γj(v)}, (22)
{ωn(s), . . . , ωn−j+1(s)} = {ωn(v), . . . , ωn−j+1(v)}, (23)

or more simply put, C(1)(s) = C(1)(v) and C(2)(s) =
C(2)(v). In the following analysis, we strive to establish that
any additional conditions on s and v that allow the satisfaction
of (22), prohibit equality in (23).

Case 1: sk+j
k+2 = vk+j

k+2.
Observe that on account of σs = σv , sk+j

k+2 = vk+j
k+2 also

implies that sn−k−1
n−k−j+1 = vn−k−1

n−k−j+1.
We begin by attempting to find any conditions on s that

allow (22). To this end, we reiterate (22) more explicitly.

C(1)(s) =



a + wt(sj
1)− wt(sn−k−1

n−k−j+1)− 1,

a + wt(sj
2)− wt(sn−k−1

n−k−j+2)− 1,

...

a + wt(sj
j−1)− sn−k−1 − 1,

a + sj − 1



=



a + wt(sj
1)− wt(vn−k−1

n−k−j+1),

a + wt(sj
2)− wt(vn−k−1

n−k−j+2),
...

a + wt(sj
j−1)− vn−k−1,

a + sj


= C(1)(v),
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Next, we try to match the composition of weight a + sj to
any composition in C(1)(s). To facilitate this, we let

γα(s) = a + sj = γj(v)

=⇒ wt(sj−1
α )− wt(sn−k−1

n−k−j+α) = 1 (24)

Furthermore, we assume that there exists no p ∈ {α +
1, . . . , j − 1} for which γp(s) = a + sj . In other words, for
all p ∈ {α + 1, . . . , j − 1}, we require γp(s) ≤ a + sj − 1.
This leads us to infer that

wt(sj−1
p ) ≤ wt(sn−k−1

n−k−j+p),

where p ∈ {α + 1, . . . , j − 1}. Additionally, due to the fact
that we always have |γp+1(s)−γp(s)| ≤ 1 for any p ∈ [j−1],
we can deduce that γα+1(s) = a + sj − 1. This observation,
coupled with (24), gives us wt(sj−1

α+1) = wt(sn−k−1
n−k−j+α+1)

and (sα, sn−k−j+α) = (1, 0). These relations in turn cause
γα(v) = a + sj + 1. Trying to match this composition of
weight a + sj + 1 to any element in C(1)(s) will once again
lead to some element in C(2)(s) to be equal to a+ sj +2 and
so on. Thus, in effect, (22) cannot hold. Alternatively, we say
that Cn−k−j(s) ̸= Cn−k−j(v) always holds.

Case 2: sk+j
k+2 ̸= vk+j

k+2.
Earlier, we had defined a set K as the set of all indices

p ∈ [j] for which sp = sn−p+1. We now denote the elements
of this set as K = {m1, m2, . . . ,m|K|}, where m1 > m2 >
. . . > m|K|. Recalling that for all p ∈ [j] \ K, we have
(sp, sn−p+1) = (vp, vn−p+1) = (0, 1), we restate C(1)(s)
more explicitly as follows.



a + sm1 + . . . + sm|K| − wt(sn−k−1
n−k−j+1)− 1,

a + sm1 + . . . + sm|K| − wt(sn−k−1
n−k−j+2)− 1,

...

a + sm1 + . . . + sm|K| − wt(sn−k−1
n−k−j+m|K|−1)− 1,

a + sm1 + . . . + sm|K| − wt(sn−k−1
n−k−j+m|K|

)− 1,

a + sm1 + . . . + sm|K|−1 − wt(sn−k−1
n−k−j+m|K|+1)− 1,

...

a + sm1 + sm2 − wt(sn−k−1
n−k−j+m2−1)− 1,

a + sm1 + sm2 − wt(sn−k−1
n−k−j+m2

)− 1,

a + sm1 − wt(sn−k−1
n−k−j+m2+1)− 1,

...

a + sm1 − wt(sn−k−1
n−k−j+m1−1)− 1,

a + sm1 − wt(sn−k−1
n−k−j+m1

)− 1,

a− wt(sn−k−1
n−k−j+m1+1)− 1,

...
a− sn−k−1 − 1,

a− 1



.

Similarly, C(1)(v) may be restated as

a + sm1 + . . . + sm|K| − wt(vn−k−1
n−k−j+1),

a + sm1 + . . . + sm|K| − wt(vn−k−1
n−k−j+2),

...
a + sm1 + . . . + sm|K| − wt(vn−k−1

n−k−j+m|K|−1),

a + sm1 + . . . + sm|K| − wt(vn−k−1
n−k−j+m|K|

),

a + sm1 + . . . + sm|K|−1 − wt(vn−k−1
n−k−j+m|K|+1),

...
a + sm1 + sm2 − wt(vn−k−1

n−k−j+m2−1),
a + sm1 + sm2 − wt(vn−k−1

n−k−j+m2
),

a + sm1 − wt(vn−k−1
n−k−j+m2+1),

...
a + sm1 − wt(vn−k−1

n−k−j+m1−1),
a + sm1 − wt(vn−k−1

n−k−j+m1
),

a− wt(vn−k−1
n−k−j+m1+1),

...
a− vn−k−1,

a



. (25)

We wish to match the composition γj(v) with weight a
to any element in C(1)(s). To this end, we set γm1(s) =
a + sm1 − wt(sn−k−1

n−k−j+m1
) − 1 = a, while ensuring that for

any p ∈ {m1+1, . . . , j}, we have γp(s) ≤ a−1. Again, since
for any p ∈ [j − 1] we have |γp+1(s) − γp(s)| ≤ 1, it must
hold that γm1+1(s) = a − 1. These impositions essentially
translate to

sn−k−1
n−k−j+m1

= 0,

sm1 = 1,

γp(s) = a− 1 ∀ p ∈ {m1 + 1, . . . , j}. (26)

Under these conditions, C(1)(s) = C(1)(v) reduces to

a +
|K|∑
i=2

smi
− wt(sn−k−j+m1−1

n−k−j+1 ),

a +
|K|∑
i=2

smi − wt(sn−k−j+m1−1
n−k−j+2 ),

...
a + sm2 − wt(sn−k−j+m1−1

n−k−j+m2−1),
a + sm2 − wt(sn−k−j+m1−1

n−k−j+m2
),

a− wt(sn−k−j+m1−1
n−k−j+m2+1),

...
a− sn−k−j+m1−1,

a,

a− 1,
...

a− 1,

a− 1
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=



a + 1 +
|K|∑
i=2

smi
− wt(vn−k−1

n−k−j+1),

a + 1 +
|K|∑
i=2

smi
− wt(vn−k−1

n−k−j+2),

...

a + 1 + sm2 − wt(vn−k−1
n−k−j+m2−1),

a + 1 + sm2 − wt(vn−k−1
n−k−j+m2

),

a + 1− wt(vn−k−1
n−k−j+m2+1),

...

a + 1− wt(vn−k−1
n−k−j+m1−1),

a + 1− wt(vn−k−1
n−k−j+m1

),

a− wt(vn−k−1
n−k−j+m1+1),

...
a− vn−k−1,

a



. (27)

Since γp(s) = a−1 for all m1+1 ≤ p ≤ j, we need j −m1

entries in C(1)(v) to be equal to a − 1. We wish to achieve
this by setting the elements γj−1(v), γj−2(v), . . . , γm1(v) to
a − 1. We prefer to pick these entries due to their adjacency
to γj(v), as this implies fewer constraints.5 Now in order to
set γj−1(v) = γj−2(v) = . . . = γm1(v) = a− 1, we require

vn−k−1 = 1,

vn−k−2
n−k−j+m1+1 = 0,

vn−k−j+m1 = 1. (28)

Consequently, (27) becomes

C(1)(s) =



a +
|K|∑
i=2

smi − wt(sn−k−j+m1−1
n−k−j+1 ),

a +
|K|∑
i=2

smi
− wt(sn−k−j+m1−1

n−k−j+2 ),

...
a + sm2 − wt(sn−k−j+m1−1

n−k−j+m2−1),
a + sm2 − wt(sn−k−j+m1−1

n−k−j+m2
),

a− wt(sn−k−j+m1−1
n−k−j+m2+1),

...
a− sn−k−j+m1−1,

a,

a− 1,
...

a− 1,

a− 1


5Any alternative assignment leads to the same conclusion.

=



a− 1 +
|K|∑
i=2

smi
− wt(vn−k−j+m1−1

n−k−j+1 ),

a− 1 +
|K|∑
i=2

smi
− wt(vn−k−j+m1−1

n−k−j+2 ),

...
a− 1 + sm2 − wt(vn−k−j+m1−1

n−k−j+m2−1),
a− 1 + sm2 − wt(vn−k−j+m1−1

n−k−j+m2
),

a− 1− wt(vn−k−j+m1−1
n−k−j+m2+1),...

a− 1− vn−k−j+m1−1,
a− 1,
a− 1, ...a− 1,
a



= C(1)(v).

Now observe that, if we additionally set
(sn−k−j+m1−1, vn−k−j+m1−1) = (1, 0),

sn−k−j+m1−2
n−k−j+1 = vn−k−j+m1−2

n−k−j+1 . (29)

then C(1)(s) = C(1)(v) definitely holds. Now to see how the
conditions imposed on s impact the satisfaction of C(2)(s) =
C(2)(v), we note that on account of σs = σv , the following
relations are automatically implied by (26), (28) and (29).

(sk+2, vk+2) = (1, 0)
sk+j−m1

k+3 = vk+j−m1
k+3 ,

(sk+j−m1+1, vk+j−m1+1) = (1, 0),
(sk+j−m1+2, vk+j−m1+2) = (0, 1),

sk+j
k+j−m1+3 = vk+j

k+j−m1+3. (30)

Now as done previously for C(1)(s) and C(1)(v), we first
restate C(2)(s) and C(2)(v) to deduce the conditions that lead
to C(2)(s) = C(2)(v). To this end, we first express C(2)(s)
as

b + j − |K|+
|K|∑
i=1

smi − wt(sk+j
k+2),

b + j − |K| − 1 +
|K|∑
i=1

smi
− wt(sk+j−1

k+2 ),
...

b + j −m|K| − |K|+ 2 +
|K|∑
i=1

smi
− wt(sk+j−m|K|+2

k+2 ),

b + j −m|K| − |K|+ 1 +
|K|∑
i=1

smi
− wt(sk+j−m|K|+1

k+2 ),

b + j −m|K| − |K|+ 1 +
|K|−1∑
i=1

smi − wt(sk+j−m|K|
k+2 ),

...
b + j −m2 +

2∑
i=1

smi − wt(sk+j−m2+2
k+2 ),

b + j −m2 − 1 +
2∑

i=1

smi
− wt(sk+j−m2+1

k+2 ),

b + j −m2 − 1 + sm1 − wt(sk+j−m2
k+2 ),

...
b + j −m1 + 1 + sm1 − wt(sk+j−m1+2

k+2 ),
b + j −m1 + sm1 − wt(sk+j−m1+1

k+2 ),
b + j −m1 − wt(sk+j−m1

k+2 ),
...

b + 2− sk+2,
b + 1



.

Authorized licensed use limited to: Eitan Yaakobi. Downloaded on December 04,2023 at 04:05:54 UTC from IEEE Xplore.  Restrictions apply. 



BANERJEE et al.: INSERTION AND DELETION CORRECTION IN POLYMER-BASED DATA STORAGE 4395

Next, we restate C(2)(v) as



b + j − |K| − 1 +
|K|∑
i=1

smi − wt(vk+j
k+2),

b + j − |K| − 2 +
|K|∑
i=1

smi
− wt(vk+j−1

k+2 ),

...

b + j −m|K| − |K|+ 1 +
|K|∑
i=1

smi
− wt(vk+j−m|K|+2

k+2 ),

b + j −m|K| − |K|+
|K|∑
i=1

smi − wt(vk+j−m|K|+1

k+2 ),

b + j −m|K| − |K|+
|K|−1∑
i=1

smi
− wt(vk+j−m|K|

k+2 ),

...

b + j −m2 − 1 +
2∑

i=1

smi − wt(vk+j−m2+2
k+2 ),

b + j −m2 − 2 +
2∑

i=1

smi
− wt(vk+j−m2+1

k+2 ),

b + j −m2 − 2 + sm1 − wt(vk+j−m2
k+2 ),

...

b + j −m1 + sm1 − wt(vk+j−m1+2
k+2 ),

b + j −m1 − 1 + sm1 − wt(vk+j−m1+1
k+2 ),

b + j −m1 − 1− wt(vk+j−m1
k+2 ),

...
b + 1− vk+2,

b



.

Note that (30) further suggests that wt(sk+j−m1+2
k+2 ) −

wt(vk+j−m1+2
k+2 ) = 1. Combining this with sm1 = 1 and

sk+j
k+j−m1+3 = vk+j

k+j−m1+3, we are able to simplify C(2)(s) =
C(2)(v), using the preceding expressions, to

b + j −m1 + 1− wt(sk+j−m1+1
k+2 ),

b + j −m1 − wt(sk+j−m1
k+2 ),

...
b + 2− sk+2,

b + 1



=



b + j −m1 − wt(vk+j−m1+1
k+2 ),

b + j −m1 − 1− wt(vk+j−m1
k+2 ),

...
b + 1− vk+2,

b


.

Now observe that the remaining element b in C(2)(v) cannot
be matched to any of the remaining elements in C(2)(s). Thus,
once again Cn−k−j(s) = Cn−k−j(v) does not hold, since we
have C(2)(s) ̸= C(2)(v).

□
Remark 2: Observe that whenever we have two codestrings

s, v ∈ S(t)
DA(n) such that σs = σv , st+1

1 = 0,sn
n−t = 1,

(sk
1 , sn

n−k+1) = (vk
1 , vn

n−k+1) and sk+1 ̸= vk+1 for any
t + 2 ≤ k ≤ ⌊n

2 ⌋, we deduce that for all 1 ≤ j ≤ t + 1,
Cn−k−j(s) = Cn−k−j(v) never holds, since sj

1 = vj
1 = 0,

in turn implying that C(1)(s) = C(1)(v) is always untrue.6

Since s, v ∈ S(t+1)
R (n) [11], we conclude that S(t+1)

R (n) is
also a t-asymmetric multiset deletion code.

The preceding lemma now helps us establish that the code
S(t)

DA(n) is robust to the deletion of any t asymmetric multisets.
Theorem 2: S(t)

DA(n) is a t-asymmetric multiset deletion
code.

Proof: In the following, we wish to establish that for any
s ∈ S(t)

DA(n), if one is given C ′(s) =
⋃

i∈[n]\{i1,...it} Ci(s),
i.e., the multisets Ci1(s), . . . , Cit

(s) are deleted, such that
no two of the deleted multisets are mutually symmetric, then
s can be uniquely recovered. As pointed out previously in
Remark 1, σs can be uniquely recovered from the corrupted
composition multiset.

Case 1: The deleted multisets are consecutive.
This case is directly implied by Lemma 4.
Case 2: Not all of the deleted multisets are consecutive.

Since the reconstruction algorithm functions in an outside-in
manner, the missing multiset encountered first, corresponds
to that of highest substring length. In the following analysis,
we assume that it > it−1 > . . . > i1.

If it = n, we can directly infer Cn(s) from the cumulative
weight of C1(s). Alternatively when it < n and additionally
it, . . . , it−j+1 are consecutive, we have (sn−it−1

1 , sn
it+2) =

(vn−it−1
1 , vn

it+2) since for j ∈ {n, n− 1, . . . , it + 1}, it holds
that Cj(s) = Cj(v). Now, an incorrect assignment of the bit
pair (sn−it

, sit+1) will certainly cause an incompatibility with
the multiset Cit−j+1−1(s) = Cit−j(s), as Lemma 4 suggests.
Thus, the backtracking algorithm can detect the mistake and
accurately reconstruct the string up to (sn−it+j

1 , sn
it−j+1).

Absence of the other missing multisets Cit−j
, . . . , Ci1 can be

dealt with similarly, by successively applying the aforemen-
tioned argument.

□
We also bound the number of redundant bits required by
S(t)

DA(n) as follows.
Lemma 5: The code S(t)

DA(n) requires at most 1
2 log(n −

2t− 2) + 2t + 7 bits of redundancy.
Proof: We refer to (9) and additionally recount from

[11] that 1
2

(
2h
h

)
indicates the number of all strings of length

2h wherein every prefix of which contains strictly more 0s
than 1s. For odd lengths 2h + 1, this term serves as a lower
bound. Similarly, to count all strings s ∈ {0, 1}p wherein each
prefix (of length exceeding t) contains at least t more 0s than
1s, we simply note that such strings satisfy st−1

1 = 0 and

6As wj(v) cannot be matched to any element in C(1)(s).
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sp
t should be a standard Catalan-Bertrand string. By virtue of

this, we derive a lower bound on dimension of the codebook
for even values of n.

|S(t)
DA(n)|≥3

n−2
2 −1∑
i=t

2
n−2

2 −2−i

(n−2
2 − 1

i

)(
i− t + 1

⌊(i− t + 1)/2⌋

)
.

After some algebraic manipulation of this expression, we con-
clude that the maximum number of redundant bits necessary
is 1

2 log(n − 2t − 2) + 2t + 7. It is easy to see that this
bound on the number of redundant bits also holds for odd
values of n. □

VI. SYMMETRIC MULTISET DELETION CODES

As mentioned in Section III, errors under this category
occur in such a way that the affected multisets occur in pairs.
We begin directly with the case when two symmetric multisets
are inaccessible.

Theorem 3: The code SR(n) is a single symmetric multiset
deletion code.

Proof: In the following, we wish to prove that for any
s ∈ SR(n), if we are given C ′(s) =

⋃
i∈[n]\{k,n−k+1} Ci(s)

for some 1 ≤ k ≤ ⌈n−1
2 ⌉, then s can be fully recovered.

Case 1: n is odd.
Since the deleted multisets Ck(s) and Cn−k+1(s) can

never be consecutive when n is odd, we can infer from [11,
Lemma 4] that any attempt to substitute Cn−k+1(s) with
another multiset, say C ′n−k+1, that may or may not preserve
the value of σk−1(s), will surely cause a disagreement with
Cn−k(s). Hence, there exists no valid alternative choices for
the multiset pair {Ck(s), Cn−k+1(s)}, thus implying that s is
uniquely reconstructable.

Case 2: n is even.
As in the previous case, we can argue that for any

k ̸= {n
2 , n

2 + 1}, i.e., when the missing multisets are non-
consecutive, s remains unique reconstructable by virtue of
[11, Lemma 4]. The only case left to be analyzed is when
the deleted multisets are adjacent, i.e., Cn

2
(s) and Cn

2 +1(s).
More specifically, we examine the existence of any v ∈ SR(n),
such that ⋃

i∈[n]\{n
2 , n

2 +1}

Ci(v) =
⋃

i∈[n]\{n
2 , n

2 +1}

Ci(s).

This directly leads to the following relations:

(sn/2−2
1 , sn

n/2+3) = (vn/2−2
1 , vn

n/2+3),

σi = σ′i, ∀ 1 ≤ i ≤ n

2
− 2

σn
2−1 + σn

2
= σ′n

2−1 + σ′n
2
.

where the sequence σv = (σ′1, . . . , σ
′
n/2) describes v.

Subcase (i): σs = σv

We only study this subcase for when σn
2−1 = σ′n

2−1 =
1 and (sn

2−1, sn
2 +2) ̸= (vn

2−1, vn
2 +2), since the alternative

involves Cn/2+1(s) = Cn/2+1(v) and as a result of this,
Lemma 3 precludes the existence of v, since C(s) and C(v)
cannot differ by a single multiset alone. This situation is
illustrated in Fig. 3.

Fig. 3. Strings s and v are such that (s
n
2−2

1 , sn
n
2 +3

) = (v
n
2−2

1 ,vn
n
2 +3

),
where v+ + v− = s+ + s−.

Fig. 4. Strings s and v are such that (s
n
2−2

1 , sn
n
2 +3

) = (v
n
2−2

1 ,vn
n
2 +3

),
where s+ + s− = v+ + v− = 1.

We now proceed to ascertain if there exists some v for
which Cn/2−1(s) = Cn/2−1(v) holds. Alternatively, we need
the following set equality relation to hold:

{c(s
n
2−2
1 ), 0},

{c(s
n
2−2
2 ), 0, s+},

{c(s
n
2−2
3 ), 0, s+, s−},

{c(sn
n
2 +3), 1},

{c(sn−1
n
2 +3), 1, s−},

{c(sn−2
n
2 +3), 1, s+, s−}


=



{c(v
n
2−2
1 ), 1},

{c(v
n
2−2
2 ), 1, v+},

{c(v
n
2−2
3 ), 1, v+, v−},

{c(vn
n
2 +3), 0},

{c(vn−1
n
2 +3), 0, v−},

{c(vn−2
n
2 +3), 0, v+, v−}


.

(31)

Due to the weight mismatch property between prefix and suffix
of equal lengths, we note from Fig. 3 that v must uphold:

wt(sn/2−2
2 ) + 1 < wt(sn−1

n/2+3)

=⇒ wt(sn/2−2
1 ) + 3 ≤ wt(sn

n/2+3). (32)

Now to prove that (31) never holds, it suffices to show that
the composition {c(sn

n
2 +3), 1} can never be matched to any

two elements on the RHS in (31), even when (32) holds
with equality. It is easy to see this when v+ + v− < 2.
On the contrary, when v+ + v− = 2, the compositions
{c(v

n
2−2
1 ), 1} and {c(v

n
2−2
2 ), 1, v+} become identical, and

cannot be matched simultaneously to the components of RHS
in (31). Therefore, v does not exist.

Subcase (ii): σs ̸= σv

All of the possible combinations of (σn
2−1, σn

2
) and

(σ′n
2−1, σ

′
n
2
) that comprehensively cover this subcase are:

• (σn
2−1, σn

2
) = (1, 2b) and (σ′n

2−1, σ
′
n
2
) = (2b, 1).

• (σn
2−1, σn

2
) = (2, 0) and (σ′n

2−1, σ
′
n
2
) = (1, 1).

• (σn
2−1, σn

2
) = (0, 2) and (σ′n

2−1, σ
′
n
2
) = (1, 1).

where b ∈ F2. For the sake of brevity, we only prove the first
instance. The remaining proofs run in a similar fashion.
To reiterate our objective, we check for the existence of a string
v ∈ SR(n), for a given s ∈ SR(n), which are characterized
as per the depiction in Fig. 4. Since s and v may only differ
in their respective composition multisets of substring lengths
n
2 and n

2 + 1 alone, we endeavor to find the conditions that
allow for the set equality of Cn

2−1(s) and Cn
2−1(v). More
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explicitly, we require:

{c(s
n
2−2
1 ), s+},

{c(s
n
2−2
2 ), s+, b},

{c(s
n
2−2
3 ), s+, b2},

{c(sn
n
2 +3), 1− s+},

{c(sn−1
n
2 +3), 1− s+, b},

{c(sn−2
n
2 +3), 1− s+, b2}


=



{c(v
n
2−2
1 ), b},

{c(v
n
2−2
2 ), b, v+},

{c(v
n
2−2
3 ), b, 01},

{c(vn
n
2 +3), b},

{c(vn−1
n
2 +3), b, 1− v+},

{c(vn−2
n
2 +3), b, 01}


.

When s+ = v+ = 0, we may proceed under the assumption
that wt(sn/2−2

2 ) = wt(sn−1
n/2+3) to account for the worst case.

In this situation, either {c(s
n
2−2
1 ), s+} or {c(sn

n
2 +3), 1 − s+}

fails to be matched, depending on the chosen value of b.
Else, when either s+ or v+ equals 1, we infer that (32)
holds true. Again, we choose to proceed with the worst
case, i.e., wt(sn/2−2

2 ) + 3 = wt(sn−1
n/2+3), and an exhaustive

examination of each possibility reveals that the previous set
equality cannot be satisfied. Thus, we conclude that v does
not exist.

□
Consequently, if a single composition is substituted in C(s)

where s ∈ SR(n), then there occurs a mismatch between the
cumulative weights of the specific multiset affected, say Ci(s),
and its symmetric counterpart Cn−i+1(s). Now if both Ci(s)
and Cn−i+1(s) are deleted, Lemma 3 tells us that s is still
uniquely recoverable. Thus, we conclude that SR(n) is capable
of correcting a single composition error just like S

(1)
C (n)

[11], [12].
We now investigate further along this direction and seek to

determine if the absence of multiple pairs of such multisets
impacts reconstructability. The deletion of two or more pairs
of symmetric multisets, as shown in Lemma 9 (Appendix),
no longer guarantees unique reconstruction of codewords
drawn from SR(n). To remedy this, we propose the code
S(2)

DS(n) [see Construction 3], capable of correcting deletions
of two pairs of symmetric sets.

Theorem 4: The code S(2)
DS(n) is a 2-symmetric multiset

deletion code.
Proof: To prove the statement of this theorem, we intend

to show that for any s ∈ S(2)
DS(n), if we are only given the com-

position multisets
⋃

i∈[n]\{k1,k2,n−k1+1,n−k2+1} Ci(s), where
1 ≤ k1, k2 ≤ ⌊n

2 ⌋, then s can be uniquely recovered. We prove
this by contradiction, i.e., we attempt to find some s, v ∈
S(2)

DS(n), such that⋃
i∈[n]\{k1,k2,n−k1+1,

n−k2+1}

Ci(s) =
⋃

i∈[n]\{k1,k2,n−k1+1,
n−k2+1}

Ci(v).

Additionally, we let σs = (σ1, . . . , σn/2) and σv =
(σ′1, . . . , σ

′
n/2).

Case 1: n is even and the deleted multisets are neighboring,
i.e., {Cn/2−1(s), . . . , Cn/2+2(s)}.

Since the cumulative weights w1(s), . . . , wn
2−2(s) are still

accessible, one can unambiguously deduce (σ1, . . . , σn
2−3) by

applying (6). We thus have

σi = σ′i, ∀ 1 ≤ i ≤ n

2
− 3

σn
2−2 + σn

2−1 + σn
2

= σ′n
2−2 + σ′n

2−1 + σ′n
2
, (33)

where the second equation follows from a combining its
predecessor, w1(s) = w1(v) and (4).

The difference of the sum of their respective cumulative
weights for composition multisets containing substrings of
lengths from 1 to n

2 , can be simplified to the following,
by means of (5) and (33).

n/2∑
i=1

wi(s)−
n/2∑
i=1

wi(v)

=
n/2∑

i=n/2−1

wi(s)−
n/2∑

i=n/2−1

wi(v)

= 3(σ′n/2−2 − σn/2−2) + (σ′n/2−1 − σn/2−1). (34)

The above difference is maximized when either:

(σn
2−2, σn

2−1, σn
2
) = (0, 1, 2),

(σ′n
2−2, σ

′
n
2−1, σ

′
n
2
) = (2, 1, 0).

or:

(σn
2−2, σn

2−1, σn
2
) = (0, 2, 2),

(σ′n
2−2, σ

′
n
2−1, σ

′
n
2
) = (2, 2, 0).

In either case, (33) is upheld. Hence, we can write that:
n/2∑
i=1

wi(s)−
n/2∑
i=1

wi(v) ≤ 6.

Thus, an additional constraint of
∑n/2

i=1 wi(s) mod 7 will be
sufficient to fully recover σs. This implies that σs = σv .

Now since Ci(s) = Ci((v) for n/2 + 3 ≤ i ≤ n,
it immediately follows that

(sn/2−3
1 , sn

n/2+4) = (vn/2−3
1 , vn

n/2+4), (35)

by virtue of how the reconstruction algorithm works and the
fact that s, v ∈ S(2)

DS(n) ⊂ SR(n). Following this, we seek to
determine whether Cn/2−2(s) = Cn/2−2(v) can hold.

Subcase (i): sn/2−2 ̸= vn/2−2

Without loss of generality, we assume (sn/2−2, vn/2−2) =
(0, 1). Since σn/2−2 = σ′n/2−2, it must hold that
(sn/2+3, vn/2+3) = (0, 1). This has been illustrated in Fig. 5.

Moreover, on account of the Catalan-Bertrand constraint
imposed by S(2)

DS(n), we note that for some I ⊆ {2, . . . ,
n
2 − 2}, such that for any i ∈ I, vi ̸= vn−i+1, we can write

|I| − wt(vI) ≥ wt(vI) + 1,

=⇒ wt(vĨ) ≥ wt(vI) + 1,

where Ĩ = {n− i + 1 : i ∈ I}. Since for any i ∈ [n
2 − 2]\I,

vi = vn−i+1, the preceding equation can be restated to

wt(vn−1
n/2+3) ≥ wt(vn/2−2

2 ) + 1,

=⇒ wt(vn
n/2+4) ≥ wt(vn/2−3

1 ) + 3,

=⇒ wt(sn
n/2+4) ≥ wt(sn/2−3

1 ) + 3, (36)
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Fig. 5. Strings s and v are such that (s
n
2−3

1 , sn
n
2 +4

) = (v
n
2−3

1 ,vn
n
2 +4

),
and σs = σv .

where the second inequality follows from (v1, vn) =
(vn/2+3, vn/2−2) = (0, 1), while the final expression is
implied by (35).

Next, we observe that for any 6 ≤ i ≤ n/2 − 2,
c(si+n/2−3

i ) = c(vi+n/2−3
i ). Hence, for Cn/2−2(s) =

Cn/2−2(v) to be upheld, we simply require that



{c(s
n
2−3
1 ), 0},

{c(s
n
2−3
2 ), 0, sn

2−1},

{c(s
n
2−3
3 ), 0, c(s

n
2
n
2−1)},

{c(s
n
2−3
4 ), 0, c(s

n
2 +1
n
2−1)},

{c(s
n
2−3
5 ), 0, c(s

n
2 +2
n
2−1)},

{c(sn
n
2 +4), 1},

{c(sn
n
2 +4), sn

2 +2},

{c(sn−2
n
2 +4), 1, c(s

n
2 +2
n
2 +1)},

{c(sn−3
n
2 +4), 1, c(s

n
2 +2
n
2

)},

{c(sn−4
n
2 +4), 1, c(s

n
2 +2
n
2−1)}



=



{c(v
n
2−3
1 ), 1},

{c(v
n
2−3
2 ), 1, vn

2−1},

{c(v
n
2−3
3 ), 1, c(v

n
2
n
2−1)},

{c(v
n
2−3
4 ), 1, c(v

n
2 +1
n
2−1)},

{c(v
n
2−3
5 ), 1, c(v

n
2 +2
n
2−1)},

{c(vn
n
2 +4), 0},

{c(vn−1
n
2 +4), 0, vn

2 +2},

{c(vn−2
n
2 +4), 0, c(v

n
2 +2
n
2 +1)},

{c(vn−3
n
2 +4), 0, c(v

n
2 +2
n
2

)},

{c(vn−4
n
2 +4), 0, c(v

n
2 +2
n
2−1)}



.

To proceed with the proof, we assume that (36) holds with
equality. When this is not the case, the proof will follow
similarly. We let α = wt(s

n
2−3
1 ), and rewrite the preceding

set equality in terms of Hamming weights, i.e.,



α,

α + sn
2−1,

α + wt(s
n
2
n
2−1)− s2,

α + wt(s
n
2 +1
n
2−1)− wt(s3

2),

α + wt(s
n
2 +2
n
2−1)− wt(s4

2),

α + 4,

α + 3 + sn
2 +2,

α + 3 + wt(s
n
2 +2
n
2 +1)− sn−1,

α + 3 + wt(s
n
2 +2
n
2

)− wt(sn−1
n−2),

α + 3 + wt(s
n
2 +2
n
2−1)− wt(sn−1

n−3)



=



α + 1,

α + 1 + vn
2−1,

α + 1 + wt(v
n
2
n
2−1)− v2,

α + 1 + wt(v
n
2 +1
n
2−1)− wt(v3

2),

α + 1 + wt(v
n
2 +2
n
2−1)− wt(v4

2),

α + 3,

α + 2 + vn
2 +2,

α + 2 + wt(v
n
2 +2
n
2 +1)− vn−1,

α + 2 + wt(v
n
2 +2
n
2

)− wt(vn−1
n−2),

α + 2 + wt(v
n
2 +2
n
2−1)− wt(vn−1

n−3)



. (37)

Naturally, the variable α can be removed from every element
in both sets. Upon exhaustively searching for a suitable vector
(s4

2, s
n−1
n−3, s

n/2+2
n/2−1, v

n/2+2
n/2−1) = (v4

2, v
n−1
n−3, s

n/2+2
n/2−1, v

n/2+2
n/2−1) in

the space {0, 1}14, we find no solution that satisfies (37)
while also upholding the Catalan-Bertrand constraint. Thus,
Cn/2−2(s) = Cn/2−2(v) cannot hold.

Subcase (ii): sn/2−2 = vn/2−2, sn/2−1 ̸= vn/2−1

We assume without loss of generality that
(sn/2−1, vn/2−1) = (0, 1). As done previously, we investigate
whether Cn/2−2(s) = Cn/2−2(v) can hold, while

(sn/2−3
1 , sn

n/2+4) = (vn/2−3
1 , vn

n/2+4),

(sn/2−1, vn/2−1) = (0, 1),
(sn/2+2, vn/2+2) = (1, 0),

sn/2 + sn/2+1 = vn/2 + vn/2+1.

These equations have been summarized in Fig. 6. Again,
since for any 5 ≤ i ≤ n/2 − 1 as well as for i ∈ {1, n},
c(si+n/2−3

i ) = c(vi+n/2−3
i ), Cn/2−2(s) = Cn/2−2(v) is

equivalent to

{c(s
n
2−2
2 ), 0},

{c(s
n
2−2
3 ), 0, sn

2
},

{c(s
n
2−2
4 ), 0, c(s

n
2 +1
n
2

)},

{c(sn−1
n
2 +3), 1},

{c(sn−2
n
2 +3), 1, sn

2 +1},

{c(sn−3
n
2 +3), 1, c(s

n
2 +1
n
2

)}



=



{c(v
n
2−2
2 ), 1},

{c(v
n
2−2
3 ), 1, vn

2
},

{c(v
n
2−2
4 ), 1, c(v

n
2 +1
n
2

)},

{c(vn−1
n
2 +3), 0},

{c(vn−2
n
2 +3), 0, vn

2 +1},

{c(vn−3
n
2 +3), 0, c(v

n
2 +1
n
2

)}



.

(38)

Akin to (36), we can use similar arguments to reach the
following inequality.

wt(sn
n/2+3) ≥ wt(sn/2−2

1 ) + 3.

Once again, we assume that the above expression holds with
equality, and let α = wt(sn/2−2

1 ). Now transforming (38) into
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Fig. 6. Strings s and v are such that (s
n
2−2

1 , sn
n
2 +3

) = (v
n
2−2

1 ,vn
n
2 +3

),
and σs = σv .

its corresponding Hamming weights representation, we arrive
at 

α,

α + sn
2
− s2,

α + wt(s
n
2 +1
n
2

)− wt(s3
2),

α + 3,

α + 3 + sn/2+1 − sn−1,

α + 3 + wt(s
n
2 +1
n
2

)− wt(sn−1
n−2)



=



α + 1,

α + 1 + vn
2
− v2,

α + 1 + wt(v
n
2 +1
n
2

)− wt(v3
2),

α + 2,

α + 2 + vn/2+1 − vn−1,

α + 2 + wt(v
n
2 +1
n
2

)− wt(vn−1
n−2)


.

Upon searching for a suitable vector (s3
2, s

n−1
n−2,

s
n/2+1
n/2 , v

n/2+1
n/2 ) in the space {0, 1}8 that satisfies the

preceding set equality as well as sn
2

+ sn
2 +1 = vn

2
+ vn

2 +1

along with the Catalan-Bertrand restriction, we find no viable
solutions. Hence, no suitable v exists.

Subcase (iii): s
n/2−1
n/2−2 = v

n/2−1
n/2−2, sn/2 ̸= vn/2

By adopting the approach employed in earlier subcases,
we obtain

wt(sn
n/2+2) ≥ wt(sn/2−1

1 ) + 3. (39)

We also observe that Cn/2−2(s) = Cn/2−2(v) is equivalent
to {

{c(s
n
2−1
3 ), 0},

{c(sn−2
n
2 +2), 1}

}
=

{
{c(v

n
2−1
3 ), 1},

{c(vn−2
n
2 +2), 0}

}
, (40)

since c(sn/2+i−3
i ) = c(vn/2+i−3

i ) for any i ∈
[

n
2 +3

]
\{3, n

2 +
2}. Evidently, (40) is upheld only when

wt(sn−2
n
2 +2) = wt(v

n
2−1
3 ) = wt(s

n
2−1
3 )

=⇒ wt(sn−2
n
2 +2)− wt(s

n
2−1
3 ) = 0

=⇒ wt(sn
n
2 +2)− wt(s

n
2−1
1 ) = sn−1 + sn − s1 − s2 < 3,

which clearly contradicts (39). Consequently, Cn/2−2(s) =
Cn/2−2(v) cannot hold.

Case 2: n may be odd/even and the deleted multisets are
not all consecutive, i.e., k + 1 < n− k + 1.

In the following, for s, v ∈ S(2)
DS(n), we define σi and σ′i

as

σi = si + sn−i+1,

σ′i = vi + vn−i+1, (41)

for any 1 ≤ i ≤ ⌊n/2⌋. When n is odd, we define σ⌈n/2⌉ =
s⌈n/2⌉ and σ′⌈n/2⌉ = v⌈n/2⌉.

Subcase (i): k = 2
When the multisets C1(s), C2(s), Cn−1(s) and Cn(s) are

missing, s can be uniquely recovered only if there exists no
other v such that⋃

i∈{3,...,n−2}

Ci(s) =
⋃

i∈{3,...,n−2}

Ci(v). (42)

For the purposes of this proof, we assume that such a v
indeed exists.

Firstly, since S(2)
DS(n) ⊂ SR(n), we immediately know that

(s1, sn) = (v1, vn) = (0, 1). Next, since w3(s) = w3(v),

w3(s)= 3w1(s)− σ2 − 2σ1

= 3w1(s)− σ2 − 2 = 3w1(v)− σ′2 − 2

=⇒ 3(w1(s)− w1(v))= σ2 − σ′2. (43)

Now since σi, σ
′
i ∈ {0, 1, 2}, it can only be that w1(s) =

v and σ2 = σ′2. As a result, we have C1(s) = C1(v) and
Cn(s) = Cn(v).

Once again, we may exploit (s1, sn) = (v1, vn) = (0, 1)
in order to further determine Cn−1(s) = Cn−1(v) from the
knowledge of Cn(s). Thus, (42) can be rewritten to⋃

i∈{1,3,...,n}

Ci(s) =
⋃

i∈{1,3,...,n}

Ci(v).

Since this expression reflects the case of a single multiset
deletion, we conclude from Lemma 3 that C(s) = C(v).
We infer this directly from the fact that s, v ∈ S(2)

DS(n) ⊂
SR(n). Thus, s = v.

Subcase (ii): k = 3
When k = 3, multisets C2(s), C3(s), Cn−2(s) and

Cn−1(s) are deleted. Again, since (s1, sn) = (0, 1), we can
promptly determine Cn−1(s) from Cn(s).

If there exists some v such that⋃
i∈{1,4,...,n−3,n−1,n}

Ci(s) =
⋃

i∈{1,4,...,n−3,n−1,n}

Ci(v), (44)

then clearly w4(s) = w4(v) and σ1 = σ′1. We can thus deduce
from (6) that

2σ2 + σ3 = 2σ′2 + σ′3,

2(σ2 − σ′2) = σ′3 − σ3. (45)

Now using the following expression for any 6 ≤ i ≤ ⌈n
2 ⌉,

2wi−1(s)− wi−2(s)− wi(s) = σi−1, (46)

we can uniquely deduce (σ5, . . . , σ⌈n
2 ⌉−1). We can also

recover σ⌈n/2⌉ by exploiting (5) as follows.

w⌈n
2 ⌉(s)− w⌈n

2 ⌉−1(s) =
⌈n

2 ⌉−1∑
i=1

iσi +
⌈n

2

⌉
σ⌈n

2 ⌉

−
⌈n

2 ⌉−1∑
i=1

iσi −
(⌈n

2

⌉
− 1

)
σ⌈n

2 ⌉

= σ⌈n
2 ⌉.
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Since for 4 ≤ i ≤ ⌈n
2 ⌉, wi(s) = wi(v), it naturally follows

that
(σ5, . . . , σ⌈n

2 ⌉) = (σ′5, . . . , σ
′
⌈n

2 ⌉
).

Now since w1(s) = w1(v) and the vector (σ5, . . . , σ⌈n
2 ⌉) is

known, it must be due to (4) that

σ2 + σ3 + σ4 = σ′2 + σ′3 + σ′4. (47)

Next, to compute the difference between the sum of cumu-
lative weights of s and v,
⌈n/2⌉∑
i=1

wi(s)−
⌈n/2⌉∑
i=1

wi(v) = w2(s) + w3(s)−w2(v)− w3(v)

= w3(s)− w3(v)=σ′2 − σ2,

where the second equality follows from wn−1(s) = wn−1(v)
and (7), while the final equality is a consequence of (6) and
σ1 = σ′1. Due to the constraint on the sum of cumulative
weights in S(2)

DS(n), it must hold that σ2 = σ′2.
Equations (45) and (47) further lead to (σ2, σ3, σ4) =

(σ′2, σ
′
3, σ

′
4). Now if σ2 = σ′2 = 1 and s2 ̸= v2, then Lemma 2

allows us to infer that Cn−3(s) ̸= Cn−3(v), which is not
possible according to (44). Thus, no suitable v exists.

Subcase (iii): k ≥ 4
From the proof of Lemma 9, we note that when the multisets

{Ck−1(s), Ck(s), Cn−k+1(s), Cn−k+2(s)} are deleted, there
may exist an alternate v such that:

(sk−3
1 , sn

n−k+4) = (vk−3
1 , vn

n−k+4)
σi = σ′i, ∀ i ∈ I

σk + 2σk−1 + 3σk−2 = σ′k + 2σ′k−1 + 3σ′k−2,

σk+1 + σk + σk−1 + σk−2 = σ′k+1 + σ′k + σ′k−1 + σ′k−2.

where I =
[
⌈n

2 ⌉
]
\{k − 2, . . . , k + 1}. As before, we bound

the difference of the sum of cumulative weights of s and v.
⌈n/2⌉∑
i=1

wi(s)−
⌈n/2⌉∑
i=1

wi(v) =
k∑

i=k−1

wi(s)−
k∑

i=k−1

wi(v)

= (σ′k−1 − σk−1)
+3(σ′k−2 − σk−2). (48)

We find through numerical verification that this quantity
cannot exceed 5, and it precisely occurs when:

(σk−2, σk−1, σk, σk+1) = (0, 2, 0, 0),
(σ′k−2, σ

′
k−1, σ

′
k, σ′k+1) = (1, 0, 1, 0).

Therefore, when s ∈ S(2)
DS(n), the constraint on∑⌈n/2⌉

i=1 wi(s) helps us recover σs completely. The next
logical step is to investigate whether there exists some v ∈
S(2)

DS(n), for such an s, such that for any i ∈ [n]\{k−1, k, n−
k + 1, n− k + 2}, where k ≥ 3,

Ci(s) = Ci(v),
σs = σv,

(sk−3
1 , sn

n−k+4) = (vk−3
1 , vn

n−k+4).

Note that since σs = σv , we can infer that c(sn−k
k+1 ) =

c(vn−k
k+1 ). In the following, we denote c(sn−k

k+1 ) as c.

Fig. 7. Strings s and v are related such that (sk−3
1 , sn

n−k+4) =

(vk−3
1 ,vn

n−k+4) and c(sn−k−1
k+2 ) = c(vn−k−1

k+2 ).

Let sk−2 ̸= vk−2. Without loss of generality, we assume
(sk−2, vk−2) = (0, 1). We illustrate this in Fig. 7. As done
previously in (36), we infer that

wt(sn
n−k+4) ≥ wt(sk−3

1 ) + 3.

It is assumed that this expression holds with equality, since
in other cases, the proof will follow similarly. For notational
convenience, we let α = wt(sk−3

1 ) = wt(vk−3
1 ).

Now for Cn−k(s) = Cn−k(v) to hold, we essentially
require that

{c(sk−3
1 ), 0, c(sk

k−1), c},
{c(sk−3

2 ), 0, c(sk
k−1), c, sn−k+1},

{c(sk−3
3 ), 0, c(sk

k−1), c, c(s
n−k+2
n−k+1)},

{c(sn
n−k+4), 1, c(sn−k+2

n−k+1), c},
{c(sn−1

n−k+4), 1, c(sn−k+2
n−k+1), c, sk},

{c(sn−1
n−k+4), 1, c(sn−k+2

n−k+1), c, c(s
k
k−1)}



=



{c(vk−3
1 ), 1, c(vk

k−1), c},
{c(vk−3

2 ), 1, c(vk
k−1), c, vn−k+1},

{c(vk−3
3 ), 1, c(vk

k−1), c, c(v
n−k+2
n−k+1)},

{c(vn
n−k+4), 0, c(vn−k+2

n−k+1), c},
{c(vn−1

n−k+4), 0, c(vn−k+2
n−k+1), c, vk},

{c(vn−1
n−k+4), 0, c(vn−k+2

n−k+1), c, c(v
k
k−1)}


, (49)

since c(sn−k+i−1
i ) = c(vn−k+i−1

i ) for any i ∈ {4, . . . , k−2}.
By recalling that s1 = v1 = 0 and sn = vn = 1,
eliminating c from all elements in both sets and transforming
the preceding set equality into its corresponding Hamming
weights representation, we acquire

α + sk−1 + sk,

α + sk−1 + sk + sn−k+1,

α + sk−1 + sk + sn−k+1 + sn−k+2 − s2,

α + 4 + sn−k+1 + sn−k+2,

α + 3 + sn−k+1 + sn−k+2 + sk,

α + 3 + sn−k+1 + sn−k+2 + sk + sk−1 − sn−1



=



α + 1 + vk−1 + vk,

α + 1 + vk−1 + vk + vn−k+1,

α + 1 + vk−1 + vk + vn−k+1 + vn−k+2 − v2,

α + 3 + vn−k+1 + vn−k+2,

α + 2 + vn−k+1 + vn−k+2 + vk,

α + 2 + vn−k+1 + vn−k+2 + vk + vk−1 − vn−1


.

Next, we search for a possible solution for the vector (s2 =
v2, sn−1 = vn−1, s

k
k−1, v

k
k−1, s

n−k+2
n−k+1, v

n−k+2
n−k+1) in the space
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{0, 1}10, such that the preceding set equality as well as the
following constraints, as mandated by σs = σv , are satisfied.

sk−1 + sn−k+2 = vk−1 + vn−k+2,

sk + sn−k+1 = vk + vn−k+1.

We find only one possible solution, which requires
(s2, sn−1) = (1, 0). Evidently, this is prohibited by the
Catalan-Bertrand constraint in S(2)

DS(n).
When sk−2 = vk−2 and sk−1 ̸= vk−1, Lemma 2 implies

that Cn−k(s) ̸= Cn−k(v). The same applies for the case when
sk−1

k−2 = vk−1
k−2 and sk ̸= vk. Thus, an appropriate v does not

exist, and s can be recovered uniquely.
Case 3: n may be odd/even and deleted multisets are

Ck1 , Ck2 , Cn−k1+1, Cn−k2+1, where k2 > k1 + 1.
In this case, every pair of deleted multisets is sepa-

rated by one or more multisets which are uncorrupted.
Without loss of generality, assume that k2 < n −
k2 + 1. Since the reconstruction process has access to
the multisets Cn(s), . . . , Cn−k1+2(s), the prefix-suffix pair
(sk1−2

1 , sn
n−k1+3) can be uniquely determined. Now, there

remains an ambiguity regarding the assignment of bits
(sk1−1, sn−k−1+2). To verify if an incorrect assignment of
these bits leads to a conflict with the multiset Cn−k1(s),
we assume that there exists some v ∈ S(2)

DS(n) such that for
any i ∈ {n, n− 1, . . . , n− k1 + 2, n− k1},

Ci(s) = Ci(v),

(sk1−2
1 , sn

n−k1+3) = (vk1−2
1 , vn

n−k1+3).

Due to the second relation, it is easy to see that
(σ1, . . . , σk1−2) = (σ′1, . . . , σ

′
k1−2), where σi and σ′i obey

their previous definitions in (41). Now since wk1+1(s) =
wk1+1(v), we can infer the following as we did earlier in
(45) using (6).

2(σk1−1 − σ′k1−1) = σ′k1
− σk1 .

This leads to two possibilities for (σk1−1, σ
′
k1−1, σk1 , σ

′
k1

).
• (σk1−1, σk1) = (1, 0) and (σ′k1−1, σ

′
k1

) = (0, 2).
• (σk1−1, σk1) = (2, 0) and (σ′k1−1, σ

′
k1

) = (1, 2).
For both of these potential solutions, the following holds

due to (4) and w1(s) = w1(v).

wt(sn−k1
k1+1 )− wt(vn−k1

k1+1 ) =
⌈n

2 ⌉∑
i=k1+1

(σi − σ′i)

= w1(s)− w1(v) +
k1∑

i=1

(σ′i − σi)

=
k1∑

i=k1−1

(σ′i − σi) = 1.

Additionally, since we always have σk1 = 0 and σ′k1
= 2,

we may set sk1 = sn−k1+1 = 0 and vk1 = vn−k1+1 = 1.
Now similar to the approach in prior cases, we note that
Cn−k1(s) = Cn−k1(v) is only upheld when

{c(sn−k1
1 ), c(sn−k1+1

2 ), c(sn
k1+1), c(s

n−1
k1

)}
= {c(vn−k1

1 ), c(vn−k1+1
2 ), c(vn

k1+1), c(v
n−1
k1

)}.

After plugging in the values of (sk1 , sn−k1+1, vk1 , vn−k1+1)
and transforming this set equality into its equivalent represen-
tation in terms of Hamming weights, we obtain

wt(sk1−2
1 ) + sk1−1 + wt(sn−k1

k1−1 ),

wt(sk1−2
2 ) + sk1−1 + wt(sn−k1

k1−1 ),

wt(sn
n−k1+3) + sn−k1+2 + wt(sn−k1

k1−1 ),

wt(sn−1
n−k1+3) + sn−k1+2 + wt(sn−k1

k1−1 )



=


wt(vk1−2

1 ) + vk1−1 + wt(vn−k1
k1−1 ),

wt(vk1−2
2 ) + vk1−1 + wt(vn−k1

k1−1 ),

wt(vn
n−k1+3) + vn−k1+2 + wt(vn−k1

k1−1 ),

wt(vn−1
n−k1+3) + vn−k1+2 + wt(vn−k1

k1−1 )

 ,

Finally, we attempt to find a possible solution for the vector
(sk1−1, sn−k1+2, vk1−1, vn−k1+2) in the space {0, 1}4 that
satisfies the preceding expression along with the fact that
σk1−1−σ′k1−1 = 1. None of the feasible solutions agree with
the Catalan-Bertrand constraint imposed by SR(n).

Thus, an incorrect assignment of the bits
(sk1−1, sk1 , sn−k1+1, sn−k1+2) leads to a mismatch with
multiset Cn−k1(s). Consequently, we can recover these bits,
as well as Cn−k1+1(s) uniquely. The absence of multisets
Cn−k2+1(s) and Ck2(s) can also be corrected due to
Lemma 3.

□
We now seek to generalize the coding constraints in

S(2)
DS(m) in (10) by examining how the required redundancy

scales as more multiset pairs go missing. This is accomplished
by S(t)

DS(n) [see Construction 4]. Theorem 5 demonstrates that
S(t)

DS(n) is a t-symmetric consecutive multiset deletion code.
The proof commences with the following lemma.

Lemma 6: For an even n, consider any s ∈ S(t)
DS(n), the

composition multiset of which suffers the deletion of up to t
symmetric multisets, i.e., for some I ⊂ [n

2 ] where |I| ≤ t,
C(s) is modified to C ′(s) =

⋃
i∈[ n

2 ]\I C̃i(s). From C ′(s),
σs can be recovered uniquely.

Proof: Let I = {i1, i2, . . . , i|I|}, such that i1 <
i2 < . . . < i|I|.

Case 1: i1 + 3 < i2, . . . i|I|−1 + 3 < i|I|.
Since the reconstruction algorithm has access to the mul-

tisets Cn(s), . . . , Cn−i1+2(s), we can unambiguously deter-
mine (σ1, . . . , σi1−2). Now since i1 + 3 < i2, we have
access to the cumulative weights wi1+1(s), wi1+2(s) and
wi1+3(s), which help us evaluate σi1+2 by virtue of (46).
Additionally, we can infer the values of 2σi1−1 + σi1 and
σi1−1+σi1+σi1+1 from the knowledge of wi1+1(s), wi1+2(s)
and (σ1, . . . , σi1−2), by exploiting (6).

Subcase (i): i|I| ≤ n
2 − 3

In a similar fashion, we can also determine
(σi1+3, . . . , σi2−2). Repeating this process for each i ∈ I,
we conclude that the only unknown values in σs are
(σi1−1, σi1 , σi1+1, . . . , i|I|−1, i|I|, i|I|+1), i.e. 3|I| elements
in σs have been erased. Since |I| ≤ t and σs belongs to
a code that corrects up to 3t erasures, we can uniquely
recover σs.
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Subcase (ii): i|I| = n
2 − 2

Proceeding similarly to the previous subcase, we can
determine (σ1, . . . , σi1−2, σi1+2, . . . , σi|I|−1−2, σi|I|−1+2, . . . ,
σi|I|−2), where σi|I|−2 = σn

2−4. In addition, we can
also determine σn

2
from the difference between wn

2
(s) and

wn
2−1(s). However, σn

2−3, σn
2−2 and σn

2−1 remain unknown.
Hence, once again 3|I| erasures in σs need to be corrected,
which is permitted by the construction of S(t)

DS(n).
Subcase (iii): n

2 − 1 ≤ i|I| ≤ n
2 .

By employing arguments used earlier, we can infer
that when i|I| = n

2 − 1, we are unable to deduce
σi|I|−1, σi|I| and σi|I|+1, in addition to the sub-
vectors (σi1−1, σi1 , σi1+1), (σi2−1, σi2 , σi2+1) and so on,
up to (σi|I|−1−1, σi|I|−1 , σi|I|−1+1). Similarly, when i|I| =
n
2 , the complete list of erasures in σs is given by
σi1−1, σi1 , σi1+1, . . . , σi|I|−1−1, σi|I|−1 , σi|I|−1+1, σi|I|−1 and
σi|I| . For both situations, the total number of erasures does not
exceed 3|I|. Hence once again, σs can be uniquely recovered.

Case 2: ij + 3 ≥ ij+1, for at least one j ≤ |I| − 1.
Assume there exists only one such value of j.

When multiple such indices exist, the proof follows
similarly.

Consider ij + 3 = ij+1. Since for 2 ≤ k ≤ j, we have
ik−1 +3 < ik, we can easily deduce that none of the elements
in (σi1−1, σi1 , σi1+1, . . . , σi2−1, σi2 , σi2+1, . . . , σij−1, σij

,
σij+1) can be recovered.

Additionally, since wij+3(s) is also inaccessible, we are
unable to compute σij+2 = σij+1−1, along with σij+3

and σij+4. However, due to ij+1 + 3 = ij + 6 < ij+2,
we can determine the values (σij+5 = σij+1+2, . . . , σij+2−2).
For the remaining deleted multiset pairs C̃ij+2(s), . . . ,
C̃i|I|(s), the unrecoverable elements of σs are (σij+2−1,
σij+2 , σij+2+1, . . . , σi|I|−1, σi|I| , σi|I|+1). Therefore, the total
number of erasures in σs equals 3j + 3 + 3(|I| − j − 1) =
3|I| ≤ 3t.

When ij + 1 ≤ ij+1 ≤ ij + 2, we can similarly establish
that the number of erasures in σs does not exceed 3t.

Consequently, for any configuration of I, at least n
2 − 3t

elements of σs can always be recovered, and owing to
the constraint on σs imposed by S(t)

DS(n), we can uniquely
determine each element in σs. □

Theorem 5: S(t)
DS(n) is a t-symmetric multiset deletion

code.
Proof: In the following, we show that the statement of

the theorem holds for even values of n. The proof for odd
n will run in a similar fashion. In particular, we wish to
show that for any s ∈ S(t)

DS(n), where t ≥ 2 and n > 6t,
if one is given a corrupted composition multiset C ′(s) =⋃

i∈[ n
2 ]\I C̃i(s) where I ⊂ [n

2 ] and |I| ≤ t, then s can be
uniquely reconstructed.

As suggested by Lemma 6, σs can be fully and unambigu-
ously recovered, despite the deletion of up to t symmetric
multiset pairs. Let I = {i1, i2, . . . , i|I|}, such that i1 <
i2 < . . . < i|I|, and i|I| ≤ n

2 .
Note that whenever I∩{n

2−t, . . . , n
2 } ≠ ∅, then for any j ∈

I∩{n
2−t, . . . , n

2 }, we can assign the bits (sj , sn−j+1) without
any ambiguity since the construction of S(t)

DS(n) ensures

that σj is known and corresponds to a single possibility of
(sj , sn−j+1).

It is also worth pointing out that since σs is always recover-
able, we can also deduce w1(s) from it using (4), implying that
C1(s) and Cn(s) can also be inferred from the knowledge of
σs. Additionally, since (s1, sn) = (0, 1), Cn−1(s) and in turn
wn−1(s) = w2(s) can be directly determined from Cn(s).7

Thus, in the following analysis, we ignore the cases where
1 ≤ i1 ≤ 2.

Case 1: i1 + 1 = i2, . . . , i|I|−1 + 1 = i|I|, i1 ≥ 3.
This case corresponds to a burst of symmetric

multiset deletions. More specifically, the multiset pairs
C̃i1(s), C̃i1+1(s), . . . , C̃i|I|(s) are removed.

With the observation that σs is known and that only the
multisets Cn(s), Cn−1(s), . . . , Cn

2
(s) are relevant to the

reconstruction algorithm, we recognize that the prefix-suffix
pair (si1−2

1 , sn
n−i1+3) can be uniquely deduced from

Cn(s), . . . , Cn−i1+2(s), which are unaffected by deletion
errors.

The next available multiset that the reconstruction algorithm
will be able to access, is Cn−i|I|(s) = Cn−i1−|I|+1(s). Recall
from Example 4 that for any v ∈ SR(n), the bits (vj , vn−j+1)
can be inferred from the knowledge of prefix-suffix pair
(vj−1

1 , vn
n−j+2), together with the compositions c(sj

1) and
c(sn

n−j+1), which are extracted from multiset Cn−j(s).
Subcase (i): I ∩ {n

2 − t, . . . , n
2 } = ∅.

The absence of multisets Cn−i1+1(s), . . . , Cn−i|I|+1(s)
hinders our ability to immediately determine the bits
(si|I|−1

i1−1 , s
n−i|I|+2

n−i1+2 ). Now, if (σi1−1, . . . , σi|I|−1) ∈ {0, 2}|I|,
there exists no ambiguity in the assignment of
(si|I|−1

i1−1 , s
n−i|I|+2

n−i1+2 ). But when this is not the case, i.e., there is
at least one j ∈ [|I|] such that σij−1 = 1, then on account of
Lemma 4 and the fact that S(t)

DS(n) ⊂ S(t)
DA(n), we conclude

that an incorrect assignment of the bits (sij−1, sn−ij+2)
will lead to an inconsistency with multiset Cn−i|I|(s).
Thus, the bits (si|I|−1

i1−1 , s
n−i|I|+2

n−i1+2 ) as well as the multisets
Cn−i1+1(s), . . . , Cn−i|I|+1(s) can be recovered uniquely.
Following this, the reconstruction algorithm may proceed
normally and s can be fully reconstructed.

Subcase (ii): i1 = n
2 − t + 1.

Under this subcase, the multisets C̃n
2−t+1, . . . , C̃n

2−t+|I|
are deleted. As argued previously, the prefix-suffix pair
(s

n
2−t−1
1 , sn

n
2 +t+2) can be deduced from the multisets

Cn(s), . . . , Cn
2 +t+1(s). Now since σn−t, . . . σn

2
are known,

we can directly assign the bits (s
n
2
n
2−t, s

n
n
2 +1), thereby com-

pleting the reconstruction of s.
When i1 > n

2 − t+1 or in more general cases of I ∩{n
2 −

t, . . . , n
2 } ≠ ∅, the proof runs along similar lines.

Case 2: i1+1 = i2, . . . , ij−1+1 = ij , ij +1 < ij+1, where
j ≥ 1 and i1 ≥ 3.

The reconstruction algorithm is able to infer the
prefix-suffix pair (si1−2

1 , sn
n−i1+3) from the multisets

Cn(s), . . . , Cn−i1+2(s), and halts due to the absence of
multisets Cn−i1+1(s), . . . , Cn−ij+1(s) = Cn−i1−j+2(s),

7C2(s) may still be unknown, but is irrelevant to the reconstruction
algorithm.
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thus interrupting the recovery of bits (si1+j−2
i1−1 , sn−i1+2

n−i1−j+3).
Now if (σi1−1, . . . , σij+j−2) ∈ {0, 2}j , then we can assign
these bits directly and without any uncertainty. On the
contrary, if for at least one i1 − 1 ≤ p ≤ ij + j − 2 we have
σp = 1 and the bits (sp, sn−p+1) are assigned incorrectly,
then an incompatibility with the multiset Cn−i1−j+1(s)
occurs, as implied by Lemma 2. Thus, the prefix-suffix pair
(si1+j−2

1 , sn
n−i1−j+3) can be uniquely recovered.

By applying this line of reasoning repeatedly for the deleted
multisets C̃ij+1(s), . . . , C̃i|I|(s), we can arrive at the state-
ment of the lemma.

□
Lemma 7: The code S(t)

DS requires at most 3t log2 n + 4t +
1
2 log2(n− 4t− 2)− log2(t + 1) + 6 bits of redundancy.

Proof: From the specification of S(t)
DS in (11), we observe

that (s
n
2−t−1
1 , sn

n
2 +t+2) ∈ S(t)

DA, while the substring s
n
2 +t+1
n
2−t

can assume up to 3(t+1) possible binary vectors. Furthermore,
we require 3t log n bits of redundancy to ensure that for any
s ∈ S(t)

DS , σs belongs to a code capable of correcting up to 3t
erasures.

After some algebraic manipulation of this expression,
we find that the required number of redundant bits does not
exceed 3t log2 n + 4t + 1

2 log2(n− 4t− 2)− log2(t + 1) + 6.
□

Remark 3: It is possible to correct a combination of sym-
metric and asymmetric multiset deletions by suitably combin-
ing the constructions S(t)

DA(n) and S(t)
DS(n). More specifically,

one can correct t1 asymmetric and t2 symmetric multiset
deletions with the code

S(t1,t2)
DAS (n) =S(t1+t2)

DA (n) ∩ S(t2)
DS (n)

={s ∈ {0, 1}n : s1 = 0, sn = 1,

∃ I ⊂
{

2, . . . ,
n

2
− t1 − t2 − 1

}
, |I| ≥ t1 + t2,

where ∀i ∈ I, si ̸= sn−i+1, and ∀i /∈ I, si = sn−i+1,

s[ n
2 ]∩I is a string where each prefix has at least

t1 + t2 more 0s than 1s,
σs ∈ 3t2-erasure-correcting code,

∀i ∈
{n

2
− t1 − t2, . . . ,

n

2

}
, (si, sn−i+1) ̸= (1, 0)}.

The proof will follow similarly to that of Theorem 2 and
Theorem 4. Intuitively, the aforementioned code can correct a
combination t1 asymmetric and t2 symmetric multiset dele-
tions since the constraint of σ belonging to a 3t2-erasure
correcting code allows the complete recovery of σ, and
thereby effectively transforms the reconstruction problem into
that of correcting t1 +t2 asymmetric multiset deletions, which
can be corrected due to the constraints of S(t1+t2)

DA (n). The
redundancy of this construction will be at most 3t2 log2 n +
1
2 log2(n− 2t1 − 4t2 − 2) + 2t1 + 4t2 − log2(t2 + 1) +O(1)
bits.

However, S(t1,t2)
DAS (n) does not necessarily correct any

(t1 + t2) multiset deletions.

VII. SKEWED SUBSTITUTION-CORRECTING CODES

In this section, we confine our focus to the correction of
skewed substitution errors [see Definition 8].

Lemma 8: Consider any s ∈ SR(n). Given that there
occurs a single skewed substitution error in its composition
set, one can uniquely recover s.

Proof: In the following, we let the corrupted composition
set be denoted by C ′(s) =

⋃
i∈[n] C

′
i(s).

Case 1: n is even.
Given C ′(s), it is easy to identify the corrupted composition

multiset C ′k(s), since the following relation only holds for k:

w′k < w′n−k+1. (50)

If we now delete all elements of C ′k(s) from C ′(s), Lemma 3
tells us that s is still uniquely recoverable.

Case 2: n is odd.
Using the arguments of the preceding case, we can reach

the same conclusion for an odd n, when the affected multiset
is C ′k(s), where ⌈n/2⌉ < k ≤ n, because in these cases, there
exists an uncorrupted distinct symmetric multiset C ′n−k+1(s),
which gives us the true cumulative weight and thus allows us
to accurately recover σs.

If k = ⌈n/2⌉, this is no longer true since the multiset
C⌈n/2⌉(s) is its own symmetric counterpart. Noting that this
normally helps us determine the bits (s⌈n/2⌉−1, s⌈n/2⌉+1),
we recall from Lemma 2 that when these bits are assigned
incorrectly, inconsistencies with the multiset C⌈n/2⌉−1 would
arise, which are not permitted under the considered error
model. Hence, we conclude that s can be recovered
uniquely.

□
We now consider a more general error model involving

multiple asymmetric skewed substitution errors, wherein each
multiset pair C̃i, for any i ∈ [n], may contain at most one
skewed substitution and the total number of errors does not
exceed t. It is found that any asymmetric t-multiset deletion
code is also robust to t asymmetric skewed substitutions.
It is worth observing that in general, it cannot be said that a
t-(asymmetric) multiset deletion code is also a t-(asymmetric)
composition substitution-correcting code.

Theorem 6: A t-asymmetric multiset deletion code is a
t-asymmetric skewed composition code.

Proof: We aim to show that if t skewed asymmetric
substitution errors occur in C(s), where s ∈ S(t)

DA(n), such
that for all 1 ≤ i ≤ n, C̃i(s) contains at most one skewed
substitution error, then one can uniquely recover s.

Since the error model only allows at most one skewed
substitution in a pair of symmetric multisets, the cumulative
weights of all sets can be determined accurately. This is due
to the fact that if multiset Ck(s) has been corrupted, we may
write:

wk < wn−k+1. (51)

As a consequence, all cumulative weights can be correctly
re-assigned and in turn the σs sequence can be recovered. The
preceding inequality also allows us to identify the affected
multisets, the deletion of which would transform our prob-
lem of correcting t asymmetric skewed substitutions into
reconstruction under the absence of t multisets. According to
Theorem 2, unique reconstruction of s is perfectly possible,
thus concluding our proof. □

Authorized licensed use limited to: Eitan Yaakobi. Downloaded on December 04,2023 at 04:05:54 UTC from IEEE Xplore.  Restrictions apply. 



4404 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 7, JULY 2023

Consequently, S(t)
DA(n) is a t-asymmetric skewed composi-

tion code.

VIII. CONCLUSION

In this work, we propose and investigate error models
involving insertion and deletion of substring compositions
in the context of polymer-based data storage. In particular,
we examine the robustness of the composition-reconstructable
code introduced in [11] and [12], and identify the situations
which do not guarantee unique reconstruction of codewords
from this construction. For these cases, new codes are pro-
posed. Notably, an equivalence between codes correcting mul-
tiset deletions and insertions is established. We also examine
a special asymmetric variant of substitution errors, namely
skewed substitution errors, which manifest in polymer-based
storage.

Several problems pertaining to string reconstruction under
this data storage paradigm still remain open:
• The error model involving skewed substitutions under a

symmetric setting is yet to be investigated. It would be
interesting to know if there exists a suitable codebook
offering a lower redundancy than that designed to correct
standard substitution errors under the symmetric setting,
as stated in [11].

• The extension of the problem of string reconstruc-
tion from composition multisets, error-free or otherwise,
to larger alphabets, is also a promising direction.

• Though some bounds on the maximum number of mutu-
ally equicomposable strings were stated in [10], it is still
not known if the existing code constructions are optimal.

• This research may be extended to a setting wherein bits
are arranged in a circular fashion, on a ring.

• As pointed out in [10], a polynomial-time algorithm for
the string reconstruction problem is yet to be found.

• Lemma 3 establishes that SR(n) can correct a single mul-
tiset deletion, while Theorem 3 implies that SR(n) can
also correct a single composition substitution. However,
more generally, it seems unclear if any t-multiset deletion
code is also a t-composition substitution code. A counter-
example could not be found. Hence, finding a proof for
the same is certainly an open problem. It is however
easy to show that any 2t-multiset deletion code is also a
t-composition substitution code.

APPENDIX

Lemma 9: Consider a string s ∈ SR(n). Given C ′(s) =⋃
i∈[n]\{k−1,k,n−k+1,n−k+2} Ci(s) for any 1 ≤ k < ⌈n−1

2 ⌉, s
may no longer be uniquely determined.

Proof:
Case 1: n is even and deleted sets are:

{Cn
2−1(s), . . . , Cn

2 +2(s)}.
To demonstrate that SR(n) does not necessarily

preserve unique reconstructability when the multisets
{Cn

2−1, . . . , Cn
2 +2} go missing, we consider two codewords

s, v ∈ SR(n), such that:⋃
i∈{n,..., n

2 +3}

Ci(s) =
⋃

i∈{n,..., n
2 +3}

Ci(v). (52)

Fig. 8. Strings s and v are specified by (53) and (54).

From our knowledge of the reconstruction algorithm
[Section II], we can also infer the following:

(sn/2−3
1 , sn

n/2+4) = (vn/2−3
1 , vn

n/2+4),

σi = σ′i. 1 ≤ i ≤ n

2
− 3,

σn
2−2 + σn

2−1 + σn
2

= σ′n
2−2 + σ′n

2−1 + σ′n
2
. (53)

where σs = (σ1, . . . , σn/2) and σv = (σ′1, . . . , σ
′
n/2) corre-

spond to s and v respectively. Additionally, we set:

(σn
2−2, σn

2−1, σn
2
) = (0, 0, 1),

(σ′n
2−2, σ

′
n
2−1, σ

′
n
2
) = (1, 0, 0),

vn/2−2 = 1,

sn/2 = 1,

sn−3 = 0,

wt(sn/2−3
2 ) = wt(sn−4

n/2+4). (54)

The relations between s and v as described by (53) and (54)
are depicted in Fig. 8. Evidently, s and v differ in their respec-
tive multisets Cn/2+2 and Cn/2+1 according to Lemma 2.
Additionally, since their cumulative weights wn/2+2 and wn/2

also differ, as one may verify from (6) and (54), we deduce that
the multisets Cn/2 and Cn/2−1 also do not match for s and
v. We now proceed to examine if Cn/2−2(s) = Cn/2−2(v)
holds: 

{c(s
n
2−3
1 ), 0}

{c(s
n
2−3
2 ), 02}

{c(s
n
2−3
3 ), 021}

{c(s
n
2−3
4 ), 031}

{c(s
n
2−3
5 ), 041}

{c(sn
n
2 +4), 0}

{c(sn−1
n
2 +4), 0

2}

{c(sn−2
n
2 +4), 0

3}

{c(sn−3
n
2 +4), 0

31}

{c(sn−4
n
2 +4), 0

41}



=



{c(v
n
2−3
1 ), 1}

{c(v
n
2−3
2 ), 01}

{c(v
n
2−3
3 ), 021}

{c(v
n
2−3
4 ), 031}

{c(v
n
2−3
5 ), 041}

{c(vn
n
2 +4), 0}

{c(vn−1
n
2 +4), 0

2}

{c(vn−2
n
2 +4), 0

3}

{c(vn−3
n
2 +4), 0

4}

{c(vn−4
n
2 +4), 0

5}



. (55)

Using (54) to simplify this set equality relation, we arrive at:
{c(s

n
2−3
1 ), 0}

{c(s
n
2−3
2 ), 02}

{c(sn−3
n
2 +4), 0

31}

{c(sn−4
n
2 +4), 0

41}


=


{c(v

n
2−3
1 ), 1}

{c(v
n
2−3
2 ), 01}

{c(vn−3
n
2 +4), 0

4}

{c(vn−4
n
2 +4), 0

5}


. (56)

Since the construction of SR(n) requires s1 = 0 and (54)
mandates that sn−3 = 0 and wt(sn/2−3

2 ) = wt(sn−4
n/2+4),
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we are led to the following relation:

wt(sn/2−3
1 ) = wt(sn/2−3

2 ) = wt(sn−3
n
2 +4) = wt(sn−4

n
2 +4). (57)

This allows us to conclude that (55) indeed holds, and further
bit specifications in s and v can lead us to similar set
equality relations for the multisets Cn/2−3, . . . , C1. Hence,
s and v become confusable under the deletion of multisets
{Cn

2−1(s), . . . , Cn
2 +2(s)}.

Case 2: n may be odd/even and the four deleted sets are
not consecutive: {Ck−1(s), Ck(s), Cn−k+1(s), Cn−k+2(s)},
where k + 1 < n− k + 1.

In the following, we once again proceed by checking if
s is uniquely recoverable, by probing the existence of some
v ∈ SR(n), characterized by σ′1, . . . , σ

′
⌈n

2 ⌉
such that for all

i ∈ [n]\{k − 1, k − n− k + 1, n− k + 2}:

Ci(s) = Ci(v). (58)

Subcase (i): k = 2
This situation corresponds to the deletion of multisets

C1(s), C2(s), Cn−1(s) and Cn(s). When this happens, for
any 3 ≤ i ≤ ⌈n/2⌉ − 1, the following values are recoverable:

wi+1(s)− wi(s) = σi+1 + . . . + σ⌈n/2⌉.

This can be used to recover the values of σ4, . . . , σ⌈n/2⌉.
In other words,

σi = σ′i. ∀ 4 ≤ i ≤ ⌈n/2⌉ (59)

Furthermore, since w3(s) = w3(v), we can infer from
(5) and (59) that:

σ1 + 2σ2 + 3σ3 = σ′1 + 2σ′2 + 3σ′3

=⇒ 2σ2 + 3σ3 = 2σ′2 + 3σ′3.

The second equality follows from the construction of SR(n).
Given the above relation, we conclude that (59) also holds for
i ∈ {2, 3}. Moreover, we cannot have (s2, sn−1) ̸= (v2, vn−1)
even when σ2 = σ′2 = 1, since the Catalan-Bertrand structure
would automatically imply that (s2, sn−1) = (v2, vn−1) =
(0, 1). This inference, combined with Lemma 2, lead us to the
conclusion that no suitable v exists.

Subcase (ii): k = 3
When multisets C2(s), C3(s), Cn−2(s) and Cn−1(s)

have been deleted, the availability of cumulative weights
w1, w4, . . . , w⌈n/2⌉ allow us to retrieve σ1, σ5, . . . , σ⌈n/2⌉ as
in the previous subcase, i.e.

σi = σ′i. ∀ i ∈
[
⌈n/2⌉

]
\{2, 3, 4} (60)

We also observe from (6) and (58) that:

w4(s)− w1(s) = w4(v)− w1(v)
= 3w1(s)− σ3 − 2σ2 − 3σ1,

=⇒ σ2 + 2σ3 = σ′2 + 2σ′3. (61)

Similarly, since w5(s) = w5(v), we obtain:

σ2 + 2σ3 + 3σ4 = σ′2 + 2σ′3 + 3σ4.

As a consequence, (60) also holds for i = 4. This, along with
(4) hints that:

σ2 + σ3 = σ′2 + σ′3. (62)

Fig. 9. Strings s and v are related such that (sk−3
1 , sn

n−k+4) =

(vk−3
1 ,vn

n−k+4) and c(sn−k−1
k+2 ) = c(vn−k−1

k+2 ).

Equations (61) and (62) together insinuate that (σ2, σ3) =
(σ′2, σ

′
3). Hence, we may argue as before, that no suitable v

distinct from s actually exists.
Subcase (iii): k ≥ 4
Similar to the approach used in Case 1, we attempt to show

that there exist two codewords s, v ∈ SR(n), such that for all
i ∈ [n]\{k − 1, k, n− k + 1, n− k + 2}:

Ci(s) = Ci(v). (63)

To this end, we construct a specific pair of strings s and v as
follows:

(sk−3
1 , sn

n−k+4) = (vk−3
1 , vn

n−k+4),
(σk−2, σk−1, σk, σk+1) = (1, 1, 1, 0),
(σ′k−2, σ

′
k−1, σ

′
k, σ′k+1) = (2, 0, 0, 1),

σi = σ′i, ∀ k + 2 ≤ i ≤ ⌈n
2
⌉

(sk−1, sk, sk+1, sk+2) = (0, 0, 1),
s2 = 1,

vk−2 = 0. (64)

These relations have been illustrated in Fig. 9. The preced-
ing equalities also imply that:

σi = σ′i, ∀ 1 ≤ i ≤ k − 3
k+1∑

i=k−2

σi =
k+1∑

i=k−2

σ′i,

σk + 2σk−1 + 3σk−2 = σ′k + 2σ′k−1 + 3σ′k−2,

c(sn−k−1
k+2 ) = c(vn−k−1

k+2 ).

In turn, these relations help ensure that:

wi(s) = wi(v), ∀ 1 ≤ i ≤ k − 2
wk+1(s)− wk−2(s) = wk+1(v)− wk−2(v),

wk+i+1(s)− wk+i(s) = wk+i+1(v)− wk+i(v).

for 1 ≤ i ≤ n−k−1. One may verify this with the assistance
of (4) and (6).
From Fig. 9, it is fairly evident that s and v do not match
in their corresponding multisets Cn−k+2 and Cn−k+1. Now,
as done in Case 1, we check if multisets Cn−k(s) and
Cn−k(v) match:

{c(sk−3
1 ), 041, c}

{c(sk−3
2 ), 0412, c}

{c(sk−3
3 ), 0413, c}

{c(sn
n−k+4), 0

213, c}
{c(sn−1

n−k+4), 0
313, c}

{c(sn−2
n−k+4), 0

413, c}


=



{c(vk−3
1 ), 0312, c}

{c(vk−3
2 ), 0412, c}

{c(vk−3
3 ), 0512, c}

{c(vn
n−k+4), 0

213, c}
{c(vn−1

n−k+4), 0
313, c}

{c(vn−2
n−k+4), 0

413, c}


.
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where c = c(sn−k−1
k+2 ) = c(vn−k−1

k+2 ). By applying (64) to this,
we deduce that this equality is indeed upheld, thus implying
that s and v are confusable under the absence of multisets
Ck−1, Ck, Cn−k+1, Cn−k+2.

□
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