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The Zero Cubes Free and Cubes Unique
Multidimensional Constraints

Sagi Marcovich , Student Member, IEEE, and Eitan Yaakobi , Senior Member, IEEE

Abstract— This paper studies two families of constraints for
two-dimensional and multidimensional arrays. The first family
requires that a multidimensional array will not contain a cube of
zeros of some fixed size and the second constraint imposes that
there will not be two identical cubes of a given size in the array.
These constraints are natural extensions of their one-dimensional
counterpart that have been rigorously studied recently. For both
of these constraints we present conditions on the size of the
cube for which the asymptotic rate of the set of valid arrays
approaches 1 as well as conditions for the redundancy to be at
most a single symbol. For the first family we present an efficient
encoding algorithm that uses a single redundant symbol to encode
arbitrary information into a valid array and for the second family
we present a similar encoder for the two-dimensional case. The
results in the paper are also extended to similar constraints where
the sub-array is not necessarily a cube, but a box of arbitrary
dimensions and only its volume is bounded.

Index Terms— Constrained codes, multidimensional codes,
repeat-free codes, de-Bruijn sequences, zero cubes free, cubes
unique, minimal boxes.

I. INTRODUCTION

CODING for two-dimensional and multidimensional
arrays is a topic which attracted significant attention in

the last three decades due to its various applications in different
areas. This includes optical storage such as page-oriented
optical memories [13], [21] and holographic storage [12].
Other applications in robotics are robot localization [27],
camera localization [30], projected touchscreens [6], just to
name a few, and there are several more in structured light;
see e.g. [15], [20], [25], [26]. Examples of coding schemes
for these applications include error-correction codes [10],
constrained codes [23], [24], [29], [31], [32], pseudo random
arrays and perfect maps [9], [18], codes for self locating
patterns [2], and more.

This paper takes one more step in advancing the theory
of coding for multidimensional arrays, and in particular two-
dimensional arrays, and studies two special constraint families

Manuscript received 23 July 2022; revised 20 March 2023; accepted
13 June 2023. Date of publication 21 June 2023; date of current version
15 September 2023. This work was supported by the United States–Israel
Binational Science Foundation (BSF) under Grant 2018048. An earlier version
of this paper was presented in part at the 2022 IEEE Information Theory
Workshop. (Corresponding author: Sagi Marcovich.)

The authors are with the Department of Computer Science, Technion—
Israel Institute of Technology, Haifa 3200003, Israel (e-mail: sagimar@cs.
technion.ac.il; yaakobi@cs.technion.ac.il).

Communicated by L. Dolecek, Associate Editor for Coding and Decoding.
Color versions of one or more figures in this article are available at

https://doi.org/10.1109/TIT.2023.3288291.
Digital Object Identifier 10.1109/TIT.2023.3288291

Fig. 1. 5-square Y contains two zero-2-squares (marked in red). However,
Y contains no zero-3-squares and thus Y satisfies the zero-3-square free
constraint.

for multidimensional arrays of any dimension d, over an
alphabet of any size q. In the first constraint, it is said that a
d-dimensional array is zero-L-cube free if it does not contain
any d-dimensional L-cube of zeros, where a d-dimensional
L-cube is a d-dimensional array that all its sides are of
length L (when d = 2 we say L-squares). This constraint
generalizes the well known one-dimensional run length limited
(RLL) constraint, which has numerous applications in various
areas of information theory [28]. In the second constraint,
it is said that a d-dimensional array is L-cubes unique if it
does not contain any two identical d-dimensional L-cubes.
This constraint generalizes the one-dimensional repeat free
constraint [7], [11], which is an extension to well known
family of de Bruijn sequences [3]. Hence, similarly, the
L-cubes unique constraint extends the very strict family of de
Bruijn arrays [18] which exist only for a very specific range of
parameters and have several applications on their own such as
robotic vision, location detection, pseudo-random arrays and
more [14], [16]. Examples of applications of L-cubes unique
arrays include self-location patterns [2] and position sensing
schemes [4], which allow for knowing the absoulte positioning
of any local sampling of the array for some size. In our case,
since any L-cube contained in the array appears only once,
each L-cube provides sufficient local information such that its
absolute positioning in the array can be attained. See examples
of both constraints in Figures 1 and 2.

Only little is known on these families of codes and the goal
of this paper is to rigorously study them for all values of L and
d and in particular for d = 2, as well as to construct efficient
encoding and decoding algorithms for these constraints. Our
research is focused on multidimensional arrays that are cubes
and we denote by n the length of the side of the studied arrays
for the rest of this paper. As commonly known, generalizing
one-dimensional constraints to higher dimensions is a difficult
problem, especially if the original constraints are not easy to
solve; see for example [2], [29]. Hence, the main novelty of
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Fig. 2. 5-square Z contains two identical 3-squares (marked in blue).
However, Z contains no identical 4-squares and hence Z satisfies the
4-squares unique constraint.

this work is assimilated in the ability to provide various encod-
ing and decoding schemes, as well as cardinality analyses,
for various dimensions. Furthermore, all of the encoding and
decoding schemes in this paper use just a single redundancy
symbol, and thus provide powerful properties for the minimum
redundancy cost. This approach follows several other recent
works which studied encoding with just a single redundancy
symbol [7], [17], [19], [22].

The zero-L-cube free constraint was studied for the one-
dimensional sequences, i.e., d = 1, in [17], referred by L-RLL
sequences. It was shown that if L = logq(n) − f(n) and it
satisfied that n−2L = Θ(n) then the redundancy of this family
of sequences is Θ(qf(n)). The authors of [17] also proposed
an encoding and decoding scheme for binary sequences, i.e.,
q = 2, that uses a single redundancy bit and avoids zero-runs
of length L = ⌈log(n)⌉+ 1.

The family of L-cubes unique arrays was studied in [7], and
it was shown that for L that satisfies Ld =

⌊
ad logq(n)

⌋
with

a > 1, the asymptotic rate of this family of arrays approaches
1 as n → ∞. The authors also proposed two encoding and
decoding schemes for the binary one-dimensional sequences,
i.e., d = 1, q = 2, referred by L-repeat free sequences.
The first encoding scheme uses a single redundancy symbol
and L = 2⌈log2(n)⌉ + 2, while the second scheme requires
L = ⌈a log2(n)⌉ where 1 < a ⩽ 2 and its asymptotic rate
approaches 1 as n →∞.

In this paper, we study the family of zero-L-cube free arrays
for various values of q and d. We show that if L is a non-
decreasing function of n then the asymptotic rate of this family
of arrays approaches 1 as n → ∞. Moreover, it is shown
that if L ⩾ d

√
d logq(n) + logq(

q
q−1 ), the redundancy of this

family of arrays is at most a single symbol. Notice that the
difference between the two latter values of L is at most 1+ d

√
2.

Then, we present an efficient encoding and decoding scheme
of L-cubes free arrays that uses a single redundancy symbol
for L =

⌈
d

√⌈
d logq(n)

⌉
+ 1
⌉

. Moreover, we carefully study
the cardinality of this family of arrays for d = 2. It is proven
that if L satisfies that n− 2L = Θ(n) then the redundancy of
this family of arrays is Θ

(
n2/qL2

)
.

We also study the family of zero-L-cube free arrays for
various values of q and d. It is shown that for values of L

such that L ⩾ d

√
2d logq(n) + logq(

q
q−1 ), then the redundancy

of this family of arrays is at most a single symbol. Addi-
tionally, we present a novel encoding and decoding scheme
for the binary two-dimensional case, i.e., d = 2, q = 2.

This scheme uses a single binary bit and requires L =
2
⌈√

⌈3 log(n)⌉+ 2
⌉

. Note that this value of L is far from

the lower bound we found only by roughly a factor of
√

3.
Later, the paper tackles novel and interesting extensions of

the aforementioned constraints where instead of the sub-arrays
being constrained are d-dimensional cubes, they are allowed
to be any d-dimensional boxes, i.e., a d-dimensional general-
ization of rectangles, where only the volume of the boxes is
bounded. Namely, a d-dimensional box has d sides of lengths
x1, . . . , xd while its volume

∏d
i=1 xi is bounded. We say that

a d-dimensional array is zero-V -box free if it does not contain
any box of zeros with volume of at least V . Similarly, it is
said that a d-dimensional array is V -boxes unique if it does
not contain any two identical boxes with volume of at least V .
As far as we know, these constraints were not studied before.
In order to study these two constraints, we first bound for any
d, V the number of minimal d-dimensional V -boxes, that is,
boxes with volume at least V that are not contained in any
other box of such volume. It is shown that for fixed d, there
are Θ(V

d−1
d ) minimal V -boxes. Then, we provide for these

two family of arrays cardinality analyses for various values of
V, q, d. For the zero-V -box free constraint, we also provide an
efficient encoding and decoding scheme for any q, d that uses
a single redundancy symbol.

The rest of the paper is organized as follows. In Section II,
we formally define the constraints studied in this paper,
and review several previous results. In Section III,
we study the zero-L-cube free constraint and in Section IV we
address the L-cubes unique constraint. Then, in Section V we
study the extensions of these constraints to the zero-V -box free
and V -boxes unique constraints. Section VI refines the study
of both zero-L-cube free and zero-V -box free constraints for
the two-dimensional case and provides an accurate asymptotic
analysis of their cardinality for various values of L. Finally,
Section VII concludes this paper.

II. DEFINITIONS AND PRELIMINARIES

In this section we formally define the notations and con-
straints studied in this paper. For integers i, j ∈ N such that
i ⩽ j we denote by [i, j] the set {i, i + 1, . . . , j − 1, j}.
We notate by [i] a shorthand for [0, i − 1]. For a set A, let
|A| denote the number of elements in A. Let Σq denote a
finite alphabet of size |Σq| = q. When q = 2, we omit the
subscript q from this and from similar notations.

Let d ∈ N be an integer, let Nd be the d-dimensional grid,
and let v = (v0, v1, . . . , vd−1) ∈ Nd denote a coordinate
vector of length d. For A ⊆ Nd, a set of coordinate vectors,
we denote by v + A the set

{(v0 + u0, . . . , vd−1 + ud−1) | u = (u0, . . . , ud−1) ∈ A},

and by c ·A, where c ∈ N, the set

{(cu0, . . . , c ud−1) | u = (u0, . . . , ud−1) ∈ A}.

The set v−A is defined similarly. Next, for a set A ⊆ Nd we
denote by ΣA

q the set of all functions from A to Σq . We denote
by
⋃

A⊆Nd ΣA
q the set of all d-dimensional arrays. For an inte-

ger n ∈ N, we denote by [n]d the set [n]d = ⊗d−1
i=0 [n] and say
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that Σ[n]d

q is the set of all d-dimensional n-cubes. Throughout
this paper, we sometimes remove the d-dimensional prefix
when using those notations when the dimension d is clear
from the context. When d = 2, we refer to d-dimensional
n-cubes as n-squares. Additionally, the redundancy of a set
A ⊆ Σ[n]d

q is defined as red(A) = nd − logq(|A|).
Example 1: Let d = 2. The 2-dimensional grid N2 if the set

of all coordinate vectors of length 2. For example, A1 = [3]2 =
{(0, 0), (0, 1)(0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)}
and A2 = {(0, 0), (0, 1)(0, 2), (1, 0), (1, 1), (2, 0), (2, 1)} are
subsets of N2.

For any A ⊆ N2, the set ΣA
q contains all mapping from each

coordinate vector of A to a symbol of Σq . For simplicity, when
d = 2, the elements of ΣA

q can be represented by a matrix
(which can be sometimes sparse). For example, for q = 2,

W =
1 1 0
1 0 1
0 0 0


 ∈ ΣA1 .

Notice that in our example, since A1 = [3]2, the set ΣA1 is
the set of all 2-dimensional 3-squares. □

For two non-negative functions f, g of a common variable n,
by denoting L ≜ lim supn→∞

f(n)
g(n) (in the wide sense) we say

that f = on(g) if L = 0, f = Ωn(g) if L > 0, f = On(g)
if L < ∞, and f = ωn(g) if L = ∞. When it is clear from
the context, we omit the subscript from the aforementioned
notations.

Let W ∈ ΣA
q be an array and A′ ⊆ A ⊆ Nd be sets of

coordinate vectors. We denote by WA′ the restriction of W to
the coordinates in A′. When A′ contains a single coordinate
vector A′ = {v} we simplify the representation and write Wv .

Example 2: Let d, A1, A2, W from Example 1. Since A2 ⊂
A1, we can restrict W to the coordinates of A2 and write

WA2 =
1 1 0
1 0
0 0


 ∈ ΣA2 .

Notice that since A2 does not contain the coordinates (1, 2)
and (2, 2), these coordinates correspond with missing entries
in the matrix representation of WA2 .

Additionally, another example is given by letting v =
(0, 0) ∈ A1, then we have the restriction Wv = 1. □

Next, we define a total order over Nd.
Definition 1: Let u = (u0, . . . , ud−1), v =

(v0, . . . , vd−1) ∈ Nd be two different coordinate vectors.
We say that u < v if there exists 0 ⩽ s ⩽ d − 1 such that
us < vs and for every 0 ⩽ t < s, ut = vt.

For a set A ⊆ Nd and a vector v ∈ A, the mapping BA,q(v)
returns a q-ary vector of the index representation of v in A,
where the vectors are ordered increasingly according to the
total order presented in Definition 1. Note that the size of the
mapping output is

⌈
logq(|A|)

⌉
.

Example 3: Let d, A1 from Example 1. The elements of
A1 satisfy the following order:

(0, 0) < (0, 1) < (0, 2) < (1, 0) < (1, 1) < · · · < (2, 2).

The size outputs of BA1 is ⌈log2(9)⌉ = 4. For example,
the index of (0, 0) in A1 is 0, and therefore BA1((0, 0)) =
0000. The index of (2, 2) in A1 is 8, and therefore
BA1((2, 2)) = 1000. □

For an integer i ∈ [d], let ei ∈ Σd
2 denote the i-th unit vector,

i.e., a vector with one at its i-th bit and zeros elsewhere. Addi-
tionally, we denote the bijection MDA : Σ|A|q → ΣA

q which
transforms a sequence to its multidimensional representation
under the coordinates of A, and its inverse SDA : ΣA

q → Σ|A|q .
MDA reorders the symbols using the order of Definition 1
over the coordinates of A, i.e., the i-th symbol of the input
sequence will transform to the symbol in the i-th coordinate
in A. We will sometimes omit A from the notations when it
is clear from the context.

Example 4: Let d = 2, n = 4, and

X =

1 1 0 0
1 0 1 1
0 0 0 1
0 0 0 1


 ∈ Σ[n]2 .

Then, SD[n]2(X) = 1100101100010001 ∈ Σ16 (notice that
|[n]2| = 16). Moreover, let s = 0101101000111100 ∈ Σ16,
then

MD[n]2(s) =

0 1 0 1
1 0 1 0
0 0 1 1
1 1 0 0


 ∈ Σ[n]2 .

□
Next, the main families of constraints that are studied in the

paper are defined.
Definition 2: Let W ∈ Σ[n]d

q be a d-dimensional array.
We say that W contains a zero-L-cube (or zero-L-square
for d = 2) at position v ∈ [n − L + 1]d, if Wv+[L]d = 0.
An array W satisfies the zero-L-cube free constraint if it
does not contain any zero-L-cube.

Throughout the paper, we sometimes refer to an array that
satisfies the constraint in Definition 2 as a zero-L-cube free
array.

For positive integers n, q, d, L, we denote by Cd,q(n, L)
the set of all arrays over Σ[n]d

q that satisfy the zero-L-
cube free constraint. The authors of [17] studied the one
dimensional variation of this problem and showed that if
L = logq(n) − f(n), where f(n) is a function that satisfies
n − 2(logq(n) − f(n)) = Θ(n), then the redundancy of
C1,q(n, f(n)) is Θ(qf(n)). They also proposed an encoding
scheme for the binary case that uses a single redundancy bit
and avoids zero-runs of length L = ⌈log(n)⌉+ 1.

In Section III, we analyze the cardinality of Cd,q(n, L) for
any d, q, and present lower bounds for L for two cases: 1) the
asymptotic rate of Cd,q(n, L) is 1, and 2) the redundancy of
Cd,q(n, L) is at most a single symbol. Moreover, we present an
algorithm that encodes arrays from Cd,q(n, L) using a single
redundancy symbol, where L almost achieves the lower bound
that we found for this case. In Section VI we revisit this
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TABLE I
TABLE OF DEFINITIONS AND NOTATIONS

constraint for the two-dimensional case and give tight bounds
for its redundancy for every n, L.

Next, the second constraint studied in the paper is defined.
Definition 3: Let W ∈ Σ[n]d

q be a d-dimensional array.
We say that W contains two identical L-cubes (or identical
L-squares for d = 2) at positions u ̸= v ∈ [n − L + 1]d,
if Wu+[L]d = Wv+[L]d . An array W satisfies the L-cubes
unique constraint if it does not contain any two identical
L-cubes.

Throughout the paper, we sometimes refer to an array that
satisfies the constraint in Definition 3 as an L-cubes unique
array.

We denote by Dd,q(n, L) the set of all arrays over Σ[n]d

q

that satisfy the L-cubes unique constraint. In [7], the authors
analyzed the cardinality of Dd,q(n, L) and proved that for L
satisfying Ld =

⌊
ad logq(n)

⌋
with a > 1, the asymptotic rate

of Dd,q(n, L) approaches 1. Namely,

lim
n→∞

logq(|Dd,q(n, L)|)
nd

= 1.

Additionally, the authors of [7] proposed two encoding
schemes for the one dimensional case of the set D1(n, L),
which is also known as the set of repeat free strings [7], [11] or
L-substring unique sequences [19]. The first scheme is applied
for substrings of length L = 2⌈log(n)⌉+2 with a single bit of
redundancy, and the second one works for substrings of length
L = ⌈a log(n)⌉ for any 1 < a ⩽ 2 and its asymptotic rate
approaches 1 as n →∞. In Section IV, we present for all d, q
a lower bound for L such that the redundancy of Dd,q(n, L) is

at most 1. Then, we present an encoding scheme for the binary
multidimensional case that uses a single redundancy bit, while
the value of L is far from the lower bound we found only by
a factor of

√
3.

Finally, for the convenience of the reader, relevant notations
and terminology referred to throughout the paper are summa-
rized in Table I.

III. THE ZERO CUBES FREE CONSTRAINT

In this section we study the zero cube free constraint.
We will show in Theorem 4 a lower bound on L for which the
asymptotic rate of the set Cd,q(n, L) is 1. Then, in Theorem 5,
we find a lower bound on L which implies that the redundancy
of the set Cd,q(n, L) is bounded from above by 1. Lastly,
we present efficient encoding and decoding scheme that use
a single redundancy symbol to encode arrays that are zero-
L-cube free for L =

⌈
d

√⌈
d logq(n)

⌉
+ 1
⌉

. It is important
to mention that most of the techniques used to encode the
one-dimensional variation of this constraint in [17] could not
be applied to higher dimensions. Therefore, our encoding and
decoding scheme provides unique and novel approaches for
applying this constraint to multidimensional arrays of any
dimension d over an alphabet of any size q. Specifically, the
ideas of using a lookup-cube and invoking the transformations
SD, MD (defined in Section II) in order to move symbols
within the array (see Algorithm 1) are novel and innovative.

We start this section by presenting a condition for L such
that the asymptotic rate of the set Cd,q(n, L) is 1 as n →∞.
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Theorem 4: Let L = f(n) be a positive non-decreasing
function of n that satisfies L = ωn(1). Then, the asymptotic
rate of Cd,q(n, L) is 1. Namely,

lim
n→∞

logq(|Cd,q(n, L)|)
nd

= 1.

Proof: Let A be the set of coordinates

A = (L · [1,
⌈n

L

⌉
− 1])d ⊆ [n]d,

and let S be the following set of arrays,

S = {X ∈ Σ[n]d

q | for every v ∈ A, Xv = 1}.

For every X ∈ S, every L-cube contained in X contains a
coordinate from A, and thus X is zero-L-cube free and S ⊆
Cd,q(n, L). The size of S satisfies |S| ⩾ qnd− nd

Ld , and therefore
it is deduced that

lim
n→∞

logq(|Cd,q(n, L)|)
nd

⩾ 1− 1
Ld

,

which approaches 1 for L = ωn(1).
Next, we utilize the union bound to reach the following

upper bound on the redundancy of the set Cd,q(n, L).
Theorem 5: For an integer L ⩾ d

√
d logq(n) + logq(

q
q−1 ),

it holds that |Cd,q(n, L)| ⩾ qnd−1. That is, red(Cd,q(n, L)) ⩽
1.

Proof: Let W ∈ Σ[n]d

q be an array. If W is not zero-L-
cube free, then it contains at least one zero-L-cube. Therefore,
according to the union bound, the number of arrays over Σ[n]d

q

that are not zero-L-cube free can be bounded from above by

ndqnd−Ld

= qnd

· nd

qLd ⩽ qnd

· nd

qd logq(n) · qlogq( q
q−1 )

= (q − 1)qnd−1,

where the inequality follows from the lower bound on L stated
in the theorem. This implies that

|Cd,q(n, L)| ⩾ qnd

− (q − 1)qnd−1 = qnd−1.

Our next goal in the paper is to provide an algorithm that
encodes d-dimensional arrays over Σ[n]d

q which satisfy the
zero-L-cube constraint for

L =
⌈

d

√⌈
d logq(n)

⌉
+ 1
⌉

.

Note that the difference between this value of L and the
lower bound derived in Theorem 5 is at most 1 + d

√
2. The

algorithm uses a single redundancy symbol and its encoding
and decoding time complexities is O(dnd log(n)).

Algorithm 1 receives a d-dimensional array W ∈
Σ[n]d\{(n−1)·1}

q with a single symbol missing at its corner,
and outputs a cube X ∈ Cd,q(n, L). First, we initialize X
with W and set 1 at the missing entry to mark the start of the
algorithm. Then, we scan over all L-cubes in X from start to
end and look for a zero-L-cube. When such a cube is found,
it is replaced with the non-zero cube at the position (n−L) ·1

which will be referred as the lookup-cube. The lookup-cube is
then filled with an encoding of the position of the zero cube
that was found and at least one more additional zero symbol
to mark the occurrence of the zero cube to the decoding
process. In the case which the found cube and the lookup-
cube intersect, we backup only the non-intersecting part of
the lookup-cube, since we know the rest of it is zero. Notice
that in both cases the size of X remains nd, and therefore the
algorithm returns an array of size nd.

Algorithm 1 Zero-L-Cube Free Encoding

Input: A d-dimensional array W ∈ Σ[n]d\{(n−1)·1}
q

Output: A d-dimensional array X ∈ Cd,q(n, L)
1: Set an array X ∈ Σ[n]d with X[n]d\{(n−1)·1} = W and

X(n−1)·1 = 1
2: for every v ∈ [n−L+1]d (iterate in an increasing order)

do
3: if Xv+[L]d = 0 then
4: if A = (v + [L]d) ∩ [n− L, n− 1]d = ∅ then
5: Set Xv+[L]d = X[n−L,n−1]d

6: else
7: Set y = SD(X([n−L,n−1]d\A))
8: Set Xv+[L]d\A = MD(y)
9: end if

10: Set
X[n−L,n−1]d = MD(B[n]d,q(v + ed) ◦ 0Ld−⌈d logq(n)⌉)

11: end if
12: end for

The correctness of Algorithm 1 is proved in the next lemma.
Lemma 6: Algorithm 1 successfully outputs an array which

is zero-L-cube free.
Proof: Observe that at each iteration of the loop, if the

condition at Step 3 is satisfied, the found zero-L-cube is
replaced with a non-zero cube, while new zero-L-cube can
not be created. The lookup-cube X[n−L,n−1]d is initialized
as non-zero at Step 1, and being kept non-zero after every
iteration since B[n]d,q(v+ed) > 0 for every v ∈ [n−L+1]d.
Thus, it is ensured that at Step 5 we replace a zero cube
with a non-zero cube. This also holds for Step 8 in which
the found zero cube intersects with the lookup-cube, since
Xv+[L]d\A is filled with the non-zero data part of the lookup-
cube. Therefore, since we iterate over all the L-cubes in X
at Step 2, when the algorithm ends there are no zero-L-cube
left. Lastly, note that since Ld >

⌈
d logq(n)

⌉
, Step 10 is valid

and after every iteration of the algorithm X(n−1)·1 = 0.

In order to reconstruct W ∈ Σ[n]d\{(n−1)·1}
q from X , the

output of Algorithm 1, we repeatedly inverse the encoding
loop. Note that at each iteration that the algorithm encoded
a position of an L-cube at Step 10, we have X(n−1)·1 = 0.
Thus, we execute the following procedure.

We conclude this section with the following lemma.
Lemma 7: The time complexity of Algorithm 1 and

Algorithm 2 is Θ(dnd log(n)).
Proof: Both the encoding and decoding algorithms

have the same number of iterations, which is O(nd).
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Algorithm 2 Zero-L-Cube Free Decoding
1: while X(n−1)·1 = 0 do
2: Extract v ∈ [n− L]d from SD(X[n−L,n−1]d)
3: Set A = (v + [L]d) ∩ [n− L, n− 1]d

4: Set X[n−L,n−1]d\A with MD(SD(Xv+[L]d\A))
5: Set Xv+[L]d\A = 0
6: end while
7: Return W = X[n]d\{(n−1)·1}

The complexity of the encoding or decoding of B[n]d(v) for
some v ∈ [n]d is Θ(d log n). The actions of reading and
writing L-cubes have complexity of Θ(Ld) = Θ(d log(n))
as well. Therefore, the time complexity of both algorithms is
O(dnd log(n)).

Note that Algorithm 1 works also for the one-dimensional
case, which achieves the same value of L as the one achieved
by the algorithm presented in [17]. However the complexity
of the algorithm in [17] is Θ(n) while the complexity of
Algorithm 1 for the one dimensional case is Θ(n log(n)).

Example 5: Let n = 7, L = 3, and the input array is

W =

0 0 1 0 0 0 1
0 0 0 0 1 1 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 1 0 0 1 0 0
0 0 0 1 0 0




.

The algorithm appends one at the missing entry to initialize
X . Then, it iterates the coordinates in an increasing order
until a zero-3-square is found. In the following figures, the
lookup-square and the found zero square are highlighted.

X =

0 0 1 0 0 0 1
0 0 0 0 1 1 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 1 0 0 1 0 0
0 0 0 1 0 0 1




A zero-3-square found in v = (1, 0). It is replaced with the
lookup-square, and the latter is filled with the encoding of
v + e2 = (1, 0) + (0, 1) = (1, 1) using six bits, which is
B((1, 1)) = 000100, and appending three more zeros to have
a 3-square.

X =

0 0 1 0 0 0 1
0 0 1 0 1 1 1
1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 1 0 0
0 0 0 1 0 0 0





Next, a zero-3-square found in v = (2, 3). It intersects with
the lookup-square at positions A = {(4, 4), (4, 5)}. Hence,
the algorithm fills only the non-intersecting part of X(2,3)+[3]2

with the non-intersecting portion of the lookup-square, y =
0100000. The lookup-square is filled with the encoding of
v + e2 = (2, 3) + (0, 1) = (2, 4), that is, B((2, 4)) = 010010,
appended by zeros.

X =

0 0 1 0 0 0 1
0 0 1 0 1 1 1
1 0 0 0 1 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0
0 1 0 0 0 1 0
0 0 0 1 0 0 0




The algorithm finishes iterating the entries of X without
finding additional zero-3-squares. The result is indeed a zero-
3-square free array. □

IV. THE CUBES UNIQUE CONSTRAINT

In this section, we analyze the size of the set Dd,q(n, L)
and find a condition on L such that its redundancy is at most
a single symbol. Furthermore, we provide an encoding and
decoding scheme for the binary two-dimensional case that uses
a single redundancy symbol, for L = 2

⌈√
⌈3 log(n)⌉+ 2

⌉
.

We believe that this is a powerful property to achieve with
only a single symbol of redundancy. The structure of this
scheme follows the structure of the encoding scheme of repeat
free strings from [7]; however, the adaptation of these ideas
to the two-dimensional case introduces interesting challenges.
This includes for example the removal of a square from a
specific position in the array, the insertion of a square at a
specific position in the array, and avoiding the creation of
new identical squares in the array when invoking these actions.
Hence, various new concepts and techniques are introduced in
this section in order to meet the challenges of this encoding
schemes.

First, we use a union bound argument to derive a lower
bound for L which assures that the redundancy of Dd,q(n, L)
is at most a single symbol.

Theorem 8: For L ⩾ d

√
2d logq(n) + logq(

q
q−1 ), it holds

that |Dd,q(n, L)| ⩾ qnd−1. That is, red(Dd,q(n, L)) ⩽ 1.
Proof: If an array W ∈ Σ[n]d is not L-cubes unique, then it

contains at least two identical L-cubes. The number of possible
selections of the identical L-cubes coordinates is bounded
from above by n2d. These coordinates can be intersecting or
not; in both cases one of the cubes is determined from picking
the rest of the nd−Ld entries of W . Hence, according to the
union bound, the number of arrays over Σ[n]d that are not
L-cubes unique can be bounded from above by

n2dqnd−Ld

= qnd

· n2d

qLd ⩽ qnd

· n2d

q2d logq(n) · qlogq( q
q−1 )

= (q − 1)qnd−1,
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where the last inequality follows from the lower bound on L.
This accordingly implies that

|Dd,q(n, L)| ⩾ qnd

− (q − 1)qnd−1 = qnd−1.

Next, we present a generic encoding algorithm that uses a
single redundancy bit in order to encode binary n-squares that
are L-squares unique, for

L = 2
⌈√

⌈3 log(n)⌉+ 2
⌉

.

Note that this value of L is far from the value derived in
Lemma 8 only by roughly a factor of

√
3. For simplicity,

we sometimes omit ceiling notations in the rest of this section.
We introduce first a new type of two-dimensional arrays,

denoted as bottom semi squares, or semi squares in short.
For a vector v ∈ [n]2, the set A = [n]2 \ (v + [n]2) contains
coordinates of a semi square with a corner at v. Hence, we say
that X ∈ ΣA

q is an (n, v)-semi square.
Let X be an (n, v)-semi square for v ∈ [n]2, let t be

an integer, and let Y be a (t, u)-semi square for u ∈ [t]2.
We denote by X ◦ Y the concatenation of X and Y which is
defined by placing Y at position v of X , and restricting the
result to the coordinates in [n]2. It follows that X ◦ Y is a
(n, v +u)-semi square if and only if for every i ∈ [2], ui = 0
or vi + t ⩾ n.

Example 6:

X =


1 1 0 0 1
1 0 1 1 1
0 0 0 1 0
0 0
0 1

 ∈ Σ[5]2\((3,2)+[5]2)

is a (5, v)-semi square for v = (3, 2), and

Y =

0 0 1
1
0

 ∈ Σ[3]2\((1,1)+[3]2)

is a (3, u)-semi square for u = (1, 1). Then, the concatenation
X ◦ Y is a semi (5, v + u)-square,

X ◦ Y =


1 1 0 0 1
1 0 1 1 1
0 0 0 1 0
0 0 0 0 1
0 1 1

 .

□
Definition 9: Let X be an (n, v)-semi square for v ∈

[n]2, such that v ̸= 0. We denote by CR(X) the iterative
self-concatenation of X to an n-square, that is,

CR(X) = X

⌈
n

vmin

⌉
,

where vmin is the smallest entry of v that is not 0.
It can be shown by induction that after m concatenations,

Xm is a (n, m · v)-semi square, since vi + n ⩾ n for every
i ∈ [2]. Thus, the self-concatenation of an (n, v)-semi square
for every v ̸= 0 is defined properly, and in fact an n-square
since for every i ∈ [2],

⌈
n

vmin

⌉
· vi ⩾ n.

Example 7: Let X, Y from Example 6. Then,

CR(X) =


1 1 0 0 1
1 0 1 1 1
0 0 0 1 0
0 0 1 1 0
0 1 1 0 1

 , CR(Y ) =

0 0 1
1 0 0
0 1 0

 .

□
Additionally, we define the matching upper semi squares,

described by a coordinate vectors set of A = [n]2 \ (v −
[n]2) for v ∈ [n]2. We similarly define concatenation and
self-concatenation to an n-square of upper semi squares.

Algorithm 4 receives a two-dimensional array W ∈
Σ[n]2\{(0,0)}, an n-square with a single missing entry, and
outputs an n-square X ∈ D2(n, L). The algorithm consists
of two main procedures, elimination and expansion. First,
we initialize X with W and set 0 at the missing entry to
mark the start of the elimination. Then, we append to X a
marker (L/2)-square that will mark the transition between
the elimination and the expansion parts of the encoder. At the
elimination part, we iteratively shorten X by an (L/2)-square
at a time by eliminating one of the two occurrences in X:
1. two identical L-squares, 2. two identical rectangles of size
[L/2] × [L] (notated for the rest of this section as (L/2, L)-
rectangles) where one of them is at the bottom of X . Likewise,
we make sure that the marker (L/2)-square appears only once
in X . Later, at the expansion part, we enlarge X to an n-square
by iteratively appending (L/2)-squares while making sure that
no new identical L-squares are created.

For convenience, we denote for the rest of this section

k = L/2 =
⌈√

3 log(n) + 2
⌉

.

We define the marker k-square denoted as PM as the following
square,

PM =


1 0 · · · 0
0
... 0
0

 ∈ Σ[k]2 .

Before presenting Algorithm 4, we explain the notion of
removal and insertion of squares with granularity. We assume
that n mod k = 0, and let X ∈ Σ[n]2\At where At contains
the coordinates of the last t k-squares in [n]2, i.e., At =
([it−k, n−1]× [jt, n−1])∪([it, n−1]× [n]) where (it, jt) =
(n−⌊tk/n⌋ , n− (tk mod n)). We look at X as a grid of k-
squares, and allow only removals and insertions in granularity
of k-square units. Removal or insertion actions on a k-square
at an aligned position (̂i·k, ĵ ·k) are performed by transforming
X to a k-rows array with coordinates [k]× [|X|/k], executing
the action on the (i·k+j)-th k-square like in a one-dimensional
array, and transforming back to a grid of k-squares.

However, during the elimination part of the algorithm we
sometimes need to remove a k-square from an unaligned
position (i, j). Such an action is done by finding the closest
aligned position (̂i · k, ĵ · k), then replacing the data of the
non-intersecting parts of X(̂i·k,ĵ·k)+[k]2 and X(i,j)+[k]2 , and
finally removing the aligned k-square at position (̂i · k, ĵ · k).
This is a technical procedure that can be transparent to
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the reader of the encoder in Algorithm 4. Nonetheless, for
completeness of the encoder, this procedure is explained in
Algorithm 3.

Algorithm 3 Removing a k-Square With Granularity

Removing a k-square from position (i, j) of X ∈ Σ[n]2\At

1: Find maximal î, ĵ such that î · k ⩽ i, ĵ · k ⩽ j
2: Replace X(̂i·k,ĵ·k)+[k]2\((i,j)+[k]2) with the data of

X(i,j)+[k]2\((̂i·k,ĵ·k)+[k]2)

3: Transform X̂ = MD[k]×[|X|/k](SD(X))
4: Remove (̂i · k + ĵ) k-square from X̂
5: Transform X = MD[n]2\At+1(SD(X̂))

All of the above ensures that appended k-squares, and
specifically the marker k-square, are not trimmed or modified
accidentally as a result of unrelated removal of insertion
actions.

First, we show that Algorithm 4 reaches Step 14, i.e., the
elimination part terminates, by showing that at each iteration
of the elimination loop the length of X decreases or the
Hamming weight of X increases. Notice that all removal and
insertion actions are done with granularity of k-square units,
as allowed. We analyze each case of removal and insertion
independently.
Case 1: We remove a square of size k2 with Hamming weight
equals to wH(PM ) = 1 and insert a square of size k2 with
Hamming weight of at least log(n).
Case 2: We remove a square of size L2 = 4k2 and insert a
smaller rectangle of size 3k2.
Case 3: We remove a square of size L · k = 2k2 and insert
a smaller rectangle of size 3 log(n) + 2 = k2. This follows
from the fact that the number of possible indices for (i2, j2)
satisfies |I| ⩽ n.

We prove the correctness of the algorithm in the next few
claims.

Claim 10: At Step 14 of Algorithm 4, the two-dimensional
array X satisfies the following properties:
(1) X is L-square unique,
(2) X contains no identical (k, L)-rectangles where one of

them is at position that belongs to

I = ({im− k}× [jm−k, n− 1])∪ ({im}× [jm− k− 1]),

(3) X ends with X(im,jm)+[k]2 = PM ,
(4) X contains no other k-square equals to PM .

Proof: First, we prove (3) by showing that throughout the
elimination loop, X(im,jm)+[k]2 = PM . This holds at Step 2
before the elimination loop, and during the elimination loop
the indices (im, jm) are decremented by a k-square if and only
if X was shortened by k2. Thus, this condition can be violated
only if some part of X(im,jm)+[k]2 was removed as part of an
elimination procedure in cases 2 or 3. Assume in the contrary
that case 2 occurred and there were two identical squares at
positions (i1, j1) < (i2, j2) such that X(i1,j1)+[L]2 intersects
with X(im,jm)+[k]2 . Thus, X(i1,j1)+[L]2 contains the 1-bit at
the top-left corner of PM at some position (ir, jr). However,

Fig. 3. Structure of X returned by Algorithm 4 at Step 21.

it follows that X(i2+ir,j2+jr) = 1 which is a contradiction
since PM contains a single 1-bit and (i1, j1) ̸= (i2, j2). It can
be shown similarly that a part of X(im,jm)+[k]2 can not be
removed in case 3. Statements (1), (2), (4) follows from the
fact that the elimination loop terminates, using cases 2, 3, 1 of
the elimination loop, respectively.

Claim 11: For every iteration of the expansion loop, the set
Σ[k]2 \ S is not empty.

Proof: The size of the set S satisfies

|S| ⩽ |X| ⩽ n2,

while the alphabet Σ[k]2 satisfies

|Σ[k]2 | ⩾ 23 log(n)+2 > n2.

Let m denote the number of iterations of the expansion loop
of Algorithm 4 that were executed. For every ℓ = 1, . . . ,m,
let Xℓ denote the value of X at the end of the ℓ-th iteration,
and let Yℓ denote the expansion k-square that the algorithm
picked at Step 19. We notate by X0 the value of X before
the first iteration of the expansion loop, i.e., at Step 14 right
after the elimination part. Figure 3 presents an example of the
structure of X at the end of the expansion part.

Claim 12: For every iteration ℓ = 1, . . . ,m, the array Xℓ =
Xℓ−1 ◦ Yℓ contains the square Yℓ only once, at its end.

Proof: Let ie, je denote the position of Yℓ. According
to the construction of S, the square Yℓ can not appear as a
sub-square of Xℓ−1. Thus, it might appear at some position
(i, j) of X , where (i, j) ∈ (ie, je) − [k]2. Assume in the
contrary that such a case occurs. We have

(Xℓ)(i,j)+[k]2 = (Xℓ−1 ◦ Yℓ)(i,j)+[k]2 = Yℓ.

However, it is implied that

Yℓ = CR((Xℓ−1)(i,j)+[k]2),

which is a contradiction to the construction of S.
Claim 13: At Step 21 of Algorithm 4, X is L-square

unique.
Proof: Assume in the contrary that X contains two

identical L-squares at positions (i1, j1) < (i2, j2). We prove
the claim by examining all different cases for (i2, j2) and
reaching a contradiction at each case. These cases are also
presented graphically at Figure 4.
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Algorithm 4 L-Squares Unique Encoding

Input: A two-dimensional array W ∈ Σ[n]2\{(0,0)}

Output: An n-square X ∈ D2(n, L)
1: Set a square X ∈ Σ[n]2 with X0,0 = 0, X[n]2\{(0,0)} = W
2: Denote (im, jm) = (n, 0), append X(im,jm)+[k]2 = PM

First part - Elimination
3: while at least one of the occurences in cases 1,2,3 exists do
4: case 1: A k-square equals to PM exists at (i1, j1) < (im, jm)
5: Remove square X(i1,j1)+[k]2

6: Set v = 101 ◦B[n]2(i1, j1) ◦ 1k2−2 log(n)−3, insert MD[k]2(v) at X0,0

7: case 2: Identical L-squares exist at (i1, j1) < (i2, j2)
8: Remove square X(i1,j1)+[L]2

9: Set v = 100 ◦B[n]2(i1, j1) ◦B[n]2(i2, j2) ◦ 13k2−4 log(n)−3, insert MD[k]×[3k](v) at X0,0

10: case 3: Identical (k, L)-rectangles exist at (i1, j1) < (i2, j2), where

(i2, j2) ∈ I = ({im − k} × [jm−k, n− 1]) ∪ ({im} × [jm − k − 1]),

11: Remove rectangle X(i1,j1)+[k]×[L]

12: Set v = 11 ◦B[n]2(i1, j1) ◦BI(i2, j2), insert MD[k]2(v) at X0,0

13: If cases 2 or 3 were executed, decrement (im, jm) by a k-square
14: end while
15: If |X| ⩾ n2, return X[n]2

Second part - Expansion
16: while |X| < n2 do
17: Set indexes (ie, je) to point to the next missing k-square in X
18: Let Ie = ((ie, je)− [k]2) ∩ [n]2. Set

S = {X(i,j)+[k]2 | (i, j) /∈ Ie} ∪ {CR(X(i,j)+[k]2) | (i, j) ∈ Ie}

19: Pick Y ∈ Σ[k2]/S and set X(ie,je)+[k]2 = Y
20: end while
21: Return X

(1) If X(i2,j2)+[L]2 is contained in X0, we have a contradiction
since X0 is L-square unique from Claim 10 Statement (1).

(2) If X(i2,j2)+[L]2 contains an (k, L)-rectangle which starts
at position which belongs to

I = ({im− k}× [jm−k, n− 1])∪ ({im}× [jm− k− 1]),

it follows that X(i1,j1)+[L]2 contains an identical
(k, L)-rectangle which is a contradiction to
Claim 10 Statement (2).

(3) If X(i2,j2)+[L]2 contains at some position (ir, jr)
the marker k-square X(im,jm)+[k]2 , it follows that
X(i2+ir,j2+jr)+[k]2 = PM from Claim 10 Statement (3).
However, therefore X(i1+ir,j1+jr)+[k]2 = PM as well
which is a contradiction to Claim 10 Statement (4).

(4) Otherwise, X(i2,j2)+[L]2 contains an expansion k-square at
some position (ir, jr). That is, X(i2+ir,j2+jr)+[L]2 = Yℓ

where Yℓ is a k-square that was appended to Xℓ−1 at
the ℓ-th iteration of the expansion loop. It follows that
X(i1+ir,j1+jr)+[k]2 = Yℓ as well. Thus, Yℓ appears twice
in Xℓ which is a contradiction to Claim 12.

Finally, observe that if the condition in Step 15 is satisfied,
then X[n]2 is an n-square and is also L-square unique from
Claim 10 Statement (1). Otherwise, the algorithm reaches

Fig. 4. Different types of L-squares presented in the proof of Claim 13,
based on the structure of X that is returned by Algorithm 4 at Step 21,
presented in Figure 3. Legend: □ - area of X0, + - area containing unique
(k, L)-rectangles, M - marker k-square, ■ - expansion k-squares.

Step 21 with X ∈ Σ[n]2 which is L-square unique as well
from Claim 13.

The decoding scheme receives X which is an output of
Algorithm 4 and returns W ∈ Σ[n]2\{(0,0)}. First, we identify
the marker square position by looking at the first occurrence
of PM . Using Claim 10 we can remove the part of X after the
marker square since it was appended during the expansion pro-
cedure. Next, we iteratively inverse the elimination procedure.
We identify using the first three entries of X the last elimina-
tion case at which data was encoded. If data was encoded at
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case 2, we decode v = SD(X[k]×[3k]), extract the positions
(i1, j1), (i2, j2) and insert X(i2,j2)+[L]2 at position (i1, j1) if
the L-squares do not intersect. Otherwise, we insert instead
the self-concatenation CR(X((i2,j2)+[L]2)\((i1,j1)+[L]2)). Sim-
ilarly, in case 3 we recover X(i1,j1)+[k]×[L] from v =
SD(X[k]2). If the data was encoded at case 1, we decode
v = SD(X[k]2), extract (i1, j1) and insert X(i1,j1)+[k]2 = PM .
This process is repeated until X(0,0) = 0, then we return
X[n]2\{(0,0)} as W .

Remark 1: Algorithm 4 requires that n mod k = 0. How-
ever, the algorithm can be altered to support cases where this
is not possible, e.g. n is a prime number. In this case, we pad
the input array in the right and the bottom with ones in order
to receive an n′-square, where n′ ⩾ n is the closest multiple of
k to n. Then, we invoke Algorithm 4 with minor modifications
that are described shortly to receive X ′ ∈ D2(n′, L), and
return X = X ′

[n]2 . Some information that is valuable for the
decoder can be lost when restricting the result to an n-square.
In order for the decoder to uniquely identify the marker-
square PM , we pick at Step 19 only squares with Y0,0 = 0.
Additionally, we make sure that the area padded with ones that
is contained in X0 (the array X before the expansion part)
remains unchanged throughout the elimination. This can be
done by adding two cases that are similar to cases 2 and 3 that
are specific to when the identical L-square or (k, L)-rectangle
found intersects with the padded area. These new cases will
encode the special occurrence with a small number of bits and
only the non-intersecting part of the sub-array will be removed.
Both these modifications will not change the redundancy of
the algorithm.

V. EXTENSIONS TO MULTIDIMENSIONAL
BOXES OF ANY VOLUME

In this section, we introduce a generalization of the
zero-L-cubes free and the L-cubes unique constraints to
multidimensional arrays where the shape of the sub-array is
not necessarily a cube, but a box, where only its volume is
bounded from below. A d-dimensional box is a shape that
generalizes the shape of a rectangle to any dimension d, and is
given by a set of coordinates A = [x0]×· · ·×[xd−1] where the
sides x0, . . . , xd−1 are positive integers that belong to [1, n].
The volume of such a box is given by |A| = x0 · · ·xd−1.

Definition 14: Let W ∈ Σ[n]d be a d-dimensional array.
For a positive integer V , we say that W contains a zero-V -
box (or zero-V -rectangle for d = 2) with a coordinates set
A = [x0]× · · · × [xd−1] at position v such that v + A ⊆ [n]d,
if Wv+A = 0 and |A| = V . An array W satisfies the zero-
V -boxes free constraint if it does not contain a zero-V ′-box,
for any positive integer V ′ ⩾ V .

Example 8: Let n = 5, d = 2, and

Y =

1 1 0 0 1
1 0 1 1 1
0 0 0 1 0
0 0 0 0 1
0 1 0 1 0



 ∈ Σ[n]2

Then, Y contains a zero-6-rectangle, at position (2, 0), marked
in red. For any V > 6, Y does not contain a zero-V -rectangle;
for example, the 8-rectangle at position (0, 3) marked in gray
is not a zero rectangle. Therefore, Y satisfies the zero-V -
rectangles free constraint. □

Definition 15: Let W ∈ Σ[n]d be a d-dimensional array.
For a positive integer V , we say that W contains identical V -
boxes (or identical V -rectangles for d = 2) with a coordinates
set A = [x0] × · · · × [xd−1] at positions u ̸= v such that
u + A, v + A ⊆ [n]d, if Wu+A = Wv+A and |A| = V .
An array W satisfies the V -boxes unique constraint if it does
not contain two identical V ′-boxes, for any positive integer
V ′ ⩾ V .

Example 9: Let n = 5, d = 2, and

Z =

1 1 0 0 1
1 0 1 1 1
1 0 1 1 0
0 0 1 0 1
0 1 0 0 1



 ∈ Σ[n]2

Then, Z contains two identical 6-rectangles at positions
(0, 1) and (2, 3), marked in blue. However, Z contains no
two identical V -rectangles for V > 6 and hence Z satisfies
the V -rectangles unique constraint. □

In the rest of this paper, we sometimes refer to an array
that satisfies the constraint in Definition 14 as a zero-V -
box free array, and to an array that satisfies the constraint
in Definition 15 as a V -boxes unique array. We denote by
CAd,q(n, V ) the set of all arrays over Σ[n]d that satisfy
the zero-V -box free constraint and by DAd,q(n, V ) the set
of all arrays over Σ[n]d that satisfy the V -boxes unique
constraint.

To the best of our knowledge, studying multidimensional
arrays with constraints on boxes that are bounded only by
their volume has received only a little attention; see e.g. [5],
and similar problems to the ones studied in this paper were
not addressed before. As a consequence, the foundations for
studying this family of constraints have to be established
first. This includes, for example, enumerating the number of
unique minimal boxes of a given volume, which is presented
next. Later, we analyze the size of the set CAd,q(n, V ) and
find an upper bound on V such that the redundancy of this
set is at most a single symbol. We provide an encoding
and decoding scheme for any q and d that uses a single
redundancy symbol and achieves this bound on V ; due to
the challenging and flexible structure of these shapes, this
scheme uses an entirely different approach compared to
Algorithm 1. Finally, we study the cardinality of DAd,q(n, V )
and provide a condition on V such that the asymptotic rate
of this set approaches 1 as n → ∞; this is proved based
on a nontrivial application of the asymmetric Loàsz local
lemma [8].

A. Enumeration of Minimal Boxes

Before analyzing the constraints, we first need to estimate
the number of minimal boxes for a given volume. For an
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integer V , Let Fd(V ) denote the set of minimal boxes A =
[x0] × · · · × [xd−1] such that |A| ⩾ V and for every other
A′ ∈ Fd(V ), A ̸⊂ A′. Additionally, let fd(V ) = |Fd(V )|.

Example 10: Let n = 5, d = 2, V = 5. The set Fd(V ) is
presented with colors in the following array (notice that the
starting position of the rectangle is not important, rather only
its shape),

1 1 0 0 1
1 0 1 1 1
1 0 1 1 0
0 0 1 0 1
0 1 0 0 1



.

We have A1 = [1] × [5] (marked in red), A2 = [2] × [3]
(marked in green), A3 = [3]× [2] (marked in blue), and A4 =
[5]× [1] (marked in gray). Therefore, fd(V ) = 4. Notice that
for example A5 = [2] × [4] does not belong to Fd(V ) since
A2 ∈ Fd(V ) is a subset of it. □

First, we examine fd(V ) for small values of d. It is clear
that f1(V ) = 1. For d = 2, there are ⌊

√
V ⌋ possibilities for

the smaller side of the rectangle, which yields

f2(V ) =

{
2⌊
√

V ⌋
√

V ̸∈ N
2
√

V − 1
√

V ∈ N
,

since when
√

V is an integer, the cube [
√

V ]2 is counted
twice. When it is not known if

√
V is an integer, we can

write f2(V ) ⩽ 2
√

V .
After acquiring some intuition regarding the value of fd(V ),

we have the following claim in the general case.
Claim 16: For every d ⩾ 2 and for every positive integer

V ,

fd(V ) ⩽ αd−2d!(d− 1)!V
d−1

d ,

where α is a constant that satisfies 1 ⩽ α ⩽
√

2 and
approaches 1 as V →∞.

Proof: We can write fd(V ) as a recursive inequality,

fd(V ) ⩽ d

⌊ d√
V ⌋∑

x=1

fd−1

( ⌈V

x

⌉ )
,

which follows from having d options for the shortest side, that
is at most ⌊ d

√
V ⌋, and letting the remained d− 1 coordinates

determine the volume of the box. Let α > 1 be the minimal
constant that satisfies ⌈V

x ⌉ ⩽ αV
x for every x ⩽ ⌊

√
V ⌋.

It follows that α ⩽ ⌈
√

V ⌉√
V

⩽ 1 + 1√
V

. Thus, α ⩽
√

2 from
plugging V = 2, and limV→∞ α ⩽ limV→∞ 1 + 1√

V
= 1.

We prove the claimed inequality using an induction. From
previous calculations, f2(V ) ⩽ 2

√
V which verifies the

claim’s inequality for d = 2.

Assume next that the inequality holds for d − 1. Then,
we have that

fd(V ) ⩽ d

⌊ d√
V ⌋∑

x=1

fd−1

( ⌈V

x

⌉ )
⩽ d

⌊ d√
V ⌋∑

x=1

fd−1

(αV

x

)
⩽ d

⌊ d√
V ⌋∑

x=1

αd−3(d− 1)!(d− 2)!
(αV

x

) d−2
d−1

(a)

⩽ αd−2d!(d− 2)!V
d−2
d−1

∫ d√
V

x=0

dx

x
d−2
d−1

= αd−2d!(d− 2)!V
d−2
d−1

[
(d− 1)x

1
d−1

] d√
V

0

⩽ αd−2d!(d− 1)!V
d−2
d−1 V

1
(d−1)d

= αd−2d!(d− 1)!V
d−1

d

where (a) from the inequality
∑U

i=L g(i) ⩽
∫ U

L−1
g(x)dx for

a nonnegative decreasing function g(x).
Claim 17: For every d ⩾ 2 and for every positive

integer V ,

fd(V ) ⩾ d(⌊ d
√

V ⌋)d−1 − d + 1.

Proof: Let S denote the set of d-dimensional boxes that
are generated by letting the first d−1 sides have any value of
[1, ⌊ d

√
V ⌋], and letting the last side fill the remaining volume

of the box to V . That is,

S =

{
[x0]× · · · × [xd−1]

∣∣∣∣∣ x0, . . . , xd−2 ∈ [1, ⌊ d
√

V ⌋],
xd−1 =

⌈
V

x0···xd−2

⌉
.

}
Let A0 = [x0]×· · ·× [xd−1] ∈ S be a box. Clearly, |A0| ⩾ V .
Hence, in order to prove that S ⊆ Fd(V ), it is left to show
that S is minimal. Assume that there exists A1 = [y0]× · · ·×
[yd−1] ∈ S and w.l.o.g there exists i ∈ [d−1] such that yi > xi

and for every other j ∈ [d− 1] \ {i}, yj ⩾ xj . It follows that

V

x0 · · ·xd−2
− V

y0 · · · yd−2

⩾
V

y0 · · · yi−1yi+1 · · · yd−2xi
− V

y0 · · · yd−2

=
V (yi − xi)

y0 · · · yd−2xi

⩾
V (yi − xi)

( d
√

V )d

= yi − xi

⩾ 1.

Therefore xd−1 > yd−1 and hence A0 ̸⊂ A1. Thus, S is
minimal.

From its definition, we have that |S| = (⌊ d
√

V ⌋)d−1.
If d
√

V ̸∈ N, we can shift d − 1 times the sides of each
A ∈ S in order to generate additional unique boxes that
belong to Fd(V ). This holds since the remaining side satisfies
xd−1 ⩾ ⌈ d

√
V ⌉ where the other sides are at most ⌊ d

√
V ⌋. In the
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case where d
√

V ∈ N we can shift each box of S but the set
[ d
√

V ]d. We can conclude that

fd(V ) ⩾ d(⌊ d
√

V ⌋)d−1 − d + 1.

The next corollary follows immediately from Claims 16
and 17.

Corollary 18: For every fixed positive d ∈ N and for every
positive V ,

fd(V ) = Θ(V
d−1

d ).

Even though for the results in the paper only an upper bound
on the value of fd(V ) would be sufficient, we still found it
important to present Corollary 18 for a more comprehensive
analysis of the value of fd(V ). In particular, for every d ∈ N,
we can write fd(V ) ⩽ CdV

d−1
d where Cd denotes a positive

constant that fulfills Corollary 18. Note that regarding our
constraints, the number of minimal boxes of volume V that
are contained in W ∈ Σ[n]d

q and start at position v depends
on n and v in addition to the volume V . However, it can be
bounded from above by fd(V ).

B. The Zero Boxes Free Constraint

First, we prove the following lemma regarding the cardinal-
ity of the set CAd,q(n, V ).

Lemma 19: For V = d logq(n)+ d−1
d logq(logq(n))+O(1),

and for n large enough it holds that |CAd,q(n, V )| ⩾ qnd−1.
That is, red(CAd,q(n, V )) ⩽ 1.

Proof: Let V = d logq(n) + d−1
d logq(logq(n)) + C +

logq(
q

q−1 ) for some positive constant C that will be deter-
mined later. If an array W ∈ Σ[n]d is not zero-V -box free,
then it contains at least a single zero box with coordinates set
A ∈ Fd(V ), such that |A| ⩾ V . From Corollary 18 there are
at most CdV

d−1
d possible selections of such a coordinates set.

Hence, according to the union bound, the number of arrays
that are not zero-V -box free can be bounded from above by

ndCdV
d−1

d · qnd−V = qnd

· ndCdV
d−1

d

qV

= (q − 1)qnd−1 · CdV
d−1

d

q
d−1

d logq(logq(n))+C

(a)

⩽ (q − 1)qnd−1 ·
Cd((d + 1) logq(n))

d−1
d

logq(n)
d−1

d qC

(b)

⩽ (q − 1)qnd−1. (1)

Inequality (a) follows from V ⩽ (d + 1) logq(n) for n large
enough and (b) holds by choosing C ⩾ logq(Cd(d + 1)

d−1
d ).

This accordingly implies that |CAd,q(n, V )| ⩾ qnd−1.
When comparing the result of Lemma 19 with the lower

bound derived in Theorem 5 for arrays that are zero-L-cube
free, it follows that for the same volume V = Ld, the minimal
volume required for a redundancy of one symbol in the latter
case is smaller by ∆ = d−1

d logq(logq(n)) +O(1).
Next, we present an encoding algorithm that uses

a single redundancy symbol to encode V -boxes free

cubes over Σ[n]d

q , for

V =
⌈
d logq(n)

⌉
+
⌈

d− 1
d

logq(logq(n))
⌉

+ C + 1,

where C =
⌈
logq(Cd) + d−1

d logq(d + 1)
⌉
, i.e., the ceiling of

the constant from the proof of Lemma 19. Note that this value
of V adds at most four redundancy symbols to the lower bound
derived in the proof of Lemma 19. For simplicity, we omit the
ceiling notation in the rest of this section.

Algorithm 5 receives a d-dimensional array W ∈ Σ[n]d\{0}

with a single symbol missing, and outputs a cube X ∈
CAd,q(n, V ). First, we initialize X with W and set 0 at
the missing entry to mark the start of the algorithm. Then,
we iteratively look for a zero-V -box in X . When such a box
is found, we remove it from X , and insert at the beginning of
X an encoding of the position and the shape of the box, along
with additional 1-bits. Thus, we ensure that the Hamming
weight of the square increases and the algorithm eventually
terminates.

The insertions and deletions in this algorithm are preformed
with granularity of 1, i.e., as a one-dimensional sequence.
In particular, at Step 3 we remove from X a box with
coordinates A at position u by performing x = SD(X) and
removing from x the entry at position

∑d−1
i=0 niu′d−i for every

u′ = (u′1, . . . , u
′
d) ∈ u+A. Then at Step 5 we insert a length-

|A| vector at the beginning of x and retransform it to a cube
by X = MD[n]d(x).

Algorithm 5 Zero-V -Box Free Encoding

Input: A d-dimensional array W ∈ Σ[n]d\{0}

Output: A d-dimensional array X ∈ CAd,q(n, V )
1: Set an array X ∈ Σ[n]d with X0 = 0, X[n]d\{0} = W
2: while there exists a zero box Xu+A = 0 where A ∈

Fd(V ) do
3: Remove box Xu+A

4: Set v = 1 ◦B[n]d(u) ◦ bFd(V )(A)
5: Insert v ◦ 1|A|−|v| at the start of X
6: end while
7: Return X

Lemma 20: Algorithm 5 successfully outputs a d-
dimensional array that satisfies the zero-V -box free constraint.

Proof: First, the assignment in Step 5 is correctly defined
since on one hand,

|A| ⩾ V = d logq(n) +
d− 1

d
logq(logq(n)) + C + 1,

and on the other hand,

|v| ⩽ d logq(n) + logq(fd(V )) + 1

⩽ d logq(n) + logq(CdV
d−1

d ) + 1

= d logq(n) + logq(Cd) +
d− 1

d
logq(V ) + 1

⩽ d logq(n) + logq(Cd)+
d− 1

d
logq((d + 1) logq(n))+1

⩽ d logq(n) +
d− 1

d
logq(logq(n)) + C + 1

= V.
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Thus, it follows that throughout the while loop of the
algorithm the size of X remains exactly nd. Since we remove
a box of zeros at Step 3 and insert data with Hamming weight
of at least 1 at Step 5, the Hamming weight of X increases
at every iteration. Therefore, the while loop eventually stops
and the algorithm reaches Step 7.

Next, assume in the contrary that X , which is returned in
Step 7, is not zero-V -box free. Thus, X contains a zero box at
position u and a coordinates set A ∈ Fd(V ) which contradicts
the condition of the loop in Step 2.

The decoder reconstructs W ∈ Σ[n]d\{0} from X , an output
of Algorithm 1, by inverting the encoding loop. Note that at
Step 1 we initialized X0 with 0 while at Step 5 we set X0 = 1
since v1 = 1. Hence, we execute the following procedure,
described in Algorithm 6.

Algorithm 6 Zero-V -Box Free Decoding
1: while X0 = 1 do
2: Extract u, A from the (d logq(n) + logq(fd(V )) + 1)-

prefix of SD(X)
3: Remove |A| entries from the start of X
4: Insert zero rectangle Xu+A = 0
5: end while
6: Return W = X[n]d\{0}

C. The Boxes Unique Constraint

First, we use a union bound argument to derive a lower
bound for V such that the redundancy of the set of V -boxes
unique arrays over Σ[n]d

q is at most 1.
Lemma 21: For V = 2d logq(n) + d−1

d logq(logq(n)) +
O(1), and for n large enough it holds that |DAd,q(n, V )| ⩾
qnd−1. That is, red(DAd,q(n, V )) ⩽ 1.

Proof: Let V = 2d logq(n) + d−1
d logq(logq(n)) + C +

logq(
q

q−1 ) for a positive constant C that will be determined
later. If an array W ∈ Σ[n]d is not V -boxes unique, then
it contains at least two identical boxes with a coordinates set
A ∈ Fd(V ). Hence, according to the union bound, the number
of arrays that are not V -boxes unique can be bounded from
above by

n2dCdV
d−1

d · qnd−V = qnd

· n2dCdV
d−1

d

qV

= (q − 1)qnd−1 · CdV
d−1

d

q
d−1

d logq(logq(n))+C

(a)

⩽ (q − 1)qnd−1 ·
Cd((2d + 1) logq(n))

d−1
d

logq(n)
d−1

d qC

(b)

⩽ (q − 1)qnd−1,

where inequality (a) follows from V ⩽ (2d+1) logq(n) for n
large enough and (b) holds for n large enough by choosing a
constant C ⩾ logq(Cd(2d + 1)

d−1
d ). This accordingly implies

that |DAd,q(n, V )| ⩾ qnd−1.

When comparing the result of Lemma 21 with the lower
bound derived in Theorem 8 for arrays that are L-cubes
unique, it follows that for the same volume V = Ld, the
minimal volume required for a redundancy of one symbol in
the latter case is smaller by ∆ = d−1

d logq(logq(n)) + O(1).
Note that this result of ∆ is the same as the one achieved for
the comparison of the zero-free constraints.

Next, we present a lower bound on the value of V
which guarantees that the asymptotic rate of DAd,q(n, V )
approaches 1 as n → ∞. This is done similarly to the
proof of Theorem 8 in [7]. The size of DAq,d(n, V ) will be
estimated using a probabilistic approach. Consider the uniform
distribution over all length-n sequences, then

|DAq,d(n, V )| = qnd

· Pr(W ∈ DAq,d(n, V )).

The asymptotic rate of DAq,d(n, V ) is given by

Rq,d(V ) ≜ lim
n→∞

logq(|DAq,d(n, V )|)
nd

= 1 + lim
n→∞

1
nd

logq(Pr(W ∈ DAq,d(n, V ))). (2)

Theorem 22: Let n be an integer. For fixed d, and

V = ad logq(n),

with a > 1, the asymptotic rate of DAq,d(n, V ) approaches 1
as n →∞.

We prove Theorem 22 using the asymmetric Loàsz local
lemma which was first proved in [8] and is stated next as it
appears in [1].

Lemma 23 ([1], Lemma 5.1.1): Let Y0, . . . , Ym−1 be
events in the arbitrary probability space. Let G = (V,E) be a
graph with V = [m] such that for every i ∈ [m], the event Yi

is mutually independent of all the events {Yj | (i, j) ̸∈ E}.
Suppose that there are real numbers α0, . . . , αm−1 such that
αi ∈ [0, 1] and for all i ∈ [m],

Pr(Yi) ⩽ αi

∏
(i,j)∈E

(1− αj).

Then, it is satisfied that

Pr

 ⋂
i∈[m]

Y i

 ⩾
∏

i∈[m]

(1− αi)

where Y i is the complement of Yi.
Proof of Theorem 22: Let X ∈ Σ[n]d

q be a random array in
which each coordinate is chosen uniformly and independently
over Σq . For coordinates u, v ∈ [n]d and a set A ∈ Fd(V )
such that u + A ⊆ [n]d and v + A ⊆ [n]d, we notate z =
(u, v, A) and denote Iz = 1(Xv+A = Xu+A), the indicator
function of the event that the V -boxes with coordinates set A
that start at positions u and v are identical. Let

Z = {(u, v, A) |u ̸= v, A∈ Fd(V ), u+A⊆ [n]d, v+A⊆ [n]d}

be the set of all admissible triples, and notice that we are
interested in a lower bound on

Pr(W ∈ DAq,d(n, V )) = Pr

(∑
z∈Z

Iz = 0

)
.
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Note that for every z ∈ Z it holds that Pr(Iz) = 1
qV . Let

z0 = (u0, v0, A0), z1 = (u1, v1, A1) ∈ Z . It is clear that if
the V -boxes u0 +A0, v0 +A0 do not overlap with u1 +A1 or
v1 +A1, then the indicators Iz0 , Iz1 are independent. We use
Lemma 23 with a graph G = (V,E) such that V = Z and
there is an edge z0 → z1 if at least one of u0 + A0, v0 + A0

overlaps with u1 + A1 or v1 + A1. Thus, every z
For a given minimal V -box with coordinates set A0 = [x0]×

· · ·× [xd−1] at position u, an intersecting minimal V -box with
coordinates set A1 = [y0] × · · · × [yd−1] can only start at
position that belongs to

U = ⊗d−1
i=0 [ui − yi + 1, ui + xi − 1].

The size of U can be bounded from above by

|U | =
d−1∏
i=0

xi + yi − 1 ⩽
d−1∏
i=0

xiyi ⩽ A0 ·A1 ⩽ 4V 2,

where the last inequality holds since the size of every minimal
V -box is bounded from above by 2V . Therefore, since the
number of minimal V -boxes is at most fd(V ) ⩽ cdV

d−1
d , the

number of neighbors of each vertex is bounded from above
by

2 · 4V 2 · fd(V ) · nd ⩽ cd8V
3d−1

d nd = c′dV
3d−1

d nd,

where c′d = 8cd.
We set the numbers αz = 1

c′dV
3d−1

d nd
for every z ∈ Z .

It holds that

∏
(z,z1)∈E

(1− αz1) ⩾

(
1− 1

c′dV
3d−1

d nd

)c′dV
3d−1

d nd

⩾
1
e

for every z ∈ Z since the last expression approaches e−1 from
above as n → ∞. Hence, the condition of the lemma holds
since for every z ∈ Z ,

Pr(Iz) =
1

qV
=

1

nad
⩽

1

c′dV
3d−1

d nd
· 1

e
⩽ αz

∏
(z,z1)∈E

(1− αz1),

where the first inequality holds since c′dV
3d−1

d nd = o(nad).
By applying Lemma 23 we obtain

Pr(W ∈ DAq,d(n, V )) ⩾
∏
z∈Z

(
1− 1

c′dV
3d−1

d nd

)

⩾

(
1− 1

c′dV
3d−1

d nd

)cdV
d−1

d n2d

,

since 1− 1

c′dV
3d−1

d nd
⩽ 1 and |Z| ⩽ fd(V )n2d ⩽ cdV

d−1
d n2d.

Moreover, since(
1− 1

c′dV
3d−1

d nd

)cdV
d−1

d n2d

≈ exp
(
− nd

8(ad logq(n))2

)
,

it follows that 1
nd logq(Pr(W ∈ DAq,d(n, V ))) approaches

0 as n → ∞. By plugging into (2) we conclude that
Rq,d(V ) = 1.

VI. REDUNDANCY ANALYSIS FOR THE
TWO-DIMENSIONAL ZERO-FREE CONSTRAINTS

In this section we revisit the zero-L-cube free constraint
and the zero-V -box free constraint for the two-dimensional
case. We analyze the redundancy of the set of arrays satisfying
these constraints and present lower and upper bounds on
the redundancy for both constraints. These bounds give an
expression that is asymptotically tight for the redundancy of
C2,q(n, L) when n − 2L = Θ(n) and the redundancy of
CA2,q(n, L) when n− 2

√
V = Θ(n).

A. The Redundancy of the Zero-L-square Free Constraint

The result of this section is summarized in the following
theorem.

Theorem 24: There exist constants C1, C2 such that for any
positive integer n it holds that

C2
(n− 2L)2

qL2 ⩽ red(C2,q(n, L)) ⩽ C1
n2

qL2 .

The proof of Theorem 24 is given by lower and upper
bounds proved in Claim 26 and Claim 27, respectively. The
next corollary follows immediately.

Corollary 25: Let n, L be integers such that n − 2L =
Θ(n). Then,

red(C2,q(n, L)) = Θ
(

n2

qL2

)
.

An upper bound on the redundancy of CA2,q(n, L) is proved
in the next claim.

Claim 26: There exists a constant C1 such that for any
integer n it holds that

red(C2,q(n, L)) ⩽ C1
n2

qL2 .

Proof: Let k be an integer, and let Aq(k, L) denote a set
of squares over Σ[k]2

q that contain a zero-(L/2)-square in one
of its corners, or a zero-(L, L/2)-rectangle at its right or left
side, or a zero-(L/2, L)-rectangle at its upper or bottom side.
That is,

Aq(k, L)

=

X

∣∣∣∣∣∣
∃i, j∈{0, k − L

2
} s.t. X(i,j)+[ L

2 ]2 = 0 or
∃i∈{0, k − L

2
}, j ∈ [k−L+1] s.t. X(i,j)+[ L

2 ]×[L] =0 or
∃i∈ [k−L+1], j ∈ {0, k − L

2
} s.t. X(i,j)+[L]×[ L

2 ] =0.

.

Note that

|Aq(k, L)| ⩽ 4kqk2−L2
2 + 4 qk2−L2

4 .

Next, let Bq(k, L) = C2,q(k, L) \ Aq(k, L). From Lemma 8
we know that for L ⩾

√
2 logq(k) + logq(

q
q−1 ), then

|C2,q(k, L)| ⩾ qk2−1. This applies that for k ⩽ q
L2−logq( q

q−1 )

2

we have

|Bq(k, L)| ⩾ qk2−1 − 4kqk2−L2
2 − 4 qk2−L2

4

⩾ qk2−1

(
1− 4k

q
L2
2 −1

− 4

q
L2
4 −1

)
. (3)
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We choose k = q
L2−7

2 which satisfies (3), and assume w.l.o.g
that n mod k = 0. Let Eq(n, L) denote the set of n-squares
that are composed of a grid of n2/k2 squares from Bq(k, L).
We prove next that Eq(n, L) ⊆ C2,q(n, L). Assume otherwise
that X ∈ Eq(n, L) contains a corner zero-L-square. It is clear
that the zero square is not contained in one of the Bq(k, L)
k-squares, and therefore it intersects two or four k-squares.
If it intersects two k-squares, one of them must contain a
zero-(L, L/2)-rectangle at its right of left edge or a zero-
(L/2, L)-rectangle at its upper or bottom edge, which is a
contradiction. Otherwise, the zero-L-square intersects four k-
squares and hence one of them contains a zero-(L/2)-square
which contradicts the assumption as well. Thus,

|C2,q(n, L)| ⩾ |Bq(q
L2−7

2 , L)|
n2

qL2−7

=

(
qqL2−7−1

(
1− 4q

L2−7
2

q
L2
2 −1

− 4

q
L2
4 −1

)) n2

qL2−7

= qn2
· q
− n2

qL2−7

(
1− 4

q2.5
− 4

q
L2
4 −1

) n2

qL2−7

= qn2
(q−1(1− 4

q2.5
))

n2

qL2−7

(
1− 4

q
L2
4 −1(1− 4q−2.5)

) n2

qL2−7

.

It is known that for all x < −1, (1 + 1
x )x+1 < e. We denote

x = − q
L2
4 −1(1−4q−2.5)

4 . For L ⩾ 3 and q ⩾ 2 we have that
x < −1 and hence(

1− 4

q
L2
4 −1(1− 4q−2.5)

) n2

qL2−7

= (1+
1
x

)
(x+1)( n2

qL2−7
)/(x+1)

(a)
> exp

(
(

n2

qL2−7
)/(x + 1)

)
(b)
= exp

(
(c2

n2

qL2 )/(−c1q
L2
4 )

)
= exp

(
−c2

c1

n2

q
5L2
4

)
where (a) follows from x+1 < 0 and (b) follows from a choice
of appropriate constants c1, c2. Finally, let c3 = 1

1−4q−2.5 for
some constant c3 > 0. We conclude that

|C2,q(n, L)| ⩾ qn2
· (qc3)

−c2
n2

qL2 exp(−c2

c1

n2

q
5L2
4

)

and thus

red(C2,q(n, L)) ⩽ c2(1 + logq(c3))
n2

qL2 + logq(e)
c2

c1

n2

q
5L2
4

.

It follows that there exists a constant C1 > 0 such that

red(C2,q(n, L)) ⩽ C1
n2

qL2 . (4)

Note that before constructing Eq(n, k), if n mod k ̸= 0 we
can pick n′ = n + (n − (n mod k)) and continue the proof
for n′ instead of n to receive the result of (4) for n′. Since

n′−n ⩽ c2q
L2
2 , this affects only the constant C1 and the claim

statement holds for n.
Next, a lower bound on red(C2,q(n, L)) is given.
Claim 27: There exists a constant C2 such that for any

integer n it holds that

red(C2,q(n, L)) ⩾ C2
(n− 2L)2

qL2

Proof: Let Dq(n, L) denote the set of n-squares that
are constructed from a grid of C2,q(2L, L) squares, i.e., 2L-
squares that are zero-L-square free. The remained n2 −
(
⌊

n
2L

⌋
L)2 entries are filled with any symbols from Σq .

We have that C2,q(n, L) ⊆ Dq(n, L) and hence,

|C2,q(n, L)| ⩽ |C2,q(2L, L)|(⌊
n
2L⌋)2 · qn2−(⌊ n

2L⌋L)2 .

Let β(L) denote the set of 2L-squares that contain a zero-
L-square exactly once. We lower bound |β(L)| by placing
a zero-L-square at some position (i, j) for X ∈ β(L), and
adding redundancy symbols to ensure that no other zero-L-
squares exist in X . Assume w.l.o.g that i, j ∈ [1, L− 1], i.e.,
the zero square is in the middle of X . We set four non-zero
symbols at positions I = {(i, j− 1), (i+L, j), (i+L− 1, j +
L), (i − 1, j + L − 1)}. For example, let L = 3, i = j = 1,
and

X =


? ? ? 1 ? ?
1 0 0 0 ? ?
? 0 0 0 ? ?
? 0 0 0 1 ?
? 1 ? ? ? ?
? ? ? ? ? ?

 ∈ Σ[2L]2

q ,

where each occurrence of ‘?’ denotes any symbol of Σq . Note
that besides X(i,j)+L2 , any other L-square in X contains one
of the coordinates of I and hence X(i,j)+L2 is the only zero-
L-square in X . If the zero square is next to one of the sides
of X , it is enough to set only the valid positions of I in order
to eliminate additional zero-L-squares. Hence,

|β(L)| ⩾ (L + 1)2(q − 1)4q3L2−4.

Since β(L) ∩ C2,q(2L, L) = ∅ we can write

|C2,q(2L, L)| ⩽ q4L2
− L2(q − 1)4q3L2−4

= q4L2
(

1− L2(q − 1)4

qL2+4

)
and by combining the inequalities we have

|C2,q(n, L)|⩽
(

q4L2
(

1− L2(q − 1)4

qL2+4

))(⌊ n
2L⌋)2

· qn2−(⌊ n
2L⌋L)2

= qn2
(

1− L2(q − 1)4

qL2+4

)(⌊ n
2L⌋)2

⩽ qn2
(

exp(−L2(q − 1)4

qL2+4
)
)(⌊ n

2L⌋)2

(a)

⩽ q
n2−logq(e)

L2(q−1)4

qL2+4
·( n

2L−1)2

⩽ q
n2−logq(e)

(q−1)4(n−2L)2

4qL2+4 ,
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where (a) follows from the inequality (1 − x) < e−x for all
x. By denoting C2 = logq(e)(q−1)4

4q4 we can conclude that

red(C2,q(n, L)) ⩾ C2
(n− 2L)2

qL2 .

B. The Redundancy of the Zero-V -Box Free Constraint

Next, we present tight bounds on the cardinality of
CA2,q(n, V ). These bounds use similar methods to those pre-
sented in Section VI-A. Nonetheless, we introduce improve-
ments and adaptations to those methods in order to fit the
constraint where the zero sub-arrays are rectangles and only
their area is known. The main result is summarized in the next
theorem.

Theorem 28: There exist constants C ′1, C
′
2 such that for any

integer n it holds that

C ′2
(n− 2

√
V )2

qV−logq(V )
⩽ red(CA2,q(n, V )) ⩽ C ′1

n2

qV−logq(V )
.

The proof of Theorem 28 is given by lower and upper
bounds proved in Claim 30 and Claim 31, respectively. The
next corollary follows immediately.

Corollary 29: Let n, V be integers such that
n− 2

√
V = Θ(n). Then,

red(CA2,q(n, V )) = Θ
(

n2

qV−logq(V )

)
.

Claim 30: There exists a constant C ′1 such that for any
integer n it holds that

red(CA2,q(n, V )) ⩽ C ′1
n2

qV−logq(V )
.

Proof: Let k be an integer, and let Aq(k, V ) denote a
set of squares over Σ[k]2

q that contain a zero-(V/4)-rectangle
at one of its corners, or a zero-(V/2)-rectangle at any of its
sides. The following upper bound holds for the size of the set
Aq(k, V ).

|Aq(k, V )| ⩽ 4kf2(
V

2
)qk2−V

2 + 4 f2(
V

4
)qk2−V

4

⩽ 4k
√

2V qk2−V
2 + 4

√
V qk2−V

4 .

Let Bq(k, V ) = CA2,q(k, V ) \ Aq(k, V ). From Lemma 19,
if k satisfies

k ⩽ q
1
2 (V− 1

2 logq(V )+logq( q−1
2q )), (5)

then CA2,q(k, V ) ⩾ qk2−1 and therefore,

|Bq(k, V )| ⩾ qk2−1 − 4k
√

2V qk2−V
2 − 4

√
V qk2−V

4

⩾ qk2−1

(
1− 4k

√
2V

q
V
2 −1

− 4
√

V

q
V
4 −1

)
.

We pick k = q
V
2 −

1
2 logq(V )−4 which satisfies equation (5), and

assume w.l.o.g that n mod k = 0.
Next, we construct Eq(n, V ), which is the set of n-squares

that are composed of a grid of n2/k2 squares from Bq(k, V ).

It can be shown similarly to the proof of Claim 26 that
Eq(n, V ) ⊆ C2,q(n, V ) and thus,

|CA2,q(n, V )| ⩾ |Bq(k, V )|
n2

k2

= |Bq(q
V
2 −

1
2 logq(V )−4, V )|

n2

q
V−logq(V )−8

⩾

(
qq

V−logq(V )−8−1

(
1−4

√
2V q

V
2 −

1
2 logq(V )−4

q
V
2 −1

− 4
√

V

q
V
4 −1

))V n2

qV−8

= qn2
q
− V n2

qV−8

(
1− 4

√
2

q3
−

√
V

q
V
4 −1

) V n2

qV−8

= qn2
(q−1(1− 4

√
2

q3
))

V n2

qV−8

(
1−

√
V

q
V
4 −1(1− 4

√
2

q3 )

) V n2

qV−8

.

It is known that for all x < −1, (1 + 1
x )x+1 < e. We denote

x = −
q

V
4 −1(1− 4

√
2

q3 )
√

V
.

For V ⩾ 25 and q ⩾ 2 we have that x < −1 and hence(
1−

√
V

q
V
4 −1(1− 4

√
2

q3 )

) V n2

qV−8

= (1 +
1
x

)(x+1)( V n2

qV−8 )/(x+1)

(a)
> exp

(
(

n2

qV−logq(V )−8
)/(x + 1)

)
(b)
= exp

(
(c2

n2

qV−logq(V )
)/(−c1q

V
4 −

1
2 logq(V ))

)
= exp

(
−c2

c1

n2

q
5V
4 −

3
2 logq(V )

)
,

where (a) follows from x + 1 < 0 and (b) follows from a
choice of appropriate constants c1, c2 > 0. Finally, we denote
c3 = (1− 4

√
2

q3 )−1 and conclude that

|CA2,q(n, L)|⩾qn2
(qc3)

−c2
n2

q
V−logq(V )

exp

(
−c2

c1

n2

q
5V
4 −

3
2 logq(V )

)
and thus the redundancy satisfies

red(CA2,q(n, V )) ⩽ c2(1 + logq(c3))
n2

qV−logq(V )

+ logq(e)
c2

c1

n2

q
5V
4 −

3
2 logq(V )

.

It follows that there exists a constant C ′1 > 0 such that

red(CA2,q(n, V )) ⩽ C ′1
n2

qV−logq(V )
.

Similarly to the proof of Claim 26, when n mod k ̸= 0 we can
enlarge n to the closest multiple of k, and the claim statement
still holds for n.

Claim 31: There exists a constant C ′2 such that for any
integer n it holds that

red(CA2,q(n, V )) ⩾ C ′2
(n− 2

√
V )2

qV−logq(V )
.
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Proof: Let Dq(n, V ) denote the set of n-squares that
are constructed from a grid of CA2,q(2

√
V , V ) squares, i.e.,

2
√

V -squares that are V -rectangles free, where the remained
entries are filled with any symbols from Σq . We have that
CA2,q(n, V ) ⊆ Dq(n, V ) and therefore,

|CA2,q(n, V )| ⩽ |CA2,q(2
√

V , V )|(
⌊

n
2
√

V

⌋
)2

q
n2−(

⌊
n

2
√

V

⌋
)24V

(6)

Let β(V ) denote the set of (2
√

V )-squares that contain a
exactly one zero-V -rectangle. Similarly to Claim 27, we lower
bound β(V ) by placing a zero-V -rectangle in some X ∈ β(V )
and using redundancy symbols to ensure that no other zero-V -
rectangle exist in X . Let X(i,j)+A be such a zero-V -rectangle,
and since X is a (2

√
V )-square, the shorter side of A is in

the range [
√

V /2,
√

V ] and therefore there are
√

V possible
options for A. Moreover, there are at most (

√
V +1)2 different

possible options for the indexes i, j.
Next, in order to eliminate additional zero-V -rectangles, it is

enough to ensure that no additional zero-(
√

V /2)-square exist
in X . Assume w.l.o.g that A = [a]×[b] where a ⩾

√
V /2, and

that the zero square is in the middle of X . By surrounding the
zero square with non zero symbols at positions I1 = {(i, j −
1), (i+a/2, j−1), (i+a, j), (i+a−1, j+b), (i+a/2−1, j+
b)(i− 1, j + b− 1)}, we ensure that no zero-(

√
V /2)-square

intersect with X(i,j)+A. Additionally, in order to prevent zero-
(
√

V /2)-square in the rest of X , we set a non-zero symbol
every

√
V /2 entries, as long as those do not intersect with

X(i,j)+A; that is, I2 = ([1, 3] · (
√

V /2))2 \ ((i, j) + A). This
results in at most c1 = |I1| + |I2| ⩽ 15 non-zero symbols.
Therefore, we can bound

|β(V )| ⩾ (
√

V + 1)2
√

V q3V−c1(q − 1)c1

⩾ V 1.5q3V−c1(q − 1)c1 .

Next, we have that β(V ) ∩ CA2,q(2
√

V , V ) = ∅ and hence,

|CA2,q(2
√

V , V )| ⩽ q4V − V 1.5q3V−c1(q − 1)c1

= q4V

(
1− V 1.5(q − 1)c1

qV +c1

)
. (7)

By combining inequalities (6) and (7) we get that
|CA2,q(n, V )| is bounded from above by(

q4V

(
1− V 1.5(q − 1)c1

qV +c1

))(
⌊

n
2
√

V

⌋
)2

q
n2−(

⌊
n

2
√

V

⌋
)24V

= qn2
(

1− V 1.5(q − 1)c1

qV +c1

)(
⌊

n
2
√

V

⌋
)2

⩽ qn2
exp

(
−V 1.5(q − 1)c1

qV +c1

)(
⌊

n
2
√

V

⌋
)2

⩽ qn2
exp

(
V 1.5(q − 1)c1

qV +c1
(

n

2
√

V
− 1)2

)
= qn2

exp

(√
V (q − 1)c1(n− 2

√
V )2

4qV +c1

)

= q
n2−logq(e)

√
V (q−1)c1 (n−2

√
V )2

4qV +c1

and by denoting C ′2 = logq(e)(q−1)c1

4qc1 we have

red(CA2,q(n, V )) ⩾ C ′2
(n− 2

√
V )2

qV−logq(V )
.

VII. CONCLUSION

This paper studied two main families of constraints, referred
as the zero-L-cube free constraint and the L-cube unique
constraint, for multidimensional arrays that impose conditions
on the cubes contained in the array. The paper studied also the
extensions of these constraints to the case where the conditions
are imposed on sub-arrays that are multidimensional boxes and
not necessarily cubes, where only their volume is given as a
parameter. For the zero free constraints, we presented a lower
bound on the size of the sub-array such that the redundancy
of the constraint is at most a single symbol, an efficient
encoding algorithm for any dimension that uses a single
redundancy symbol and tight bounds on the cardinality of the
constraints specifically for the two-dimensional case. As for
the cube-unique and box-unique constraints, we presented
a lower bound on the size of the sub-array such that the
asymptotic rate of the set of valid arrays approaches 1 as
n → ∞, as well as conditions for the redundancy to be at
most a single symbol. Additionally, we presented an encoder
for the two-dimensional L-square unique constraint that uses
a single redundancy bit.
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