
286 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 4, 2023

Private Information Retrieval Without Storage
Overhead: Coding Instead of Replication

Alexander Vardy and Eitan Yaakobi , Senior Member, IEEE

Abstract—Private information retrieval (PIR) protocols allow
a user to retrieve a data item from a database without reveal-
ing any information about the identity of the item being retrieved.
Specifically, in information-theoretic k-server PIR, the database is
replicated among k non-communicating servers, and each server
learns nothing about the item retrieved by the user. The effec-
tiveness of PIR protocols is usually measured in terms of their
communication complexity, which is the total number of bits
exchanged between the user and the servers. However, another
important cost parameter is storage overhead, which is the ratio
between the total number of bits stored on all the servers and the
number of bits in the database. Since single-server information-
theoretic PIR is impossible, the storage overhead of all existing
PIR protocols is at least 2 (or k, in the case of k-server PIR).
In this work, we show that information-theoretic PIR can be
achieved with storage overhead arbitrarily close to the optimal
value of 1, without sacrificing the communication complexity
asymptotically. Specifically, we prove that all known linear k-
server PIR protocols can be efficiently emulated, while preserving
both privacy and communication complexity but significantly
reducing the storage overhead. To this end, we distribute the n
bits of the database among s+r servers, each storing n/s coded bits
(rather than replicas). Notably, our coding scheme remains the
same, regardless of the specific k-server PIR protocol being emu-
lated. For every fixed k, the resulting storage overhead (s + r)/s
approaches 1 as s grows; explicitly we have r ≤ k

√
s(1 + o(1)).

Moreover, in the special case k = 2, the storage overhead is
only 1 + 1

s . In order to achieve these results, we introduce and
study a new kind of binary linear codes, called here k-server PIR
codes. We then show how such codes can be constructed from
one-step majority-logic decodable codes, from Steiner systems,
from constant-weight codes, and from certain locally recover-
able codes. We also establish several bounds on the parameters
of k-server PIR codes and finally extend for array codes.

Index Terms—Private information retrieval, availability codes,
codes with locality, privacy.

Manuscript received 6 February 2023; revised 19 April 2023; accepted
8 June 2023. Date of publication 12 July 2023; date of current version
29 August 2023. This work was supported in part by the Israel Science
Foundation under Grant 1817/18; in part by the Technion Hiroshi Fujiwara
Cyber Security Research Center; and in part by the Israel National Cyber
Directorate. This article was presented in part at the IEEE International
Symposium on Information Theory (ISIT), Hong Kong, June 2015 [DOI:
10.1109/ISIT.2015.7282977]. (Corresponding author: Eitan Yaakobi.)

Alexander Vardy, deceased, was with the Department of Electrical and
Computer Engineering, the Department of Computer Science and Engineering,
and the Department of Mathematics, University of California at San Diego,
La Jolla, CA 92093 USA.

Eitan Yaakobi is with the Department of Computer Science, Technion—
Israel Institute of Technology, Haifa 32000, Israel (e-mail: yaakobi@
cs.technion.ac.il).

Digital Object Identifier 10.1109/JSAIT.2023.3285665

I. INTRODUCTION

PRIVATE information retrieval protocols make it possible
to retrieve a data item from a database without disclosing

any information about the identity of the item being retrieved.
This may be thought of as a weaker version of 1-out-of-n
oblivious transfer, where it is also required that the user learns
nothing about the other database items. The notion of private
information retrieval (PIR) was first introduced by Chor et al.
in [11], [12] and has attracted considerable attention since
(see [8], [9], [14], [18], [46], [47] and references therein). The
classic PIR model of [12], which we adopt in this paper, views
the database as a binary string x = (x1, . . . , xn) ∈ {0, 1}n and
assumes that the user wishes to retrieve a single bit xi without
revealing any information about the index i. A naive solu-
tion for the user is to download the entire database x. It is
shown in [12] that in the case of a single database stored
on a single computationally-unbounded server, this solution
is essentially the best possible: any PIR protocol will re-
quire �(n) bits of communication between the user and the
server. In order to achieve sublinear communication complex-
ity, Chor et al. [12] proposed replicating the database on
several servers that do not communicate with each other. They
showed that having two replicas makes it possible to reduce
the communication cost to O(n1/3), while k ≥ 3 servers can
achieve O((k2 log k)n1/k) communication complexity.

Following the seminal work of [12], the communication
complexity of information-theoretic k-server PIR has been
further reduced in a series of groundbreaking papers.
Ambainis [2] generalized the methods of [12] to obtain a com-
munication cost of O(n1/(2k−1)) for all k ≥ 2. This result
remained the best known until the O(n1/(2k−1))-complexity
barrier was finally broken in [8]. Five years later, came the
remarkable work of Yekhanin [47] who constructed a 3-server
PIR scheme with subpolynomial communication cost, assum-
ing the infinitude of Mersenne primes. Shortly thereafter,
Efremenko [15] gave an unconditional k-server PIR scheme
with subpolynomial complexity for all k ≥ 3. The recent
paper of Dvir and Gopi [14] shows how to achieve the same
complexity as in [15] with only two servers.

All this work follows the original idea, first proposed
in [12], of replicating the database in order to reduce the com-
munication cost. However, this approach neglects another cost
parameter: the storage overhead, defined as the ratio between
the total number of bits stored on all the servers and the num-
ber of bits in the database. Clearly, the storage overhead of all
the PIR protocols discussed above is k ≥ 2. If the database

2641-8770 c© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Eitan Yaakobi. Downloaded on December 04,2023 at 04:08:27 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-3303-9078
https://orcid.org/0000-0002-9851-5234


VARDY AND YAAKOBI: PIR WITHOUT STORAGE OVERHEAD: CODING INSTEAD OF REPLICATION 287

is very large, the necessity to store several replicas of it could
be untenable for some applications. Thus, in this paper, we
consider the following question. Can one achieve PIR with
low communication cost but without doubling (or worse) the
number of bits we need to store?

This question has been settled in the affirmative in [25] for
the case where one is willing to replace information-theoretic
guarantees of privacy by computational guarantees. Such com-
putational PIR is by now well studied — see [18], [25]
for more information. However, in this paper, we consider
only information-theoretic PIR, which provides the strongest
form of privacy. That is, even computationally unbounded
servers should not gain any information from the user queries.
Somewhat surprisingly, despite the impossibility proof of [12],
the answer to our question turns out to be affirmative also
in the case of information-theoretic PIR. We note that our
results do not contradict [12]. To achieve information-theoretic
privacy, one does need k ≥ 2 non-communicating servers.
However, these servers do not have to hold the entire database
— they can store only parts of it. We show that if these parts
are judiciously encoded, rather than replicated, the overall
storage overhead can be reduced. Asymptotically, as the num-
ber of such parts grows, storage overhead can be eliminated
altogether.

A. Our Contributions

We show that all known k-server information-theoretic PIR
protocols can be efficiently emulated, while preserving their
privacy and communication-complexity guarantees (up to a
small constant), but significantly reducing the storage over-
head. In fact, for any fixed k and any ε > 0, we can reduce
the storage overhead to under 1+ ε.

In order to achieve these results, we first partition the
database into s parts and distribute these parts among non-
communicating servers, so that every server stores n/s bits.
Why do we partition the database in this manner? The main
reason is that such partition is necessary to reduce the storage
overhead. If every server has to store all n bits of the database,
then the storage overhead cannot be reduced beyond k ≥ 2.
However, in practice, there may be other compelling reasons.
For example, the database may be simply too large to fit in
a single server, or it may need to be stored in a distributed
manner for security purposes.

We observe that the number of parts s need not be very
large. With s = 2 parts, we can already achieve significant
savings in storage overhead. With s = 16 parts and m = 17
servers, we get a storage overhead of 1.0625.

Given a partition of the database into s parts, our construc-
tion uses two main ingredients: 1) an existing k-server PIR
protocol in which the servers’ responses are a linear function
of the database bits, and 2) a binary linear code, which we
call a k-server PIR code, with a special property to be defined
shortly. We note that the first requirement is very easy to sat-
isfy. All the existing PIR protocols known (to us) are linear in
this fashion. Therefore our primary focus in this paper is on
the construction of k-server PIR codes.

The defining property of a k-server PIR code is this: for
every message bit xi, there exist k disjoint sets of coded bits

from which xi can be uniquely recovered (see Section III
for a formal definition). Although this property is reminis-
cent of locally recoverable codes, introduced in [19], there are
important differences. In locally recoverable codes, we wish
to guarantee that every message bit xi can be recovered from
a small set of coded bits, and only one such recovery set is
needed. Here, we wish to have k disjoint recovery sets for
every message bit, and we do not care about their size. To
the best of our knowledge, codes with this property have not
been previously studied. Such codes may be of independent
interest, especially in distributed storage applications.

In this paper, we show how k-server PIR codes can be con-
structed from Steiner systems, from one-step majority-logic
decodable codes, from bipartite graphs of girth 6, and from
constant-weight codes. We give an optimal construction of
such codes when either k or the number of parts s is small.
We also establish several upper and lower bounds on the
parameters of general k-server PIR codes.

B. Related Work

Coding to reduce storage overhead while emulating con-
ventional PIR protocols is a new idea, first proposed in this
paper. Nevertheless, we are aware of several earlier papers [3],
[9], [33], [35] that construct and study certain kinds of coded
PIR schemes. Shah et al. [33] show how to encode and dis-
tribute files among multiple servers in order to guarantee
private retrieval with very low communication complexity.
However, the setting considered in [33] is quite different
from the standard PIR model of [12]. Moreover, the meth-
ods of [33] require an exponentially large number of servers,
which may depend on the number of files stored and/or their
size. Chan et al. [9] study the tradeoff between storage over-
head and communication complexity, but only for the case
where the size of each data item stored is very large (rather
than one bit, as in [12] and this paper). Sun and Jafar [35]
follow-up on the results of [9] and determine the PIR capac-
ity, defined in terms of the number of private information
bits retrieved per each downloaded bit. The coding schemes
proposed in [9], [35] do not necessarily reduce storage over-
head. Moreover, the regime considered in these papers differs
significantly from the accepted PIR model of [11], [12]. The
work of Augot et al. [3] is contemporaneous with ours and is
the closest to our results herein. The authors of [3] consider
specifically the PIR protocol based on the multiplicity codes
of Kopparty et al. [23]. They use the geometry of multiplicity
codes in order to avoid full replication of the database on each
server. The resulting storage overhead is 1/R, where R is the
rate of the underlying multiplicity code. This is usually much
higher than the storage overheads achieved in this paper for
a comparable communication complexity. Most importantly,
the results of [3] are limited to a specific PIR protocol based
on multiplicity codes, whereas our results are generic: we can
emulate any existing PIR protocol while reducing its storage
overhead.

Another notion closely related to our work is that of multiset
batch codes. Batch codes were introduced in [21] in order
to efficiently balance the read-out load in distributed storage
systems. Specifically, a batch code encodes a binary string x

Authorized licensed use limited to: Eitan Yaakobi. Downloaded on December 04,2023 at 04:08:27 UTC from IEEE Xplore.  Restrictions apply. 



288 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 4, 2023

into an m-tuple of strings, one for each of m servers, so that
any multiset (a.k.a. batch) of k bits from x can be decoded by
reading at most one bit from each server. Following [21], batch
codes have been extensively studied; for example, see [31] and
references therein. In particular, they found applications in PIR
and related cryptographic protocols. Herein, we observe that
a multiset batch code is also a k-server PIR code, but not vice
versa. For more details on the precise relationship between our
PIR codes and batch codes, see [41].

C. Organization

The rest of this paper is organized as follows. In the next
section, we formally define k-server PIR protocols and intro-
duce the linearity property needed for our constructions. We
then consider a specific toy example of 3-server PIR, which
serves to motivate our discussion in the following section.
Generalizing from this example, we propose the formal notion
of coded PIR protocols. In Section III, we prove that any
conventional PIR protocol can be emulated by a coded PIR
protocol with reduced storage overhead, provided it is lin-
ear. The proof hinges on the existence of certain binary linear
codes, called k-server PIR codes, that are formally defined
in Section III. Section IV is devoted to explicit construc-
tions of k-server PIR codes. We show that such codes can
be obtained from a variety of well-studied objects in com-
binatorics and coding theory. These include Steiner systems,
majority-logic decodable codes, bipartite graphs of girth 6,
and constant-weight codes. In each case, we analyze the
redundancy of the resulting codes, which determines the stor-
age overhead of the corresponding coded PIR schemes. In
Section V, we provide upper and lower bounds on this redun-
dancy for the case where both k and the code dimension s
are small. We furthermore determine how the redundancy of
k-server PIR codes behaves asymptotically, when either s or
k is fixed while the other parameter tends to infinity. Section VI
studies the asymptotic behavior of coded PIR and Section VII
studies PIR codes as array codes.

II. DEFINITIONS AND PRELIMINARIES

We begin with a formal definition of a PIR protocol,
satisfying information-theoretic privacy requirements. We gen-
erally follow the conventional notions of PIR, as introduced
in [11], [12] and further elaborated upon in [18] and [46].

Definition 1: A k-server PIR scheme consists of the fol-
lowing: a binary string x of length n, called the database, k
non-communicating servers S1, . . . ,Sk each storing a copy of
x, a user (hereinafter, called Alice) who wishes to retrieve xi

for some i ∈ [n], without revealing i to any of the servers, and
a k-server PIR protocol. The k-server PIR protocol P involves
a triple of algorithms 〈Q,A, C〉 and consists of the following
steps:

Step 1: Alice flips random coins and uses the outcome to
invoke the query algorithm Q(k, n; i) that generates
a k-tuple of queries (q1, . . . , qk). For j ∈ [k], the
query qj will be also denoted by Qj(k, n; i).

Step 2: For all j ∈ [k], Alice sends the query qj to the j-th
server Sj.

Step 3: For all j ∈ [k], the server Sj invokes the answer
algorithm A to respond with the answer aj =
A(k, j; x, qj).

Step 4: Alice computes her output by invoking the recon-
struction algorithm C(k, n; i, a1, . . . , ak).

The answer algorithm A and the reconstruction algorithm C
are deterministic, while the query algorithm Q is random-
ized (the random input to Q is suppressed for notational
convenience). The k-server PIR protocol P must satisfy the
following correctness and privacy requirements:

Correctness: For all x ∈ {0, 1}n and i ∈ [n], Alice correctly
determines xi. That is, C(k, n; i, a1, . . . , ak) = xi.

Privacy: Each server Sj learns no information about i. That
is, for all i1, i2 ∈ [n], the distributions of Qj(k, n; i1) and
Qj(k, n; i2) are identical, where the distribution is over the
coins flips in Step 1. This must hold for all j ∈ [k].

The queries q1, . . . , qk and the answers a1, . . . , ak are all
assumed to be binary strings. The communication complex-
ity of a PIR protocol is defined as the (worst-case) sum
of their lengths |q1| + · · · + |qk| + |a1| + · · · + |ak|. Fol-
lowing [9], [21], [33] and other papers, the storage overhead
of a PIR scheme is defined as the ratio between the total num-
ber of bits stored on all the servers and the number of bits in
the database. It is obvious that the storage overhead of any
k-server PIR scheme, as defined above, is k.

Following the foundational work of Chor et al. [11], [12],
numerous variations on Definition 1 have been studied over the
years. These include computational PIR (with computational
rather than information theoretic privacy guarantees), symmet-
ric PIR (with privacy guarantees for the servers as well as the
user), private information storage (with privacy guarantees for
both read and write operations), robust PIR (tolerant against
non-responsive servers), Byzantine PIR (tolerant against mali-
cious servers), t-private PIR (tolerant against collusions of up
to t servers), PIR in the random server model, practical PIR,
quantum PIR, and others. Although our results herein extend
to many of these scenarios, the discussion of such extensions
is beyond the scope of the present paper.

On the other hand, our constructions require PIR protocols
satisfying a certain additional property that, to the best of
our knowledge, has not been so far considered in the liter-
ature. This property is database-linearity, or simply linearity,
formally defined as follows.

Definition 2: We say that a k-server PIR protocol
P(Q,A, C) is linear if for all x1, x2 ∈ {0, 1}n and for all
possible queries q1, . . . , qk, the following holds:

A(k, j; x1 + x2, qj) = A(k, j; x1, qj)

+ A(k, j; x2, qj) for all j ∈ [k] (1)

Note that A is the only algorithm in the triple 〈Q,A, C〉
that explicitly depends on the database x. Thus the linearity
of A makes the whole protocol linear. Fortunately, many the
known (to us) PIR protocols that are targeted to minimize the
upload and download complexity satisfy the linearity condition
of Definition 2. In particular, this is true for all the protocols
considered in [7], [8], [12], [14], [46], [47].

Authorized licensed use limited to: Eitan Yaakobi. Downloaded on December 04,2023 at 04:08:27 UTC from IEEE Xplore.  Restrictions apply. 



VARDY AND YAAKOBI: PIR WITHOUT STORAGE OVERHEAD: CODING INSTEAD OF REPLICATION 289

Fig. 1. Alice sends q1 = a and q2 = a + ei to the servers. The servers
respond with a · x and (a + ei) · x and Alice recovers xi as their sum. The
value of i remains private as the vector a is chosen uniformly at random.

Lastly, we wish to make explicit an assumption tacitly made
in Definition 1, since it will be needed in what follows. It is
assumed that the answer algorithm A is public knowledge.
This, in particular, implies that given a query q, every server
can compute the response A(k, j; x, q) for all j ∈ [k]. That is,
any server can simulate any other server.

We are now ready to proceed with two examples of coded
version of PIR protocols, designed to reduce the storage over-
head. The first example is for a 2-server protocol while the
second, which best illustrates some of the main ideas in this
paper, is designed for a 3-server protocol.

Example 1: Consider the following 2-server PIR scheme
where each server stores an n-bit database x and Alice wants to
read the i-th bit xi, for some i ∈ [n]. Alice chooses uniformly
at random a vector a ∈ {0, 1}n. The first server receives the
query a and responds with an answer of the bit a · x. The sec-
ond server receives the query (a + ei) and responds with an
answer of the bit (a+ ei) · x; see Fig. 1. Alice receives these
two bits and their sum gives the i-th bit xi, since

a · x+ (a+ ei) · x = a · x+ a · x+ ei · x = xi.

If the servers do not communicate with each other then
since the vector a is chosen uniformly at random, the value of
i remains private. Moreover, the servers’ responses are linear
functions of the stored data and thus the protocol is a linear
PIR protocol. Alice had to transmit 2n bits and 2 bits were
received, so a total of 2n + 2 bits were communicated. The
storage overhead of this scheme is 2 and note also that if one
of the servers fails then it is possible to retrieve the database
x from the other surviving server.

Now, assume that the database x is partitioned into two
equal parts of n/2 bits each, x1 and x2, where x1 =
(x1, . . . , xn/2), and x2 = (xn/2+1, . . . , xn). The database is
stored in three servers. The first server stores x1, the second
stores x2, and the third one is a parity server which stores
x1 + x2. If Alice wants to read the i-th bit where i ∈ [n/2],
she first chooses uniformly at random a vector a ∈ {0, 1}n/2.
The first server receives the query a and responds with the bit
a·x1. The second server receives the query a+ei and responds
with the bit (a+ei) ·x2, and the third server receives the query
a + ei and responds with the bit (a + ei) · (x1 + x2). Alice
receives those three bits and calculates the bit xi according to
the sum

a · x1 + (a+ ei) · x2 + (a+ ei) · (x1 + x2)

= a · x1 + (a+ ei) · x1 = xi.

It is clear that both schemes keep the privacy of i. In the
first scheme, the number of communicated bits is 2n+2, while
in the coded scheme it is 3n/2 + 3. The storage overhead

was improved from 2 to 3/2, and both schemes can tolerate a
single server failure. However, we note that the coded scheme
requires one more server.

Example 2: Let P(Q,A, C) denote your favorite 3-server
PIR protocol, and assume that it is linear. Suppose you are
given a database string x of length n that is too large to fit
in a single server. In fact, let us assume that each server can
store at most n/4 of the n bits. What shall you do? Of course,
you can partition x into four equal parts x1, x2, x3, x4, store 3
replicas of each part, and then apply the protocol P(Q,A, C)

essentially unchanged. Altogether, you will need 12 servers,
each storing n/4 bits, and the resulting storage overhead is 3,
as expected. The point of this example is that you can do much
better: you can achieve a storage overhead of 2 rather than 3,
using only 8 servers.

As before, we begin with a partition of the database x into
four equal parts x1, x2, x3, x4. However, instead of replicating
them, we shall encode these four parts as follows:

c1 = x1, c2 = x2, c3 = x3, c4 = x4, c5 = x1 + x2,

c6 = x2 + x3, c7 = x3 + x4, c8 = x4 + x1 (2)

The coded shares c1, . . . , c8 are distributed among 8 non-
communicating servers S1, . . . ,S8 (in this order). How does
information retrieval work in this situation? Assume, for
the time being, that Alice wishes to read the i-th bit from
the first part x1. That is, she is interested in the bit x1,i,
where i ∈ [n/4]. She will first invoke the query algo-
rithm Q to generate three randomized queries (q1, q2, q3) =
Q(3, n/4; i). She will then send queries to the servers as
follows:

(S1,S2,S3,S4,S5,S6,S7,S8)

← (q1, q2, q3, q3, q2, q2, q3, q3)

The privacy property of P(Q,A, C) guarantees that the servers
learn nothing about i from the queries (in fact, for most exist-
ing PIR protocols, q1, q2, q3 are uniformly random over all
binary strings of the same length). Upon receiving the servers’
responses, Alice ignores the answers from S3,S6,S7, but
collects the other five answers given by:

Server Query Response
S1 q1 a1 = A(3, 1; x1, q1)

S2 q2 a2 = A(3, 2; x2, q2)

S4 q3 a4 = A(3, 3; x4, q3)

S5 q2 a5 = A(3, 2; x1 + x2, q2)

S8 q3 a8 = A(3, 3; x4 + x1, q3)

(3)

Since the PIR protocol P(Q,A, C) is linear, Alice can
now compute:

a′2 = a2 + a5 = A(3, 2; x2, q2)+A(3, 2; x1 + x2, q2)

= A(3, 2; x1, q2)

a′3 = a4 + a8 = A(3, 3; x4, q3)+A(3, 3; x4 + x1, q3)

= A(3, 3; x1, q3).

Finally, Alice sets a′1 = a1 and invokes the original recon-
struction algorithm C with a′1, a′2, a′3 to retrieve the value of

Authorized licensed use limited to: Eitan Yaakobi. Downloaded on December 04,2023 at 04:08:27 UTC from IEEE Xplore.  Restrictions apply. 



290 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 4, 2023

x1,i as follows:

C(
3, n/4; i, a′1, a′2, a′3

)

= C(
3, n/4; i,A(3, 1; x1, q1),A(3, 2; x1, q2),A(3, 3; x1, q3)

)

= x1,i.

Now assume that Alice wishes to read the i-th bit from the
second part x2, namely the bit x2,i for some i ∈ [n/4]. She
generates the queries (q1, q2, q3) = Q(3, n/4; i) exactly as
before, and sends them to the 8 servers as follows:

(S1,S2,S3,S4,S5,S6,S7,S8)

← (q2, q1, q3, q3, q2, q3, q3, q3)

She then collects the answers:

Server Query Response
S1 q2 a1 = A(3, 2; x1, q2)

S2 q1 a2 = A(3, 1; x2, q1)

S3 q3 a3 = A(3, 3; x3, q3)

S5 q2 a5 = A(3, 2; x1 + x2, q2)

S6 q3 a6 = A(3, 3; x2 + x3, q3)

(4)

and computes:

a′2 = a1 + a5 = A(3, 2; x1, q2)+A(3, 2; x1 + x2, q2)

= A(3, 2; x2, q2)

a′3 = a3 + a6 = A(3, 3; x3, q3)+A(3, 3; x2 + x3, q3)

= A(3, 3; x2, q3)

With a′1 = a2, we now have C(3, n/4; i, a′1, a′2, a′3) = x2,i. It
is not difficult to verify that retrieving the i-th bit of x3 or x4
works out in a similar fashion. We leave the details of this as
an exercise for the reader.

We point out, however, the following problem with (3)
and (4). Consider, for example, the server S1. We see that upon
receiving a query q, this server needs to return A(3, 1; x1, q)

in (3) and A(3, 2; x1, q) in (4). As explained earlier, the server
can compute both values. But how does it know which one of
the two it should send to Alice? For many existing PIR pro-
tocols, the output of the answer algorithm A(k, j; x, q) in fact
does not depend on j, in which case the problem disappears.
However, we do not assume that this is always the case. Note
that Alice cannot simply send the appropriate index j to each
server, since this may reveal information about which part of
the database (e.g., x1 or x2) she is interested in. A potential
solution is to require each server to return all k possible values,
namely

A(k, 1; x, q), A(k, 2; x, q), . . . , A(k, k; x, q) (5)

This works, but increases the communication complexity of
the download by a factor of k. A better solution, which does
not increase the download complexity, will be presented in
Theorem 2 of the next section.

The basic premise in Example 2 is this: a database string of
length n is partitioned into 4 parts, each of length n/4; these
parts are then encoded into 8 shares distributed among non-
communicating servers. With appropriate encoding, this makes
it possible to reduce the storage overhead of a 3-server PIR
protocol from 3 to 8/4. Guided by this example, and following

closely Definition 1, let us now formally define what we mean
by a coded PIR scheme.

Definition 3: A coded PIR scheme with s parts and m
shares consists of the following: a binary string x of length n,
called the database, that is partitioned into s parts x1, . . . , xs,
each of length n/s, m shares c1, . . . , cm of length n/s, where
cj is a linear function of x1, . . . , xs for all j ∈ [m], stored in
m non-communicating servers S1, . . . ,Sm, a user Alice who
wishes to retrieve the bit xi for some i ∈ [n], without revealing
i to any of the servers, and a coded PIR protocol. The coded
PIR protocol P∗(Q∗,A∗, C∗) consists of the following steps:

Step 1: Alice flips random coins and uses the outcome to
invoke the query algorithm Q∗(m, s, n; i) that gener-
ates an m-tuple of queries (q∗1, . . . , q∗m). For j ∈ [m],
the query q∗j will be also denoted by Q∗j (m, s, n; i).

Step 2: For all j ∈ [m], Alice sends the query q∗j to the j-th
server Sj.

Step 3: For all j ∈ [m], the server Sj invokes the
answer algorithm A∗ to compute the answer aj =
A∗(m, s, j; cj, q∗j ).

Step 4: Alice computes her output by invoking the recon-
struction algorithm C∗(m, s, n; i, a1, . . . , am).

The coded PIR protocol P∗ must satisfy the correctness and
privacy conditions of Definition 1. That is, we require that
C∗(m, s, n; i, a1, . . . , am) = xi and for all i1, i2, the distribu-
tions of Q∗j (m, s, n; i1) and Q∗j (m, s, n; i2) are identical.

In a coded PIR scheme with s parts and m shares, we use m
servers, each storing n/s bits, to encode a database of length n.
Thus the corresponding storage overhead is mn/sn = m/s.
In the next two sections, we will show that given any linear
k-server PIR protocol P , it is always possible to construct a
coded PIR scheme that emulates P while its storage overhead
m/s is arbitrarily close to 1.

III. CONSTRUCTION OF CODED PIR SCHEMES

In this section, we give a general method to construct coded
PIR schemes. The main idea of our construction is to use exist-
ing (linear) PIR protocols and emulate them in a coded setup.
The resulting coded PIR schemes thus inherit the privacy guar-
antees, the correctness, and the communication complexity (up
to a small factor, discussed later in this section) of the emulated
PIR protocol, while significantly reducing its storage overhead.

Let us begin by revisiting Example 2. What properties of the
encoding equations (2) make the resulting coded PIR scheme
work? In order to answer this question, let us first rewrite (2)
in a matrix form:

(c1, c2, c3, c4, c5, c6, c7, c8)

= (x1, x2, x3, x4)

⎡

⎢
⎢
⎣

1 0 0 0 1 0 0 1
0 1 0 0 1 1 0 0
0 0 1 0 0 1 1 0
0 0 0 1 0 0 1 1

⎤

⎥
⎥
⎦. (6)

With reference to the matrix above, it is easy to see that
each part x1, x2, x3, x4 of the database can be recovered from
the coded shares c1, c2, c3, c4, c5, c6, c7, c8 in k = 3 different
ways. Explicitly, we have:

x1 = c1 = c5 + c2 = c8 + c4 (7)

x2 = c2 = c5 + c1 = c6 + c3 (8)
Authorized licensed use limited to: Eitan Yaakobi. Downloaded on December 04,2023 at 04:08:27 UTC from IEEE Xplore.  Restrictions apply. 



VARDY AND YAAKOBI: PIR WITHOUT STORAGE OVERHEAD: CODING INSTEAD OF REPLICATION 291

x3 = c3 = c6 + c3 = c7 + c4 (9)

x4 = c4 = c7 + c3 = c8 + c1 (10)

Moreover, each share c1, c2, c3, c4, c5, c6, c7, c8 appears in
each of the recovery equations (7) – (10) no more than once.
It turns out that this is the key property that we need. It is
formalized in the definitions that follow.

Definition 4: Let ei denote the binary (column) vector with
1 in position i and zeros elsewhere. We say that an s × m
binary matrix G has property Ak if for all i ∈ [s], there exist k
disjoint sets of columns of G that add up to ei. A matrix that
has property Ak is also said to be a k-server PIR matrix.

Definition 5: A binary linear code C of length m and
dimension s will be called a k-server PIR code if there exists
an s× m generator matrix G for C with property Ak.

Lemma 1: Let C be a k-server PIR code of length m and
dimension s, and suppose G is a generator matrix for C with
property Ak. Let c = xG be the encoding of a message x =
(x1, . . . , xs) ∈ {0, 1}s. Then for all i ∈ [s], there exist k disjoint
recovery sets R1, . . . ,Rk ⊆ [m] such that

xi :=
∑

j∈R1
cj = · · · =

∑

j∈Rk
cj (11)

Proof: The recovery sets R1, . . . ,Rk ⊆ [m] are indices of
the disjoint sets of columns of G that add to ei.

It is easy to see that the converse of Lemma 1 is also true.
That is, if G is an s × m binary matrix and c = xG, then
xi =∑

j∈R cj for all x = {0, 1}s if and only if the columns
of G indexed by R ⊆ [m] add to ei. Consequently, an s × m
matrix G is a k-server PIR matrix if and only if (11) holds for
all i.

For much more on k-server PIR codes, see the next two
sections. In the meantime, the following theorem shows how
such codes can be used to construct coded PIR schemes with
reduced storage overhead.

Theorem 1: Suppose there exists a k-server PIR code C of
length m and dimension s and a k-server linear PIR protocol
P(Q,A, C). Then there exists a coded PIR scheme with s
parts and m shares along with the corresponding coded PIR
protocol P∗(Q∗,A∗, C∗).

Proof: Let G be a generator matrix for C with property Ak.
Then, as in (2) and (6), the coded shares are computed from
the s database parts x1, . . . , xs as follows:

(c1, . . . , cm) = (x1, . . . , xs)G (12)

Assume Alice wishes to read the i-th bit from the �-th part,
namely the bit x�,i for some i ∈ [n/s]. First, she invokes
the query algorithm Q to generate k randomized queries:
(q1, . . . , qk) = Q(k, n/s; i). By Lemma 1, there exist k dis-
joint sets R1, . . . ,Rk ⊆ [m] such that

x� :=
∑

j∈R1
cj = · · · =

∑

j∈Rk
cj (13)

The queries Q∗(m, s, n; i) = (q∗1, . . . , q∗m) that Alice sends
to the servers S1, . . . ,Sm are defined as follows. For those
indices j ∈ [m] that do not belong to R1 ∪ · · · ∪Rk, we can
choose q∗j arbitrarily, since answers from the corresponding
servers will be ignored. For j ∈ (R1 ∪ · · · ∪ Rk), we find
the unique t ∈ [k] such that j ∈ Rt and set q∗j = qt. With

this setting of q∗1, . . . , q∗m, it is easy to see that the privacy
guarantees of Q are inherited by the new query algorithm Q∗.
Alice next collects the answers

aj = A∗(s, m, j; cj, q∗j )
def= {A(k, 1; cj, q∗j ), . . . ,A(k, k; cj, q∗j )

}

for j ∈ (R1 ∪ · · · ∪Rk) (14)

where we have assumed (for the time being) that the servers
return all the possible answers according to the original answer
algorithm A, as in (5). Alice, however, knows the unique index
t ∈ [k] such that j ∈ Rt, and will retain only A(k, t; cj, q∗j )
from the answer in (14). She can now compute

a′t
def=

∑

j∈Rt

A
(

k, t; cj, q∗j
)

:=
∑

j∈Rt

A(
k, t; cj, qt

)

:= A
⎛

⎝k, t;
∑

j∈Rt

cj, qt

⎞

⎠ := A(k, t; x�, qt)for t = 1, 2, . . . , k

where the first equality follows from the way queries are
set by Q∗, the second equality follows from the linearity of
P(Q,A, C), and the third equality follows from (13). Alice
can now complete the retrieval by invoking

C∗(m, s, n; i, a1, . . . , am)
def=C(

k, n/s; i, a′1, . . . , a′k
)

= C(
k, n/s; i,A(k, 1; x�, q1), . . . ,A(k, k; x�, qk)

)
:= x�,i.

If a coded PIR protocol P∗ is obtained from a linear PIR
protocol P as in the proof of Theorem 1, we will say that P∗
emulates P . Let us now assess the communication complexity
of such emulation. On the upload side, we see that the number
of queries sent by Alice increases from k to m, although each
query is slightly shorter since it is generated by Q(k, n/s; i)
rather than Q(k, n; i). On the download side, the number of
answers sent to Alice also increases from k to m. But now each
answer is about k times longer, as explained in (5) and (14).

The following theorem addresses this deficiency. In order to
state this theorem concisely, let us introduce some notation.
Given a k-server PIR protocol P , let U(P; n) and D(P; n)

denote the worst-case total number of bits uploaded and down-
loaded, respectively, by P for a database of length n. For a
coded PIR protocol P∗, we define the quantities U(P∗; n) and
D(P∗; n) in the same way.

Theorem 2: Suppose there exists a k-server PIR code C of
length m and dimension s. Then a linear k-server PIR protocol
P can be emulated by a coded PIR protocol P∗ with s parts
and m shares, having communication complexity

U
(P∗; n) ≤ m

k
U(P; n/s) + m log2 k

and D
(P∗; n) ≤ m

k
D(P; n/s).

Proof: Based on the foregoing discussion, it would suffice
to show how to reduce the number of bits in the answer
of (14) by a factor of k. To this end, we introduce the follow-
ing modification in the proof of Theorem 2. Upon generating

Authorized licensed use limited to: Eitan Yaakobi. Downloaded on December 04,2023 at 04:08:27 UTC from IEEE Xplore.  Restrictions apply. 



292 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 4, 2023

the k randomized queries (q1, . . . , qk) = Q(k, n/s; i),
Alice also selects a uniformly random permutation
π on [k]. As before, the queries q∗j for those indices j
that do not belong to R1 ∪ · · · ∪ Rk can be set arbitrarily.
Also as before, for each j ∈ (R1 ∪ · · · ∪Rk), Alice finds
the unique t ∈ [k] such that j ∈ Rt. But now she sets the
corresponding query as q∗j = qπ(t) and, along with q∗j , she
also sends the index π(t) to the j-th server Sj. Note that π(t)
does not reveal any information about either i or �, since it
is uniformly random over [k] by the choice of π . However,
the server Sj can now respond with

aj = A∗
(

s, m, j; cj, q∗j
)

def= A
(

k, π(t); cj, q∗j
)

= A(
k, π(t); cj, qπ(t)

)
.

Using these responses, Alice can compute

a∗t
def=

∑

j∈Rt

A(
k, π(t); cj, qπ(t)

)

:= A
⎛

⎝k, π(t);
∑

j∈Rt

cj, qπ(t)

⎞

⎠ := A(
k, π(t); x�, qπ(t)

)

for t = 1, 2, . . . , k

Finally, she can invert the permutation by setting a′t =
a∗
π−1(t)

= A(k, t; x�, qt), and proceed with retrieving the bit
x�,i as before. That is, x�,i = C(k, n/s; i, a′1, . . . , a′k).

IV. CONSTRUCTIONS OF k-SERVER PIR CODES

As we have seen in the previous section, our construction of
coded PIR schemes hinges upon the availability of a k-server
PIR code, for the appropriate values of k and s. Moreover,
the storage overhead of such coded PIR schemes is inversely
proportional to the rate of the underlying code. In this section,
we present several constructions of k-server PIR codes of high
rate. We shall see how such codes can be constructed from
Steiner systems, from majority-logic decodable codes, from
bipartite graphs of girth 6, from constant-weight codes, and
from subset codes. We shall also see that k-server PIR codes
are closely related to batch codes [21], [31], [41], to locally
recoverable codes with availability [19], [20], [29], [30], [38],
and to other kinds of combinatorial objects.

To aid the discussion in this section, let us introduce the fol-
lowing functions. For all s ≥ 1 and k ≥ 2, we define M(s, k)
and ρ(s, k) as the smallest possible length and the lowest possi-
ble redundancy, respectively, of a binary k-server PIR code of
dimension s. The storage overhead of our coded PIR schemes
is then given by

storage overhead with s parts = M(s, k)

s
= 1 + ρ(s, k)

s
(15)

We observe that the problem of determining M(s, k) and
ρ(s, k) is trivial for k = 2. Let C be the (s + 1, s) parity
code, obtained by appending an overall parity bit to a message
x ∈ {0, 1}s. Then it is easy to see that any generator matrix
for C has property A2, and so M(s, 2) = s + 1. Thus, in the
remainder of this section, we focus on k ≥ 3.

A. The Cubic Construction

Our first construction is based on the geometry of
multidimensional cubes. This approach is similar to
the one used in [21] to construct certain types of batch codes.
We point out, however, that the construction in [21] is recur-
sive, while ours is not. We begin by illustrating the general
idea with the help of a simple example.

Example 3: Suppose that k = 3 and s = σ 2 for a positive
integer σ . We arrange the σ 2 message bits in the form of a
σ × σ square. That is, given a message x ∈ {0, 1}s, we index
its σ 2 bits as xi,j for i, j ∈ [σ ]. To each message, we append
2σ parity bits c1, . . . , cσ and c′1, . . . , c′σ defined as follows:

ci = xi,1 + xi,2 + · · · + xi,σ and

c′j = x1,j + x2,j + · · · + xσ,j for i, j ∈ [σ ]

These bits are simply parities on the rows and columns of the
σ × σ message array. The resulting code, which we denote
by C(σ, 3), is very similar to the product of two single-parity-
check codes, except that it is shorter by one bit (we removed
a corner of the (σ+1)× (σ+1) coded array, since we do not
need it). Note that this code is systematic, meaning that the
first s coded bits are the message bits themselves. One can
easily verify that, given a codeword of C(σ, 3), every message
bit can be recovered in k = 3 different ways: as itself, from
its row parity, and from its column parity. Explicitly, for all
i, j ∈ [σ ], we have

xi,j = xi,1 + · · · + xi,j−1 + ci + xi,j+1 + · · · + xi,σ

= x1,j + · · · + xi−1,j + c′j + xi+1,j + · · · + xσ,j (16)

and the corresponding sets of indices are disjoint. It follows
that C(σ, 3) is a 3-server PIR code. Since its length is σ 2+2σ ,
we have M(σ 2, 3) ≤ σ 2 + 2σ . More generally, if we take
a similar product of two systematic k-server PIR codes, we
obtain ρ(σ 2, 2k−1) ≤ 2σρ(σ, k); what we have here is the
special case ρ(σ 2, 3) ≤ 2σρ(σ, 2) = 2σ .

Let us now extend the construction of Example 3 from two
to k − 1 dimensions, where k ≥ 4 is arbitrary. We start by
defining σ as the least integer such that s ≤ σ k−1. Given
a message x ∈ {0, 1}s, we extend it to length σ k−1 by
appending zeros, if necessary. Next, we arrange the message
bits in the form of a (k − 1)-dimensional cube of side σ

— that is, we index these bits as xi1,i2,...,ik−1 , with
i1, i2, . . . , ik−1 ∈ [σ ]. To each message, we append (k−1)σ k−2

parity bits defined as follows:

c(1)
i2,i3,...,ik−1

= x1,i2,...,ik−1 + x2,i2,...,ik−1 + · · · + xσ,i2,...,ik−1

for i2, i3, . . . , ik−1 ∈ [σ ] (17)

c(2)
i1,i3,...,ik−1

= xi1,1,...,ik−1 + xi1,2,...,ik−1 + · · · + xi1,σ,...,ik−1

for i1, i3, . . . , ik−1 ∈ [σ ] (18)
...

c(k−1)
i1,i2,...,ik−2

= xi1,i2,...,1 + xi1,i2,...,2 + · · · + xi1,i2,...,σ

for i1, i2, . . . , ik−2 ∈ [σ ] (19)

We then puncture from the resulting codeword those zero
bits, if any, that were originally used to extend the mes-
sage to length σ k−1. Let C(σ, k) denote the systematic linear

Authorized licensed use limited to: Eitan Yaakobi. Downloaded on December 04,2023 at 04:08:27 UTC from IEEE Xplore.  Restrictions apply. 



VARDY AND YAAKOBI: PIR WITHOUT STORAGE OVERHEAD: CODING INSTEAD OF REPLICATION 293

code defined by this encoding process. The following theorem
proves that it is a k-server PIR code.

Theorem 3: For s ≥ 1 and k ≥ 3, let σ denote the unique
positive integer such that (σ − 1)k−1 < s ≤ σ k−1. Then

M(s, k) ≤ s+ (k − 1)σ k−2 (20)

Proof: Consider the code C(σ, k) defined by (17) – (19).
It is obvious that this is a code of dimension s and length
s+ (k− 1)σ k−2. With the indexing scheme of (17) – (19), for
every message bit xi1,i2,...,ik−1 , we have

xi1,i2,...,ik−1 = c(1)
i2,i3,...,ik−1

+
σ∑

j=1j 
=i1

xj,i2,...,ik−1

= c(2)
i1,i3,...,ik−1

+
σ∑

j=1j 
=i2

xi1,j,...,ik−1

= · · · = c(k−1)
i1,i2,...,ik−2

+
σx∑

j=1j 
=ik−1

i1,i2,...,j.

It is easy to see that the corresponding sets of indices are
disjoint, as in (16). Hence, for every message bit, we have k
disjoint recovery sets, which implies that C(σ, k) is a k-server
PIR code.

Corollary 1: For all fixed k ≥ 2, there exist k-server coded
PIR schemes whose storage overhead approaches 1 as the
number of parts s grows.

Proof: By Theorem 1, we can construct a k-server coded
PIR scheme with storage overhead m/s whenever there exists a
k-server PIR code of length m and dimension s. Thus it would
suffice to show that lims→∞M(s, k)/s = 1 for all fixed k. But
this follows immediately from Theorem 3. For simplicity, let
us assume that s = σ k−1 (the difference between (σ − 1)k−1

and σ k−1 becomes negligible in the limit as s → ∞).
Then (20) implies that

M(s, k)

s
≤ 1 + (k − 1) s

k−2
k−1

s
= 1 + k− 1

k−1
√

s
s→∞−−−−→ 1.

One conclusion from Theorem 3 and Corollary 1 is that it
is easy to bring the asymptotic storage overhead of coded PIR
schemes down to 1 as s → ∞. Our very first construction
already achieves this goal for all fixed k. Therefore, we shall
henceforth focus on how fast the storage overhead approaches
1 as the number of parts grows. To this end, it will be more
convenient to consider the redundancy function ρ(s, k). The
cubic construction of (17) – (19) shows that

ρ(s, k) ≤ (k − 1)� k−1
√

s � k−2 (21)

As we shall see later in this section, this bound is far from
optimal, especially for k ≥ 4. Even for k = 3, there is only
one case where the cubic construction achieves the optimal
redundancy, namely ρ(4, 3) = 4.

B. One-Step Majority Logic Codes

One-step majority logic decoding is a method to perform
fast decoding by looking at disjoint parity check constraints

that only intersect on a single bit (see [13, Ch. 8]) These
parity check constraints correspond to the codewords in the
dual code, and hence, for a linear code [n, k, d], the goal is
to find, for each i ∈ [n], a set of codewords in the dual code
that intersect only on the i-th bit. These codewords are said to
be orthogonal on the i-th bit. The maximum number of such
orthogonal vectors in the dual code (for every bit) is denoted
by J, and if J = d − 1, then the code is called completely
orthogonalizable.

In other words, if an [n, k] code has J orthogonal vectors
on the i-th coordinate for some i ∈ [n], then its dual code C⊥
has k− 1 = J codewords that are orthogonal on coordinate i.
Assume that these codewords are given by

c⊥j = xi + xj1 + xj2 + · · · + xjpj
∀1 ≤ j ∈ J, (22)

where the sets {i}, and {j1, j2, . . . , jpi} for j ∈ [J] are mutually
disjoint. Such [n, k, d] code with J orthogonal vectors for each
i ∈ [n] is called a one-step majority logic code with J orthogo-
nal vectors. Note that the definition of one-step majority logic
codes is almost identical to the one of PIR codes given in
Definition 5. While one-step majority logic codes guarantee
that orthogonal vectors (or mutually disjoint sets) exist for all
the bits in the code, in PIR codes we require this property only
for the s information bits. While it is not always straightfor-
ward to construct an appropriate generator matrix from a given
code such that the k-server PIR property holds, for the case
of one-step majority logic codes, we can always pick a sys-
tematic generator matrix and hence the PIR property follows.
Lastly we note that the idea of using one-step majority logic
codes was motivated by the recent work on codes for locality
and availability in [20]. We demonstrate the construction of
such codes in the following example.

Example 4: Consider a (15, 7) cyclic code generated by the
polynomial g(x) = 1 + x4 + x6 + x7 + x8. The parity-check
matrix of this code in the systematic form is given by

H =

⎡

⎢⎢⎢⎢⎢
⎢
⎣

1 0 0 0 0 0 0 0 1 1 0 1 0 0 0
0 1 0 0 0 0 0 0 0 1 1 0 1 0 0
0 0 1 0 0 0 0 0 0 0 1 1 0 1 0
0 0 0 1 0 0 0 0 0 0 0 1 1 0 1
0 0 0 0 1 0 0 0 1 1 0 1 1 1 0
0 0 0 0 0 1 0 0 0 1 1 0 1 1 1
0 0 0 0 0 0 1 0 1 1 1 0 0 1 1
0 0 0 0 0 0 0 1 1 0 1 0 0 0 1

⎤

⎥⎥⎥⎥⎥
⎥
⎦

We observe that the following codewords in C⊥

h3 = (0 0 0 1 0 0 0 0 0 0 0 1 1 0 1),

h1+5 = (0 1 0 0 0 1 0 0 0 0 0 0 0 1 1),

h0+2+6 = (1 0 1 0 0 0 1 0 0 0 0 0 0 0 1),

h7 = (0 0 0 0 0 0 0 1 1 0 1 0 0 0 1),

are orthogonal on coordinate 14. That gives us five mutu-
ally disjoint sets {3, 11, 12}, {1, 5, 13}, {0, 2, 6}, {7, 8, 10}, and
{14} that are required in Definition 5 to make five differ-
ent queries on server 14. The same statement is correct for
all other coordinates due to the cyclicity of the code. So, C
is a 5-server PIR code. The storage overhead of the coded
PIR scheme based on C is given by 1

code rate = 15
7 , which is

significantly better than the uncoded PIR.

Authorized licensed use limited to: Eitan Yaakobi. Downloaded on December 04,2023 at 04:08:27 UTC from IEEE Xplore.  Restrictions apply. 



294 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 4, 2023

There are several algebraic constructions for one-step major-
ity logic codes. However, the explicit relation between the code
length and redundancy is only known for a few of them. Type-
1 Doubly Transitive Invariant (DTI) Codes (see [13, p. 289])
are cyclic codes with almost completely orthogonalizable
property. An explicit relation between the code length m =
(2M − 1), code dimension (s), and the number of orthogonal
codewords in the dual code (J), is known for specific choices
of these parameters:
• Case I. Let θ, � be two positive integers. For M = 2θ�

and J = 2� + 1, the redundancy of the type-1 DTI code
of length m is given by

r =
(

2θ+1 − 1
)� − 1. (23)

We refer to these codes by CC1(θ, �).
• Case II. Let λ, � be two positive integers. For M = λ�

and J = 2� − 1, the redundancy of the type-1 DTI code
of length m is given by

r = 2M − (
2λ − 1

)� − 1. (24)

We refer to these codes by CC2(λ, �).
We refer the reader to [13] for the algebraic construction and
the calculation method used in deriving these parameters.

Theorem 4: For any positive integers θ, �, and λ, the Type-
1 DTI codes CC1(θ, �), CC2(λ, �) are (2� + 2)-server, and
2�-server PIR codes, respectively. In particular, we get that

M

(
22θ� −

(
2θ+1 − 1

)�

, 2� + 2

)
≤ 22θ� − 1,

M
((

2λ − 1
)� − 1, 2�

)
≤ 2λ� − 1,

and hence for any fixed k, there exists a family of k-server
PIR codes with asymptotic storage overhead of 1+O(s− 1

2 ).
Proof: We have already shown that a one-step majority logic

code with J orthogonal vectors, is also a (J + 1)-server PIR
code. So we are left with only calculating the code dimensions
according to the redundancies in (23) and (24).
• For CC1(θ, �), the code dimension is given by s = m−r =

22θ� − (2θ+1 − 1)�.
• For CC2(λ, �), the code dimension is given by s = m−r =

(2λ − 1)� − 1.
So the upper bounds are validated. For the asymptotic anal-
ysis, we point out that for a given fixed J, as the number of
servers grows, the rates of the codes in both cases I, and II
become arbitrary close to 1. In particular, when k is fixed and
s becomes large, the storage overhead in CC2(λ, �) is

2λ� − 1
(
2λ − 1

)� − 1
≈

(
2λ

2λ − 1

)�

≈ 1+ �

2λ − 1
= 1+ O

(
s−

1
�

)
,

which is an improvement compared to Theorem 3 in the
asymptotic regime. An even better storage overhead is
achieved by CC1(θ, �) codes in the asymptotic regime:

22θ� − 1

22θ� − (
2θ+1 − 1

)�
= 1+ O

(
s−

1
2

)
. (25)

Note that this construction not only outperforms the for-
mer ones with respect to the upper bound on the asymptotic

storage overhead, but also gives a bound on M(s, k) that does
not depend on k is in the asymptotic regime. Considering that
the construction based on Steiner systems also result in a sim-
ilar bound, we ask the following two questions regarding the
asymptotic storage overhead behavior of k-server PIR codes.

C. PIR Codes Based on Steiner Systems

The idea behind a construction of any k-server PIR code
C is to form, for every information bit, k mutually disjoint
subsets of [m], such that the information bit can be recovered
by a linear combination of the bits in each set. Assume that C
is a systematic [m, m−r = s] k-server PIR code. Then, we can
partition its bits into two parts; the first one consists of the s
information bits, denoted by x1, . . . , xs and the second one is
the r redundancy bits p1, . . . , pr, where every redundancy bit
pi is characterized by a subset Si ⊆ [s] such that pi =∑

j∈Si
xj.

According to this representation of systematic codes, every
collection S = (S1, . . . , Sr) of subsets of [s] defines a system-
atic [s + r, s] linear code CB(S). In the next lemma, we give
sufficient (but not necessary) conditions such that the code
CB(S) is a k-server PIR code.

Lemma 2: Let S = (S1, . . . , Sr) be a collection of subsets
of [s], such that

1) For all i ∈ [s], i appears in at least k − 1 subsets,
2) For all j, � ∈ [r], |Sj ∩ S�| ≤ 1.

Then, CB(S) is a k-server PIR code.
Proof: For any information bit xi, i ∈ [s], according to the

first condition there exist some k − 1 subsets Si1 , . . . , Sik−1 ,
such that i ∈ Sij for j ∈ [k − 1]. For each j ∈ [k − 1], let Rj

be the set Rj = {x� � ∈ Sij , � 
= i} ∪ {pij}, and finally let
Rk = {xi}. According to the second condition all these k sets
are mutually disjoint. Finally, it is straightforward to verify
that xi is the sum of the bits in every set, and thus CB(S) is a
k-server PIR code.

After determining the conditions in which the code CB(S)

is a k-server PIR code, we are left with the problem of finding
such collections of subsets. Our approach to fulfill the condi-
tions stated in Lemma 2 is to search for existing combinatorial
objects in the literature. One such an object is a Steiner system.
A Steiner system with parameters t, �, n, denoted by S(t, �, n),
is an n-element set S together with a set of �-element sub-
sets of S (called blocks) with the property that each t-element
subset of S is contained in exactly one block. It is also com-
monly known that the number of subsets in a Steiner system
S(t, �, n) is

(n
t

)
/
(
�
t

)
and every element is contained in exactly(n−1

t−1

)
/
(
�−1
t−1

)
subsets.

In order to satisfy the conditions in Lemma 2, we chose
Steiner systems with t = 2 so the intersection of every two
subsets contains at most one element. Furthermore, in a Steiner
system S(2, �, n), the number of subsets is

(n
2

)
/
(
�
2

) = n(n −
1)/�(�− 1) and every element is contained in (n− 1)/(�− 1)

subsets. Thus, we conclude with the following theorem.
Theorem 5: If a Steiner system S(2, s−1

k−1 +1, s) exists, then
there exists an [m = s + r, s] k-server PIR code where r =
s(k−1)2

s+k−2 . Thus, under this assumption we have

M(s, k) ≤ s+ s(k − 1)2

s+ k − 2
. (26)

Authorized licensed use limited to: Eitan Yaakobi. Downloaded on December 04,2023 at 04:08:27 UTC from IEEE Xplore.  Restrictions apply. 



VARDY AND YAAKOBI: PIR WITHOUT STORAGE OVERHEAD: CODING INSTEAD OF REPLICATION 295

Moreover, if a Steiner system S(2, k − 1, r) exists, then we
have a k-server PIR code with parameters [m, s] = [r +

r(r−1)
(k−1)(k−2)

,
r(r−1)

(k−1)(k−2)
]. Thus,

M

(
r(r − 1)

(k − 1)(k − 2)
, k

)
≤ r + r(r − 1)

(k − 1)(k − 2)
. (27)

Proof: Let S be a Steiner system S(2, s−1
k−1 + 1, s), so the

number of subsets in S is

r = s(s− 1)
(

s−1
k−1 + 1

)
s−1
k−1

= s(k − 1)2

s+ k − 2
,

and every element is contained in

s− 1

(s− 1)/(k − 1)
= k − 1

subsets. We also have that the intersection of every two
subsets contains at most one element, so the conditions in
Lemma 2 hold and CB(S) is a k-server PIR code. To prove
the bound given in (27), let τ = (r

2

)
/
(k−1

2

)
be the number

of (k − 1)-element subsets of S(2, k − 1, r), and denote them
by S1,S2, . . . ,Sτ ⊂ [r]. Let us construct the dual Steiner
system S′(2, r−1

k−2 , τ ) which consists of r ( r−1
k−2 )-element sub-

sets of [τ ] denoted by S ′1,S ′2, . . . ,S ′r, and has the property
that S ′i = {a|a ∈ [τ ], i ∈ Sa}. We now use the first statement
in (26) to construct the code CB(S′). It is clear that the redun-
dancy of CB(S′) is given by r, and the code length is given by
r + τ = r + r(r−1)

(k−1)(k−2)
.

Example 5: A finite projective plane of order q, with the
lines as blocks, is an S(2, q + 1, q2 + q + 1) Steiner system.
Since q + 1 = (q2+q+1)−1

(q+2)−1 + 1, we conclude that there exists
an [s + r, s] (q + 2)-server PIR code, with s = q2 + q + 1
information bits and

r =
(
q2 + q+ 1

)
(q+ 1)2

q2 + q+ 1+ q+ 2− 2
=

(
q2 + q+ 1

)
(q+ 1)2

(q+ 1)2

= q2 + q+ 1

redundancy bits. Note that the storage overhead of this code
is 2.

In order to evaluate the bound (27) in Theorem 5, one is
required to figure out the existence of S(t, �, n) in general.
Indeed, Wilson’s Theorem [43] claims that for a fixed �, and
sufficiently large n, a Steiner system S(2, �, n) exists given
that the following two conditions (also known as divisibility
conditions) are satisfied: � − 1 divides n − 1 and �(� − 1)

divides n(n − 1). Wilson Theorem guarantees the existence
of S(2, k − 1, r) for infinitely many values of r. Hence, for
a fixed k, there are arbitrary large values for r such that the
bound in (27) holds. Hence, the redundancy behaves asymp-
totically according to ρ(s, k) = O(s1/2), which improves upon
the cubic construction.

D. Bipartite Graphs and Constant-Weight Codes

Assume that G is a generator matrix of a systematic k-server
PIR code C of length m and dimension s. We rewrite G as

G = [
Is|As×r

]
, (28)

where Is is the s × s identity matrix and As×r corresponds
to the r parities in C. Let us look at the systematic PIR

Fig. 2. The bipartite graph G associated with the matrix A10×5.

codes from a graph theory point of view by interpreting A
as the incidence matrix of a bipartite graph G with partite
sets X = {x1, x2, . . . , xs} and P = {p1, p2, . . . , pr}, and edges
E = {{xi, pj}|Aij = 1}. We call C by the Systematic PIR code
based on G. The following lemma is an equivalent statement
to Lemma 2.

Lemma 3: Let G be a bipartite graph with partite sets
X = {x1, x2, . . . , xs}, P = {p1, p2, . . . , pr}, and the incidence
matrix A, where k− 1 = minx∈X deg(x). Further, assume that
G has no cycles of length 4. If C is the systematic code based
on G with generator matrix defined in (28), then C is a k-server
PIR code of length m = s+ r and dimension s.

Proof: Consider xi and k − 1 of its parity neighbors
{pi1, pi2 , . . . , pik−1} ⊂ P . Let Rj

i ⊂ X denote the neighbor
set of pij . Since G is 4-cycle free, the sets Rj

i \{xi} (for a fixed
i and j ∈ [k − 1]) are mutually disjoint. It is also easy to see
that {xi}, and {pij} ∪Rj

i \ {xi} (for j = 1, 2, . . . , k− 1) form k
disjoint recovery sets for ui. In other words,

pij =
∑

xα∈Rj
i

xα ⇒ xi = pij +
∑

xα∈Rj
i\{xi}

xα

for j = 1, 2, . . . , k − 1.

Now we are ready to proceed to the final construction of
k-server PIR codes, which will be first demonstrated by an
example.

Example 6: Consider the 3-server PIR code C given by the
systematic generator matrix

G = [
I10|A10×5

] =

⎡

⎢⎢
⎢
⎢⎢
⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎣

1 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 1 0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 1 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 1 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 1 1

⎤

⎥⎥
⎥
⎥⎥
⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎦

.

The corresponding bipartite graph is also shown in Fig. 2.
We observe that deg(xi) = 2 for all i as expected since we

only need k − 1 = 2 elements in N (xi) to recover xi, where
N (α) is the neighborhood set of α. Moreover,

|N (xi) ∩N
(
xj

)| ≤ 1 for i 
= j, (29)

which guarantees that the recovering sets for xi are mutually
disjoint.

The requirement that deg(xi) ≥ k − 1 can be replaced with
deg(xi) = k−1 in this construction. This motivates us to look
at constant-weight codes where the codewords are all rows in
the matrix A. For instance, we look at a constant weight code

Authorized licensed use limited to: Eitan Yaakobi. Downloaded on December 04,2023 at 04:08:27 UTC from IEEE Xplore.  Restrictions apply. 



296 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 4, 2023

with weight k−1 and minimum distance 2k−4. Let A(k, r) be
the list of the largest code of length r whose codewords have
weight k−1 and their minimum distance is 2k−4. CD(k, r) is
a k-server PIR code defined by its systematic generator matrix
G(k,r) = [I|A(k, r)].

We use the notation B(n, w, d) to denote the maximum num-
ber of codewords of length n and weight w with minimum
distance d. There are numerous works and studies aiming to
determine the precise values of B(n, w, d) in general, but the
explicit formula is only found for the trivial cases. A complete
collection of the known precise values and both upper bounds
and lower bounds on B(n, w, d) is given in [6].

Theorem 6: For any k the code CD(k, r) is a k-server PIR
code. In particular, we get that for any positive integer k

M
(
B(r, k − 1, 2k − 4), k

) ≤ B(r, k − 1, 2k − 4)+ r.

Proof: Let G be the bipartite graph whose incidence matrix
is M(k, r). Clearly, deg(x) = k − 1 for all x ∈ X . Also,
|N (x)| = |N (y)| = k − 1, and |(N (x) ∪ N (y)) \ (N (x) ∩
N (y))| ≥ 2k − 4, which provides that N (x) ∩ N (y)| ≤ 1.
Hence, all of the conditions in Lemma 3 are satisfied and
CD(k, r) is a k-server PIR code. To validate the parameters in
the theorem it suffices to note that |A(k, r)| = B(r, k−1, 2k−
4), so we have B(r, k−1, 2k−4) rows in G, and r, the length
of the codewords in A(k, r), determines the redundancy.

Example 7: The only known explicit formula for B(n, w, d)

is when w = 2 and d = 2. It is easy to see that any two
different codewords of weight 2 have distance at least 2 as
well. Hence B(n, 2, 2) = (n

2

)
. So,

M

((
n

2

)
, 3

)
≤ n+

(
n

2

)
. (30)

According to inequality 30, we observe again that the
asymptotic behavior of M(s, 3)−s is O(s1/2). The construction
based on Steiner systems and the last construction based upon
constant-weight codes are both equivalent to the problem of
finding bipartite graphs with s vertices on the left and r ver-
tices on the right, where all the left vertices have degree k,
the graph has girth at least 6, while minimizing the value of r.
Clearly, if a Steiner system with the desired parameter exists,
then it is an optimal solution. However, constant-weight codes
provide a solution in the general case particularly when the
desired Steiner system does not exist. The following theorem
on bipartite graphs is both well-known and trivial and shows
that by using this method of construction for k-server PIR
codes, we can not achieve a better asymptotic storage over-
head than the one achieved by Steiner systems. We include
here the proof for the sake of completeness of the results in
the paper.

Theorem 7: Let G be a bipartite graph with partite sets
X = {x1, x2, . . . , xs} and P = {p1, p2, . . . , pr}, where
deg(x) = k > 2 for all x ∈ X . If the graph has girth at least
6, then r(r − 1) ≥ sk(k − 1). Hence, for a fixed k, we have
r = O(s1/2).

Proof: Let N (x) denote the neighbor set of the vertex x.
Since the graph has no 4-cycles, then there are no i, j,∈ [s]
and a, b ∈ [r], such that

{pa, pb} ⊂ N (xi) and {pa, pb} ⊂ N (
xj

)

Therefore,
(

r

2

)
≥

∑

i∈[s]

(|N (xi)|
2

)
= s

(
k

2

)
.

V. OPTIMAL STORAGE OVERHEAD FOR SMALL s AND k

In this section, we study the value of M(s, k) for small s
and k. In order to give the best upper bounds, we benefit from
a few supplementary lemmas that together with the construc-
tions introduced in Section IV form a recursive method in
deriving the upper bounds on M(s, k). Note that the construc-
tions introduced in Section IV do not cover all values of s
and k. The following lemmas give simple tools to derive upper
bounds for all values of s and k.

Lemma 4: We have the following inequalities for all non-
negative integer values of s, k, s′, and k′:

1) M(s, k + k′) ≤ M(s, k)+M(s, k′),
2) M(s+ s′, k) ≤ M(s, k)+M(s′, k),
3) M(s, k) ≤ M(s, k + 1)− 1,
4) M(s, k) ≤ M(s+ 1, k)− 1.
Proof: To prove the inequality in (a), assume that C and

C′ are k-server and k′-server PIR codes with parameters [m, s]
and [m′, s], and their generator matrices are given by G and G′,
respectively. It is easy to see that the concatenation of C and
C′ is a (k + k′)-server PIR code with parameters [m + m′, s]
and its generator matrix is given by Gconc = [G | G′]. To
prove the inequality in (b), assume again that C and C′ are k-
server PIR codes with parameters [m, s] and [m′, s′], and their
generator matrices are given by G and G′, respectively. The
direct sum code (also known as the product code) of C and C′
is a k-server PIR code with parameters [m+m′, s+ s′] whose
generator matrix is given by

G∗ =
[

G 0s×m′
0s′×m G′

]
.

To prove (c), let us assume that C is a (k+1)-server PIR code
with parameters [m, s] and a generator matrix G. According
to Definition 5, for every information bit ui, i ∈ [s], there exist
k + 1 mutually disjoint sets Ri,1, . . . ,Ri,k+1 ⊂ [m] such that
for all j ∈ [k], ui is a linear function the bits in Ri,j. It is now
clear that deleting one of the coordinates from G or equiv-
alently puncturing the code C in one of its coordinates can
truncate at most one of these disjoint recovery sets. Hence the
punctured code Cpunc whose parameters are given by [m−1, s]
is a k-server PIR code. We postpone the proof of part (d) to
the end of this section, where we discuss whether Definition 5
is a property of the generator matrix or it can be interpreted
as a property of the code itself.

Lemma 5: If k is odd, then M(s, k + 1) = M(s, k)+ 1.
Proof: Utilizing part (c) in Lemma 4, it only suffices to

show that if k is odd, then M(s, k + 1) ≤ M(s, k) + 1. To do
so, assume that C is a k-server PIR code with parameters [m, s]
and generator matrix G. For any i ∈ [s] we should be able to
find k disjoint subsets of columns where the columns in each
subset sum up to the vector ei. If the sum of all columns in
G is 0, then clearly the sum of the remaining columns (the
ones that are left out of the k subsets) is also the vector ei.
Hence the code is actually a (k + 1)-server PIR code and we

Authorized licensed use limited to: Eitan Yaakobi. Downloaded on December 04,2023 at 04:08:27 UTC from IEEE Xplore.  Restrictions apply. 



VARDY AND YAAKOBI: PIR WITHOUT STORAGE OVERHEAD: CODING INSTEAD OF REPLICATION 297

are done. If not, append one more column to G so that the
sum of all the columns is 0. Then the resulting matrix is a
generator matrix for a (k + 1)-server PIR code.

By selecting the best constructions for M(s, k) from
Section IV for each individual s and k, it is possible to drive
upper bounds on M(s, k) for all values of s, and k. We observe
that the storage overhead is significantly improved compared
to the traditional uncoded PIR scheme. Moreover, the inequal-
ity M(s, k) ≥ s+√s always hold. The asymptotic behavior of
M(s, k) is discussed in next section.

In the remainder of this section, we seek to address the
following key question: Is it the generator matrix that has the
k-server PIR property, or it can be interpreted as a property
of the code? Let us begin the discussion with the following
definition.

Definition 6: We say that an [m, m− s] binary linear code
C has property Bk if there exist s cosets of C such that:

1) Every coset contains k disjoint vectors, and
2) The linear span of these cosets is the entire space F

m
2 .

Theorem 8: If the code C has the property Bk, then its dual
code is a k-server PIR code.

Proof: We show that the definition 6 and 5 are equivalent.
Clearly, Definition 6 above is a property of a code, not a
matrix. Now, given a generator matrix G with for the PIR
code C′, we get a code C with property Bk by simply taking
C to be the code defined by G as its parity-check matrix. Now
lets proceed to the other direction.

Assume that a code C with property Bk is given. Let
C1, C2, . . . , Cs be the s linearly independent cosets of C, each
containing k disjoint vectors. Start with an arbitrary parity-
check matrix H for C. Let σ1, σ2, . . . , σs denote the syndromes
of C1, C2, . . . , Cs with respect to H. Let S be the s× s matrix
having these syndromes as its columns. Note that condition
b) of Definition 6 guarantees that S is full-rank. Now form
the s × (m + s) matrix [H|S], and perform elementary row
operations on this matrix to get [H′|S′] where S′ is the s × s
identity matrix. Then the matrix H′ is a generator matrix
for the k-server PIR code C′, which is clearly the dual code
of C.

The following lemma from the theory of the linear codes is
essential for the proof of part (d) in Lemma 4. We leave the
proof to the reader.

Lemma 6: Let C be an (m, k) binary linear code. Given a
positive t ≤ m− k, let C1, C2, . . . , Ct be cosets of C, and let
s1, s2, . . . , st be their syndromes. Then

dim
(
span(C1, C2, . . . , Ct)

) = k + t

if and only if the syndromes s1, s2, . . . , st are linearly inde-
pendent.

We are now able to prove part 4) of Lemma 4 as promised
earlier.

Proof of Lemma 4-4): Suppose M(s, k) = m. Then there
exists an [m, m−s] code C with property Bk. Moreover, no col-
umn in a parity check matrix for C is entirely zero, otherwise
M(s, k) ≤ m− 1. Puncture the code C in any position. Upon
puncturing, a) above remains true trivially. It remains to show
that we can find some s− 1 cosets of the punctured code that
generate F

m−1
2 , which is a direct result of Lemma 6. Hence

TABLE I
LIST OF ALL 7 DIFFERENT TYPE OF COLUMNS USED

IN CONSTRUCTING AN (m, 3)-PIR CODE

the resulting [m− 1, m− s] code has property Bk, and it is a
k-server PIR code.

VI. ASYMPTOTIC BEHAVIOR OF CODED PIR

While deriving the precise values of M(s, k) was our initial
interest, studying the asymptotic behavior of M(s, k) is no less
interesting. In particular, lower bounds will help us to find
constructionswith theoptimalstorageoverhead.Asymptotically,
we will analyze the value of M(s, k) when s is fixed and k is
large, and vice versa. We briefly mention that we solved the first
case while the lower bounds for the latter are yet to be found.

A. Storage Overhead for Fixed s

Let us first focus on the case where s, the ratio between the
length of the whole data and the storage size of each server,
is a fixed integer number, but k, the PIR protocol parameter,
is large.

Theorem 9: For any pair of integer numbers s, and k,
we have

M(s, k) ≥ 2s − 1

2s−1
k, (31)

with equality if and only if k is divisible by 2s−1.
Let us use the following example to illustrate the proof.
Example 8: Assume s = 3, and C is an (m, 3) PIR code

with k-server PIR property. The generator matrix of C contains
m columns, each of length 3. The list of all possible options is
shown in table I. Let us assume that the column multiplicities
are given by μa, μb, μc, μx, μy, μz, and μw.

Since the code has the k-server PIR property, there should
be k disjoint sets of columns each with ha as their sum. ha,
hb + hz, hc + hy, and hx + hw are all such possibilities. It is
easy to notice that there is no combination of the columns of
type hb, hc, and hx that would give ha. So, each of the k sets
should include at least one of the other columns. Therefore,

μa + μy + μz + μw ≥ k.

Similar to {hb, hc, hx}, we have three other sets {hx, hy, hz},
{hc, hz, hw}, and {hb, hy, hw} that are incapable of recover-
ing the first data chunk by their own. So we have three
more constraints

μa + μb + μc + μw ≥ k,

μa + μb + μx + μy ≥ k,

μa + μc + μx + μz ≥ k.

Redoing the above argument for the second and the third
information chunk, we get the following three new constraints

μb + μc + μy + μz ≥ k,

μb + μx + μz + μw ≥ k,

μc + μx + μy + μw ≥ k;
Authorized licensed use limited to: Eitan Yaakobi. Downloaded on December 04,2023 at 04:08:27 UTC from IEEE Xplore.  Restrictions apply. 



298 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 4, 2023

TABLE II
COMPARISON OF THE CONSTRUCTIONS FOR M(s, k) WITH RESPECT TO THE ASYMPTOTIC CODE REDUNDANCY (M(s, k)− s)

And, by adding all the above constraints we have

M(3, k) = m = μa + μb + μc + μx + μy + μz + μw ≥ 7

4
k.

It is trivial that when k is divisible by 4, setting μa = μb =
μc = μx = μy = μz = μw = k

4 gives the equality. We can
indeed use the results from Lemmas 4, and 5 to prove that
M(3, k) = � 7k

4 �.
Proof of Theorem 9: For the general s, the generator matrix

contains at most 2s − 1 different non-zero columns. Assume
C is a k-server PIR code with length m and dimension s.
Therefore, for each 1 ≤ i ≤ s, one can find k disjoint subsets
of the columns with their equal to

ei =
⎛

⎝0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0

⎞

⎠

t

.

Similar to the example, we look at all the (s− 1)-dimensional
subspaces V in F

s
2, such that ei /∈ V . It is clear that no com-

bination of the columns in V can retrieve ei. So, each of the
k subsets should include at least one vector from Vc, where
Vc denotes the complement of V in F

s
2. Now let V be a sub-

space of F
s
2 that does not contain the unit vector ei. Then∑

v∈Vc μv ≥ k is a constraint involving μei .
There are

(2s − 2)(2s − 4) · · · (2s − 2s−2
)

(
2s−1 − 1

)(
2s−1 − 2

) · · · (2s−1 − 2s−2
) = 2s−1

such subspaces for each i, which gives us 2s−1 constraints for
each ei. It suffices to show that there are exactly 2s−1 unique
constraints after merging all these sets. Now we recall that the
non-zero codewords of the simplex code of length 2s − 1 are
precisely the supports of all sets of the form Vc, where V is
an (s − 1)-dimensional subspace of F

s
2 (see [13, p. 380] for

proof.) It is now clear that we have 2s − 1 unique constraints
since there are exactly 2s − 1 codewords of weight 2s−1 in
the simplex code of length 2s − 1. Moreover, exactly 2s−1 of
these codewords have value 1 in a fixed coordinate. In other
words, we get the vector 2s−112s−1 as the sum of all these
codewords. So,

2s−1
∑

v∈Fs
2

μv ≥
(
2s − 1

)
k ⇐⇒

M(s, k) = m =
∑

v∈Fs
2

μv ≥ (2s − 1)

2s−1
k.

Let us fix s. The introduced lower bound in (31) along
with its equality condition shows that M(s, k) = O(k), when
k becomes large. In other words M(s, k) ∼ 2k for small s and
k large.

B. Storage Overhead for Fixed k

It was already shown that for fixed k, there are elementary
constructions to achieve storage overhead M(s,k)

s arbitrary close
to 1. We are yet to determine how fast it decreases. Table II
summarizes the constructions introduced in the previous sec-
tion with their asymptotic behavior. Note that, the explicit
formula for the constructions based on constant-weight codes
is only known for k = 3.

We observe that non of the introduced constructions
achieves storage overhead less than 1 + O(s− 1

2 ). However, it
is not clear if that is the optimum value one can get. So far,
the best (and trivial) lower bound is given by

M(s, k) ≥ s+ O(log s).

VII. PIR ARRAY CODES

In all the constructions we presented so far, we assumed that
the database was partitioned into s parts, where every server
stores n/s bits that were considered to be a single symbol. In
this section we seek to extend this idea and let every server
store more than a single symbol. For example, we can partition
the database into 2s parts of n/(2s) bits each such that every
server stores two symbols. This can be generalized such that
every server stores a fixed number of symbols. One of the
benefits of this method to construct PIR codes is that we can
support setups in which the number of bits stored in a server is
n/s where s is not necessarily an integer. Furthermore, we will
show that it is also possible to improve, for some instances of
s and k, the value of M(s, k) and hence the storage overhead
as well. Since every server stores more than a single symbol
we treat the code construction as an array code and thus we
call these codes PIR array codes. When a server receives a
query q then it responses with multiple answers corresponding
to the number of symbols stored in the server. We illustrate
the idea of PIR array codes in the next example.

Example 9: Assume that the database x is partitioned into
12 parts x1, x2, . . . , x12 which are stored in four servers
as follows:

Server1 Server2 Server3 Server4

x1 x2 x3 x1 + x2 + x3

x2 x3 x1 x6

x4 x5 x4 + x5 + x6 x4

x5 x6 x8 x9

x7 x7 + x8 + x9 x9 x7

x8 x11 x11 x12

x10 + x11 + x12 x11 x12 x10

Authorized licensed use limited to: Eitan Yaakobi. Downloaded on December 04,2023 at 04:08:27 UTC from IEEE Xplore.  Restrictions apply. 



VARDY AND YAAKOBI: PIR WITHOUT STORAGE OVERHEAD: CODING INSTEAD OF REPLICATION 299

Thus, every server stores 7 parts, each of n/12 bits, so n
12/7

bits are stored in each server and the storage overhead is 7/3.
Using this code, it is possible to invoke a 3-server linear pro-
tocol P(Q,A, C). Assume Alice seeks to read the bit x1,i

for i ∈ [n/12], she invokes the algorithm Q to receive three
queries Q(3, n/12; i) = (q1, q2, q3). The first sever is assigned
with the query q1, the second and fourth servers with the query
q2 and the third server with the query q3. Each server responds
with 7 answers corresponding to the 7 parts it stores. Alice
receives all 28 answers but only needs 5 answers to retrieve
the value of x1,i. From the first server she receives the answer
a1 = A(3, 1, x1, q1), from the second server she receives two
answers a′2 = A(3, 2, x2, q2) and a′′2 = A(3, 2, x3, q2), from
the third server a3 = A(3, 3, x3, q3), and lastly from the fourth
server she receives a4 = A(3, 2, x1 + x2 + x3, q2). Note that
from the linearity of the protocol P , we have

a′2 + a′′2 + a4

= A(3, 2, x2, q2)+A(3, 2, x3, q2)

+ A(3, 2, x1 + x2 + x3, q2)

= A(3, 2, x1, q2),

and thus x1,i is retrieved by applying the algorithm C
x1,i = C(

3, n/12; i, a1, a′2 + a′′2 + a4, a3
)
.

In the last example, we see that we repeated the same code
four times. That was done in order to guarantee that the num-
ber of symbols stored in each server is the same. We could
instead show only the first two rows of the first code and then
claim that by interleaving of the column which stores only one
symbol it is possible to guarantee that each server stores the
same number of symbols. While we saw that in this exam-
ple it is possible to construct PIR codes with more flexible
parameters, the download communication was increased and
we needed only 5 out of the 28 received answers. However,
since the number of symbols in each server is fixed (and will
be in the constructions in this section) the communication
complexity order is not changed.

In general, we refer to an m1 ×m2 array code as a scheme
to encode s information bits x1, . . . , xs into an array of size
m1×m2. An (m1×m2, s)-server coded PIR protocol is defined
in a similar way to Definition 3. We formally define PIR array
codes.

Definition 7: A binary [m1 × m2, s] linear code will be
called a k-server PIR array code if for every information bit
xi, i ∈ [s], there exist k mutually disjoint sets Ri,1, . . . , Ri,k ⊆
[m2] such that for all j ∈ [k], xi is a linear function of the bits
stored in the columns of the set Ri,j.

Very similarly to Theorem 1 we conclude that if there exists
an [m1 ×m2, s] k-server PIR array code and a k-server linear
PIR protocol P then there exists an (m1×m2, s)-server coded
PIR protocol that can emulate the protocol P . Next, we give
another example of PIR array code which explicitly improves
the storage overhead.

Example 10: We give here a construction of [2 × 25, 6]
15-server PIR array code. The 6 information bits are denoted
by x1, x2, x3, x4, x5, x6 and are stored in a 2 × 25 array as
follows:

The first row specifies the server number. The other two
rows indicate the bits which are stored in each column. It
is possible to verify that this construction provides a 15-
server PIR array code. For example for the first bit we get
the following 15 sets:

{1}, {2}, {3}, {4}, {5}, {6, 16}, {7, 17}, {8, 18}, {9, 19},
{10, 20}, {11, 21}, {12, 22}, {13, 23}, {14, 24}, {15, 25}

where it is possible to retrieve the value of x1 by the bits stored
in the columns of each group.

The number of bits stored in each server of this example is
n/3 and thus s = 3. If we had to use the best construction of
an [m, 3] 15-server PIR code, then M(3, 15) = 26 servers
are required, while here we used only 25 servers. Hence,
we managed to improve the storage overhead for s = 3 and
k = 15.

We extend Example 10 to a general construction of PIR
array code. Let t be a fixed integer t ≥ 2. The number
of information bits is s = t(t + 1), the number of rows is
m1 = t and the number of columns is m2 = m′2 + m′′2, where
m′2 =

(t(t+1)
t

)
and m′′2 =

(t(t+1)
t+1

)
/t. In the first m′2 columns we

simply store all tuples of t bits out of the t(t+ 1) information
bits. In the last m′′2 columns we store all possible summations
of t + 1 bits. There are

(t(t+1)
t+1

)
such summations and since

there are t rows, t summations are stored in each column, so
the number of columns for this part is m′′2 =

(t(t+1)
t+1

)
/t. We

also require that in the last m′′2 columns every bit appears in
exactly one summation. Note that Example 10 is a special
case of this construction for t = 2. A code generated by this
construction will be denoted by CA−PIR(t). The proof of this
theorem appears in [10, Th. 10].

Theorem 10: For any integer t ≥ 2, the code CA−PIR(t) is
an [m1 × m2, t(t + 1)] k-server PIR array code where

s = t + 1, m1 = t,

m2 =
(

t(t + 1)

t

)
+

(t(t+1)
t+1

)

t
, k =

(
t(t + 1)

t

)
,

and its storage overhead is
(t(t+1)

t

)+ (t(t+1)
t+1

)
/t

t + 1
.

Table IV compares the improvement in the number of
servers, and thus storage overhead, when using the PIR array
code CA−PIR(t). For t = 2 and s = 3, k = 15 we know the
exact value of M(s, k) calculated above, and for all other values
of t we get a lower bound on the value of M(s, k) according
to Theorem 9.

In this section we demonstrated how PIR array codes are
beneficial for the purpose of improving the storage overhead.
Another possible direction for improvement is to explore how
PIR array codes can be used to reduce the communication
complexity while fixing the storage overhead. We believe that
this is possible since based on Table IV we can expect that
if the number of servers remains the same, then the value of
k can be reduced and this will imply an improvement in the
communication complexity. However, we leave this problem
for future research.

Authorized licensed use limited to: Eitan Yaakobi. Downloaded on December 04,2023 at 04:08:27 UTC from IEEE Xplore.  Restrictions apply. 



300 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 4, 2023

TABLE III
A CONSTRUCTION OF [2 × 25, 6] 15-SERVER PIR ARRAY CODE

TABLE IV
COMPARISON BETWEEN THE CODE CA−PIR(t) AND

THE CORRESPONDING BEST VALUES OF M(s, k)

VIII. CONCLUSION AND DISCUSSION

A new framework to utilize private information retrieval
in distributed storage systems is introduced in this paper. The
new scheme is based on the idea of using coding instead of the
replications in the traditional PIR protocols, when the storage
size of each server is much less than the size of the database.
We have shown that among the three main parameters in
measuring the quality of k-server PIR protocols, i.e., com-
munication complexity, computation complexity, and storage
overhead, the first two remain the same and the latter improves
significantly in the asymptotic regime. In particular, for a fixed
k and a limited server size, the storage overhead becomes
1+o(1) as the number of servers becomes large. The optimal
storage overhead with the coded PIR is also studied and the
explicit value is derived for many cases. The presented con-
structions lead to coded PIR schemes with storage overhead
1+O(s−1/2) for any fixed k, where s is the ratio between the
size of the database and the storage size of each server. This
result has been established to be optimal in [22], [32], [45] and
several more results in terms of bounds and code constructions
have been rigorously studied since the first publication of this
paper 2015; see, e.g., [1], [17], [27], [34], [40].

Another research direction that has been explored is the
construction of PIR array codes such as the ones given in
Section VII. These constructions are examples for improve-
ments either in the storage overhead or the existence of codes
with other parameters which cannot be achieved by the non-
array PIR codes. Several more code constructions have been
proposed in the literature in the past year; see, e.g., [5], [10],
[28], [48], and yet we hope that more constructions will appear
to further improve these parameters.

Lastly, we note that the family of PIR codes that has been
studied in the paper is different than the line of works that
studied the PIR capacity and the PIR codes for this model.
The PIR codes that are referred to in the paper are motivated
by PIR protocols that optimize both the upload and download
complexity. Thus, these codes are targeted to solve a com-
pletely different problem that the ones that address the PIR

capacity and optimize only the download complexity; see [4],
[9], [24], [26], [35], [36], [37], [39] and references therein.
Furthermore, PIR codes are similar in their definition to locally
repairable codes with availability [29], [30], [42], with the
important distinction that PIR codes do not impose any con-
straint on the size of the recovering sets as done for LRCs.
Hence, it is not possible to compare between PIR codes and
the above families of codes.

ACKNOWLEDGMENT

The authors thank Anna Gál, Amos Beimel, Han Mao Kiah,
Eyal Kushilevitz, Sankeerth Rao, Itzhak Tamo, and
Mary Wootters for very helpful discussions. They also
thank the reviewers and editors for their insightful comments
that contributed to the improvement of the quality of this
work.

REFERENCES

[1] H. Asi and E. Yaakobi, “Nearly optimal constructions of PIR and batch
codes,” IEEE Trans. Inf. Theory, vol. 65, no. 2, pp. 947–964, Feb. 2019.

[2] A. Ambainis, “Upper bound on the communication complexity of private
information retrieval,” in Proc. Intern. Colloq. Automata, Languages
Program., Graz, Austria, July 1997, pp. 401–407.

[3] D. Augot, F. Levy-dit-Vehel, and A. Shikfa, “A storage-efficient and
robust private information retrieval scheme allowing few servers,” in
Proc. 13th Intern. Conf. Cryptol. Netw. Secur., Heraklion, Greece,
Oct. 2014, pp. 222–239.

[4] K. Banawan and S. Ulukus, “The capacity of private information
retrieval from coded databases,” IEEE Trans. Inf. Theory, vol. 64, no. 3,
pp. 1945–1956, Mar. 2018.

[5] S. R. Blackburn and T. Etzion, “PIR array codes with optimal virtual
server rate,” IEEE Trans. Inf. Theory, vol. 65, no. 10, pp. 6136–6145,
Oct. 2019.

[6] A. E. Brouwer. “Bounds for Binary Constant Weight Codes.” [Online].
Available: http://www.win.tue.nl/∼aeb/codes/Andw.html

[7] A. Beimel, Y. Ishai, and E. Kushilevitz, “General constructions for
information-theoretic private information retrieval,” J. Comput. Syst. Sci.,
vol. 71, no. 2, pp. 213–247, 2005.

[8] A. Beimel, Y. Ishai, E. Kushilevitz, and J.-F. Raymond, “Breaking
the O(n1/(2k−1)) barrier for information theoretic private information
retrieval,” in Proc. 43rd IEEE Symp. Foundations Comput. Sci.,
Vancouver, Canada, Nov. 2002, pp. 261–270.

[9] T. H. Chan, S.-W. Ho, and H. Yamamoto, “Private information retrieval
for coded storage,” in Proc. IEEE Int. Symp. Inf. Theory, Jun. 2015,
pp. 2842–2846.

[10] Y. M. Chee, H. Mao Kiah, E. Yaakobi, and H. Zhang, “A generalization
of Blackburn-Etzion construction for private information retrieval array
codes,” in Proc. IEEE Int. Symp. Inf. Theory, Paris, France, Jul. 2019,
pp. 1062–1066.

[11] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private
information retrieval,” in Proc. 36th IEEE Symp. Foundations Comput.
Sci., Milwaukee, WI, USA, Oct. 1995, pp. 41–50.

[12] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private
information retrieval,” J. ACM, vol. 45, no. 6, pp. 965–981, 1998.

[13] D. J. Costello and S. Lin, Error Control Coding, 2nd ed., London, U.K.:
Pearson, 2004.

Authorized licensed use limited to: Eitan Yaakobi. Downloaded on December 04,2023 at 04:08:27 UTC from IEEE Xplore.  Restrictions apply. 



VARDY AND YAAKOBI: PIR WITHOUT STORAGE OVERHEAD: CODING INSTEAD OF REPLICATION 301

[14] Z. Dvir and S. Gopi, “2-server PIR with sub-polynomial communica-
tion,” in Proc. 47th Annu. ACM Symp. Theory Comput. (STOC‘15), New
York, NY, USA, 2015, pp. 577–584.

[15] K. Efremenko, “3-query locally decodable codes of subexponential
length,” in Proc. 41st ACM Symp. Theory Comput., Bethesda, MD, USA,
Jun. 2009, pp. 39–44.

[16] A. Fazeli, A. Vardy, and E. Yaakobi, “Codes for distributed PIR with
low storage overhead,” in Proc. IEEE Int. Symp. Inf. Theory, Jun. 2015,
pp. 2852–2856.

[17] S. L. Frank-Fischer, V. Guruswami, and M. Wootters, “Locality via
partially lifted codes,” 2017, arXiv:1704.08627.

[18] W. Gasarch, “A survey on private information retrieval,” Bull. Eur. Assoc.
Theoret. Comput. Sci., vol. 82, nos. 72–107, p. 113, 2004.

[19] P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the local-
ity of codeword symbols,” IEEE Trans. Inf. Theory, vol. 58, no. 11,
pp. 6925–6934, Nov. 2012.

[20] P. Huang, E. Yaakobi, H. Uchikawa, and P. H. Siegel, “Linear locally
repairable codes with availability,” IEEE Trans. Inf. Theory, vol. 62,
no. 11, pp. 6268–6283, Nov. 2016.

[21] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai, “Batch codes and
their applications,” in Proc. 36th ACM Symp. Theory Comput., Chicago,
IL, USA, Jun. 2004, pp. 262–271.

[22] S. R. Karingula, A. Vardy, and M. Wootters, “Lower bounds on the
redundancy of linear codes with disjoint repair groups,” in Proc. IEEE
Symp. Inf. Theory, Espoo, Finland, Jun. 2022, pp. 975–979.

[23] S. Kopparty, S. Saraf, and S. Yekhanin, “High-rate codes with sublinear-
time decoding,” in Proc. 43rd ACM Symp. Theory Comput., San Jose,
CA, USA, Jun. 2011, pp. 167–176.

[24] S. Kumar, H.-Y. Lin, E. Rosnes, and A. Graell i Amat, “Achieving
maximum distance separable private information retrieval capacity with
linear codes,” IEEE Trans. Inf. Theory, vol. 65, no. 7, pp. 4243–4273,
Jul. 2019.

[25] E. Kushilevitz and R. Ostrovsky, “Replication is not needed: Single
database, computationally-private information retrieval,” in Proc. 38th
IEEE Symp. Foundations Comput. Sci., Miami Beach, FL, USA,
Oct. 1997, pp. 364–373.

[26] H.-Y. Lin, S. Kumar, E. Rosnes, A. Graell i Amat, and E. Yaakobi,
“Weak private information retrieval,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Paris, France, Jul. 2019, pp. 1257–1261.

[27] H.-Y. Lin and E. Rosnes, “Lengthening and extending binary private
information retrieval codes,” in Proc. Int. Zurich Seminar Inf. Commun.,
Zurich, Switzerland, Feb. 2018, pp. 113–117.

[28] M. Nassar and E. Yaakobi, “Array codes for functional PIR and batch
codes,” IEEE Trans. Inf. Theory, vol. 68, no. 2, pp. 839–862, Feb. 2022.

[29] L. Pamies-Juarez, H. D. L. Hollmann, and F. Oggier, “Locally repairable
codes with multiple repair alternatives,” in Proc. IEEE Symp. Inf. Theory,
Istanbul, Turkey, Jul. 2013, pp. 892–896.

[30] A. S. Rawat, D. S. Papailiopoulos, A. G. Dimakis, and S. Vishwanath,
“Locality and availability in distributed storage,” IEEE Trans. Inf.
Theory, vol. 62, no. 8, pp. 4481–4493, Aug. 2016.

[31] A. S. Rawat, Z. Song, A. G. Dimakis, and A. Gál, “Batch codes through
dense graphs without short cycles,” IEEE Trans. Inf. Theory, vol. 62,
no. 4, pp. 1592–1604, Apr. 2016.

[32] S. Rao and A. Vardy, “Lower bound on the redundancy of PIR codes,”
2016, arXiv:1605.01869.

[33] N. B. Shah, K. V. Rashmi, and K. Ramchandran, “One extra bit of
download ensures perfectly private information retrieval,” in Proc. IEEE
Symp. Inf. Theory, Honolulu, HI, USA, Jul. 2014, pp. 856–890.

[34] V. Skachek, “Batch and PIR codes and their connections to locally
repairable codes,” in Network Coding and Subspace Designs. Cham,
Switzerland: Springer, 2018, pp. 427–442.

[35] H. Sun and S. A. Jafar, “The capacity of private information retrieval,”
IEEE Trans. Inf. Theory, vol. 63, no. 7, pp. 4075–4088, Jul. 2017.

[36] H. Sun and S. A. Jafar, “The capacity of robust private information
retrieval with colluding databases,” IEEE Trans. Inf. Theory, vol. 64,
no. 4, pp. 2361–2370, Apr. 2018.

[37] R. Tajeddine, O. W. Gnilke, and S. El Rouayheb, “Private information
retrieval from MDS coded data in distributed storage systems,” IEEE
Trans. Inf. Theory, vol. 64, no. 11, pp. 7081–7093, Nov. 2018.

[38] I. Tamo and A. Barg, “A family of optimal locally recoverable codes,”
IEEE Trans. Inf. Theory, vol. 60, no. 8, pp. 4661–4676, Aug. 2014.

[39] C. Tian, H. Sun, and J. Chen, “Capacity-achieving private information
retrieval codes with optimal message size and upload cost,” IEEE Trans.
Inf. Theory, vol. 65, no. 11, pp. 7613–7627, Nov. 2019.

[40] M. Vajha, V. Ramkumar, and P. Vijay Kumar, “Binary, shortened projec-
tive reed muller codes for coded private information retrieval,” in Proc.
IEEE Int. Symp. Inf. Theory, Jun. 2017, pp. 2648–2652.

[41] A. Vardy and E. Yaakobi, “Constructions of batch codes with near-
optimal redundancy,” in Proc. IEEE Int. Symp. Inf. Theory, Barcelona,
Spain, Jul. 2016, pp. 1197–1201.

[42] A. Wang, Z. Zhang, and M. Liu, “Achieving arbitrary locality and
availability in binary codes,” in Proc. IEEE Int. Symp. Inf. Theory,
Hong Kong, China, Jun. 2015, pp. 1866–1870.

[43] R. M. Wilson, “An existence theory for pairwise balanced designs,”
J. Comb. Theory Ser. A, vol. 13, pp. 220–273, Sep. 1972.

[44] D. P. Woodruff and S. Yekhanin, “A geometric approach to information-
theoretic private information retrieval,” SIAM J. Comput., vol. 37, no. 4,
pp. 1046–1056, 2007.

[45] M. Wootters, “Linear codes with disjoint repair groups,” unpublished.
[46] S. Yekhanin, “Private information retrieval,” Commun. ACM, vol. 53,

no. 4, pp. 68–73, 2010.
[47] S. Yekhanin, “Towards 3-query locally decodable codes of subexponen-

tial length,” J. ACM, vol. 55, no. 1, pp. 1–16, 2008.
[48] Y. Zhang, X. Wang, H. Wei, and G. Ge, “On private information retrieval

array codes,” IEEE Trans. Inf. Theory, vol. 65, no. 9, pp. 5565–5573,
Sep. 2019.

Alexander Vardy was born in Moscow, Russia, in 1963. He received the
B.Sc. degree (summa cum laude) from Technion, Israel, in 1985, and the
Ph.D. degree from Tel-Aviv University, Israel, in 1991.

From 1985 to 1990, he was with Israeli Air Force, where he worked
on electronic counter measures systems and algorithms. From 1992 to
1993, he was a Visiting Scientist with IBM Almaden Research Center,
San Jose, CA, USA. From 1993 to 1998, he was with the University of
Illinois at Urbana–Champaign first as an Assistant Professor and then as an
Associate Professor. Since 1998, he has been with the University of California
at San Diego (UCSD), where he is currently the Jack Keil Wolf Chair
Professor with the Department of Electrical and Computer Engineering and
the Department of Computer Science. While on sabbatical from UCSD, he has
held long-term visiting appointments with CNRS, France, EPFL, Switzerland,
the Technion—Israel Institute of Technology, and Nanyang Technological
University, Singapore. His research interests include error-correcting codes,
algebraic and iterative decoding algorithms, lattices and sphere packings, cod-
ing for storage systems, cryptography, computational complexity theory, and
fun math problems. He received the IBM Invention Achievement Award in
1993 and the NSF Research Initiation and CAREER Awards in 1994 and
1995, respectively. In 1996, he was appointed as a Fellow of the Center
for Advanced Study, University of Illinois, and received the Xerox Award
for Faculty Research. He received the IEEE Information Theory Society
Paper Award (jointly with Ralf Koetter) in 2004. In 2005, he received the
Fulbright Senior Scholar Fellowship and the Best Paper Award at the IEEE
Symposium on Foundations of Computer Science. In 2017, his work on polar
codes was recognized by the IEEE Communications and Information Theory
Societies Joint Paper Award. From 1995 to 1998, he was an Associate Editor
of Coding Theory. From 1998 to 2001, he was an Editor-in-Chief of the IEEE
TRANSACTIONS ON INFORMATION THEORY. He has been a member of the
Board of Governors of the IEEE Information Theory Society from 1998 to
2006 and from 2011 to 2017. In 1996, he became a Fellow of the David and
Lucile Packard Foundation.

Eitan Yaakobi (Senior Member, IEEE) received the B.A. degree in com-
puter science and mathematics and the M.Sc. degree in computer science
from the Technion—Israel Institute of Technology, Haifa, Israel, in 2005
and 2007, respectively, and the Ph.D. degree in electrical engineering from
the University of California at San Diego, San Diego, in 2011. He is an
Associate Professor with the Computer Science Department, Technion—Israel
Institute of Technology, where he also holds a courtesy appointment with
Electrical and Computer Engineering Department. From 2011 to 2013, he
was a Postdoctoral Researcher with the Department of Electrical Engineering,
California Institute of Technology and the Center for Memory and Recording
Research, University of California at San Diego. His research interests include
information and coding theory with applications to nonvolatile memories,
associative memories, DNA storage, data storage and retrieval, and private
information retrieval. He is a recipient of several grants, including the ERC
Consolidator Grant. He received the Marconi Society Young Scholar in 2009
and the Intel Ph.D. Fellowship in 2010 and 2011. Since 2016, he has been
affiliated with the Center for Memory and Recording Research, University of
California at San Diego and since 2018, he has been affiliated with the Institute
of Advanced Studies, Technical University of Munich, where he holds a four-
year Hans Fischer Fellowship, funded by the German Excellence Initiative
and the EU 7th Framework Program. Since 2020, he has been serving as an
Associate Editor for Coding and Decoding of the IEEE TRANSACTIONS ON

INFORMATION THEORY.

Authorized licensed use limited to: Eitan Yaakobi. Downloaded on December 04,2023 at 04:08:27 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


