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Abstract— The rapid development of DNA storage has brought
the deletion and insertion channel to the front line of research.
When the number of deletions is equal to the number of
insertions, the Fixed Length Levenshtein (FLL) metric is the
right measure for the distance between two words of the same
length. Similar to any other metric, the size of a ball is one of
the most fundamental parameters. In this work, we consider
the minimum, maximum, and average size of a ball with
radius one, in the FLL metric. The related minimum and the
maximum size of a maximal anticode with diameter one are also
considered.

Index Terms— Levenshtein metric, balls, anticodes.

I. INTRODUCTION

CODING for DNA storage has attracted significant atten-
tion in the previous decade due to recent experiments

and demonstrations of the viability of storing information
in macromolecules [2], [4], [9], [12], [14], [15], [27], [34],
[37]. Given the trends in cost decreases of DNA synthesis
and sequencing, it is estimated that already within this
decade DNA storage may become a highly competitive
archiving technology. However, DNA molecules induce error
patterns that are fundamentally different from their digital
counterparts [17], [18], [21], [29]; This distinction results
from the specific error behavior in DNA and it is well-known
that errors in DNA are typically in the form of substitutions,
insertions, and deletions, where most published studies report
that deletions are the most prominent ones, depending upon
the specific technology for synthesis and sequencing. Hence,
due to its high relevance to the error model in DNA storage
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coding for insertion and deletion errors has received renewed
interest recently; see e.g. [5], [6], [7], [8], [10], [13], [16],
[25], [26], [28], [32], [33], [35]. This paper takes one more
step in advancing this study and its goal is to study the size
of balls and anticodes when the number of insertions equals
to the number of deletions.

If a word x ∈ Z
n
q can be transferred to a word y ∈ Z

n
q

using t deletions and t insertions (and cannot be transferred
using a smaller number of deletions and insertions), then their
Fixed Length Levenshtein (FLL) distance is t, which is denoted
by d�(x, y) = t. It is relatively easy to verify that the FLL
distance defines a metric. Let G = (V, E) be a graph whose set
of vertices V = Z

n
q and two vertices x, y ∈ V are connected

by an edge if d�(x, y) = 1. This graph represents the FLL
distance. Moreover, the FLL distance defines a graphic metric,
i.e., it is a metric and for each x, y ∈ Z

n
q , d�(x, y) = t if and

only if the length of the shortest path between x and y in G
is t.

One of the most fundamental parameters in any metric is
the size of a ball with a given radius t centered at a word x.
There are many metrics, e.g. the Hamming metric, the Johnson
metric, or the Lee metric, where the size of a ball does not
depend on the word x. This is not the case in the FLL metric.
Moreover, the graph G has a complex structure and it makes
it much more difficult to find the exact size of any ball and
even the size of a ball with minimum size and the size of a
ball with maximum size. In [30], a formula for the size of the
ball with radius one, centered at a word x, in the FLL metric
was given. This formula depends on the number of runs in the
word and the lengths of its alternating segments (an alternating
segment is a substring of consecutive symbols, where no two
consecutive symbols are the same). Nevertheless, while it is
easy to compute the minimum size of a ball, it is still difficult
to determine from this formula what the maximum size of
a ball is. In this paper, we find explicit expressions for the
minimum and maximum sizes of a ball when the ball is of
radius one. We also find the average size of a ball when the
radius of the ball is one. Finally, we consider the related basic
concept of anticode in the FLL metric, where an anticode with
diameter D is a code where the distance between any two
elements of the code is at most D. Note, that a ball with
radius R has diameter 2R and hence it is an anticode with
diameter 2R. We find the maximum size and the minimum size
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of maximal anticodes with diameter one, where an anticode
with diameter one is maximal if any addition of a word to it
will increase its diameter.

This paper is the first one which considers a comprehensive
discussion and exact computation on the balls with radius one
and the anticodes with diameter one in the FLL metric. The
rest of this paper is organized as follows. Section II introduces
some basic concepts, presents some of the known results on
the sizes of balls, presents some results on equivalence of
codes correcting deletions and insertions, and finally introduce
some observations required for our exposition. The minimum
size of a ball of any given radius in the FLL metric over Zq

is discussed in Section III. Section IV is devoted for the
discussion on the maximum size of a ball with radius one in
the FLL metric over Zq . The analysis of non-binary sequences
is discussed in Section IV-A. It appears that contrary to
many other coding problems the binary case is much more
difficult to analyze and it is discussed in Section IV-B. For
the binary case, the sequence for which the maximum size is
obtained is presented in Theorem 8 and the maximum size
is given in Corollary 6. The average size of the FLL ball
with radius one over Zq is computed in Section V and proved
in Theorem 13. In Section VI, we consider binary maximal
anticodes with diameter one. The maximum size of such
an anticode is discussed in Section VI-A and Section VI-B
is devoted to the minimum size of such anticodes. The
results can be generalized for the non-binary case, but since
they are more complicated and especially messy, they are
omitted.

II. DEFINITIONS AND PREVIOUS RESULTS

In this section, we present the definitions and notations as
well as several results that will be used throughout the paper.

For an integer q ≥ 2, let Zq denote the set of integers
{0, 1, . . . , q − 1} and for an integer n ≥ 0, let Z

n
q be the set

of all sequences (words) of length n over the alphabet Zq ,
let Z

∗
q =

⋃∞
n=0 Z

n
q , and let [n] denote the set of integers

{1, 2, . . . , n}. For two sequences x, y ∈ Z
n
q , the distance

between x and y, d(x, y), can be measured in various ways.
When the type of errors is substitution, the Hamming distance
is the most natural to be considered. The Hamming weight of
a sequence x ∈ Z

∗
q , denoted by wt(x), is equal to the number

of nonzero coordinates in x. The Hamming distance between
two sequences x, y ∈ Z

n
q , denoted by dH(x, y), is the number

of coordinates in which x and y differ. In other words,
dH(x, y) is the number of symbol-substitution operations
required to transform x into y. The Hamming distance is well
known to be a metric on Z

n
q (also referred as the Hamming

space), as it satisfies the three conditions of a metric (i.e.,
coincidence, symmetry and the triangle inequality). Given a
distance d on a space V , the t-ball centered at x ∈ V is the
set {y : d(x, y) ≤ t}. The t-sphere centered at x ∈ V is the
set {y : d(x, y) = t}. A code C ⊆ V is a subset of words
from V . A related concept is an anticode with diameter D
which is a code in V for which the distance between any
two elements is at most D. Clearly, a t-ball is an anticode
whose diameter is at most 2t. The Hamming t-ball centered
at x ∈ Z

n
q will be denoted by Ht(x). For x ∈ Z

n
q , the number

of words in the Hamming t-ball is a function of n, q and t.
The number of such words is

|Ht(x)| =
t∑

i=0

(
n

i

)
(q − 1)i. (1)

For an integer t, 0 ≤ t ≤ n, a sequence y ∈ Z
n−t
q is a

t-subsequence of x ∈ Z
n
q if y can be obtained from x by

deleting t symbols from x. In other words, there exist n − t
indices 1 ≤ i1 < i2 < · · · < in−t ≤ n such that yj = xij , for
all 1 ≤ j ≤ n−t. We say that y is a subsequence of x if y is a
t-subsequence of x for some t. Similarly, a sequence y ∈ Z

n+t
q

is a t-supersequence of x ∈ Z
n
m if x is a t-subsequence of y

and y is a supersequence of x if y is a t-supersequence of x
for some t.

Definition 1: The deletion t-sphere centered at x ∈ Z
n
q ,

Dt(x) ⊆ Z
n−t
q , is the set of all t-subsequences of x. The size

of the largest deletion t-sphere in Z
n
q is denoted by Dq(n, t).

The insertion t-sphere centered at x ∈ Z
n
q , It(x) ⊆ Z

n+t
q ,

is the set of all t-supersequences of x.
Let x ∈ Z

n
q be a sequence. The size of the insertion t-sphere

|It(x)| does not depend on x for any 0 ≤ t ≤ n. To be exact,
it was shown by Levenshtein [22] that

|It(x)| =
t∑

i=0

(
n + t

i

)
(q − 1)i. (2)

On the other hand, calculating the exact size of the deletion
sphere is one of the more intriguing problems when studying
codes for deletions. Unlike substitution balls and insertions
spheres, not all deletion spheres are of the same size. That is,
the size of the deletion sphere, |Dt(x)|, depends on the choice
of the sequence x. Let {σ1, . . . , σq} be the symbols of Zq

in some order and let c(n) = (c1, c2, . . . , cn) be a sequence
in Z

n
q such that ci = σi for 1 ≤ i ≤ q and ci = ci−q for

i > q. It was shown in Hirschberg and Regnier [19] that c(n)
has the largest deletion t-sphere and its size is given by

Dq(n, t) = |Dt(c(n))| =
t∑

i=0

(
n − t

i

)
Dq−1(t, t − i)

In particular, D2(n, t) =
∑t

i=0

(
n−t

i

)
and D3(n, t) =∑t

i=0

(
n−t

i

)∑t−i
j=0

(
i
j

)
. The value D2(n, t) also satisfies the

following recursion

D2(n, t) = D2(n − 1, t) + D2(n − 2, t− 1),

where the values for the basic cases can be evaluated by
D2(n, t) =

∑t
i=0

(
n−t

i

)
.

Definition 2: A run is a maximal subsequence composed
of consecutive identical symbols. For a sequence x ∈ Z

n
q , the

number of runs in x is denoted by ρ(x).
Example 1: If x = 0000000 then ρ(x) = 1 since x has

a single run of length 7 and for y = 1120212 we have that
ρ(y) = 6 since y has six runs, the first is of length two and
the others are of length one.
There are upper and lower bounds on the size of the deletion
ball which depend on the number of runs in the sequence.
Namely, it was shown by Levenshtein [22] that(

ρ(x) − t + 1
t

)
≤ |Dt(x)| ≤

(
ρ(x) + t − 1

t

)
.
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Later, the lower bound was improved in [19]:

t∑
i=0

(
ρ(x) − t

i

)
≤ |Dt(x)| ≤

(
ρ(x) + t − 1

t

)
. (3)

Several more results on this value which take into account the
number of runs appear in [24].

The Levenshtein distance between two words x, y ∈ Z
∗
q ,

denoted by dL(x, y), is the minimum number of insertions
and deletions required to transform x into y. Similarly, for
two sequences x, y ∈ Z

∗
q , dE(x, y) denotes the edit distance

between x and y, which is the minimum number of insertions,
deletions, and substitutions required to transform x into y.

Definition 3: Let t, n be integers such that 0 ≤ t ≤ n. For a
sequence x ∈ Z

n
q , the Levenshtein t-ball centered at x ∈ Z

n
q ,

L̂t(x), is defined by

L̂t(x) � {y ∈ Z
∗
q dL(x, y) ≤ t}.

In case x, y ∈ Z
n
q , for some integer n, the Fixed Length

Levenshtein (FLL) distance between x and y, d�(x, y), is the
smallest t for which there exists a t-subsequence z ∈ Z

n−t
q of

both x and y, i.e.

d�(x, y) = min{t′ : Dt′(x)∩Dt′(y) �= ∅} =
dL(x, y)

2
. (4)

In other words, t is the smallest integer for which there exists
z ∈ Z

n−t
q such that z ∈ Dt(x) and y ∈ It(z). Note that

if x, y ∈ Z
n
q and x is obtained from y by t1 deletions and

t2 insertions, then t1 = t2.
Definition 4: Let n, t be integers such that 0 ≤ t ≤ n.

For a sequence x ∈ Z
n
q , the FLL t-ball centered at x ∈ Z

n
q ,

Lt(x) ⊆ Z
n
q , is defined by

Lt(x) � {y ∈ Z
n
q d�(x, y) ≤ t}.

We say that a subsequence x[i,j] � xixi+1 · · ·xj is an
alternating segment if x[i,j] is a sequence of alternating
distinct symbols σ, σ′ ∈ Zm. Note that x[i,j] is a maximal
alternating segment if x[i,j] is an alternating segment and
x[i−1,j], x[i,j+1] are not. The number of maximal alternating
segments of a sequence x will be denoted by A(x).

Example 2: If x = 0000000 then A(x) = 7 since x has
seven maximal alternating segments, each of length one, and
for x = 1120212 we have that A(x) = 4 and the maximal
alternating segments are 1, 12, 202, 212.

The following formula to compute |L1(x)| as a function of
ρ(x) and A(x) was given in [30]

|L1(x)| = ρ(x) · (n(q − 1) − 1) + 2 −
A(x)∑
i=1

(si − 1)(si − 2)
2

,

(5)

where si for 1 ≤ i ≤ A(x) denotes the length of the i-th
maximal alternating segment of x.

Note that |L̂1(x)|, |L̂2(x)| can be deduced from equa-
tions (2), (3), (4), and |L1(x)|, since

L̂1(x) = D1(x) ∪ I1(x) ∪ {x},
L̂2(x) = L1(x) ∪ D2(x) ∪ I2(x) ∪ D1(x) ∪ I1(x),

and the length of the sequences in each ball is different which
implies that the sets in these unions are disjoint. However, not
much is known about the size of the Levenshtein ball and the
FLL ball for arbitrary n, t and x ∈ Z

n
q .

For x ∈ Z
∗
q , let |x| denote the length of x and for a set

of indices I ⊆ [|x|], let xI denote the projection of x on the
ordered indices of I , which is the subsequence of x received
by the symbols in the entries of I . For a symbol σ ∈ Zm,
σn denotes the sequence with n consecutive σ’s.

A word x is called a common supersequence (subsequence)
of some sequences y1, . . . , yτ if x is a supersequence
(subsequence) of each one of these t words. The set of
all shortest common supersequences of y1, . . . , yτ ∈ Z

∗
q

is denoted by SCS(y1, . . . , yτ ) and SCS(y1, . . . , yτ ) is
the length of the shortest common supersequence (SCS) of
y1, . . . , yτ , that is,

SCS(y1, . . . , yτ ) = min
x∈SCS(y1,...,yτ )

{|x|}.

Similarly, LCS(y1, . . . , yτ ) is the set of all longest common
subsequences of y1, . . . , yτ and LCS(y1, . . . , yτ ) is the length
of the longest common subsequence (LCS) of y1, . . . , yτ , that
is,

LCS(y1, . . . , yτ ) � max
x∈LCS(y1,...,yτ )

{|x|}.

This definition implies the following well known property.
Claim 5: For x1, x2 ∈ Z

n
q , Dt(x1) ∩ Dt(x2) = ∅ if and

only if LCS(x1, x2) < n − t.
Combining (4) and Claim 5 implies the following result.
Corollary 1: If x1, x2 ∈ Z

n
q then

LCS(x1, x2) = n − d�(x1, x2).

For two sequences x ∈ Z
n
q and y ∈ Z

m
q , the value of

LCS(x, y) is given by the following recursive formula [20]

LCS(x, y) =

���
��

0 n = 0 or m = 0

1 + LCS(x[1,n−1], y[1,m−1]) xn = ym

max
�

LCS(x[1,n−1], y), LCS(x, y[1,m−1])
�

otherwise.

(6)

A subset C ⊆ Z
n
q is a t-deletion-correcting code

(t-insertion-correcting code, respectively) if for any two
distinct codewords c, c′ ∈ C we have that Dt(c) ∩ Dt(c′) = ∅

(It(c) ∩ It(c′) = ∅, respectively). Similarly, C is called
a (t1, t2)-deletion-insertion-correcting code if for any two
distinct codewords c and c′ of the code C, we have that
DIt1,t2(c) ∩ DIt1,t2(c′) = ∅, where DIt1,t2(x) is the set
of all words that can be obtained from x by t1 deletions and
t2 insertions. Levenshtein [22] proved that C is a t-deletion-
correcting code if and only if C is a t-insertion-correcting code
and if and only if C is a (t1, t2)-deletion-insertion-correcting
code for every t1, t2 such that t1 + t2 ≤ t. A straightforward
generalization is the following result [11].

Lemma 1: For all t1, t2 ∈ N, if C ⊆ Z
n
q is a (t1, t2)-

deletion-insertion-correcting code, then C is also a (t1 + t2)-
deletion-correcting code.

Corollary 2: For C ⊆ Z
n
q , the following statements are

equivalent.
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1) C is a (t1, t2)-deletion-insertion-correcting code.
2) C is a (t1 + t2)-deletion-correcting code.
3) C is a (t1 + t2)-insertion-correcting code.
4) C is a (t′1, t

′
2)-deletion-insertion-correcting code for any

t′1, t′2 such that t′1 + t′2 = t1 + t2.
We further extend this result in the next lemma.
Lemma 2: A code C ∈ Z

n
q is a (2t + 1)-deletion-correcting

code if and only if the following two conditions are satisfied
• C is a (t, t)-deletion-insertion-correcting code

and also
• if exactly t + 1 FLL errors (i.e., t + 1 insertions and

t + 1 deletions) occurred, then C can detect these t + 1 FLL
errors.

Proof: If C is a (2t+1)-deletion-correcting code, then by
definition for any c1, c2 ∈ C we have that

D2t+1(c1) ∩ D2t+1(c2) = ∅.

Therefore, by Claim 5 for any two distinct codewords
c1, c2 ∈ C we have that

LCS(c1, c2) ≤ n − (2t + 1).

Hence, by Corollary 1, d�(c1, c2) ≥ 2(t + 1). Since the FLL
metric is graphic, it follows that C can correct up to t FLL
errors and if exactly t + 1 FLL errors occurred it can detect
them.

For the other direction, assume that C is a (t, t)-
deletion-insertion-correcting code and if exactly t + 1 FLL
errors occurred, then C can detect them. By Lemma 1,
C is a (2t)-deletion-correcting code which implies that
D2t(c1) ∩ D2t(c2) = ∅ for all c1, c2 ∈ C, and hence by (4)
we have that

∀c1, c2 ∈ C : d�(c1, c2) > 2t.

Let us assume to the contrary that there exist two codewords
c1, c2 ∈ C such that d�(c1, c2) = 2t+1. Since the FLL metric
is a graphic metric, it follows that there exists a word y ∈ Z

n
q

such that d�(c1, y) = t and d�(y, c2) = t + 1. Hence, if the
received word is y, then the submitted codeword can be either
c1 (t errors) or c2 (t+1 errors) which contradicts the fact that
in C up to t FLL errors can be corrected and exactly t + 1
FLL errors can be detected. Hence,

∀c1, c2 ∈ C : d�(c1, c2) > 2t + 1,

and by definition, C can correct 2t + 1 deletions.

III. THE MINIMUM SIZE OF AN FLL BALL

In this section, the explicit expression for the minimum size
of an FLL t-ball of any radius t is derived. Although this result
is rather simple and straightforward, it is presented here for
the completeness of the problems studied in the paper. Since
changing the symbol in the i-th position from σ to σ′ in any
sequence x can be done by first deleting σ in the i-th position
of x and then inserting σ′ in the same position of x, it follows
that

∀x, y ∈ Z
n
q : dH(x, y) ≥ d�(x, y).

Since y ∈ Ht(x) if and only if dH(x, y) ≤ t and y ∈ Lt(x) if
and only if d�(x, y) ≤ t, the following results are immediately
implied.

Lemma 3: If n ≥ t ≥ 0 are integers and x ∈ Z
n
q , then

Ht(x) ⊆ Lt(x).
Corollary 3: For any two integers n ≥ t ≥ 0 and any

sequence x ∈ Z
n
q , |Ht(x)| ≤ |Lt(x)|.

Lemma 4: If n > t ≥ 0 are integers, then Ht(x) = Lt(x)
if and only if x = σn for σ ∈ Zq .

Proof: Assume first w.l.o.g. that x = 0n and
let y ∈ Lt(x) be a sequence obtained from x by at
most t insertions and t deletions. Hence, wt(y) ≤ t and
y ∈ Ht(x), which implies that Lt(x) ⊆ Ht(x). Therefore,
Lemma 3 implies that Ht(x) = Lt(x).

For the other direction, assume that Ht(x) = Lt(x) and let
x ∈ Z

n
q where x �= σn for all σ ∈ Zq . Since by Lemma 3,

Ht(x) ⊆ Lt(x), to complete the proof, it is sufficient to
show that there exists a sequence y ∈ Lt(x)\Ht(x). Denote
x = (x1, x2, . . . , xn) and let i be the smallest index for which
xi �= xi+1. Let y be the sequence defined by

y � (y1, y2, . . . , yi−1, xi+1, xi, yi+2, . . . , yn) ,

where yj �= xj for the first t − 1 indices (for which
j /∈ {i, i + 1}) and yj = xj otherwise. Clearly, y differs
from x in t + 1 indices and therefore y /∈ Ht(x). On the
other hand, y can be obtained from x by first deleting xi and
inserting it to the right of xi+1 and then applying t−1 deletions
and t− 1 insertions whenever yj �= xj (where j /∈ {i, i + 1}).
Thus, y ∈ Lt(x)\Ht(x) which completes the proof.

The following simple corollary is a direct result of
Corollary 3, Lemma 4 and (1).

Corollary 4: If n > t ≥ 0 are integers, then the size of the
minimum FLL t-ball is

min
x∈Zn

q

|Lt(x)| =
t∑

i=0

(
n

i

)
(q − 1)i,

and the minimum is obtained only by the balls centered at
x = σn for any σ ∈ Zq .

IV. THE MAXIMUM FLL BALLS WITH RADIUS ONE

The goal of this section is to compute the size of a ball with
maximum size and its centre. For this purpose it is required
first to compute the size of a ball. The size of the FLL 1-ball
centered at x ∈ Z

n
q was proved in [30] and given in (5).

In the analysis of the maximum ball we distinguish between
the binary case and the non-binary case. Surprisingly, the
computation of the non-binary case is not a generalization of
the binary case. That is, the binary case is not a special case of
the non-binary case. Even more surprising is that the analysis
of the non-binary case is much simpler than the analysis of
the binary case. Hence, we start with the analysis of the non-
binary case which is relatively simple.

A. The Non-Binary Case

By (5), the size of a ball with radius one centered at x
depends on ρ(x), the number of runs in x. For a given number
of runs 1 ≤ r ≤ n, the size of a ball depends on the lengths of

Authorized licensed use limited to: Eitan Yaakobi. Downloaded on December 04,2023 at 03:58:41 UTC from IEEE Xplore.  Restrictions apply. 



2328 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 4, APRIL 2023

the maximal alternating segments in x. The following lemma
is an immediate consequence of (5).

Lemma 5: If n > 0 and 1 ≤ r ≤ n, then

arg max
x∈Z

n
q

ρ(x)=r

|L1(x)| = argmin
x∈Z

n
q

ρ(x)=r

⎧⎨⎩
A(x)∑
i=1

(si − 1)(si − 2)
2

⎫⎬⎭ .

Proof: Let x ∈ Z
n
q be a sequence with exactly r runs.

Since r(n(q − 1) − 1) + 2 is a constant and

A(x)∑
i=1

(si − 1)(si − 2)
2

≥ 0,

the claim follows immediately from (5).
Corollary 5: If n > 0 and 1 ≤ r ≤ n, then

max
x∈Z

n
q

ρ(x)=r

|L1(x)| = r(n(q − 1) − 1)

+ 2 − min
x∈Z

n
q

ρ(x)=r

⎧⎨⎩
A(x)∑
i=1

(si − 1)(si − 2)
2

⎫⎬⎭ .

Note that
A(x)∑
i=1

(si − 1)(si − 2)
2

=0 ⇐⇒ ∀1 ≤ i ≤ A(x) : si ∈ {1, 2}.

(7)

The following claim is a straightforward result from the
definitions of a run and an alternating segment.

Lemma 6: Let n > 0 and let x ∈ Z
n
q . For 1 ≤ i ≤ ρ(x),

denote by ri the length of the i-th run and by σi ∈ Zq

the symbol of the i-th run. Then all the maximal alternating
segments of x have lengths at most two (si ≤ 2 for each i) if
and only if for each 1 ≤ i ≤ ρ(x)−2, σi �= σi+2 or ri+1 > 1.

The maximum value of |L1(x)| for non-binary alphabet was
given in [31] without a proof. For q = 2 the value of |L1(x)|
given in [31] without a proof is not accurate and we will give
the exact value with a complete proof.

Theorem 6: For q > 2, the maximum FLL 1-balls are the
balls centered at x ∈ Z

n
q , such that the number of runs in x is n

(i.e., any two consecutive symbols are different) and xi �= xi+2

for all 1 ≤ i ≤ n − 2. In addition, the maximum size of an
FLL 1-ball is,

max
x∈Zn

q

|L1(x)| = n2(q − 1)−n + 2.

Proof: Corollary 5 implies that

max
x∈Zn

q

|L1(x)|= max
r∈{1,...,n}

����
���

max
x∈Z

n
q

ρ(x)=r

|L1(x)|

����
��	

= max
r∈{1,...,n}

����
���

r(n(q − 1) − 1) + 2 − min
x∈Z

n
q

ρ(x)=r

��
�

A(x)

i=1

(si − 1)(si − 2)

2

��
	

����
��	

.

Clearly, r(n(q − 1) − 1) + 2 is maximized for r = n and
therefore, using (7), we conclude that maxx∈Zn

q
|L1(x)| can be

obtained for each x ∈ Z
n
q such that ρ(x) = n and si ≤ 2 for

each i. Note that σi = xi since r = n. By Lemma 6, it implies

that xi �= xi+2 or ri+1 > 1 for each 1 ≤ i ≤ n − 2. Since
q > 2, it follows that there exists such an assignment for the
symbols of each run such that xi �= xi+2 for each 1 ≤ i ≤
r − 2. It follows that

max
x∈Zn

q

|L1(x)| = n2(q − 1) − n + 2.

B. The Binary Case

The analysis to find the maximum ball for binary sequences
is more difficult, since by definition of a run, there is no
sequence x with n runs such that xi �= xi+2 (see Theorem 6)
for some i. Note also that since in the binary case two
maximal alternating segments can not overlap it holds that∑A(x)

i=1 si = n for any binary sequence x.
For a sequence x ∈ Z

n
2 , the alternating segments profile

of x is (s1, s2, . . . , sA(x)). Note that each alternating segments
profile defines exactly two binary sequences.

Lemma 7: If x ∈ Z
n
2 then ρ(x) = n + 1 − A(x).

Proof: Let x ∈ Z
n
2 be a sequence and let x[i,j] and

x[i′,j′] be two consecutive maximal alternating segments such
that i < i′. Since x is a binary sequence, it follows that
two maximal alternating segments cannot overlap, and hence
i′ = j + 1. Now, let α = A(x) and we continue to prove the
claim of the lemma by induction on α for any given n ≥ 1.
For α = 1, there is one maximal alternating segment whose
length is clearly n which consists of alternating symbols,
i.e., there are ρ(x) = n runs as required. Assume the claim
holds for any α′ such that 1 ≤ α′ < α and let x ∈ Z

n
2

be a sequence with exactly α maximal alternating segments.
Denote by x′ the sequence that is obtained from x by deleting
its last maximal alternating segment x′′. By the induction
hypothesis

ρ(x′) = (n − sα) + 1 − (α − 1) = n + 2 − sα−t,

where sα is the length of x′′. Clearly, the first symbol of x′′

is equal to the last symbol in x′. Thus,

ρ(x) = ρ(x′x′′) = ρ(x′) + sα − 1
= n + 2 − sα − α + sα − 1 = n + 1 − α.

Notice that ρ(x) = n + 1 − A(x) does not hold for
alphabet size q > 2. To clarify, consider the sequences
x1 = 0120, x2 = 0101 and x3 = 0102, each of the
sequences has four runs even though they differ in the number
of maximal alternating segments; A(x1) = 3, A(x2) = 1
and A(x3) = 2.

Definition 7: For a positive integer α, x(α) ∈ Z
n
2 is an

α-balanced sequence if A(x) = α and si ∈ {�n
α
, �n

α
 − 1}
for all i ∈ {1, . . . , α}.

Lemma 8: If n is a positive integer and α ∈ {1, . . . , n}
then

argmax
x∈Z

n
2

A(x)=α

|L1(x)| = {x ∈ Z
n
2 : x is an α-balanced sequence} .
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Proof: For a sequence x ∈ Z
n
2 such that A(x) = α,

Lemma 7 implies that ρ(x) = n+1−α. Hence, by Lemma 5,

argmax
x∈Z

n
2

A(x)=α

|L1(x)| = arg min
x∈Z

n
2

A(x)=α

α∑
i=1

(si − 1)(si − 2)
2

= arg min
x∈Z

n
2

A(x)=α

α∑
i=1

(s2
i − 3si + 2)

= arg min
x∈Z

n
2

A(x)=α

(
α∑

i=1

s2
i − 3

α∑
i=1

si + 2α

)

(a)
= arg min

x∈Z
n
2

A(x)=α

(
α∑

i=1

s2
i − 3n + 2α

)

= arg min
x∈Z

n
2

A(x)=α

α∑
i=1

s2
i ,

where (a) holds since alternating segments cannot overlap for
binary sequences and therefore

∑α
i=1 si = n.

Assume x ∈ Z
n
2 is a sequence such that A(x) = α,

(s1, . . . , sα) is the alternating segments profile of x and∑α
i=1 s2

i is minimal among all sequences in Z
n
2 . Assume to

the contrary that x is not an α-balanced sequence. Then there
exist indices i �= j such that si ≤

⌈
n
α

⌉ − 1 and sj >
⌈

n
α

⌉
or

there exist indices i �= j such that si <
⌈

n
α

⌉−1 and sj ≥ ⌈
n
α

⌉
.

Consider a sequence x′ with the alternating segments profile
(ν1, . . . , να) where

νk =

⎧⎪⎨⎪⎩
si + 1 if k = i

sj − 1 if k = j

sk otherwise.

Therefore,

α∑
k=1

ν2
k −

α∑
k=1

s2
k =

α∑
k=1

(
ν2

k − s2
k

)
= (ν2

i − s2
i ) + (ν2

j − s2
j)

=
(
(si + 1)2 − s2

i

)
+
(
(sj − 1)2 − s2

j

)
=
(
s2

i + 2si + 1 − s2
i

)
+
(
s2

j − 2sj + 1 − s2
j

)
= 2(si − sj + 1)

< 2
(⌈n

α

⌉
− 1 −

⌈n

α

⌉
+ 1

)
= 0,

and hence
∑α

k=1 ν2
k <

∑α
k=1 s2

k. This implies that if x is
not an α-balanced sequence, then

∑α
k=1 s2

k is not minimal,
a contradiction. Thus,

arg max
x∈Z

n
2

A(x)=α

|L1(x)|=arg min
x∈Z

n
2

A(x)=α

α∑
i=1

s2
i

={x ∈ Z
n
2 : x is an α-balanced sequence} .

Lemma 9: Let x(α) be an α-balanced sequence of length n.
Then, ∣∣∣L1

(
x(α)

)∣∣∣ = (n + 1 − α)(n − 1) + 2

− k

2

(⌈n

α

⌉
− 1

)(⌈n

α

⌉
− 2

)
− α − k

2

(⌈n

α

⌉
− 2

)(⌈n

α

⌉
− 3

)
,

where k ≡ n (mod α) and 1 ≤ k ≤ α.
Proof: By (5) we have that∣∣∣L1

(
x(α)

)∣∣∣=ρ
(
x(α)

)
· (n−1)+2−

α∑
i=1

(si − 1)(si − 2)
2

,

(8)

and Lemma 7 implies that ρ
(
x(α)

)
= n+1−α. Let k be the

number of entries in the alternating segments profile of x(α)

such that si = �n
α
. Note further that

∑α
i=1 si = n and si ∈

{�n
α
, �n

α
 − 1} for 1 ≤ i ≤ α. Hence,

k
⌈n

α

⌉
+ (α − k)

(⌈n

α

⌉
− 1

)
= n,

which is equivalent to

k = n − α
(⌈n

α

⌉
− 1

)
.

Therefore, k is the value between 1 to α such that
k ≡ n (mod α). Thus, by (8) we have that

∣∣∣L1

(
x(α)

)∣∣∣ = (n + 1 − α)(n − 1) + 2

− k

2

(⌈n

α

⌉
− 1

)(⌈n

α

⌉
− 2

)
− α − k

2

(⌈n

α

⌉
− 2

)(⌈n

α

⌉
− 3

)
.

By Lemma 8 we have that

max
x∈Zn

2

|L1(x)| = max
1≤α≤n

⎧⎪⎨⎪⎩ max
x∈Z

n
2

A(x)=α

|L1(x)|

⎫⎪⎬⎪⎭
= max

1≤α≤n

{∣∣∣L1

(
x(α)

)∣∣∣} ,

and the size
∣∣L1

(
x(α)

)∣∣ for 1 ≤ α ≤ n is given in Lemma 9.
Hence, our goal is to find the set

A � arg max
1≤α≤n

{∣∣∣L1

(
x(α)

)∣∣∣} ,

i.e., for which values of α the maximum of |L1

(
x(α)

) | is
obtained. The answer for this question is given in the following
lemma whose proof can be found in the Appendix.

Lemma 10: Let x(α) be an α-balanced sequence of
length n > 1. Then,∣∣∣L1

(
x(α)

)∣∣∣ >
∣∣∣L1

(
x(α−1)

)∣∣∣
if and only if n > 2(α − 1)α.
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Theorem 8: If n is an integer, then

A = arg min
α∈N

{∣∣∣∣α − 1
2
√

1 + 2n

∣∣∣∣} ,

and the maximum FLL 1-balls are the balls centered at the
α-balanced sequences of length n, for α ∈ A. In addition, the
size of the maximum FLL 1-balls is given by

max
x∈Zn

2

{|L1(x)|} = n2 − nα + α + 1

− k

2

(⌈n

α

⌉
− 1

)(⌈n

α

⌉
− 2

)
− α − k

2

(⌈n

α

⌉
− 2

)(⌈n

α

⌉
− 3

)
,

where k ≡ n (mod α) and 1 ≤ k ≤ α.
Proof: Let n be a positive integer. By Lemma 8 we have

that

max
x∈Zn

2

|L1(x)| = max
1≤α≤n

⎧⎪⎨⎪⎩ max
x∈Z

n
2

A(x)=α

|L1(x)|

⎫⎪⎬⎪⎭
= max

1≤α≤n

{∣∣∣L1

(
x(α)

)∣∣∣} .

If there exists an integer α, 1 ≤ α ≤ n such that
n = 2(α − 1)α, then by Lemma 9,∣∣∣L1

(
x(α)

)∣∣∣ =
∣∣∣L1

(
x(α−1)

)∣∣∣ .
Additionally, by Lemma 10, for n > 2(α − 1)α we have that∣∣∣L1

(
x(α)

)∣∣∣ >
∣∣∣L1

(
x(α−1)

)∣∣∣ ,
which implies that

∣∣L1

(
x(α)

)∣∣ is maximized for α∈{1, . . . , n}
such that

2α (α + 1) ≥ n ≥ 2 (α − 1)α. (9)

To find α we have to solve the two quadratic equations
from (9). The solution for α must satisfies both equations and
hence − 1

2 +
√

1+2n
2 ≤ α ≤ 1

2 +
√

1+2n
2 . Namely, for α ∈ A,

max
x∈Zn

2

{|L1(x)|} =
∣∣∣L1

(
x(α)

)∣∣∣ .
The size of L1

(
x(α)

)
was derived in Lemma 9, which

completes the proof.
Corollary 6: If n is an integer, then

max
x∈Zn

2

{|L1(x)|} = n2 −
√

2n
3
2 + O(n).

Proof: By Theorem 8 we have that maxx∈Zn
2
{|L1(x)|} =∣∣L1

(
x(α)

)∣∣ for α =
[
1
2

√
1 + 2n

]
. By Lemma 9 we have that∣∣∣L1

(
x(α)

)∣∣∣ = (n + 1 − α)(n − 1) + 2

− k

2

(⌈n

α

⌉
− 1

)(⌈n

α

⌉
− 2

)
− α − k

2

(⌈n

α

⌉
− 2

)(⌈n

α

⌉
− 3

)
.

Notice that
1
2
(√

1 + 2n − 2
) ≤ α ≤ 1

2
(√

1 + 2n + 2
)

and hence, α =
√

1+2n
2 + �1, where |�1| ≤ 1. Similarly,

2n√
1 + 2n + 2

≤
⌈

2n√
1 + 2n + 2

⌉
≤
⌈n

α

⌉
≤
⌈

2n√
1 + 2n − 2

⌉
≤ 2n√

1 + 2n − 2
+ 1.

which implies that ⌈n

α

⌉
=

2n√
1 + 2n

+ �2,

where by simple calculation we can find that |�2| ≤ 3. Thus,

max
x∈Zn

2

|L1(x)| = (n+1−α)(n−1)+2− k

2

��n

α

�
−1

���n

α

�
− 2

�

− α − k

2

��n

α

�
− 2

���n

α

�
− 3

�
= (n + 1 − α)(n − 1) + 2 − α

2

��n

α

�
− 2

���n

α

�
− 3

�
− k

2

��n

α

�
− 2

���n

α

�
− 1 −

�n

α

�
+ 3

�
= (n + 1 − α)(n − 1) + 2 − k

��n

α

�
− 2

�
− α

2

��n

α

�
− 2

���n

α

�
− 3

�

= (n + 1 −
√

1 + 2n

2
− ε1)(n − 1) + 2

− k

�
2n√

1 + 2n
+ ε2 − 2

�

−
√

1+2n+2ε1
4

�
2n√
1+2n

+ε2 − 2

��
2n√
1+2n

+ε2 − 3

�

=n2 + 1−
�√

1 + 2n

2
+ε1

�
(n − 1)

−
�

2n√
1+2n

+ε2−2

��
k+

√
1+2n+2ε1

4

�
2n√
1+2n

+ε2−3

��
.

Note that 1 ≤ k ≤ α ≤ 1
2

(√
1 + 2n + 2

)
, which implies that

max
x∈Z

n
2

|L1(x)| = n2 − n
√

1 + 2n

2
− n2

√
1 + 2n

+ O(n)

= n2 −
√

2n
3
2 + O(n).

V. THE EXPECTED SIZE OF AN FLL 1-BALL

Let n and q > 1 be integers and let x ∈ Z
n
q . By (5), for

every x ∈ Z
n
q , we have

|L1(x)|=ρ(x)(n(q − 1) − 1) + 2 −
A(x)∑
i=1

(si − 1)(si − 2)
2

=ρ(x)(nq − n − 1)+2− 1
2

A(x)∑
i=1

s2
i +

3
2

A(x)∑
i=1

si −A(x).

Thus, the average size of an FLL 1-ball, Ex∈Zn
q

[|L1(x)|], is

E
x∈Zn

q

⎡⎣ρ(x)(n(q − 1) − 1)+2−1
2

A(x)∑
i=1

s2
i +

3
2

A(x)∑
i=1

si−A(x)

⎤⎦ .

(10)
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Based on (10) and the linearity of the expectation, in order
to derive the expected size of an FLL 1-ball, in the following
lemmas and claims we analyze the expected values of
ρ(x), A(x),

∑A(x)
i=1 si, and

∑A(x)
i=1 s2

i .
Lemma 11: For any two integers n, q > 1,

E
x∈Zn

q

⎡⎣A(x)∑
i=1

si

⎤⎦ = n + (n − 2) · (q − 1)(q − 2)
q2

.

Proof: If x ∈ Z
n
q , then by the definition of an alternating

segment, we have that for each 1 ≤ i ≤ n, xi is contained in
at least one maximal alternating segment and not more than
two maximal alternating segments. Hence,

A(x)∑
i=1

si = n + ζ(x), (11)

where ζ(x) denotes the number of entries in x which are
contained in exactly two alternating segments. Define, for each
1 ≤ i ≤ n

ζi(x) �
�

1 xi is contained in two maximal alternating segments
0 otherwise

(12)

Thus,

E
x∈Zn

q

⎡⎣A(x)∑
i=1

si

⎤⎦ = n + E
x∈Zn

q

[ζ(x)] = n +
1
qn

∑
x∈Zn

q

ζ(x)

= n +
1
qn

∑
x∈Zn

q

n∑
i=1

ζi(x)

= n +
1
qn

n∑
i=1

∑
x∈Zn

q

ζi(x).

Clearly, if i ∈ {1, n} then ζi(x) = 0 for all x ∈ Z
n
q .

Otherwise, ζi(x) = 1 if and only if xi−1, xi and xi+1

are all different. Therefore, for 2 ≤ i ≤ n − 1, there are(
q
3

) · 3! distinct ways to select values for xi−1, xi, and xi+1

and qn−3 distinct ways to select values for the other entries
of x. That is,

E
x∈Zn

q

⎡⎣A(x)∑
i=1

si

⎤⎦ = n +
1
qn

n∑
i=1

∑
x∈Zn

q

ζi(x)

= n +
1
qn

n−1∑
i=2

(
q

3

)
3!qn−3

= n + (n − 2) · (q − 1)(q − 2)
q2

.

Corollary 7: For q = 2, we have that

E
x∈Zn

2

⎡⎣A(x)∑
i=1

si

⎤⎦ = n.

Before we continue with the calculation of the other
expected values, we define the difference vector, which will
be used in the analysis to follow.

Definition 9: For a sequence x = (x1, . . . , xn) ∈ Z
n
q ,

denote by x′ ∈ Z
n−1
q the difference vector of x, which is

defined by

x′ � (x2 − x1, x3 − x2, . . . , xn − xn−1).

Next, we study the expected size of A(x). We start
by presenting a relation between A(x),

∑A(x)
i=1 si, and the

difference vector of x in the next claim.
Claim 10: For integers n and q > 1 and a sequence

x ∈ Z
n
q ,

A(x)∑
i=1

si = n + A(x) − 1 − Zeros(x′),

where Zeros(y) denotes the number of zeros in y.
Proof: By (11) we have that

A(x)∑
i=1

si = n + ζ(x).

Since there are A(x) alternating segments, it follows that there
are A(x) entries that start with a maximal alternating segment.
Denote this set of entries by Ind(x) and let Ind1(x) ⊆ Ind(x)
be the set of entries i ∈ Ind(x) that are contained in exactly
one maximal alternating segment. This implies that

A(x)∑
i=1

si = n + |Ind(x)| − |Ind1(x)|.

Clearly, 1 ∈ Ind1(x). For any other index i ∈ Ind(x), xi is
contained in exactly one maximal alternating segment if and
only if xi = xi−1, i.e., x′

i−1 = 0. Thus,

A(x)∑
i=1

si = n + A(x) − 1 − Zeros(x′).

Using the latter relation, Lemma 11 and the linearity of
expectation, the expected value of A(x) can be derived from
the expected value of Zeros(x′), which is given in the next
claim.

Claim 11: Given two integers n and q > 1, we have that

E
x∈Zn

q

[Zeros(x′)] =
n − 1

q
.

Proof: By the definition of the difference vector, given
y ∈ Z

n−1
q , the sequence x ∈ Σn

q such that x′ = y is defined
uniquely by the selection of the first entry of x from Zq .
Hence, we have that for each y ∈ Z

n−1
q there are exactly

q sequences x ∈ Z
n
q such that x′ = y. In other words, the

function f(x) = x′ is a q to 1 function. Define,

zeroi(y) �
{

1 if yi = 0
0 otherwise.
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It follows that,

E
x∈Zn

q

[Zeros(x′)] = E
y∈Z

n−1
q

[Zeros(y)]

=
1

qn−1

∑
y∈Z

n−1
q

Zeros(y)

=
1

qn−1

∑
y∈Z

n−1
q

n−1∑
i=1

zeroi(y)

=
1

qn−1

n−1∑
i=1

∑
y∈Z

n−1
q

zeroi(y).

For each i, the set {y ∈ Z
n−1
q : yi = 0} is of size

qn−1

q = qn−2. Thus,

E
x∈Zn

q

[Zeros(x′)] =
1

qn−1

n−1∑
i=1

∑
y∈Z

n−1
q

zeroi(y)

=
1

qn−1
·

n−1∑
i=1

qn−2 =
n − 1

q
.

By combining the results from Lemma 11 and Claims 10
and 11 we infer the following result.

Corollary 8: For two integers n and q > 1, the average
number of alternating segments of a sequence x ∈ Z

n
q is

E
x∈Zn

q

[A(x)] = 1 +
(n − 2)(q − 1)(q − 2)

q2
+

n − 1
q

,

and in particular for q = 2

E
x∈Zn

2

[A(x)] =
n + 1

2
.

Proof: For each q > 1 we have that

E
x∈Zn

q

[A(x)] = E
x∈Zn

q

⎡⎣A(x)∑
i=1

si

⎤⎦+ E
x∈Zn

q

[Zeros(x′)]−n + 1

(by Claim 10)

= n +
(n − 2)(q − 1)(q − 2)

q2
+

n − 1
q

−n + 1

(by Lemma 11 and Claim 11)

= 1 +
(n − 2)(q − 1)(q − 2)

q2
+

n − 1
q

.

When q = 2 the latter implies the claim.
The expected size of ρ(x) is given in the next lemma.
Lemma 12: For any two integers n and q > 1, the average

number of runs in a sequence x ∈ Z
n
q is

E
x∈Zn

q

[ρ(x)] = n − n − 1
q

.

Proof: For a sequence x ∈ Z
n
q , the number of runs in x is

equal to the number of entries which begin a run in x. Clearly,
x1 is the beginning of the first run and by the definition of the
difference vector, we have that for each i, 2 ≤ i ≤ n, xi starts
a run if and only if x′

i−1 �= 0. Thus,

ρ(x) = n − Zeros(x′),

and, by Claim 11,

E
x∈Zn

q

[ρ(x)] = n − E
x∈Zn

q

[Zeros(x′)] = n − n − 1
q

.

Considering (10), our current goal is to evaluate
Ex∈Zn

q

[∑A(x)
i=1 s2

i

]
. Denote by χ(s) the number of maximal

alternating segments of length s over all the sequences
x ∈ Z

n
q , i.e.,

χ(s) =
∑

x∈Zn
q

|{1 ≤ i ≤ A(x) si = s}| .

It holds that

E
x∈Zn

q

⎡⎣A(x)∑
i=1

s2
i

⎤⎦ =
1
qn

∑
x∈Zn

2

A(x)∑
i=1

s2
i =

1
qn

n∑
s=1

s2χ(s),

and the values of χ(s) for 1 ≤ s ≤ n are given in the following
lemmas.

Lemma 13: If n and q > 1 are two positive integers then

χ(1) = 2qn−1 + (n − 2)qn−2.

Proof: Let us count the number of maximal alternating
segments of length one over all the sequences x ∈ Z

n
q .

Consider the following two cases:
Case 1 - If the alternating segment is at x1, we can choose
the symbols of x1 in q different ways. Since the alternating
segment’s length is one, i.e., x1 = x2, it follows that the
value of x2 is determined. The symbols at x3, . . . , xn can
be selected in qn−2 different ways. Therefore, there are qn−1

distinct sequences with such an alternating segment. The same
arguments hold for an alternating segment at xn.
Case 2 - If the alternating segment is at index i, where
2 ≤ i ≤ n − 1, it must be that xi−1 = xi = xi+1. The
symbol at xi can be selected in q different ways and the
symbols of xi−1, xi+1 are fixed. In addition. we can set the
symbols of x at indices j /∈ {i− 1, i, i + 1} in qn−3 different
ways. Therefore, there are qn−2 distinct sequences with such
an alternating segment.

Thus,

χ(1) = 2qn−1 + (n − 2)qn−2.

Lemma 14: For any two integers n and q > 1,

χ(n) = q(q − 1).

Proof: Any alternating segment of length n is defined by
the first two symbols which must be distinct (the rest of the
symbols are determined by the first two symbols). There are
q(q − 1) different ways to select the first two symbols and
hence the claim follows.

For 2 ≤ s ≤ n − 1 we need to consider whether
the alternating segment overlaps with the preceding or the
succeeding segment, or not. To this end, we distinguish
between the maximal alternating segments of length s as
follows
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χ1(s) - The number of alternating segments that do not
overlap with the preceding segment and the succeeding
segment.
χ2(s) - The number of alternating segments that overlap
with the preceding segment and the succeeding segment.
χ3(s) - The number of alternating segments that overlap
only with the succeeding segment.
χ4(s) - The number of alternating segments that overlap
only with the preceding segment.

Claim 12: If n, q > 1 are integers and 2 ≤ s ≤ n−1 then,

1) χ1(s) = 2(q − 1)qn−s + (n − s − 1)(q − 1)qn−s−1.

2) χ2(s) = (n − s − 1)(q − 1)(q − 2)2qn−s−1.

3) χ3(s)=(q−1)(q−2)qn−s+(q−1)(q−2)(n−s−1)qn−s−1.

4) χ4(s)=(q−1)(q−2)qn−s+(q−1)(q−2)(n−s−1)qn−s−1.

Proof:
1) To count the number of maximal alternating segments of

length s that do not overlap with the preceding segment
and the succeeding segment we distinguish two distinct
cases.
Case 1 - If the alternating segment is at the beginning
of the sequence, then there are q(q−1) distinct ways to
select the symbols of the segment. The symbol after the
segment is determined (and is equal to the last symbol
of the discussed alternating segment) in order to prevent
an overlap and the other symbols can be chosen in
qn−s−1 different ways. Hence, the number of different
sequences with such segments is (q−1)qn−s. The same
arguments hold for an alternating segment at the end of
the sequence.
Case 2 - If the alternating segment is not at the edges of
the sequence, then there are n−s−1 possible positions to
start the alternating segment, and q(q−1) ways to choose
the two symbols of the alternating segment. The symbol
preceding and the symbol succeeding the alternating
segment are determined. The other symbols can be
chosen in qn−s−2 distinct ways and hence the number of
different alternating segments is (n−s−1)(q−1)qn−s−1.
Thus,

χ1(s) = 2(q − 1)qn−s + (n − s − 1)(q − 1)qn−s−1.

2) A maximal alternating segment that overlaps with the
preceding segment and the succeeding segment can not
be at the sequence edges. Hence, there are n − s − 1
possible positions to start the alternating segment and
the symbols of the segment can be chosen in q(q − 1)
different ways. In order to overlap with the preceding
(succeeding, respectively) segment, the symbol before
(after, respectively) the segment must be different from
the two symbols of the segment. Therefore, there are
(q − 2)2 options to choose the symbol before and the
symbol after the segment. In addition, the rest of the
sequence can be chosen in qn−s−2 different ways and
hence

χ2(s) = (n − s − 1)(q − 1)(q − 2)2qn−s−1.

3) Since the alternating segment must intersect with the
succeeding segment, it can not be the last alternating
segment, that is, the segment ends at index j < n.
To count the number of maximal alternating segments of
length s that overlap only with the succeeding segment
we consider two distinct cases.
Case 1 - If the alternating segment is at the beginning
of the sequence then there are q(q − 1) different ways
to choose the symbols for it and the symbol after the
segment must be different from the two symbols of
the alternating segment so there are (q − 2) options to
select it. The other symbols can be chosen in qn−s−1

different ways. Hence, the number of different segments
is (q − 1)(q − 2)qn−s.
Case 2 - If the alternating segment does not start at
the beginning of the sequence, since the segment ends
at index j < n, it follows that there are (n − s − 1)
possible locations to start the segment. There are q(q−1)
different ways to select the symbols for the alternating
segment. The symbol before the alternating segment
is determined in order to prevent an overlap with the
previous segment and the symbol after the segment must
be different from the two symbols of the alternating
segment and hence there are (q − 2) ways to choose it.
The other symbols can be chosen in qn−s−2 different
ways and hence the number of different segments is
qn−s−1(q − 1)(q − 2)(n − s − 1).
Thus,

χ3(s)=(q−1)(q−2)qn−s+(q−1)(q−2)(n−s−1)qn−s−1.

4) Clearly, the number of maximal alternating segments of
length s that overlap only with the succeeding segment
is equal to the number alternating segments of length s
that overlap only with the preceding segment.

Lemma 15: In n, q > 1 are integers and 2 ≤ s ≤ n−1 then

χ(s) = 2(q − 1)2qn−s + (n − s − 1)(q − 1)3qn−s−1.

Proof: By Claim 12,

χ(s) = χ1(s) + χ2(s) + χ3(s) + χ4(s)
= 2(q − 1)qn−s + (n − s − 1)(q − 1)qn−s−1

+ (n − s − 1)(q − 1)(q − 2)2qn−s−1

+ 2(q − 1)(q − 2)qn−s

+ 2(n − s − 1)(q − 1)(q − 2)qn−s−1

= 2(q − 1)2qn−s

+ (n − s − 1)(q−1)qn−s−1
(
1+(q − 2)2+2(q−2)

)
= 2(q − 1)2qn−s

+ (n − s − 1)(q − 1)qn−s−1
(
q2 − 2q + 1)

)
= 2(q − 1)2qn−s + (n − s − 1)(q − 1)3qn−s−1.
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Lemma 16: If n, q > 1 are integers then,

E
x∈Zn

q

⎡⎣A(x)∑
i=1

s2
i

⎤⎦ =
n(4q2 − 3q + 2)

q2
+

6q − 4
q2

− 4 − 2
q − 1

(
1 − 1

qn

)
.

Proof: We have that

E
x∈Zn

q

⎡⎣A(x)∑
i=1

s2
i

⎤⎦ =
1
qn

∑
x∈Zn

q

A(x)∑
i=1

s2
i =

1
qn

n∑
s=1

s2χ(s)

=
χ(1)
qn

+
n2χ(n)

qn
+

1
qn

n−1∑
s=2

s2χ(s).

Let us first calculate
∑n−1

s=2 s2χ(s). By Lemma 15,
n−1�
s=2

s2χ(s) =

n−1�
s=2

s2 	2(q−1)2qn−s+(n−s−1)(q−1)3qn−s−1


= 2(q − 1)2
n−1�
s=2

s2qn−s

+ (q − 1)3
n−1�
s=2

(n − s − 1)s2qn−s−1.

It can be verified that
n−1∑
s=2

s2χ(s) =
2q3−q3n2(q−1)2+qn(2 − 2q(3 + q(2q − 3)))

(q − 1)q2

+
qnn(q − 1)(1 + q(4q − 3))

(q − 1)q2

and after rearranging the latter, we obtain that
n−1∑
s=2

s2χ(s) = nqn−2(4q2 − 3q + 1) − n2q(q − 1)

− 2qn−2 · (2q − 1)(q2 − q + 1)
(q − 1)

+
2

q − 1
.

Hence,

E
x∈Zn

q

⎡⎣A(x)∑
i=1

s2
i

⎤⎦ =
χ(1)
qn

+
n2χ(n)

qn
+

1
qn

n−1∑
s=2

s2χ(s)

=
2qn−1 + (n − 2)qn−2

qn
+

n2q(q − 1)
qn

+
nqn−2(4q2 − 3q + 1)

qn
− n2q(q − 1)

qn

− 2qn−2· (2q− 1)(q2−q+1)
qn(q−1)

+
2

qn(q−1)

=
n(4q2 − 3q + 2)

q2
+

2
q
− 2

q2

− 2(2q − 1)(q2 − q + 1)
q2(q − 1)

+
2

qn(q − 1)

=
n(4q2 − 3q + 2)

q2
+

6q − 4
q2

− 4

− 2
q − 1

(
1 − 1

qn

)
.

Theorem 13: If n, q > 1 are integers, then

E
x∈Zn

q

[|L1(x)|] = n2

(
q +

1
q
− 2

)
− n

q
− (q − 1)(q − 2)

q2

+ 3 − 3
q

+
2
q2

+
qn − 1

qn(q − 1)
.

Proof: By (10) we have that

E
x∈Zn

q

[|L1(x)|]=(nq−n − 1) E
x∈Zn

q

[ρ(x)]+2

− 1

2
E

x∈Zn
q

�
�A(x)�

i=1

s2
i



�+ 3

2
E

x∈Zn
q

�
�A(x)�

i=1

si



�−E

x∈Zn
q

[A(x)] .

Using Corollary 8 and Lemmas 11, 12, and 16 we infer that

E
x∈Zn

q

[|L1(x)|] = (nq − n − 1)
(

n − n − 1
q

)
+ 2

− 1
2

(
n(4q2−3q+2)

q2
+

6q−4
q2

−4− 2
q−1

(
1− 1

qn

))
+

3
2

(
n+(n−2) · (q−1)(q−2)

q2

)
− 1 − (n − 2)(q − 1)(q − 2)

q2
− n − 1

q

= n2

(
q +

1
q
− 2

)
− n

q
− (q − 1)(q − 2)

q2
+ 3 − 3

q

+
2
q2

+
qn − 1

qn(q − 1)
.

VI. BINARY ANTICODES WITH DIAMETER ONE

Before presenting the analysis of the anticodes under the
FLL metric, we state the following lemma, which was proven
in [23, Sections 3 and 5] and will be used in some of the
proofs in this section.

Lemma 17: If x, y ∈ Z
n
2 are distinct words, then

|D1(x) ∩ D1(y)| ≤ 2 and |I1(x) ∩ I1(y)| ≤ 2.

Definition 14: An anticode of diameter t in Z
n
q is a subset

A ⊆ Z
n
q such that for any x, x′ ∈ A, d�(x, x′) ≤ t. We say

that A is a maximal anticode if there is no other anticode of
diameter t in Z

n
q which contains A.

Next, we present tight lower and upper bounds on the size of
maximal binary anticodes of diameter one in the FLL metric.
To prove these bounds we need some useful properties of
anticodes with diameter one in the FLL metric.

Lemma 18: If an anticode A of diameter one contains three
distinct words with the suffix 00 then there is at most one word
in A with the suffix 01.

Proof: Let a, a′, a′′ ∈ A be three words with the suffix 00
and assume to the contrary that there exist two distinct words
b, b′ ∈ A with the suffix 01. Let y ∈ LCS(a, b); by
Corollary 1 the length of y is n − 1 and since a ends
with 00, y must end with 0 which implies that y = b[1,n−1].
By the same arguments y ∈ LCS(b, a′) and y ∈ LCS(b, a′′).
Similarly,

y′ = b′[1,n−1] ∈ LCS(b′, a, a′, a′′).
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Hence, a, a′, a′′ ∈ I1(y) ∩ I1(y′) which is a contradiction
to Lemma 17. Thus, A contains at most one word with the
suffix 01.

Lemma 19: If an anticode A of diameter one contains three
distinct words with the suffix 01, then there is at most one
word in A with the suffix 00.

Proof: Let a, a′, a′′ ∈ A be three words with the suffix 01
and assume to the contrary that there exist two distinct
words b, b′ ∈ A with the suffix 00. For y ∈ LCS(a, b),
by Corollary 1 the length of y is n − 1 and since b ends
with 00, y must end with 0 which implies that y = a[1,n−1].
By the same arguments y ∈ LCS(a, b′). Similarly,

y′ = a′
[1,n−1] ∈ LCS(a′, b, b′)

y′′ = a′′
[1,n−1] ∈ LCS(a′′, b, b′).

Hence, y, y′, y′′ ∈ D1(b) ∩ D1(b′) which is a contradiction
to Lemma 17. Thus, A contains at most one word with the
suffix 00.

Lemma 20: Let A be an anticode of diameter one.
If a, a′ ∈ A are two distinct words that end with 00 and
b, b′ ∈ A are two distinct words that end with 01, then
a[1,n−1] �= b[1,n−1] or a′

[1,n−1] �= b′[1,n−1].
Proof: Assume to the contrary that there exist

a, a′, b, b′ ∈ A such that a[1,n−1] = b[1,n−1] = y0 and
a′

[1,n−1] = b′[1,n−1] = y′0, a, a′ end with 00 and b, b′ end
with 01. Let

a = a1 a2 . . . an−2 0 0 = y 0 0
a′ = a′

1 a′
2 . . . a′

n−2 0 0 = y′ 0 0
b = a1 a2 . . . an−2 0 1 = y 0 1
b′ = a′

1 a′
2 . . . a′

n−2 0 1 = y′ 0 1.

Notice that since the FLL distance between any two words
in A is one, it follows that the Hamming weight of any
two words can differ by at most one, which implies that
wt(y) = wt(y′) (by considering the pairs a, b′ and a′, b).
Clearly, y0 ∈ LCS(a′, b) which implies that a′ can be
obtained from b by deleting the last 1 of b and then inserting 0
into the LCS. Hence, there exists an index 0 ≤ j ≤ n−2 such
that

a1a2 . . . aj0aj+1 . . . an−20 = a′
1a

′
2 . . . a′

ja
′
j+1 . . . a′

n−200.
(13)

Similarly, a can be obtained from b′, i.e., there exists an index
0 ≤ i ≤ n − 2 such that

a′
1a

′
2 . . . a′

i0a′
i+1 . . . a′

n−20 = a1a2 . . . aiai+1 . . . an−200.
(14)

Assume w.l.o.g. that i ≤ j. Equation (13) implies that ar = ar′

for 1 ≤ r ≤ j. In addition, an−2 = 0 by (13) and a′
n−2 = 0

by (14). By assigning an−2 = a′
n−2 = 0 into (13) and (14) we

obtain that an−3 = a′
n−3 = 0. Repeating this process implies

that ar = ar′ = 0 for j + 1 ≤ r ≤ n − 2. Thus, we have that
y = y′ which is a contradiction.

Definition 15: For an anticode A ⊆ Z
n
2 , the puncturing

of A in the n-th coordinate, A′, is defined by

A′ �
{
a[1,n−1] a ∈ A} .

Lemma 21: Let A ⊆ Z
n
2 be an anticode of diameter one.

If the last symbol in all the words in A is the same symbol
σ ∈ Z2, then A′ is an anticode of diameter one and |A′| = |A|.

Proof: Let a, b ∈ A be two different words and let
y ∈ LCS(a[1,n−1], b[1,n−1]). By (6), LCS(a, b) ≤ |y|+1 and
since d�(a, b) = 1, Corollary 1 implies that |y| ≥ n − 2 and
that

d�(a[1,n−1], b[1,n−1]) ≤ 1.

Hence, A is an anticode of diameter one. Since any two
distinct words a, b ∈ A end with the symbol σ, it follows
that a[1,n−1] �= b[1,n−1] and thus |A| = |A′|.

Lemma 22: Let A be an anticode of diameter one. If the
suffix of each word in A is either 01 or 10, then A′ is an
anticode of diameter one and |A′| = |A|.

Proof: Let a, b ∈ A be two different words and let
y ∈ LCS(a[1,n−1], b[1,n−1]). By (6), LCS(a, b) ≤ |y|+1 and
since d�(a, b) = 1, it follows that |y| ≥ n − 2 and that

d�(a[1,n−1], b[1,n−1]) ≤ 1.

Hence, A′ is an anticode of diameter one. If a and b end
with the same symbol σ ∈ {0, 1}, then a[1,n−1] �= b[1,n−1].
Otherwise, one of the words has the suffix 01 and the other
has the suffix 10. That is, an−1 �= bn−1 and therefore
a[1,n−1] �= b[1,n−1] and thus, |A′| = |A|.

A. Upper Bound

Theorem 16: Let n > 1 be an integer and let A ⊆ Z
n
2 be

a maximal anticode of diameter one. Then, |A| ≤ n + 1, and
there exists a maximal anticode with exactly n+1 codewords.

Proof: Since two words x, y such that x ends with 00 and
y ends with 11 are at FLL distance at least 2, w.l.o.g. assume
that A does not contain codewords that end with 11. It is easy
to verify that the theorem holds for n ∈ {2, 3, 4}. Assume
that the theorem does not hold and let n∗ > 4 be the smallest
integer such that there exists an anticode A ⊆ Z

n∗
2 such that

|A| = n∗ + 2. Since there are only three possible options for
the last two symbols of codewords in A (00, 01, or 10) and
|A| ≥ 7, it follows that there exist three different codewords
in A with the same suffix of two symbols.
Case 1 - Assume x, y, z ∈ A are three different words
with the suffix 00. By Lemma 18, there exists at most one
codeword in A with the suffix 01 and since A does not
contain codewords with the suffix 11, there exists at most one
codeword in A that ends with the symbol 1. That is, there exist
at least n∗ + 1 codewords with 0 as the last symbol. Denote
such a set with n∗ + 1 codewords by A1. As a subset of the
anticode A, A1 is also an anticode and hence by Lemma 21,
A′

1 is an anticode of length n∗ − 1 and size n∗ + 1 which is
a contradiction to the minimality of n∗.
Case 2 - Assume x, y, z ∈ A are three different words
with the suffix 01. By Lemma 19, there exists at most one
codeword in A with the suffix 00 and since A does not contain
codewords with the suffix 11 there exist n∗+1 codewords that
end with either 01 or 10. Denote this set of n∗ +1 codewords
as A1. As a subset of the anticode A, A1 is also an anticode
and hence by Lemma 22, A′

1 is an anticode of length n∗ −
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1 and size n∗ + 1 which is a contradiction to the minimality
of n∗.
Case 3 - Assume x, y, z ∈ A are three different words
with the suffix 10. By the previous two cases, there exist at
most two codewords in A with the suffix 00 and at most two
codewords with the suffix 01. Since there are no codewords
with the suffix 11, it follows that the number of words that
end with 1 is at most two. If there exist at most one codeword
in A that ends with 1, then there are n∗ + 1 codewords
in A that end with 0 and as in the first case, this leads to
a contradiction. Otherwise there are exactly two codewords
in A with the suffix 01. If there are less than two codewords
with the suffix 00, then, the number of codewords with suffixes
01 and 10 is at least n∗ + 1 and similarly to Case 2, this is
a contradiction to the minimality of n∗. Hence, there exist
exactly two codewords in A with the suffix 00. There are
exactly n∗−2 codewords in A with the suffix 10 and two more
codewords with the suffix 01. By Lemma 22 the words in A′

that were obtained from these n∗ codewords are all different
and have FLL distance one from each other. In addition,
by Lemma 20, the prefix of length n∗ − 1 of at least one of
the codewords that end with 00 is different from the prefixes
of length n∗ − 1 of the codewords that end with 01. This
prefix also differs from the prefixes of the codewords that end
with 10. Therefore, A′ is an anticode with n∗ + 1 different
codewords which is a contradiction to the minimality of n∗.

Note that the set A = {a ∈ Z
n
2 wt(a) ≤ 1} is an anticode

of diameter one with exactly n + 1 codewords. Thus, the
maximum size of an anticode of diameter one is n + 1.

B. Lower Bound

Theorem 17: Let n > 2 be a positive integer and let
A ⊆ Z

n
2 be a maximal anticode of diameter one, then

|A| ≥ 4 and there exists a maximal anticode with exactly
4 codewords.

Proof: For n = 3 the maximal anticodes are

A1 = {000, 001, 010, 100} A2 = {001, 010, 100, 101}
A3 = {001, 010, 011, 101} A4 = {010, 011, 101, 110}
A5 = {011, 101, 110, 111} A6 = {010, 100, 101, 110}
and all of them have size 4 = n+1. Assume that the theorem
does not hold and let n∗ > 3 be the smallest integer such
that there exists a maximal anticode A ⊆ Z

n∗
2 with less than

four codewords. For each x ∈ Z
n∗
2 there exists a sequence

y ∈ Z
n∗
2 such that d�(x, y) = 1 and hence |A| > 1.

If A = {x, y} ⊆ Z
n∗
2 by the definition of an anticode

d�(x, y) = 1 and LCS(x, y) = n − 1. For z ∈ LCS(x, y),
by (2), the insertion ball of radius one centered at z contains
n∗ − 1 > 2 codewords in addition to x and y and each of
them can be added into A. Hence, A is an anticode of diameter
one with three codewords. We will prove that there exists a
word that can be added into A which is a contradiction to the
maximality of A. Consider the following cases:
Case 1 - If all the codewords in A have the same last symbol
σ ∈ Z2, then by Lemma 21, A′ ⊆ Z

n∗−1
2 , is an anticode of

diameter one that contains three codewords. Since n∗ is the
smallest integer for which there exists a maximal anticode with
less than four codewords, A′ is not maximal. That is, there

exists a word x′ ∈ Z
n∗−1
2 such that A′ ∪ {x′} is an anticode

of diameter one. It can be readily verified that x′σ /∈ A and
that A ∪ {x′σ} is an anticode of diameter one which is a
contradiction to the maximality of A.
Case 2 - If all the codewords in A have the same first symbol
σ ∈ Z2 then a contradiction is obtained by symmetrical
arguments to those presented in Case 1.
Case 3 - Assume all the words in A neither have the same
first symbol nor the same last symbol. Let |A| = {x, y, z} and
assume w.l.o.g. that x and y are codewords that end with 0 and
that z ends with 1. If |A′| = 3, then z[1,n∗−1] �= x[1,n∗−1]

and z[1,n∗−1] �= y[1,n∗−1]. Hence the word z[1,n∗−1]0 is not
in A and it is easy to verify that it has distance one from
each codeword in A, which is a contradiction. Otherwise,
since x[1,n∗−1] �= y[1,n∗−1], it must hold that z[1,n∗−1] is
equal either to x[1,n∗−1] or to y[1,n∗−1]. Assume w.l.o.g. that
z[1,n∗−1] = x[1,n∗−1], then x and z have the same first
symbol σ and hence y must begin with σ = 1− σ. The three
codewords can be described as follows:

x = σx2x3 . . . xn∗−10
y = σy2y3 . . . yn∗−10
z = σx2x3 . . . xn∗−11.

Since y and z have different first and last symbols, their LCS
must be equal to the suffix of length n∗ − 1 of one word and
to the prefix of length n∗ − 1 of the other word. If

z[1,n∗−1] = σa2a3 . . . an∗−1 ∈ LCS(y, z),

then z[1,n∗−1] is a common LCS of the three codewords x, y,
and z and hence any word from I1(z[1,n∗−1]) has distance
one from all the words in A. Since, by (2),

|I1(z[1,n∗−1])| = n∗ + 1 ≥ 4,

there is a word different from x, y and z that can be added
into A. In the other case,

σy2y3 . . . yn∗−1 = y[1,n−1] = z[2,n]

= x2x3 . . . xn∗−11 ∈ LCS(y, z)

and hence the codewords x and z can be written as

x = σσy2y3 . . . yn∗−20
z = σσy2y3 . . . yn∗−2yn∗−1

and the word

w = σσy2y3 . . . yn∗−10

is a common SCS of x, y, and z. If ρ(w) > 3 then there is
a word in D1(w) that is different from x, y, and z that can
be added into A, which is again a contradiction. Otherwise,
since the first two symbols of w are different and the last two
symbols are also different, it holds that ρ(w) = 3. It is easy
to verify that

A = {0 11 . . .1︸ ︷︷ ︸
n∗−2 times

0, 0 11 . . . 1︸ ︷︷ ︸
n∗−1 times

, 11 . . . 1︸ ︷︷ ︸
n∗−1 times

0}

and that 11 . . . 1︸ ︷︷ ︸
n∗−2 times

01 can be added into A, which is a

contradiction to the minimality of A. To see that the given
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bound is tight, one can simply consider the set of codewords
that consist from the binary representation of length n∗ of the
numbers 2, 3, 5, 6 that is, the set

A = {0 . . . 0︸ ︷︷ ︸
n∗−3

010, 0 . . . 0︸ ︷︷ ︸
n∗−3

011, 0 . . . 0︸ ︷︷ ︸
n∗−3

101, 0 . . . 0︸ ︷︷ ︸
n∗−3

110}

and verify that it is indeed a maximal anticode of diameter
one.

VII. CONCLUSION

In this paper we studied the size of balls with radius one
and the anticodes of diameter one under the FLL metric.
In particular we give explicit expressions for the maximum
size of a ball with radius one and the minimum size of a
ball of any given radius in the FLL metric over Zq . We also
found the average size of a 1-ball in the FLL metric. Finally,
we considered the related concept of anticode in the FLL
distance and we found that the maximum and minimum size
of a binary maximal anticode of diameter one are n+1 and 4,
respectively. The latter can be extended to a non-binary
alphabet and while the minimum size of a maximal anticode
with diameter one is 4 for any alphabet size q, the maximum
size of a maximal anticode with diameter one is n(q− 1)+1.
Recently, based on these results, G. Wang and Q. Wang [36]
extended the analysis of 1-FLL balls by proving that the size
of the 1-FLL balls is highly concentrated around its mean
using Azuma’s inequality [1]. A future direction is to study the
maximum size of FLL balls for larger radii, and in particular
for radius two. Based on a computer search, it appears that the
maximum balls are again centered at α-balanced sequences,
however, understanding the value of α for this case is more
challenging. For example,

• for n = 16, the maximum ball is centered at

x = 0101101001011010,

which is a 4-balanced sequence for which
|L2(x)| = 4, 513.

• for n = 20, the maximum ball is centered at

x = 01010010100101001010,

which is a 4-balanced sequence for which
|L2(x)| = 12, 759.

• for n = 25, the maximum ball is centered at

x = 0101001010010100101001010,

which is a 5-balanced sequence for which
|L2(x)| = 35, 893.

APPENDIX

Proof of Lemma 10

Let α > 1 be some integer and define diff �
∣∣L1

(
x(α)

)∣∣−∣∣L1

(
x(α−1)

)∣∣. We will prove that diff > 0 if and only if
n > 2α(α − 1) by proving that diff > 0 for any n > 2α(α−1)
and that diff < 0 for any α < n < 2α(α − 1). Before
we analyze each case we present different expression for

∣∣L1

(
x(α)

)∣∣ that will be in use within the proof. By Lemma 9,
if n is divisible by α, then∣∣∣L1

(
x(α)

)∣∣∣ = (n+1−α)(n−1) + 2 − α

2

(n

α
− 1

)(n

α
− 2

)
= (n+1−α)(n−1) + 2 − n2

2α
+

3n

2
− α.

Otherwise when n is not divisible by α, we have that⌈
n
α

⌉
= n−kα

α + 1 and hence, by Lemma 9,

���L1

�
x(α)

���� = (n+1−α)(n−1)+2 − kα

2

��n

α

�
− 1

���n

α

�
− 2

�
− α − kα

2

��n

α

�
− 2

���n

α

�
− 3

�
= (n+1−α)(n−1)+2−kα

2

�
n − kα

α

��
n − kα

α
−1

�

− α − kα

2

�
n − kα

α
− 1

��
n − kα

α
− 2

�
= (n + 1 − α)(n − 1) + 2

− kα

2

�
n − kα

α
− 1

��
n − kα

α
− n − kα

α
+ 2

�

− α

2

�
n − kα

α
− 1

��
n − kα

α
− 2

�

= (n + 1 − α)(n − 1) + 2 − kα

�
n − kα

α
− 1

�

− α

2

�
n − kα

α
− 1

��
n − kα

α
− 2

�

= (n+1−α)(n−1)+2−
�

n−kα

α
−1

��
kα+

n−kα

2
−α

�

=(n+1−α)(n−1)+2 − (n − kα−α)(n+kα−2α)

2α

=(n+1−α)(n−1)+2 − n2

2α
+

3n

2
+

k2
α

2α
− kα

2
− α.

Hence, by abuse of notation, if we let 0 ≤ kα ≤ α − 1 we
have that∣∣∣L1

(
x(α)

)∣∣∣=(n+1−α)(n−1)+2− n2

2α
+

3n

2
+

k2
α

2α
− kα

2
− α,

which implies that

diff = (n + 1 − α)(n − 1) + 2 − n2

2α
+

3n

2
+

k2
α

2α
− kα

2
− α

−(n + 1 − (α − 1))(n − 1) − 2 +
n2

2(α − 1)
− 3n

2

− k2
α−1

2(α − 1)
+

kα−1

2
+ α − 1

=−n + n2

(
1

2(α − 1)
− 1

2α

)
+
(

k2
α

2α
− kα

2

)
+
(

kα−1

2
− k2

α−1

2(α − 1)

)
=

n2

2α(α − 1)
−n+

(
k2

α

2α
− kα

2

)
+
(

kα−1

2
− k2

α−1

2(α − 1)

)
.

Let us consider the following distinct cases for the value of n.
Case 1 - If n = 2α(α − 1) then kα = kα−1 = 0 and

diff =
(2α(α − 1))2

2(α − 1)α
− 2α(α − 1) = 0.
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Case 2 - If n = 2α(α−1)+k for some integer 1 ≤ k ≤ α − 2
then we have that kα = kα−1 = k and

diff =
n2

2α(α − 1)
− n +

(
k2

2α
− k

2

)
+
(

k

2
− k2

2(α − 1)

)
=

n2

2α(α − 1)
− n +

k2

2α
− k2

2(α − 1)

=
n2

2α(α − 1)
− n − k2

2α(α − 1)

=
(2α(α − 1) + k)2

2α(α − 1)
− 2α(α − 1) − k − k2

2α(α − 1)

=2α(α−1)+2k+
k2

2α(α − 1)
−2α(α−1)−k− k2

2α(α−1)
=k > 0.

Case 3 - If n ≥ 2α(α−1)+α−1, then we first note that for

any 0 ≤ kα−1 ≤ α−2 we have that
(

kα−1
2 − k2

α−1
2(α−1)

)
≥ 0 and

hence

diff =
n2

2α(α − 1)
− n+

(
k2

α

2α
− kα

2

)
+
(

kα−1

2
− k2

α−1

2(α − 1)

)
≥ n2

2α(α − 1)
−n+

(
k2

α

2α
− kα

2

)
.

Define f : [0, α − 1] → R by f(x) � x2

2α − x
2 . It is easy to

verify that f has a single minimum point at x = α
2 . Hence,

k2
α

2α
− kα

2
= f(kα) ≥ f

(α

2

)
=

α2

4 · 2α
− α

2
= −α

8

and

diff ≥ n2

2α(α − 1)
−n − α

8
.

It holds that

n2

2α(α − 1)
−n − α

8
≥ 0

if and only if

n ≥ α(α − 1) +
1
2

√
4α4 − 7α3 + 3α2

= α(α − 1) +

√
α4 − 7

4
α3 +

3
4
α2

= α(α − 1) + α

√
α2 − 7

4
α +

3
4

= α(α − 1) + α

√(
α − 3

4

)
(α − 1).

Note that

α

√(
α − 3

4

)
(α − 1) < α

(
α − 3

4

)
,

and additionally, it can be verified that for any α > 1,

2α(α − 1) + (α − 1) ≥ α(α − 1) + α

(
α − 3

4

)
,

and thus,

n ≥ 2α(α − 1) + (α − 1)

> α(α − 1) + α

√(
α − 3

4

)
(α − 1),

which implies that diff > 0.
Case 4 - If n = 2α(α − 1) − k for some integer 1 ≤ k ≤
α− 2 then we have that kα = α− k, kα−1 = α− 1− k, and
thus

diff =
n2

2α(α − 1)
− n +

(
(α − k)2

2α
− α − k

2

)
+
(

α − 1 − k

2
− (α − 1 − k)2

2(α − 1)

)
=

n2

2α(α − 1)
− n +

α2

2α
− 2αk

2α
+

k2

2α

+
α − 1 − k − α + k

2
− (α − 1)2

2(α − 1)

+
2(α − 1)k
2(α − 1)

− k2

2(α − 1)

=
n2

2α(α − 1)
− n +

α

2
−k +

k2

2α
− 1

2

− α − 1
2

+ k − k2

2(α − 1)

=
n2

2α(α − 1)
− n +

k2

2α
− k2

2(α − 1)

=
(2α(α − 1)−k)2

2α(α−1)
− 2α(α−1)+k+

k2

2α
− k2

2(α − 1)

= 2α(α − 1) − 2k +
k2

2α(α − 1)
− 2α(α − 1)

+ k − k2

2α(α − 1)
= −k < 0.

Case 5 - If α ≤ n ≤ 2α(α− 1)− (α− 1) then we first note

that for any 0 ≤ kα ≤ α−1 we have that
(

k2
α

2α − kα

2

)
≤ 0 and

hence

diff =
n2

2α(α − 1)
− n+

(
k2

α

2α
− kα

2

)
+
(

kα−1

2
− k2

α−1

2(α − 1)

)
≤ n2

2α(α − 1)
−n+

(
kα−1

2
− k2

α−1

2(α − 1)

)
.

Define f : [0, α − 2] → R by f(x) � x
2 − x2

2(α−1) . It can be
verified that f has a single maximum point at x = α−1

2 and
hence

kα−1

2
− k2

α−1

2(α − 1)
= f(kα−1) ≤ f

(
α − 1

2

)
=

α − 1
4

− (α − 1)2

8(α − 1)
=

α − 1
8

and

diff ≤ n2

2α(α − 1)
− n +

α − 1
8

.
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It holds that n2

2α(α−1) − n + α−1
8 ≤ 0 if and only if

α(α − 1)−
√

(α − 1)2α(4α − 1)
4

≤ n

≤ α(α − 1) +

√
(α − 1)2α(4α − 1)

4
.

Note that

α(α−1)−
√

(α−1)2α(4α−1)
4

= (α−1)

(
α−

√
α (4α−1)

4

)

=(α−1)

(
α−

√
α

(
α − 1

4

))

≤(α−1)
(

α −
(

α − 1
4

))
≤ α − 1

4
,

and

α(α−1)+

√
(α−1)2α(4α−1)

4
= (α−1)

(
α+

√
α (4α−1)

4

)

=(α−1)

(
α+

√
α

(
α − 1

4

))

≥ (α−1)
(

α +
(

α − 1
4

))
=2α(α − 1) − α − 1

4
,

and since α ≤ n ≤ 2α(α−1)−(α−1), we have that diff < 0 as
required.

Since α is the number of alternating segments in a sequence
of length n, it holds that n ≥ α. In addition, Case 1 states
that for n = 2α(α − 1) we have that diff = 0. Furthermore,
by combining the results from Case 2 and Case 3 we have
that for any n > 2α(α − 1) the value of diff is a positive
number. Similarly Case 4 and Case 5 prove that for any
α ≤ n < 2α(α − 1) the value of diff is negative. Thus,

diff = 0 ⇐⇒ n ≥ 2α(α − 1).
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