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Almost Optimal Construction of Functional Batch
Codes Using Extended Simplex Codes
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Abstract— A functional k-batch code of dimension s consists of
n servers storing linear combinations of s linearly independent
information bits. Any multiset request of size k of linear combi-
nations (or requests) of the information bits can be recovered by
k disjoint subsets of the servers. The goal under this paradigm is
to find the minimum number of servers for given values of s and
k. A recent conjecture states that for any k = 2s−1 requests
the optimal solution requires 2s − 1 servers. This conjecture
is verified for s � 5 but previous work could only show that
codes with n = 2s − 1 servers can support a solution for
k = 2s−2 + 2s−4 +

�
2s/2
√

24

�
requests. This paper reduces this

gap and shows the existence of codes for k = � 5
6
2s−1� − s

requests with the same number of servers. Another construction
in the paper provides a code with n = 2s+1 − 2 servers and
k = 2s requests, which is an optimal result. These constructions
are mainly based on extended Simplex codes and equivalently
provide constructions for parallel Random I/O (RIO) codes.

Index Terms— Batch codes, Simplex codes, codes with avail-
ability, Private Information Retrieval (PIR).

I. INTRODUCTION

MOTIVATED by several applications for load-balancing
in storage and cryptographic protocols, batch codes

were first proposed by Ishai et al. [7]. A batch code encodes a
length-s string x into n strings, where each string corresponds
to a server, such that each batch request of k different bits
(and more generally symbols) from x can be decoded by
reading at most t bits from every server. This decoding process
corresponds to the case of a single-user. There is an extended
variant for batch codes [7] which is intended for a multi-
user application instead of a single-user setting, known as
the multiset batch codes. Such codes have k different users
and each requests a single data item. Thus, the k requests
can be represented as a multiset of the bits since the requests
of different users may be the same, and each server can be
accessed by at most one user.
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A special case of multiset batch codes, referred as primitive
batch codes, is when each server contains only one bit.
The goal of this model is to find, for given s and k, the smallest
n such that a primitive batch code exists. This problem was
considered in several papers; see e.g. [1], [2], [7], [8], [13].
By setting the requests to be a multiset of linear combinations
of the s information bits, a batch code is generalized into a
functional batch code [18]. Again, given s and k, the goal
is to find the smallest n for which a functional k-batch code
exists.

Mathematically speaking, an FB-(n, s, k) functional
k-batch code (and in short FB-(n, s, k) code) of dimension s
consists of n servers storing linear combinations of s linearly
independent information bits. Any multiset of size k of linear
combinations from the linearly independent information bits,
can be recovered by k disjoint subsets of servers. If all the
k linear combinations are the same, then the servers form an
FP -(n, s, k) functional k-Private Information Retrieval (PIR)
code (and in short FP -(n, s, k) code). Clearly, an FP -(n, s, k)
code is a special case of an FB-(n, s, k) code. It was shown
that functional k-batch codes are equivalent to the so-called
linear parallel random I/O (RIO) codes, where RIO codes
were introduced by Sharon and Alrod [10], and their parallel
variation was studied in [11], [12]. Therefore, all the results for
functional k-batch codes of this paper hold also for parallel
RIO codes. If all the k linear combinations are of a single
information bit (rather than linear combinations of information
bits), then the servers form an B-(n, s, k) k-batch code (and
in short B-(n, s, k) code).

The value FP (s, k), B(s, k), FB(s, k) is defined to be the
minimum number of servers required for the existence of
an FP -(n, s, k), B-(n, s, k), FB-(n, s, k) code, respectively.
Several upper and lower bounds can be found in [18] on
these values. Wang et al. [14] showed that for k = 2s−1,
the length of an optimal k-batch code is 2s − 1, that is,
B(s, k = 2s−1) = 2s − 1. They also showed a recursive
decoding algorithm. It was conjectured in [18] that for the
same value of k, the length of an optimal functional batch code
is 2s − 1, that is, FB(s, k = 2s−1) = 2s − 1. Indeed, in [16]
this conjecture was proven for s = 3, 4, and in [18], by using
a computer search, it was verified also for s = 5. However, the
best-known result for s > 5 only provides a construction of
FB-(2s − 1, s, 2s−2 + 2s−4 +

�
2s/2√

24

�
) codes [18]. This paper

significantly improves this result and reduces the gap between
the conjecture statement and the best-known construction.
In particular, a construction of FB-(2s − 1, s, � 56 · 2s−1� − s)
codes is given. To obtain this important result, we first show
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an existence of FB-(2s−1, s, � 34 ·2s−1�) code. Moreover, we
show how to construct FB-(2s + �(3α− 2) · 2s−2�− 1, s, �α ·
2s−1�) codes for all 2/3 � α � 1. Another result that
can be found in [18] states that FP (s, 2s) � 2s+1 − 2.
In this case, the lower bound is the same, i.e., this result
is optimal, see [5]. In this paper we will show that this
optimality holds not only for functional PIR codes but also
for the more challenging case of functional batch codes, that
is, FB(s, 2s) = 2s+1 − 2. Lastly, we show a non-recursive
decoding algorithm for B-(2s, s, k = 2s−1) codes. In fact, this
construction holds not only for k single bit requests (with
respect to k-batch codes) but also for k linear combinations
of requests under some constraint that will be explained in
the paper. All the results in the paper are achieved using a
generator matrix G of an extended Simplex code [3] of length
2s and dimension s, where the matrix’s columns correspond
to the servers of the FB-(n, s, k) code.

There are three reasons we consider the conjectured case
k = 2s − 1 for functional k-batch codes. First, this case has
already been solved for PIR codes, functional PIR codes, and
k-batch codes. Second, it provides a construction for parallel
Random I/O (RIO) codes. Third, this is the case in which
every linear combination of the s information bits is stored in
one of the servers.

The rest of the paper is organized as follows. In Section II,
we formally define functional k-batch codes and summarize
the main results of the paper. In Section III, we show a
construction of FB-(2s + �(3α− 2) · 2s−2�− 1, s, �α · 2s−1�)
for α = 2/3. This result is extended for all 2/3 � α � 1 in
Section IV. In Section V, a construction of FB-(2s+1 −
2, s, 2s) is presented. In Section VI, we present our main
result, i.e., a construction of FB-(2s − 1, s, � 56 · 2s−1� − s)
codes. In Section VII a construction of B-(2s − 1, s, 2s−1) is
presented. Finally, Section VIII concludes the paper.

II. DEFINITIONS

For a positive integer n define [n] = {0, 1, . . . , n − 1}.
All vectors and matrices in the paper are over F2. We fol-
low the definition of functional batch codes as it was first
defined in [18].

Definition 1: A functional k-batch code of length n and
dimension s consists of n servers and s information bits
x0, x1, . . . , xs−1. Each server stores a nontrivial linear combi-
nation of the information bits (which are the coded bits), i.e.,
for all j ∈ [n] exists �j such that the j-th server stores a linear
combination

yj = xi0 + xi1 + · · ·+ xi�j−1 ,

such that i0, i1, . . . , i�j−1 ∈ [s]. For any request of k linear
bit combinations v0, v1, . . . , vk−1 (not necessarily distinct) of
the information bits, there are k pairwise disjoint subsets
R0, R1, . . . , Rk−1 of [n] such that the sum of the linear
combinations in the related servers of Ri, i ∈ [k], is vi, i.e.,�

j∈Ri

yj = vi.

Each such vi will be called a requested bit and each such
subset Ri will be called a recovery set.

Equivalently, a functional k-batch code is a linear code with
an s× n generator matrix

G = [g0, g1, . . . , gn−1]

in F
s×n
2 in which the vector gj has ones in positions

i0, i1, . . . , i�j−1 if and only if the j-th server stores the linear
combination xi0+xi1+· · ·+xi�j−1 . Using this matrix represen-
tation, a functional k-batch code is an s× n generator matrix
G, such that for any k request vectors v0, v1, . . . , vk−1 ∈ F

s
2

(not necessarily distinct), there are k pairwise disjoint subsets
of columns in G, denoted by R0, R1, . . . , Rk−1, such that the
sum of the column vectors whose indices are in Rj is equal to
the request vector vj . The set of all recovery sets Ri, i ∈ [k],
is called a solution for the k request vectors. The sum of the
column vectors whose indices are in Rj will be called the
recovery sum.

A functional k-batch code of length n and dimension s over
F

s
2 is denoted by FB-(n, s, k). Every request of k vectors will

be stored as columns in a matrix M which is called the request
matrix or simply the request.

In Definition 1, we showed both scalar and vector definitions
for k-batch codes, which are equivalent to each other. While
the scalar definition in previous works is the more common
one, the vector definition is used mainly in this work because
of the unique properties of the generator matrices of these
codes.

A k-batch code of length n and dimension s over F
s
2,

is denoted by B-(n, s, k) and is defined similarly to functional
k-batch codes as in Definition 1 except of the fact that
each request vector vj ∈ F

s
2 is a unit vector. A functional

k-PIR code [18] of length n and dimension s, denoted by
FP -(n, s, k), is a special case of FB-(n, s, k) in which all the
request vectors are identical. We first show some preliminary
results on the parameters of FB-(n, s, k) and FP -(n, s, k)
codes which are relevant to our work. For that, another
definition is presented.

Definition 2: Denote by FB(s, k), B(s, k), FP (s, k) the
minimum length n of any FB-(n, s, k), B-(n, s, k),
FP -(n, s, k) code, respectively.

Most of the following results on FB(s, k), B(s, k) and
FP (s, k) can be found in [18], while the result in (c) was
verified for s = 3, 4 in [16].

Theorem 3: For positive integers s and t, the following
properties hold: (a)

1) FP (s, 2s−1) = 2s − 1.
2) FP (st, 2s) � 2t(2s − 1).
3) For s � 5 it holds that FB(s, 2s−1) = 2s − 1.

4) An FB-(2s − 1, s, 2s−2 + 2s−4 +
�

2s/2√
24

�
) code exists.

5) For a fixed k it holds that

lim
s→∞

FB(s, k)
s

� k

log(k + 1)
.

6) B(s, 2s−1) = 2s − 1 [14].
7) B(s, k) = s + Θ(

√
s) for k = 3, 4, 5 [1], [13].

8) B(s, k) = s +O(
√

s log s) for k > 6 [13].
Note that the result from Theorem 3(d) improves upon the

result of FB-(2s − 1, s, 2s−2 + 2s−4 + 1) functional batch
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codes which was derived from a WOM codes construction by
Godlewski [6]. This is the best-known result concerning the
number of queries when the number of information bits is s
and the number of encoded bits is 2s − 1.

The goal of this paper is to improve some of the results
summarized in Theorem 3. The result in (c) holds for s � 5,
and it was conjectured in [18] that it holds for all positive
values of s.

Conjecture 1: [18] For all s > 5, FB(s, 2s−1) = 2s − 1.
The reader can notice the gap between Conjecture 1 and the

result in Theorem 3(d). More precisely, [18] assures that an

FB-(2s−1, s, 2s−2+2s−4+
�

2s/2√
24

�
) code exists, and the goal

is to determine whether an FB-(2s − 1, s, 2s−1) code exists.
This paper takes one more step in establishing this conjecture.
Specifically, the best-known value of the number of requested
bits k is improved for the case of s information bits and
2s − 1 encoded bits. The next theorem summarizes the con-
tributions of this paper.

Theorem 4: For a positive integer s, the following construc-
tions exist: (a)

1) A construction of FB-(2s − 1, s, � 23 · 2s−1�) codes.
2) A construction of

FB-(2s + �(3α− 2) · 2s−2� − 1, s, �α · 2s−1�)
codes where 2/3 � α � 1.

3) A construction of FB-(2s+1 − 2, s, 2s) codes.
4) A construction of FB-(2s − 1, s, � 56 · 2s−1� − s) codes.
We now explain the improvements of the results of

Theorem 4. The construction in Theorem 4(a) improves upon
the result from Theorem 3(d), where the supported number of

requests increases from 1
22s−1 + 2s−4 +

�
2s/2√

24

�
to � 23 · 2s−1�.

Note that by taking α = 2/3 in the result of Theorem 4(b),
we immediately get the result of (a). However, for simplicity
of the proof, we first show the construction for (a) separately,
and afterwards, add its extension. The result of Theorem 4(d)
is based on the result of Theorem 4(a) and improves it to
� 56 · 2s−1� − s requests. Moreover, according to the second
result of Theorem 3(b) if t = 1 then FP (s, 2s) � 2s+1 − 2.
Based on the result in [5] it holds that FP (s, 2s) � 2s+1− 2.
Therefore, FP (s, 2s) = 2s+1 − 2. The construction in
Theorem 4(c) extends this result to functional batch codes
by showing that FB(s, 2s) � 2s+1− 2, and again, combining
the result from [5], it is deduced that FB(s, 2s) = 2s+1 − 2.

A special family of matrices that will be used extensively
in the paper are the generator matrices of extended Simplex
codes [3], as defined next.

Definition 5: A matrix G = [g0, g1, . . . , g2s−1] of order
s × 2s over F2 such that {g0, g1, . . . , g2s−1} = F

s
2 is called

an extended Simplex generator matrix and in short ES-matrix.
We will use ES-matrices as the generator matrices of

the linear codes that will provide the constructions used in
establishing Theorem 4. More specifically, given a linear code
defined by a generator ES-matrix G of order s × n and
a request M of order s × k, we will show an algorithm
that finds a solution for M . This solution will be obtained
by rearranging the columns of G and thereby generating a
new ES-matrix G�. This solution is obtained by showing all

TABLE I

TABLE OF DEFINITIONS AND NOTATIONS

the disjoint recovery sets for the request M , with respect to
indices of columns of G�. Although such a solution is obtained
with respect to G� instead of G, it can be easily adjusted to
G by relabeling the indices of the columns. Thus, any ES-
matrix whose column indices are partitioned to recovery sets
for M provides a solution. Note that ES-matrices store the
all-zero column vector. Such a vector will help us to simplify
the construction of the algorithm and will be removed at the
end of the algorithm.

Definition 6: Let M = [v0, v1, . . . , vn/2−1] be a request
of order s × n/2, where n = 2s. The matrix M has an
extended Simplex solution if there exists an ES-matrix G =
[g0, g1, . . . , gn−1] of order s× n such that for all i ∈ [n/2],

vi = g2i + g2i+1.

In this case, we say that G is an extended Simplex solution
for M .

Next, an example is shown.
Example 1: For s = 3, let

G =

g0 g1 g2 g3 g4 g5 g6 g7� �0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

.

be an ES-matrix. Given a request,

M =

v0 v1 v2 v3� �0 0 0 0
0 0 0 0
1 1 1 1

an extended Simplex solution for this request may be

G� =

g�
0 g�

1 g�
2 g�

3 g�
4 g�

5 g�
6 g�

7� �0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

.

Lastly, for the convenience of the reader, the relevant
notations and terminology that will be used throughout the
paper is summarized in Table I.
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III. A CONSTRUCTION OF FB-(2s − 1, s,
� 23 · 2s−1�) CODES

In this section a construction of FB-(2s − 1, s, � 23 · 2s−1�)
codes is presented. Let the request M be denoted by

M = [v0, v1, . . . , v� 2
3 ·2s−1�−1].

Let e = (0, 0, . . . , 0, 1) ∈ F
s
2 be the unit vector with 1 at

its last index. The solution for the request M will be derived
by using two algorithms as will be presented in this section.
We start with several definitions and tools that will be used in
these algorithms.

Definition 7: Three sets G,B,R ⊆ [2s−1] are called a triple-
set (the good, the bad, and the redundant), and are denoted
by (G,B,R), if the following properties hold,

G ⊆
��2

3
· 2s−1

��
,

B =
��2

3
· 2s−1

��
\ G,

R = [2s−1] \
	
G ∪ B ∪ {2s−1 − 1}



.

Given a matrix M = [v0, v1, . . . , v� 2
3 ·2s−1�−1] of order s ×

� 23 · 2s−1�, the matrixM(G,B,R) = [w0, w1, . . . , w2s−1−1]
of order s × 2s−1 is referred as a triple-matrix of M if it
holds that

wt =

⎧⎪⎨
⎪⎩

vt t ∈ G
vt + e t ∈ B
e t ∈ R

.

Note that, we did not demand anything about the vector
w2s−1−1, i.e., it can be any binary vector of length s. Further-
more, by Definition 7, the set B uniquely defines the triple-set
(G,B,R). We proceed with the following claim.

Claim 1: For any triple-set (G,B,R) if |B| � � 13 · 2s−1�
then |B| � |R|.

The proof of this claim is shown in Appendix A. As men-
tioned above, our strategy is to construct two algorithms.
We start by describing the first one which is the main
algorithm. This algorithm receives as an input the request
M and outputs a set B and an extended Simplex-solution
for some triple-matrix M(G,B,R) of M . Using the matrix
M(G,B,R), it will be shown how to derive the solution for
M . This connection is established in the next lemma. For the
rest of this section we denote n = 2s and for our ease of
notations both of them will be used.

Lemma 8: If there is an extended Simplex solution for
M(G,B,R) such that |B| � � 13 ·2s−1�, then there is a solution
for M = [v0, v1, . . . , v� 2

3 ·2s−1�−1].
Proof: Let the ES-matrix G = [g0, g1, . . . , gn−1] be an

extended Simplex solution for M(G,B,R). Our goal is to
form all disjoint recovery sets Rt for t ∈ G ∪ B = [� 23 ·
2s−1�] for M . Since G is an extended Simplex solution for
M(G,B,R), for all t ∈ [2s−1], it holds that

wt = g2t + g2t+1.

By definition of M(G,B,R)

wt =

⎧⎪⎨
⎪⎩

vt t ∈ G
vt + e t ∈ B
e t ∈ R

.

Thus, if t ∈ G then

vt = wt = g2t + g2t+1,

and each recovery set for vt is of the form Rt = {2t, 2t+1}.
If t ∈ B then

vt + e = wt = g2t + g2t+1,

and if t� ∈ R then

e = wt′ = g2t′ + g2t′+1.

Therefore, for all t ∈ B and t� ∈ R,

vt = g2t + g2t+1 + g2t′ + g2t′+1.

By Claim 1, since |B| � � 13 · 2s−1�, it holds that |B| � |R|.
Thus, for all t ∈ B, each recovery set Rt for vt will have a
different t� ∈ R such that

Rt = {2t, 2t + 1, 2t�, 2t� + 1}.

In Lemma 8, it was shown that obtaining M(G,B,R) which
holds |B| � � 13 · 2s−1� provides a solution for M . Therefore,
if the first algorithm outputs a set B for which |B| � � 13 ·
2s−1�, then the solution for M is easily derived. Otherwise,
the first algorithm outputs a set B such that |B| > � 13 · 2s−1�.
In this case, the second algorithm will be used in order to
reduce the size of the set B to be at most � 13 · 2s−1�. For that,
more definitions are required, and will be presented in the next
section.

A. Graph Definitions

In the two algorithms of the construction, we will use
undirected graphs, simple paths, and simple cycles that will
be defined next. These graphs will be useful to represent the
ES-matrix G in some graph representation and to make some
swap operations on its columns.

Definition 9: An undirected graph or simply a graph will
be denoted by G = (V, E), where V = {u0, u1, . . . , um−1} is
its set of m nodes (vertices) and E ⊆ {{ui, uj} | ui, uj ∈ V }
is its edge set. A finite simple path of length � is a sequence of
distinct edges e0, e1, . . . , e�−1 for which there is a sequence of
vertices ui0 , ui1 , . . . , ui�

such that ej = {uij , uij+1}, j ∈ [�].
A simple cycle is a simple path in which ui0 = ui�

. The
degree of a node ui is the number of edges that are incident
to the node, and will be denoted by deg(ui).

Note that in Definition 9 we did not allow parallel edges,
i.e., different edges which connect between the same two
nodes. By a slight abuse of notation, we will use graphs
in which at most 2 parallel edges are allowed between any
two nodes. That implies that cycles of length 2 may appear
in the graph. In this case, we will use some notations for
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distinguishing between two parallel edges as will be done in
the following definition.

Definition 10: Given an ES-matrix G = [g0, g1, . . . , gn−1],
and a non-zero vector x ∈ F

s
2, denote the x-type graph

Gx(G) = (V, Ex(G)) of G and x such that V = F
s
2 and

a multi-set

Ex(G)=
�
{gi, gi+x} | i ∈ [n]

�
∪
�
{g2t−1, g2t}|t∈ [n/2]

�
.

For all t ∈ [n/2], we say that g2t−1 and g2t are a pair.
An edge {g2t−1, g2t} will be called a pair-type edge and
will be denoted by {g2t−1, g2t}p. An edge {gi, gi + x} will
be called an x-type edge and will be denoted by {gi, gi+x}x.
Note that for any g ∈ V , it holds that deg(g) = 2. Thus, the
graph Gx(G) has a partition of � � 1 disjoint simple cycles,
that will be denoted by Cx(G) = {Ci}�−1

i=0 , where every Ci

is denoted by its set of edges.
For the rest of the paper, when the graph Gx(G) is consid-

ered, it is assumed that x 
= 0. Note that Ex(G) is a multi-set
since in case that g2t−1 = g2t+x, we have two parallel edges
{g2t−1, g2t}p and {g2t−1, g2t}x between g2t−1 and g2t. For
the following definitions assume that G = [g0, g1, . . . , gn−1]
is an ES-matrix of order s× n.

Definition 11: Given an x-type graph Gx(G) such that
x ∈ F

s
2, let gi, gj be two vertices connected by a simple path

Px(gi, gj , G) of length �− 1 in Gx(G) which is denoted by

gi = gs0
− gs1

− · · · − gs�−1
= gj .

The path Px(gi, gj , G) will be called a good-path if the edges
{gs0

, gs1
} and {gs�−2

, gs�−1
} are both x-type edges. For all

gt and gm on Px(gi, gj , G), denote by dPx(gt, gm, G) the
length of the simple sub-path from gt to gm on Px(gi, gj , G).
This length will be called the sub-length from gt to gm

in Px(gi, gj , G). When the graph G will be clear from the
context we will use the notation Px(gi, gj), dPx(gt, gm)
instead of Px(gi, gj , G), dPx(gt, gm, G), respectively.

We next state the following claim.
Claim 2: Given a good-path Px(gi, gj) of length � − 1 in

Gx(G)

gi = gs0
− gs1

− · · · − gs�−1
= gj ,

where x ∈ F
s
2, the following properties hold.

1) The value of � is even.
2) For all m ∈ [�/2 − 1] the edge {gs2m+1

, gs2m+2
}
p

is a
pair-type edge.

3) For all t ∈ [�/2], gs2t
= gs2t+1

+ x.
4) If gi, gj is not a pair, then the pair of gi and the pair

of gj are not in Px(gi, gj).
Proof: We prove this claim as follows.

1) Since Px(gi, gj) is a good-path, by definition the edge
{gs0

, gs1
}x is an x-type edge. We also know that for

all t ∈ [�] it holds that deg(gst
) = 2. Thus, the edge

{gs1
, gs2
}
p

is a pair-type edge, the edge {gs2
, gs3
}x

is an x-type edge, and so on. More formally, for all
t ∈ [�/2] the edge {gs2t

, gs2t+1
}x is an x-type edge

and for all m ∈ [�/2 − 1] the edge {gs2m+1
, gs2m+2

}
p

is a pair-type edge. Since the last edge {gs�−2
, gs�−1

}x

is also an x-type edge, we deduce that �− 1 is odd or
equivalently � is even.

2) The proof of this part holds due to a).
3) In a) we proved that for all t ∈ [�/2] the edge
{gs2t

, gs2t+1
}x is an x-type edge. Thus, by definition

gs2t
= gs2t+1

+ x.
4) Let gm be a pair of gi and we will prove that gm /∈

Px(gi, gj). Note that gm 
= gj and deg(gm) = 2.
Therefore, if gm ∈ Px(gi, gj), then gi has to appear
more than once in Px(gi, gj). This is in contradiction
to the fact that Px(gi, gj) is a simple path.

Another useful property on good-paths in x-type graphs is
proved in the next claim.

Claim 3: If gi, gj is a pair, then there is a good-path
Px(gi, gj) in Gx(G).

Proof: We know that all nodes in Gx(G) are of degree 2.
Therefore, there is a simple cycle in C ∈ Cx(G) including
the edges {gi, gm}x and {gj , gp}x for some m, p ∈ [n], and
the edge {gi, gj}p . By removing the edge {gi, gj}p from C
we get a simple path P starting with the edge {gi, gm}x and
ending with the edge {gj , gp}x. Thus, by definition, P is a
good-path Px(gi, gj).

The next definition will be used for changing the order of
the columns in G.

Definition 12: Let Hs be the set of all ES-matrices of
order s × n. Let Ps ⊆ F

s
2 × F

s
2 be the set of all couples

of column vectors gm, gp of G such that there is a good-
path Px(gm, gp). For every two column vectors gi, gj with a
good-path Px(gi, gj) of length �− 1 in Gx(G)

gi = gs0
− gs1

− · · · − gs�−1
= gj ,

denote the reordering function Fx : Ps × Hs → Hs that
generates an ES-matrix Fx(gi, gj , G) from G by adding x
to every column gsm

, m ∈ [�]. We will use the notation
Fx(gi, gj) for shorthand.

The following claim proves that the function Fx is well
defined.

Claim 4: The matrix Fx(gi, gj) is an ES-matrix of order
s× n.

Proof: Let Px(gi, gj) be a good-path of length �− 1 in
Gx(G) denoted by

gi = gs0
− gs1

− · · · − gs�−1
= gj .

By using the function Fx(gi, gj), the vector x is added to
every column gsm

, m ∈ [�]. In Claim 2(3) it was shown that
for all t ∈ [�/2],

gs2t
= gs2t+1

+ x.

Therefore, adding x to all the columns gsm
, m ∈ [�], is equiv-

alent to swapping the column vectors gs2t
, gs2t+1

for all
t ∈ [�/2] in G. Since after rearranging the columns of G,
it is still an ES-matrix, it is deduced that Fx(gi, gj) is an
ES-matrix.

To better explain these definitions and properties, the fol-
lowing example is presented.
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Fig. 1. The Gx(G) graph. The green edges are the x-type edges and the
dashed edges are the pair-type edges.

Fig. 2. The graph Gx(G′).

Example 2: For s = 3, let G be the following ES-matrix

G =

g0 g1 g2 g3 g4 g5 g6 g7� �0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

.

Let x = (1, 0, 1). The graph Gx(G) will be defined as in
Figure 1. Note that in this case, the graph Gx(G) is partitioned
into two disjoint cycles. While the path g0−g5 is a good-path
between g0 and g5, the path

g0 − g1 − g4 − g5

is not a good-path between g0 and g5. Note that there is no
good-path between g0 and g4. Let Px(g0, g1) be the good-
path between g0 and g1,

g0 − g5 − g4 − g1.

Thus, G� = Fx(g0, g1) is the following ES-matrix

G� =

g�
0 g�

1 g�
2 g�

3 g�
4 g�

5 g�
6 g�

7� �1 0 0 1 1 0 0 1
0 0 1 1 0 0 1 1
1 1 0 0 0 0 1 1
g5 g4 g2 g3 g1 g0 g6 g7

,

with a new graph Gx(G�) as depicted in Figure 2.
The next lemma shows a very important property that will

be used in the construction of the first algorithm. This algo-
rithm will have a routine of � 23 · 2s−1� iterations. In iteration
t � � 23 ·2s−1�, we will modify the order of the column vectors
of G such that only the sums g2t + g2t+1 and gn−2 + gn−1

will be changed by x ∈ F
s
2, and all other sums g2p + g2p+1

where p 
= t, n/2 − 1 will remain the same. The goal on the
t-th iteration is to get that

g2t + g2t+1 = vt + 1te,

where 1t ∈ {0, 1} and remember that e = (0, 0, . . . ,
0, 1) ∈ F

s
2.

Lemma 13: Let Px(gr1
, gr2

) be a good-path in Gx(G)
where x ∈ F

s
2 and r1, r2 ∈ [n] such that gr1

, gr2
is not a

pair. If r1 ∈ {2i, 2i + 1}, r2 ∈ {2j, 2j + 1} (and note that
i 
= j), then, the ES-matrix

G� = Fx(gr1
, gr2

) = [g�
0, g

�
1, . . . , g

�
n−1]

satisfies the following equalities

g�
2p + g�

2p+1 = g2p + g2p+1 + x p ∈ {i, j},
g�

2p + g�
2p+1 = g2p + g2p+1 p /∈ {i, j},

where p ∈ [n/2].
Proof: We prove this lemma only for r1 = 2i and r2 = 2j

where i < j while all other cases are proved similarly. Suppose
that the good-path Px(g2i, g2j) is of length �− 1 and denote
it by

g2i = gs0
− gs1

− · · · − gs�−1
= g2j .

Let S be the set S = {s0, s1, . . . , s�−1}. Let

G� = [g�
0, g

�
1, . . . , g

�
n−1]

be an ES-matrix of order s × 2s generated by applying
Fx(g2i, g2j , G). Thus, for all m ∈ [n]

g�
m = gm if m /∈ S,

g�
m = gm + x if m ∈ S.

Since Px(g2i, g2j) is as good-path and due to Claim 2(2), for
all 1 � t � �/2−1, it holds that {gs2t−1

, gs2t
}p is a pair-type

edge. Thus, for all 1 � t � �/2− 1

g�
s2t−1

+ g�
s2t

= gs2t−1
+ x + gs2t

+ x = gs2t−1
+ gs2t

.

Therefore, for all p ∈ [n/2] \ {i, j}, it holds that

g�
2p + g�

2p+1 = g2p + g2p+1.

In case that p = i or p = j, by Claim 2(4) the columns g2i+1

and g2j+1 are not on the path Px(g2i, g2j). Thus, g�
2i+1 =

g2i+1 and g�
2j+1 = g2j+1. Therefore,

g�
2p + g�

2p+1 = g2p + g2p+1 + x.

Before proceeding to the next section, the following Find-
ShortPath(G, x, t, m) function is presented. Let G be an ES-
matrix and Gx(G) be its graph for some x ∈ F

s
2. Let

{g2t, g2t+1}p be a pair-type edge in Gx(G). Assume that
there is another pair-type edge {g2m, g2m+1}p in Gx(G) such
that m > t. The FindShortPath(G, a, t, m) function will be
used under the condition that there is a cycle Ci ∈ Cx(G)
such that both {g2t, g2t+1}p and {g2m, g2m+1}p are in Ci.

FindShortPath(G, x, t, m)
1: Px ← the good-path Px(g2t, g2t+1, G)
2: d1 ← dPx(g2t+1, g2m)
3: d2 ← dPx(g2t+1, g2m+1)
4: if d1 < d2 then
5: j ← 2m
6: else
7: j ← 2m + 1
8: Return j

The FindShortPath(G, x, t, m) function is presented since it
will be used several times in this paper.
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B. The FindGoodOrBadRequest(G,B, t, v) Function

Let G be an ES-matrix, let v ∈ F
s
2, let t ∈ [n/2], and let

B be a set. Denote y = g2t + g2t+1. In this section we will
show the function called FindGoodOrBadRequest(G,B, t, v).
This function will be used by the first algorithm which will
be presented in the next section. The task of this function is
to update the sum of the pair g2t, g2t+1 to either v or v + y.
It also changes the sum of the last pair gn−2, gn−1, but, this
pair is used as a “redundancy pair”, i.e., it is not important
what the sum of this pair. Another important thing to mention,
is that the algorithm FindGoodOrBadRequest(G,B, t, v) do
not update the sum of the pairs on indices 2p and 2p + 1 for
all p 
= t, even though these columns could be reordered. The
case g2t+g2t+1 = v, g2t+g2t+1 = v+y is called a good, bad
case and t won’t, will be inserted in B, respectively. We now
ready to present the function.

FindGoodOrBadRequest(G,B, t, v)
1: y ← g2t + g2t+1

2: if v = y then
3: Return G and B
4: u← g2t+1 + gn−2

5: for p = 1, 2, 3 do
6: if p = 1 then
7: a← v + y

8: if p = 2 then
9: a← v + y + u

10: Swap the columns g2t+1 and gn−2 in G

11: if p = 3 then
12: a← v + u
13: Swap the columns g2t and gn−2 in G

14: Pa ← the good-path Pa(g2t, g2t+1, G)
15: r← {gn−2, gn−1}p
16: if r ∈ Pa then
17: j ← FindShortPath(G, a, t, n/2− 1)
18: G� ← Fa(g2t+1, gj)
19: Return G� and B�

20: G� ← Fa(g2t, g2t+1)
21: Swap the columns g�

2t and g�
n−2 of G�

22: B� ← B ∪ {t}
23: Return G� and B�

An explanation of the FindGoodOrBadRequest(G,B, t, v)
function is shown in the next example.

Example 3: In Fig 3 we illustrate three good situa-
tions in which Step 16 in the function FindGoodOr-
BadRequest(G,B, t, v) succeeds, and one bad case in which
Step 16 in the function FindGoodOrBadRequest(G,B, t, v)
fails. The solid green line in all figures is a sub-path of the
good-path Pa (which is a path between the nodes g2t, g2t+1

in Ga(G)). The dashed lines are the pair-type edges. The
green dashed line is an edge on Pa. Without loss of generality,
it is assumed that the closest node between gn−2 and gn−1

to g2t+1 in Pa is gn−2. The labels of the edges represent the
summation of the vectors of its incident nodes. Each of the
three good cases illustrated in (a)-(c) lead to the fact that a pair

Fig. 3. Explanation of the function FindGoodOrBadRequest(G,B, t, v).
Each picture shows the graph after swapping the columns of G. In the
p = 1 and p = 2 cases, u is the sum of the vectors g2t+1 and gn−2,
and in the p = 3 and p = 4 cases, y + u is the sum of the vectors g2t+1
and gn−2.

g�
2t, g

�
2t+1 will be summed up to v (Step 18). In the bad case

illustrated by (d), this pair will be summed up only to v + y
(Steps 20-21).

Denote by 1 ∈ {0, 1} a binary indicator such that 1 = 1 if
and only if the function FindGoodOrBadRequest(G,B, t, v)
reaches Step 20. Our next goal is to prove the following
important lemma.

Lemma 14: The function FindGoodOrBadRequest
(G,B, t, v) will generate a matrix

G� = [g�
0, g

�
1, . . . , g

�
n−1]

such that

g�
2p + g�

2p+1 =

�
g2p + g2p+1 p 
= t, n/2− 1
v + 1y p = t

.

If 1 = 1 then the function FindGoodOrBadRequest(G,B, t, v)
will add t to the set B.

Proof: First we show that if the function reaches Step 19,
then

g2t + g2t+1 + a = v. (1)

We separate the proof for the three cases of p ∈ {1, 2, 3}.
To better understand these cases we refer the reader to
Fig. 3(a)-(c). Remember that by Step 4, u = g2t+1 + gn−2.

1) If p = 1, then g2t + g2t+1 = y. By Step 7, a = v + y,
and therefore equality (1) holds.

2) If p = 2, then by Step 10, after swapping g2t+1 and
gn−2, it is deduced that

g2t + g2t+1 = y + u.

By Step 9, a = v + y + u, which concludes the
correctness of equality (1).

3) If p = 3, then by Step 13, after swapping g2t and gn−2,
it is deduced that

g2t + g2t+1 = u.

By Step 12, a = v + u, corresponding to (1).

Note that by Claim 3, there is always a good-path between
g2t and g2t+1. Now, suppose that in one of these 3 cases, there
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is a good-path Pa(g2t, g2t+1) in Ga(G) which includes the
edge {gn−2, gn−1}p (with respect to Step 16). By executing
FindShortPath(G, a, t, n/2) we find the closest node between
gn−2 and gn−1 to g2t+1 on the path Pa. This node is
denoted by gj . Thus, the first and the last edges on the
path Pa(g2t+1, gj) have to be x-type edges. By definition,
it is deduced that Pa(g2t+1, gj) is a good-path. According
to Step 18, G� = Fa(g2t+1, gj). By Lemma 13 this step
changes the pair summations of only the pairs g2t, g2t+1 and
gn−2, gn−1. More precisely,

g�
2t + g�

2t+1 = g2t + g2t+1 + a = v

and the sum of the pair g�
n−2, g

�
n−1 does not matter.

Finally, if the function does not succeed to find any of these
good-paths, we will show that it will create a matrix G� such
that the pair g�

2t, g
�
2t+1 will be almost correct, that is,

g�
2t + g�

2t+1 = v + y.

This will be done in Steps 20–21. First, the path
Pa(g2t, g2t+1) does not include the edge {gn−2, gn−1}p
since Step 16 has failed. Second, the function makes two
swaps in Step 10 and Step 13 such that

g2t + g2t+1 = u,

and

g2t+1 + gn−2 = u + y,

and by Step 12, a = v + u. This is illustrated in Fig. 3(d).
Thus, according to Step 20, G� = Fa(g2t, g2t+1) such that

g�
2t + g�

2t+1 = g2t + g2t+1 = u,

and the column vectors gn−2, gn−1 are not changed. There-
fore,

g�
2t+1 + g�

n−2 = g2t+1 + gn−2 + a = v + y.

By Step 21 in which the columns g�
2t, g

�
n−2 are swapped

we get

g�
2t + g�

2t+1 = v + y.

We conclude that the function will generate an ES-matrix

G� = [g�
0, g

�
1, . . . , g

�
n−1]

such that

g�
2p + g�

2p+1 =

�
g2p + g2p+1 p 
= t, n/2− 1
v + 1y p = t

where 1 = 1 if and only if the function reached Step 20.

C. The First Algorithm

We start with the first algorithm which is referred by
FBSolution(τ ,M ), where M is the request and τ will be the
number of iterations in the algorithm, which is the number of
columns in M . We define more variables that will be used in
the routine of FBSolution(τ ,M ), and some auxiliary results.
The τ iterations in the algorithm operate as follows. First,
we demand that the initial state of the matrix

G = [g0, g1, . . . , gn−1]

will satisfy

g2t + g2t+1 = e, t ∈ [n/2]. (2)

The matrix G exists due to the following claim.
Claim 5: There is an ES-matrix G = [g0, g1, . . . , gn−1]

such that for all t ∈ [n/2]

g2t + g2t+1 = e.
Proof: Such an ES-matrix G is constructed by taking an

order of its column vectors such that for all t ∈ [n/2],

g2t = (z0, z1, . . . , zs−2, 0), g2t+1 = (z0, z1, . . . , zs−2, 1).

The following corollary states that Claim 5 holds for all
x ∈ F

s
2 instead of e. The proof of this corollary is similar to

the one of Claim 5.
Corollary 15: For any M that has one kind of request vj ,

there is an extended Simplex solution for M .
Extending Corollary 15 to the cases where there are at

most a fixed number of different requests d is an interesting
problem by itself, which is out of the scope of this paper.
In Section VI, we remark that d = 2 can be solved by one of
our constructions. For the case of d = 3 we believe we have
a proof, however it is omitted since we found it to be long
and cumbersome. Finding a simple solution for this case and
in general for arbitrary d is left for future research.

According to Corollary 15, for the rest of this section we
assume that M has at least two kinds of requests vj . It is also
assumed that τ = � 23 ·2s−1�. The ES-matrix at the end of the
t-th iteration will be denoted by

G(t+1) = [g(t+1)
0 , g

(t+1)
1 , . . . , g

(t+1)
n−1 ].

Now we are ready to present the FBSolution(τ ,M ) algorithm.

Algorithm 1 FBSolution(τ, M )

1: G(0) ← G
2: B(0) = ∅
3: for t = 0, . . . , τ − 1 do
4: G(t+1),B(t+1) ← FindGoodOr-

BadRequest(G(t),B(t), t, vt)

5: Return G(τ) and B(τ)

At the end of the FBSolution(τ ,M ) algorithm we
obtained the set B1 = B(τ) and the matrix G(τ) =
[g(τ)

0 , g
(τ)
1 , . . . , g

(τ)
n−1]. By Definition 7, the set B1 uniquely

defines the triple-set (G1,B1,R1). Since in our case y = e,
by Lemma 14, for all t ∈ [n/2], the matrix G(τ) satisfies that

g
(τ)
2t + g

(τ)
2t+1 =

⎧⎪⎨
⎪⎩

vt t ∈ G1

vt + e t ∈ B1

e t ∈ R1

.

LetM1 = [w0, w1, . . . , w2s−1−1] be the matrix such that for
all t ∈ [n/2]

wt = g
(τ)
2t + g

(τ)
2t+1.

Therefore, it is deduced that M1 = M1(G1,B1,R1) is a
triple-matrix of M . By definition of M1(G1,B1,R1), the
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matrix G(τ) is its extended Simplex solution. If the set
B1 satisfies |B1| � � 13 · 2s−1� then by Lemma 8 there is
a solution for M . Otherwise, we will make another reordering
on the columns of G(τ) in order to obtain a new bad set B2 for
which |B2| � � 13 ·2s−1�. This will be done in the next section
by showing our second algorithm.

D. The Second Algorithm

From now on we assume that

G(τ) = G = [g0, g1, . . . , gn−1]

and B = B1. Before showing the second algorithm we start
with the following definition.

Definition 16: Let Ce(G) be a partition of simple cycles
in Ge(G). A pair of distinct indices t1, t2 ∈ B is called a
bad-indices pair in Ce(G) if both edges {g2t1 , g2t1+1}p and
{g2t2 , g2t2+1}p are in the same simple cycle in Ge(G).
Now we show the algorithm ClearBadCycles(G,B) in which
the columns of the ES-matrix G are reordered, and the set B
will be modified and its size will be decreased.

Algorithm 2 ClearBadCycles(G,B)

1: Ce(G)← The partition of simple cycles in Ge(G)
2: while ∃t1, t2 a bad-indices pair in Ce(G) do
3: j ← FindShortPath(G, e, t1, t2)
4: G← Fe(g2t1+1, gj)
5: Ce(G)← The partition of simple cycles in Ge(G)
6: Remove t1, t2 from B
7: Return G and B

Let G2 = [g�
0, g

�
1, . . . , g

�
n−1] be the ES-matrix and B2 be

the bad set output of the ClearBadCycles(G,B) algorithm.
We remind the reader that M = [v0, v1, . . . , v� 2

3 ·2s−1�−1].
LetM2 = [w0, w1, . . . , w2s−1−1] be the matrix such that for
all t ∈ [n/2]

wt = g�
2t + g�

2t+1.

Since B2 uniquely defines the triple set (G2,B2,R2), it is
deduced that the matrixM2 is a triple-matrixM2(G2,B2,R2)
of M . Next, it will be shown that the algorithm ClearBadCy-
cles(G,B) will stop and |B2| will be bounded from above by
� 13 · 2s−1� after the execution of the algorithm.

Lemma 17: The algorithm ClearBadCycles(G,B) outputs a
set B2 such that |B2| � � 13 · 2s−1�.

Proof: According to Step 2 if there is a simple cycle
containing a bad-indices pair t1, t2 in Ce(G), the algorithm
will enter the routine. Thus, there is a good-path between
g2t1+1 and one of the nodes g2t2 , g2t2+1 (the closest one
between them to g2t1+1), and the index of this node is denoted
by j (Step 3). Since t1, t2 ∈ B, before the algorithm reaches
Step 4, it holds

g2t1 + g2t1+1 = vt1 + e, g2t2 + g2t2+1 = vt2 + e.

By executing Fe(g2t1+1, gj), due to Lemma 13, the matrix
G is updated to a matrix G� such that only the two following

pair summations are correctly changed to

g�
2t1 + g�

2t1+1 = vt1 , g�
2t2 + g�

2t2+1 = vt2 .

Thus, the indices t1 and t2 are removed from B (Step 6).
Therefore, Step 2 will fail when each simple cycle will have
at most one t ∈ B such that

g2t + g2t+1 = vt + e,

and we will call it a “bad cycle”. Suppose that there are p bad
cycles at the end of the algorithm. We are left with showing
that p � � 13 · 2s−1�.

Observe that for all t ∈ R, the nodes g2t and g2t+1 are
connected by two parallel edges, and therefore they create
cycles of length 2. These cycles are not bad cycles by
definition. Also note that if the pair gn−2, gn−1 is in some
bad cycle, then the bad pair g2t, g2t+1 in this cycle can
be corrected by Fe(g2t+1, g), where g is the closest node
between gn−2 and gn−1 to g2t+1 in this cycle. Therefore,
we assume that gn−2, gn−1 is not in any bad cycle. Since
there are 2|R| such columns in G and together with the pair

gn−2, gn−1 and |R| = 2s−1 −
�

2
3 · 2s−1

�
− 1, only the first

2 · |B ∪ G| = 2 ·
�2
3
· 2s−1

�
columns of G can be partitioned into bad cycles. Our next
goal is to prove that the size of each bad cycle is at least 4.
Assume to the contrary that there is a bad cycle of length 2.
Since we are using the graph Ge(G), such a simple cycle of
two nodes g2t, g2t+1, t ∈ B, satisfies that

g2t + g2t+1 = e.

In that case g2t +g2t+1 
= vt +e since vt is non-zero vector,
so g2t +g2t+1 = vt = e. According to Step 2 in the function
FindGoodOrBadRequest(G,B, t, v), t /∈ B, which results with
a contradiction. Therefore, indeed all simple cycles are of size
at least 4. Thus,

|B| � p �
�1
4
·
	
2 ·
�2
3
· 2s−1

�
�
=
�1
3
2s−1

�
,

where the last equality holds since by the nested division�
�x/y�

z

�
= � x

yz � for real x, y and a positive integer z.

We are finally ready to prove the main result of this section.
Theorem 18: An FB-(2s − 1, s, � 23 · 2s−1�) code exists.

Proof: By Lemma 17 the algorithm ClearBadCy-
cles(G,B) outputs the set B2 such that it size is at most
� 13 · 2s−1�. The ES-matrix G2 is again an extended Simplex
solution for a triple-matrix M2(G2,B2,R2) of M . Thus,
by using Lemma 8, it is deduced that there is a solution for
M . After removing the all-zero column vector from G, the
proof of this theorem is completed.

IV. A CONSTRUCTION OF

FB-(2s + �(3α− 2) · 2s−2� − 1, s, �α · 2s−1�) CODES

In this section we show how to construct FB-(2s + �(3α−
2) · 2s−2� − 1, s, �α · 2s−1�) codes where 2/3 � α � 1.
For convenience, throughout this section let n = 2s and m =

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 27,2024 at 19:53:17 UTC from IEEE Xplore.  Restrictions apply. 



YOHANANOV AND YAAKOBI: ALMOST OPTIMAL CONSTRUCTION OF FUNCTIONAL BATCH CODES 6443

2s + �(3α− 2) · 2s−2�. Note that since α � 2/3 it holds that
m � n. Let e = (0, 0, . . . , 0, 1) ∈ F

s
2.

The following two definitions extend ES-matrices from
Definition 5 and triple-matrices from Definition 7.

Definition 19: A matrix G = [g0, g1, . . . , gm−1] of order
s×m over F2 is called an extended-ES-matrix if the matrix
HG = [g0, g1, . . . , gn−1] is an ES-matrix of order s× n and
for all n � i � m − 1 it holds gi = e. The ES-matrix HG

will be called the H-part of G.
Definition 20: Three sets G,B,R ⊆ [2s−1] are called an

α-triple-set, and are denoted by α-(G,B,R), if the following
properties hold

G ⊆
��

α · 2s−1
��

,

B =
��

α · 2s−1
��
\ G,

R = [2s−1] \
	
G ∪ B ∪ {2s−1 − 1}



.

Given a matrix M = [v0, v1, . . . , v�α·2s−1�−1]
of order s× �α · 2s−1�, a matrix M(G,B,R) =
[w0, w1, . . . , w2s−1−1] of order s × 2s−1 is referred as
an α-triple-matrix of M if it holds that

wt =

⎧⎪⎨
⎪⎩

vt t ∈ G
vt + e t ∈ B
e t ∈ R

.

Note that by taking α = 2/3, Definition 20 will be
equivalent to Definition 7. Denote N = [m] \ [n] and
note that |N | = �(3α − 2) · 2s−2�. We seek to design an
algorithm which is very similar to the FBSolution(τ, M ) algo-
rithm in the following respect. This algorithm will output an
ES-matrix HG which will be the H-part of an extended-ES-
matrix G = [g0, g1, . . . , gm−1], and a set B. The set B will
define uniquely the α-triple-set α-(G,B,R). For all t ∈ G we
will get

g2t + g2t+1 = vt,

and for all t ∈ B we will get an almost desirable solution,
that is,

g2t + g2t+1 = vt + e.

The summation of the last pair gn−2, gn−1 will be arbitrary.
Similarly to the technique that was shown in Section III, the
set R will be used to correct the summations vt + e to vt,
where t ∈ B. For that, the ClearBadCycles(G,B) algorithm
will be used as it was done in Section III in order to obtain
an extended-ES-matrix G and a set B such that |B| � � 12α ·
2s−1�. Even though |B| � � 12α · 2s−1�, the size of R will not
be bigger than the size of B for α > 2/3. Thus, in this case,
not all bad summation can be corrected. For that, we define
the set N that is also used to correct the summations vt + e
to vt, where t ∈ B. This will be done based on the property
that for all t ∈ N it holds that gt = e. In case that α < 1,
together with R and N , the last pair gn−2, gn−1 will be used
for the correction of these summations. Thus, if the inequality
|B| � |R| + |N | + 1 holds, then it is possible to construct
a solution for M . In case that α = 1, we obtain |R| = 0.
In this case, we will show how to get the inequality |B| � |N |,

which will similarly lead to a solution for M . Even though
the last pair gn−2, gn−1 has an arbitrary summation, it will
still be shown how to obtain the request vn/2−1 from this pair.
Therefore, our first goal is to show a condition which assures
that either |B| � |R|+ |N |+ 1 or |B| � |N |. This is done in
Claim 6.

Claim 6: Let (G,B,R) be an α-triple-set where
|B| � � 12α · 2s−1�. If 2/3 � α < 1, then |B| � |R|+ |N |+1,
and if α = 1 then |B| � |N |.

Proof: Let 2/3 � α < 1. According to the definition of
α-(G,B,R), since G ∪ B = [�α · 2s−1�] it holds that

|R| =
���[2s−1] \

	
G ∪ B ∪ {2s−1 − 1}


���
= 2s−1 −

�
α · 2s−1

�
− 1.

We also know that |N | = �(3α− 2) · 2s−2�. Thus, in order to

prove that |B| � |R|+ |N |+ 1, since |B| � � 12α · 2s−1
�

, it is

enough to prove inequality (a) in

|R|+ |N |+ 1 =2s−1 −
�
α · 2s−1

�
+
�
(3α− 2) · 2s−2

�
(a)

�
�1
2
α · 2s−1

�
� |B|.

Inequality (a) is equivalent to

2s−1 �
�
2α · 2s−2

�
+
�
α · 2s−2

�
−
�
(3α− 2) · 2s−2

�
,

which holds since�
2α · 2s−2

�
+
�
α · 2s−2

�
−
�
(3α− 2) · 2s−2

�
� 2α · 2s−2 + α · 2s−2 − (3α− 2) · 2s−2

= 2s−2(2α + α− (3α− 2)) = 2 · 2s−2 = 2s−1.

Now if α = 1, then |B| � � 12 ·2s−1� = 2s−2. By the definition
of R, it holds that |R| = 0 and by the definition of N it holds
that |N | = 2s−2. Therefore |B| � 2s−2 = |N |.

Let M = [v0, v1, . . . , v�α·2s−1�−1] be a request of order
s×�α·2s−1�. Our goal is to construct an extended-ES-matrix
of order s×m which will provide a solution for M . For that,
the α-FBSolution(M ) algorithm is presented. In this algorithm,
the matrix H is represented by H = [g0, g1, . . . , gn−1].

Algorithm 3 α-FBSolution(M )
1: if α < 1 then
2: τ ← �α · 2s−1�
3: else if α = 1 then
4: τ ← 2s−1 − 1
5: H,B ← FBSolution(τ ,M )
6: H,B ← ClearBadCycles(H ,B)
7: if α < 1 and gn−2 
= e then
8: H ← Fgn−2+e(gn−2, gn−1)

9: if α = 1 and gn−2 
= vn/2−1 then
10: H ← Fgn−2+vn/2−1(gn−2, gn−1)

11: Return H and B
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Denote by G = [g0, g1, . . . , gm−1] an extended-ES-matrix
of order s × m such that the output matrix H from the α-
FBSolution(M ) algorithm is its H-part, i.e., HG = H . Note
that Steps 5–6 define the set B. This set is obtained using a
similar technique to the one from Section III, except to the
fact that here 2/3 � α � 1, while in Section III, α = 2/3.
It is important to note that the size of B is bounded due to
the execution of the ClearBadCycles(H ,B) algorithm (Step 6).
Therefore, we only state the following lemma since its proof
is very similar to the one that was shown in Lemma 17.

Lemma 21: The α-FBSolution(M ) algorithm outputs a set
B such that |B| � � 12α · 2s−1�.

We will use Lemma 21 while proving the main theorem of
this section.

Theorem 22: For any 2/3 � α � 1, a functional batch code

FB-(2s + �(3α− 2) · 2s−2� − 1, s, �α · 2s−1�)
exists.

Proof: After finishing the α-FBSolution(M ) algorithm,
we obtain an ES-matrix H which is the H-part of the
extended-ES-matrix G = [g0, g1, . . . , gm]. Remember that
by the definition of G and N , for all t ∈ N , it holds that
gt = e. In Step 5 we invoke the algorithm FBSolution(τ ,M ).
Therefore, for all t < τ , there exists 1t ∈ {0, 1} such that

g2t + g2t+1 = vt + 1te.

Let α-(G,B,R) be an α-triple-set that is uniquely defined by B
according to Definition 20. Clearly, for all t ∈ G, the recovery
set Rt is Rt = {2t, 2t + 1}. By Lemma 21 it holds that
|B| � � 12α · 2s−1�. We separate this proof for two cases.

Case 1: Assume that α < 1. Due to Lemma 21 and Claim 6,
if α < 1, it is deduced that |B| � |R| + |N | + 1. Let t
be the maximum number in B and let B� = B \ {t}. Thus,
|B�| � |R| + |N |. Therefore, for all t ∈ B�, Rt will have a
different t� such that Rt equals to either {2t, 2t+1, 2t�, 2t�+1}
where t� ∈ R, or {2t, 2t + 1, t�} where t� ∈ N . Thus,
we showed the recovery sets for all requests except of vt.
Remember that g2t + g2t+1 = vt + e, and note that if
gn−2 = e, this case is finished. Otherwise, gn−2 
= e.
This is handled by Steps 7–8 as follows. By Claim 3, since
gn−2 and gn−1 is a pair, we know that there is a good-path
Px(gn−2, gn−1) in an x-type graph Gx(G) for all x ∈ F

s
2.

Thus, if gn−2 
= e, by taking x = gn−2 + e, the algorithm
can use the reordering function Fgn−2+e(gn−2, gn−1), as it
is done in Step 8. By Lemma 13, we obtain two new column
vectors g�

n−2 and g�
n−1 such that

g�
n−2 =gn−2 + gn−2 + e = e,

g�
n−1 =gn−1 + gn−2 + e,

without changing the summations of all other pairs on this
path. Therefore, the recovery set for vt will be Rt = {2t,
2t + 1, n− 2}, which concludes this case.

Case 2: Assume that α = 1. Due to Lemma 21 and Claim 6
if α = 1 then |B| � |N |. Thus, similarly to Case 1, for
all t ∈ B, the recovery sets Rt can be obtained. However,
we do not have a recovery set for vn/2−1 since the sum

of the pair gn−2, gn−1 is arbitrary. If gn−2 = vn/2−1, then
Rn/2−1 = {n − 2}. Otherwise, as in Case 1, by Step 10 it
is deduced that g�

n−2 = vn/2−1. Again Rn/2−1 = {n − 2},
which concludes this case.

In both cases, after removing the all-zero column from G,
we conclude the proof.

V. A CONSTRUCTION OF FB-(2s+1 − 2, s, 2s) CODES

In this section, a construction for FB-(2s+1 − 2, s, 2s)
codes will be shown by using the algorithm FBSolution(τ ,M ).
Throughout this section let n = 2s+1 and let e =
(0, 0, . . . , 0, 1) ∈ F

s+1
2 . We start with the following definition.

Definition 23: A matrix G = [g0, g1, . . . , g2s+1−1] of order
s × 2s+1 over F2 such that each vector of F

s
2 appears as a

column vector in G exactly twice, is called a double-ES-
matrix.

Note that by removing the last row from any ES-matrix of
order (s + 1)×n, we get a double-ES-matrix of order s×n.
Also, note that each double-ES-matrix has exactly two all-
zero columns. These columns will be removed at the end of
the procedure, obtaining only 2s+1− 2 column vectors. Next,
the definition of an extended Simplex solution is extended with
respect to Definition 6.

Definition 24: Let M = [v0, v1, . . . , v2s−1] be a request of
order s×2s. The matrix M has an extended Simplex solution
if there exists a double-ES-matrix G = [g0, g1, . . . , g2s+1−1]
of order s× n such that for all t ∈ [2s − 1],

vt = g2t + g2t+1,

and for t = n/2− 1 either vt = gn−2 + gn−1, or vt = gn−2,
or vt = gn−1.

Let M = [v0, v1, . . . , v2s−1] be a request of order s × 2s.
Our goal is to construct a double-ES-matrix of order s ×
2s+1 which will provide an extended Simplex solution for
M . Let M = [w0, w1, . . . , w2s−1] be a new matrix of order
(s + 1)× 2s generated by adding the all-zero row to M . Let
τ = n/2−1 and 0� be the all-zero vector of length �. We now
show the algorithm OptFBSolution(M), which receives as an
input the matrix M and outputs a double-ES-matrix G that
will be a solution for M . As mentioned in the Introduction
the returned solution is optimal.

Algorithm 4 OptFBSolution(M)

1: τ ← n/2− 1
2: G← FBSolution(τ ,M)
3: y ←�2s−1

i=0 wi

4: if y 
= 0s+1 and y 
= gn−2 then
5: G← Fgn−2+y(gn−2, gn−1)

6: Remove the last row from G

The following lemma proves the correctness of Algorithm
OptFBSolution(M).

Lemma 25: The algorithm OptFBSolution(M) outputs a
double-ES-matrix G� which is an extended Simplex solution
for M .
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Proof: According to Step 2, the algorithm FBSolu-
tion(τ ,M) is used with τ = n/2 − 1. Thus, by Lemma 14
we obtain an ES-matrix G = [g0, g1, . . . , gn−1] such that for
all t ∈ [n/2− 1]

g2t + g2t+1 = wt + 1te, (3)

where 1t ∈ {0, 1}. Let G� = [g�
0, g

�
1, . . . , g

�
n−1] be a double-

ES-matrix of order s×n generated by removing the last row
from G according to Step 6. SinceM = [w0, w1, . . . , w2s−1]
is generated by adding the all-zero row to M , by removing
the last row from G before Step 3, for all t ∈ [n/2 − 1] we
could obtain G� such that

g�
2t + g�

2t+1 = vt. (4)

However, G� would provide a solution for M except for the
last request vn/2−1. We handle the last request using Steps 3–5
that will be explained as follows.

Assume that
�2s−1

i=0 wi = y and note that

2s+1−1�
i=0

gi = 0s+1. (5)

Denote

1n/2−1 =
2s−2�
t=0

1t(mod2). (6)

Thus, it is deduced that

gn−2 + gn−1

(a)
=

2s+1−3�
i=0

gi

(b)
=

2s−2�
t=0

(wt + 1te)

(c)
= wn/2−1 + y + 1n/2−1e.

Equality (a) holds due to (5), equality (b) holds according
to (3), and equality (c) holds by the definition of y and by (6).
Now if y = 0s+1, according to Step 6, after removing the last
row from G, we get G� such that equation (4) holds also for
t = n/2− 1, that is,

g�
n−2 + g�

n−1 = vn/2−1.

Clearly, in this case G� is an extended Simplex solution for
M . Otherwise, if y 
= 0s+1 then the algorithm enters the if
condition in Step 4. By Claim 3, since gn−2 and gn−1 is a
pair, we know that there is a good-path Px(gn−2, gn−1) in an
x-type graph Gx(G) for all x ∈ F

s+1
2 . Thus, by taking x =

gn−2 + y, the algorithm will execute the reordering function
Fgn−2+y(gn−2, gn−1) (Step 5). By Lemma 13, we obtain two
new column vectors g�

n−2 and g�
n−1 such that

g�
n−2 =gn−2 + gn−2 + y = y,

g�
n−1 =gn−1 + gn−2 + y = wn/2−1 + 1n/2−1e,

without changing the summation of all other pairs on this path.
Again, by removing the last row from G, we obtain G� such
that

g�
2t + g�

2t+1 = vt, t ∈ [n/2− 1]

and g�
n−1 = vn/2−1. Thus, all the recovery sets Rt, t ∈ [n/2−

1] are of the form Rt = {2t, 2t+1}, and the last recovery set

will be Rn/2−1 = {n−1}, which concludes this case. In both
cases, G� is a double-ES-matrix with two all-zero columns
that will be removed to provide an FB-(2s+1−2, s, 2s) code.

For the rest of the paper, we only state that it is possible
to obtain the last recovery set from the redundancy columns
gn−2 and gn−1, as it was shown in the proof of Lemma 25.
From the result of Lemma 25 we deduce the main theorem of
this section.

Theorem 26: An FB-(2s+1 − 2, s, 2s) code exists.

VI. A CONSTRUCTION OF FB-(2s − 1, s, � 56 · 2s−1� − s)
CODES

In this section we show how to improve our main result,
i.e., we show a construction of FB-(2s− 1, s, � 56 · 2s−1�− s)
codes. Let M be a request denoted by

M = [v0, v1, . . . , v� 5
6 ·2s−1�−s].

Remember that e = (0, 0, . . . , 0, 1) ∈ F
s
2, and n = 2s. The

initial state of the matrix

G = [g0, g1, . . . , gn−1]

will satisfy

g2t + g2t+1 = e, t ∈ [n/2].

Remember that for all x ∈ F
s
2, the graph Gx(G) has a

partition of � � 1 disjoint simple cycles, that will be denoted
by Cx(G) = {Ci}�−1

i=0 (Definition 10). Fix τ ∈ [n/2]. The first
ingredient in the solution of FB-(2s−1, s, � 56 ·2s−1�−s) codes
will be presented in algorithm FBSolution2(τ, M ), which is
presented as Algorithm 5.

Algorithm 5 FBSolution2(τ, M )

1: G(0) ← G
2: for t = 0, . . . , τ − 1 do
3: for all 2t � p, h � n− 1 and t � m � τ − 1 do
4: Swap g

(t)
p and g

(t)
2t

5: Swap g
(t)
h and g

(t)
2t+1

6: if g
(t)
2t + g

(t)
2t+1 = vm then

7: Swap between vt and vm in M
8: Go to Step 2

9: am ← vm + g
(t)
2t + g

(t)
2t+1

10: Let Ci ∈ Cam(G) be a cycle s.t. {g(t)
2t , g

(t)
2t+1}p ∈ Ci

11: if {g(t)
2� , g

(t)
2�+1}p ∈ Ci s.t. � > t then

12: Swap between vt and vm in M
13: Go to Step 16

14: G(t), M ← BadCaseCorrection(G(t), am, M )
15: Go to Step 3
16: j ← FindShortPath(G(t), am, t, �)
17: G(t+1) ← Fat

(g(t)
2t+1, g

(t)
j )

18: Return G(τ)

In the internal routine starting on Step 3, on its t-th iteration,
the algorithm will try to find two column vectors g

(t)
p and

g
(t)
h , such that h, p � 2t, and a request vm, where m � t,
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such that the sum of g
(t)
p and g

(t)
h could be updated to vm,

without corrupting the sums g
(t+1)
2t′ + g

(t+1)
2t′+1 such that t� < t.

Our first task is to prove that if τ � n/4 then the algorithm
will always find such g

(t)
p , g

(t)
h and a request vm. In this case,

the algorithm will provide 2s−2 (when τ = n/4) requests and
will never reach Step 14. Our second task is to prove that for
the case n/4 < τ � �n/3�, the algorithm may reach Step 14,
however by using the BadCaseCorrection(G(t), am, M ) func-
tion, which reorders the columns of G(t), the algorithm will
succeed to construct � 23 · 2s−1� recovery sets of size 2 (when
τ = �n/3�). Therefore, we are left to show how to construct
additional � 16 · 2s−1�−s + 1 recovery sets that will be of
size 4 (remember that �x + y� � �x� + �y� + 1). This
part will be handled by the FBSolution3(G, τ, M ) algorithm.
We notice that the FBSolution3(G, τ, M ) algorithm will be
invoked only if �2

3
· 2s−1

�
�
�5
6
· 2s−1

�
− s, (7)

which holds for s � 7.

A. The τ � n/4 Case

Before proving the correctness of the FBSolution2(τ, M )
algorithm, we start with an important definition.

Definition 27: On the t-th iteration, a path Px between
g

(t)
p , p � 2t and g

(t)
h , h � 2t will be called a short-path

in Gx(G(t)), if it is a good-path, and all the pair-type edges
{g(t)

2t′ , g
(t)
2t′+1}p on Px satisfy t� < t. The short-path P

g
(t)
p +g

(t)
h

is called a trivial short-path.
Our first goal is to show that every g

(t)
p , p � 2t has n

different short-paths ending on n columns g
(t)
h , h � 2t.

Claim 7: Fix some g
(t)
p such that p � 2t. Then, for each

Gx(G(t)), there exists g
(t)
h , h � 2t, such that there is a short-

path between g
(t)
p and g

(t)
h .

Proof: Given g
(t)
p such that p � 2t, its pair g

(t)
p′ also sat-

isfies p� � 2t. In Claim 3 we proved that for all x ∈ F
s
2 every

pair {g2m, g2m+1}p has a good-path Px(g2m, g2m+1) in
Gx(G). Therefore, by Claim 3, for all x ∈ F

s
2, there is a

good-path Px(g(t)
p , g

(t)
p′ ) in Gx(G(t)). If for all the edges

{g(t)
2m, g

(t)
2m+1}p on Px(g(t)

p , g
(t)
p′ ) it holds that m < t, then

Px(g(t)
p , g

(t)
p′ ) is a short-path. Otherwise, there exists an edge

{g(t)
2m, g

(t)
2m+1}p on Px(g(t)

p , g
(t)
p′ ), such that m � t, and

without loss of generality, we assume that this edge is the
closest one to g

(t)
p on Px(g(t)

p , g
(t)
p′ ). Let h ∈ {2m, 2m + 1}

such that the column g
(t)
h is the closest node between g

(t)
2m

and g
(t)
2m+1 to g

(t)
p on Px(g(t)

p , g
(t)
p′ ). Therefore h � 2t and

this sub-path is a short-path by definition.
Next, we proceed to prove the correctness of the FBSolu-

tion2(τ, M ) algorithm. On Step 9, the algorithm will execute
am = vm + g

(t)
p + g

(t)
h . If g

(t)
p and g

(t)
h have a non-trivial

short-path between them in Gam
(G(t)), then our technique

cannot update the sum of g
(t)
p and g

(t)
h to be equal to vm

without changing the sum of a pair {g(t)
2t′ , g

(t)
2t′+1}p for some

t� < t. So our goal is to find columns g
(t)
p and g

(t)
h such that

there are no (non-trivial) short-paths between them. We state

in the following claim that reordering the columns g
(t)
p for

p � 2t of G(t) does not affect their short-paths.
Claim 8: The columns g

(t)
p and g

(t)
h (before Steps 4–5) have

no (non-trivial) short-paths between them, if and only if the
columns g

(t)
2t and g

(t)
2t+1 (after Steps 4–5) have no (non-trivial)

short-paths between them.
Proof: We will prove only the first direction, while the

second is proved similarly. In Claim 7 we proved that for all
x ∈ F

s
2, there exists g

(t)
p′ , p� � 2t such that there is a short-path

between g
(t)
p and g

(t)
p′ . In this claim we assume that every such

p� satisfies p� 
= h. By definition of the short-path, the edge
{g(t)

2t , g
(t)
2t+1}p is not on any of these short-paths. Therefore,

for all x ∈ F
s
2, the execution of Step 4 will not affect these

short-paths. Similarly, for all x ∈ F
s
2 the short-paths between

g
(t)
h and g

(t)
h′ will not be affected by the execution of Step 5 (h�

is defined similarly to h). Thus, the columns g
(t)
2t and g

(t)
2t+1

(after Steps 4–5) will not have any (non-trivial) short-path
between them.

Using Claim 8, we can make columns g
(t)
p and g

(t)
h to be

a pair. This is done by Steps 4 and 5, i.e., this pair is now
{g(t)

2t , g
(t)
2t+1}p. In the next lemma we will use the properties

of short-paths to prove the correctness of the algorithm.
Lemma 28: On the t-th iteration, if there are no (non-trivial)

short-paths between g
(t)
2t and g

(t)
2t+1, then by the end of this

iteration it holds that

g
(t+1)
2t + g

(t+1)
2t+1 = vm,

and all the pair sums g
(t+1)
2t′ + g

(t+1)
2t′+1 such that t� < t will be

unchanged.
Proof: If g

(t)
2t + g

(t)
2t+1 = vm, then due to Step 6 this

lemma is correct. Otherwise, we know that there are no (non-
trivial) short-paths between g

(t)
2t and g

(t)
2t+1. Therefore, Step 11

will succeed to find {g(t)
2� , g

(t)
2�+1}p ∈ Ci such that � > t.

Thus, there is a good-path between g
(t)
2t+1 and one of the nodes

g
(t)
2� , g

(t)
2�+1 (the closest one between them to g

(t)
2t+1), and the

index of this node is denoted by j (Step 16). By executing
Fam

(g2t+1, gj), the matrix G(t) is updated to a matrix G(t+1)

such that only the two following pair summations are correctly
changed to

g
(t+1)
2t + g

(t+1)
2t+1 = g

(t)
2t + g

(t)
2t+1 + am = vm

g
(t+1)
2� + g

(t+1)
2�+1 = g

(t)
2� + g

(t)
2�+1 + am.

Next, we will show that if t < n/4 then the algorithm will
find g

(t)
p and g

(t)
h with no (non-trivial) short-paths between

them.
Lemma 29: If t < n/4, then on the t-th iteration the

algorithm will find g
(t)
p and g

(t)
h with no (non-trivial) short-

paths between them.
Proof: Fix some g

(t)
p . By Claim 7, for each Gx(G), there

exists g
(t)
h such that there is a short-path between g

(t)
p and g

(t)
h .

Therefore g
(t)
p has n different short-paths. Since t < n/4 or

2t < n/2, there are at least n/2 + 1 options for choosing
g

(t)
h , and each of them has a trivial short-path with g

(t)
p .

Therefore, we are left with n/2 − 1 short-paths, and at least
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n/2 + 1 column vectors g
(t)
h . Thus, there is at least one of

them that has no (non-trivial) short-path with g
(t)
p .

We are now ready to conclude with the following
theorem.

Theorem 30: For τ = n/4 the algorithm FBSolution2(τ, M )
will construct recovery sums for the first 2s−2 requests of M .

Proof: Since τ = n/4, by Lemma 29, on the t-th
iteration the algorithm FBSolution2(τ, M ) will find g

(t)
p and

g
(t)
h with no (non-trivial) short-paths between them. Therefore,

by Claim 8, after executing Steps 4 and 5, the columns g
(t)
2t

and g
(t)
2t+1 have no (non-trivial) short-paths between them.

By Lemma 28, since there are no (non-trivial) short-paths
between g

(t)
2t and g

(t)
2t+1, by the end of this iteration it holds

that

g
(t+1)
2t + g

(t+1)
2t+1 = vm,

and all the pair sums g
(t+1)
2t′ + g

(t+1)
2t′+1 such that t� < t will be

unchanged.
Remark 1: By using this technique we can obtain a solution

for the case in which M has exactly two kinds of vectors
(d = 2). Suppose that v1 appears t1 times and v2 appears
t2 times in M , and assume that t1 � t2. Then, initialize G
such that each pair of columns will be summed up to v1 and
use this technique to update the first t2 � n/4 pairs to v2.

We proceed to the second case, i.e., τ � �n/3�.

B. The τ � �n/3� Case

If n/4 < t � �n/3�, then the algorithm may not be able
to find g

(t)
p and g

(t)
h with no (non-trivial) short-paths between

them. However, at least one of these pairs will have at most
one (non-trivial) short-path between them. Therefore, we may
not be able to make some requests on the t-th iteration and
reach Step 14. However, if we are left to handle more than one
kind of request in M , we will succeed in this iteration. For
that, we present the BadCaseCorrection(G(t), at, M ) function.

BadCaseCorrection(G(t), at, M )

1: Let Ci ∈ Cat
(G) be a cycle s.t. {g(t)

2t , g
(t)
2t+1}p ∈ Ci

2: Find {g(t)
2t′ , g

(t)
2t′+1}p ∈ Ci s.t. g

(t)
2t′ + g

(t)
2t′+1 
= vt

3: j ← FindShortPath(G(t), at, t, t
�)

4: G(t) ← Fat
(g(t)

2t+1, g
(t)
j )

5: Swap g
(t)
2t′ and g

(t)
2t

6: Swap g
(t)
2t′+1 and g

(t)
2t+1

7: Swap vt and vt′ in M
8: Return G(t), M

Lemma 31: On the t-th iteration such that t < �n/3�, there
exist p, h � 2t such that there is at most one (non-trivial) short-
path between g

(t)
p and g

(t)
h , and by the end of this iteration it

holds that

g
(t+1)
2t + g

(t+1)
2t+1 = vm,

and t recovery sums are satisfied.
Proof: Fix some g

(t)
p . We already proved that g

(t)
p has

n different short-paths. Since t < �n/3� or 2t < �2n/3�,

there are at least �n/3� + 1 options for choosing g
(t)
h , and

each one of them has a trivial short-path with g
(t)
p . Therefore,

we left with �2n/3� − 1 short-paths and �n/3� + 1 column
vectors g

(t)
h . Therefore, in the worst case, there is a column

vector g
(t)
h such that there is exactly one (non-trivial) short-

path Px between g
(t)
h and g

(t)
p . If x 
= g

(t)
p +g

(t)
h +vt, Step 11

will succeed, and we can construct a recovery set of size 2 for
vt on the t-th iteration of the FBSolution2(τ, M ) algorithm,
as proved in Lemma 28. If x = g

(t)
p + g

(t)
h + vt, we cannot

obtain vt on the t-th iteration. So from now we assume that
x = g

(t)
p + g

(t)
h + vt.

Assume that we have at least two different requests vj ,j � t
in M , and let vm 
= vt, for m � t. We prove that there does
not exist a short-path Py such that y = g

(t)
p + g

(t)
h + vm.

Therefore, Step 11 will succeed to find {g(t)
2� , g

(t)
2�+1}p ∈ Ci

such that � > t. As proved in Lemma 28 the algorithm
FBSolution2(τ, M ) will construct a recovery set of size 2 for
vm on the t-th iteration.

We are left with considering the case where all the requests
vm in M for m � t are identical (and thus vm = vt). Also
assume that g

(t)
2t + g

(t)
2t+1 
= vt which means that Step 6 has

failed (otherwise this iteration will succeed). In this case the
algorithm will use its BadCaseCorrection(G(t), am, M ) func-
tion. Let Ci ∈ Cam

(G) be a cycle such that {g(t)
2t , g

(t)
2t+1}p ∈

Ci (Step 1). First assume that for every pair-type edge
{g(t)

2t′ , g
(t)
2t′+1}p ∈ Ci such that t� < t it holds that

g
(t)
2t′ + g

(t)
2t′+1 = vt.

Note that if a path

g
(t)
2t′ − g

(t)
2t′+1 − g

(t)

2t̃
− g

(t)

2t̃+1

holds

g
(t)
2t′ + g

(t)
2t′+1 = g

(t)

2t̃
+ g

(t)

2t̃+1
= vt,

then it has to be a cycle of length 4. Therefore, in our case,

g
(t)
2t + g

(t)
2t+1 = g

(t)
2t′ + g

(t)
2t′+1 = vt,

which is a contradiction to the assumption that g
(t)
2t +

g
(t)
2t+1 
= vt. Otherwise, we can assume that there is an edge

{g(t)
2t′ , g

(t)
2t′+1}p ∈ Ci, t

� < t such that

g
(t)
2t′ + g

(t)
2t′+1 = vt′ 
= vt.

By executing Step 4, g
(t)
2t +g

(t)
2t+1 will be updated to vt, which

corrupts the sum of the pair {g(t)
2t′ , g

(t)
2t′+1}p such that

g
(t)
2t′ + g

(t)
2t′+1 = vt′ + at 
= vt′ .

After executing Steps 5–6, we obtain two kinds of requests
in M that are left to deal with, while still having t− 1 valid
recovery sets. In this case, the algorithm will return to Step 3.
Since now we have two kinds of requests, as already proved,
the algorithm will be able to construct a recovery set for either
vt or vt′ on the t-th iteration.

The next theorem follows directly from Lemma 31.
Theorem 32: If τ � �n/3�, then the algorithm

FBSolution2(τ, M ) will construct recovery sums for the first
� 23 · 2s−1� requests of M .
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Due to Theorem 32, we proved that the algorithm FBSolu-
tion2(τ, M ) provides an alternative construction for FB-(2s−
1, s, � 23 · 2s−1�) codes. However, the algorithm FBSolu-
tion2(τ, M ) is better than the algorithm FBSolution(τ, M )
since by using the algorithm FBSolution2(τ, M ), all the recov-
ery sets are of length 2 (and not 4). Therefore, we are left
with �n/3� unused column vectors. If (7) holds, we will put
�n/3� − 2 of these columns, except the redundant columns
gn−2, gn−3, as the first columns of the ES-matrix G, and
similarly, the left requests of M that have no recovery sets yet
are placed first. In the next section, we show how to obtain
� 16 · 2s−1�− s+1 more recovery sets of size (at most) 4 from
these �n/3� unused columns of G.

C. Constructing Recovery Sets of Size 4

According to the previous results as stated in Theorem 3(c),
and due to (7), we can assume that s � 7. The FBSolu-
tion(τ, M ) algorithm uses the initialized ES-matrix G(0) that
satisfies (2). In fact, we can construct a similar algorithm
that is initialized by any arbitrary ES-matrix G. Let τ =
� 16 ·2s−1�−s. The value of τ represents the number of requests
that will be handled. Note that

4τ = 4
�1
6
· 2s−1

�
− 4s

= 4
� 1
12
· 2s
�
− 4s �

�1
3
· 2s
�
− 2,

for s � 7, which is the number of unused columns in G. Our
goal is to use either 2 or 4 columns of G for every recovery
set. In other words, every vt will be equal to either g

(t)
4t +g

(t)
4t+1

or g
(t)
4t + g

(t)
4t+1 + g

(t)
4t+2 + g

(t)
4t+4. To show this property we

will prove that in every step of the algorithm, we have to have
at least 2(s + 1) unused (or redundant) columns of G.

We start with the next definition, which is based on the fact
that every s+1 vectors in F

s
2 have a subset of h � s+1 linearly

dependent vectors.
Definition 33: Given an ES-matrix G(t), denote the set
S(t)

h ⊆ [s + 1] of size h � s + 1, such that�
i∈S(t)

h

	
g

(t)
4t+2i + g

(t)
4t+2i+1



= 0s. (8)

Denote the Reorder(G(t)) procedure that swaps arbitrarily
between the columns of G(t) presented in (8) and the columns
indexed by {4t � m � 4t + 2h− 1} in G(t) and returns the
reordered matrix and h as an output.

By using the Reorder(G(t)) procedure which is defined in
Definition 33, we can assume that�

i∈[h]

	
g

(t)
4t+2i + g

(t)
4t+2i+1



= 0s. (9)

We are now ready to show the FBSolution3(G, τ, M )
algorithm, which is presented as Algorithm 6.

Note that since�1
3
· 2s
�
− 2− 4τ =

�1
3
· 2s
�
− 4
� 1
12
· 2s
�

+ 4s− 2

� 4s− 2 � 2(s + 1),

Algorithm 6 FBSolution3(G, τ, M )

1: G(0) ← G
2: B(0) = ∅
3: for t = 0, 1, . . . , τ − 1 do
4: G(t), h←Reorder(G(t))
5: G(t) ← FindEquivSums(G(t), t, h)
6: G(t+1),B(t+1) ← FindGoodOr-

BadRequest(G(t),B(t), 2t, vt)

7: Return G(τ) and B(τ)

for s � 7, the 2h � 2(s+1) column vectors of G(t) presented
in (9) are unused on the t-th iteration. By using these 2h
unused columns, the function FindEquivSums(G, t, h) will be
able to reorder the columns of G(t) such that

g
(t)
4t + g

(t)
4t+1 = g

(t)
4t+2 + g

(t)
4t+3, (10)

without changing the previous valid recovery sums. Then,
the function FindGoodOrBadRequest(G(t),B(t), 2t, vt) will
update the sum g

(t)
4t +g

(t)
4t+1 to either vt or g

(t)
4t +g

(t)
4t+1 +vt,

again, without changing all the previous valid recovery sums.
In the latter case, we are able to construct a recovery set
Rt = {4t, 4t + 1, 4t + 2, 4t + 3} of size 4 due to (10).

The FindEquivSums(G, t, h) algorithm is presented next.

FindEquivSums(G, t, h)
1: for i = 1, . . . , h− 1 do
2: xi ← g4t+2i + g4t+2i+1

3: if g4t + g4t+1 
= xi then
4: G← FindGoodOrBadRequest(G,B, 2t, xi)

5: if g4t + g4t+1 = xi then
6: Swap g4t+2 and g4t+2i

7: Swap g4t+3 and g4t+2i+1

8: Return G

The proof of the correctness of the function FindEquiv-
Sums(G, t, h) is shown in the following theorem.

Theorem 34: If there are at least 2(s + 1) unused columns
in G, then there is a function FindEquivSums(G, t, h) that can
reorder the columns of G such that

g4t + g4t+1 = g4t+2 + g4t+3,

without corrupting the previous valid recovery sums.
Proof: As explained before, the 2h � 2(s + 1) column

vectors of G presented in (9) are unused. Therefore, the algo-
rithm FindEquivSums(G, t, h) will not corrupt the previous
valid recovery sums. Our goal is to prove that the algorithm
will succeed on Step 5. On the i-th iteration, by executing
Step 4, the sum of g4t +g4t+1 will be either g4t +g4t+1 +xi

or xi, without changing other sums except of the redundancy
sum gn−2 + gn−1. If g4t + g4t+1 = xi, Step 5 will
succeed. Otherwise, we can assume that on the i-th iteration,
the algorithm obtains g4t + g4t+1 + xi on Step 4. Denote by
x0 the sum of g4t + g4t+1 at the beginning of the algorithm.
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Therefore, at the end of the i-th iteration, we obtain

g4t + g4t+1 =
i�

j=0

xj .

By (9),

h−2�
j=0

xj = xh−1.

Therefore, on the last iteration, i.e., when i = h− 1,

g4t + g4t+1 =
h−2�
j=0

xj = xh−1.

Thus, Step 3 will fail and Step 5 will succeed, concluding the
proof.

We are ready to show the main result of this section.
Lemma 35: The FBSolution3(G, τ, M ) algorithm constructs

τ valid recovery sets Rt for vt, without corrupting previous
recovery sums.

Proof: By Theorem 34 the FindEquivSums(G(t), t, M )
algorithm will output G(t) such that g

(t)
4t + g

(t)
4t+1 = g

(t)
4t+2 +

g
(t)
4t+2, and all previous sums of requests are valid. Before the

execution of the FindGoodOrBadRequest(G(t),B(t), 2t, vt)
function we denote the sums g4t+g4t+1 and g4t+2+g4t+2 by
yt. The algorithm FindGoodOrBadRequest(G(t),B(t), 2t, vt)
will update only the sum g

(t)
4t + g

(t)
4t+1 to either vt or vt + yt

and the sum of the last pair gn−2 +gn−3 which is redundant,
due to Lemma 14. The case g

(t)
4t + g

(t)
4t+1 = vt is called a

good case and we assume that all such t’s are inserted in
a set G. These pairs will be recovered by the recovery sets
Rt = {4t, 4t + 1}. The case g

(t)
4t + g

(t)
4t+1 = vt + yt is called

a bad case and all such t’s are assumed to be inserted in a
set B. By (10) for every t such that g

(t)
4t + g

(t)
4t+1 = vt + yt

we have that g
(t)
4t+2 + g

(t)
4t+3 = yt. Thus, in these cases, the

requests will have the recovery sets Rt = {4t, 4t + 1, 4t + 2,
4t + 3}.

In Section V, we showed a technique to obtain another
recovery set from the redundancy pair gn−2 and gn−1. Using
this technique, we are able to construct � 16 ·2s−1�−s+1 valid
recovery sets. By combining the three cases above, the fol-
lowing theorem is deduced immediately.

Theorem 36: An FB-(2s− 1, s, � 56 · 2s−1�− s) code exists.

VII. A CONSTRUCTION OF B-(2s − 1, s, 2s−1) CODES

Wang et al. [14] showed a construction for B-(2s − 1,
s, 2s−1) codes, which is optimal, using a recursive decoding
algorithm. In this section, we show how to achieve this
result with the simpler, non-recursive decoding algorithm. Our
solution solves even a more general case in which the requests
vj’s satisfy some constraint that will be described later in
this section. The idea of this algorithm is similar to the one
of the FBSolution(τ, M ) algorithm. First, we slightly change
the definition of an extended Simplex solution as presented in
Definition 6 to be the following one.

Definition 37: Let M = [v0, v1, . . . , vn/2−1] be a request
of order s × n/2, where n = 2s. The matrix M has an

extended Simplex solution if there exists an ES-matrix G =
[g0, g1, . . . , gn−1] of order s×n such that for all i ∈ [n/2−1],

vi = g2i + g2i+1,

and for i = n/2− 1 either vi = gn−2 + gn−1, or vi = gn−2,
or vi = gn−1. In this case, we say that G is an extended
Simplex solution for M .

Let G be an ES-matrix. Let G be the set of all matrices G�

generated by elementary row operations on G. The following
claim proves that elementary row operations on ES-matrices
only reorder their column vectors.

Claim 9: Every G ∈ G is an ES-matrix.
Proof: We will only prove that adding a row in G to any

other row, generates an ES-matrix. By proving that, it can
be inductively proved that doing several such operations will
again yield an ES-matrix.

Without loss of generality, we assume that we add the i-th
row, for some 0 < i � s−1, to the 0-th row of G and generate
a new matrix G�. Assume to the contrary that G� is not an
ES-matrix. Thus, there are two distinct indices �, m ∈ [n]
such that g�

� = g�
m. Therefore, by definition of elemen-

tary row operations, G satisfies g� = gm, which is a
contradiction.

Let M be a request denoted by

M = [v0, v1, . . . , v2s−1−1].

Let M be the set of all matrices M � generated by elemen-
tary row operations on request matrix M . We now present
Lemma 38. Its proof follows directly from Claim 9.

Lemma 38: If there is an M ∈ M such that there is an
extended Simplex solution for M , then there is an extended
Simplex solution for all M � ∈M.

Proof: Let M ∈ M and let G be an extended Simplex
solution for M . Let P be a set of elementary row operations,
generating M � from M . By Claim 9, executing elementary
row operations P on G generates an ES-matrix, G�. Since
we applied the same elementary row operations P on both M
and G, it is deduced that G� is an extended Simplex solution
for M �.

The constraint mentioned above is as follows. Given M,
we demand that there is a request M � ∈ M having the 0-th
row to be a vector of ones. Using Lemma 38, our algorithm
will handle any request M � such that M � ∈M and M holds
this constraint. Note that if each request vector vj ∈ F

s
2 is

a unit vector, then by summing up all of its rows to the
0-th one, it holds that there exists such a matrix in M holds
the constraint. Moreover, if every request vector is of odd
Hamming weight, our algorithm will still find a solution.
Therefore, from now on, we assume that the 0-th row of the
request matrix M is a vector of ones.

Remember that e = (0, 0, . . . , 0, 1) ∈ F
s
2. The initial state

of the matrix

G = [g0, g1, . . . , gn−1]

will satisfy

g2t + g2t+1 = e, t ∈ [n/2].
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Given g ∈ F
s
2, let f(g) be the bit value in the 0-th position

in g. Remember that for all x ∈ F
s
2, the graph Gx(G) has a

partition to � � 1 disjoint simple cycles, that will be denoted
by Cx(G) = {Ci}�−1

i=0 (Definition 10). Let τ = 2s−1. We are
now ready to show the following algorithm.

Algorithm 7 BSolution(τ, M )

1: G(0) ← G
2: for t = 0, . . . , τ − 2 do
3: if f(g(t)

2t + g
(t)
2t+1) = 1 then

4: Find g
(t)
p , g

(t)
h s.t. p, h � 2t and f(g(t)

p + g
(t)
h ) = 0

5: Swap g
(t)
p and g

(t)
2t

6: Swap g
(t)
h and g

(t)
2t+1

7: at ← vt + g
(t)
2t + g

(t)
2t+1

8: Let Ci ∈ Cat
(G(t)) be a cycle s.t. {g(t)

2t , g
(t)
2t+1}p ∈ Ci

9: Find {g(t)
2m, g

(t)
2m+1}p ∈ Ci s.t. m > t

10: j ← FindShortPath(G(t), at, t, m)
11: G(t+1) ← Fat

(g(t)
2t , g

(t)
j )

12: if g
(τ−1)
n−2 + g

(τ−1)
n−1 
= vn/2−1 and g

(τ−1)
n−2 
= vn/2−1 then

13: G(τ) ← F
g
(τ−1)
n−2 +vn/2−1

(g(τ−1)
n−2 , g

(τ−1)
n−1 )

14: Return G(τ)

Our first goal is to prove that on the t-th iteration when
the BSolution(τ, M ) algorithm reaches Step 7, it holds that
f(g(t)

2t + g
(t)
2t+1) = 0.

Lemma 39: On the t-th iteration when the BSolution(τ, M )
algorithm reaches Step 7, it holds that f(g(t)

2t + g
(t)
2t+1) = 0.

Proof: If on the t-th iteration in Step 3, f(g(t)
2t +g

(t)
2t+1) =

1 then the BSolution(τ, M ) algorithm will try to find p, h � 2t

such that f(g(t)
p + g

(t)
h ) = 0. Note that since t � τ − 2,

we have g
(t)
2t , g

(t)
2t+1 and at least two more column vectors

g
(t)
2m, g

(t)
2m+1 such that m > t. By the pigeonhole principle,

there exist two indices p, h ∈ {2t, 2t + 1, 2m, 2m + 1} such
that f(g(t)

p ) = f(g(t)
h ). After executing Step 5 and Step 6 we

obtain f(g(t)
2t + g

(t)
2t+1) = 0.

Our next goal is to show that in Step 9 on the t-th iteration,
the BSolution(τ, M ) algorithm will find {g(t)

2m, g
(t)
2m+1}p ∈ Ci

such that m > t. We start with the following claim.
Claim 10: Given a graph Gx(G) and its partition to cycles

Cx(G) = {Ci}p−1
i=0 , for all Ci ∈ Cx(G) it holds that�

{g2m,g2m+1}p∈Ci

	
g2m + g2m+1



≡1

2
|Ci|x(mod 2).

Proof: Assume that Ci is of length 2�, and its cycle
representation is given as follows

Ci = gs0
− gs1

− · · · − gs2�−1
− gs2�

− gs0
,

where both of the edges {gs0
, gs1
}p, {gs2�−1

, gs2�
}p are pair-

type edges. By Claim 2(3), for all odd t ∈ [2�] it holds that
gst

= gst+1
+ x. Thus, by summing only the sums of the

nodes of the pair-type edges in Ci we obtain�
{g2m,g2m+1}p∈Ci

	
g2m + g2m+1




=
�

t∈[2�]

gsi
=

�
t∈[2�],t is odd

	
gst

+ gst
+ x




≡�x(mod 2).

Now we are ready to prove the following lemma.
Lemma 40: On the t-th iteration when the BSolution(τ, M )

algorithm reaches Step 9, it will find {g(t)
2m, g

(t)
2m+1}p ∈ Ci

such that m > t.
Proof: Remember that we assumed that the bit value in

the 0-th position for all the requests vj is 1. Therefore, on the
t-th iteration, for all m < t it holds that f(g(t)

2m +g
(t)
2m+1) = 1,

and by Lemma 39, f(g(t)
2t + g

(t)
2t+1) = 0. Now, assume to the

contrary that there are no m > t such that {g(t)
2m, g

(t)
2m+1}p ∈

Ci. Note that

f(at) = f(vt + g
(t)
2t + g

(t)
2t+1)

= f(vt) + f(g(t)
2t + g

(t)
2t+1) = 1 + 0≡1(mod 2).

By Claim 10, if |Ci| = 2� then,�
{g

(t)
2m,g

(t)
2m+1}p∈Ci

	
g

(t)
2m + g

(t)
2m+1



≡�at(mod 2),

and therefore,�
{g

(t)
2m,g

(t)
2m+1}p∈Ci

f(g(t)
2m + g

(t)
2m+1)≡�f(at) = �(mod 2).

However, since only the edge {g(t)
2t , g

(t)
2t+1}p ∈ Ci satisfies

that f(g(t)
2t + g

(t)
2t+1) = 0, it is deduced that�

{g2m,g2m+1}p∈Ci

f(g(t)
2m + g

(t)
2m+1) = �− 1 
≡ �(mod 2),

which violates Claim 10.
We are ready to show the main theorem of this section.
Theorem 41: Given a request matrix M having the 0-th row

to be a vector of ones, the BSolution(τ, M ) algorithm finds an
extended Simplex solution for M .

Proof: First, we will prove that the BSolution(τ, M )
algorithm generates 2s−1 − 1 recovery sets for the first 2s−1−
1 requests vt. This is done by Steps 1–11. Note that the sums
g

(t)
2m + g

(t)
2m+1 for all m < t, might be changed only after

Step 9. We will show that these sums will not be changed
and the sum g

(t)
2t + g

(t)
2t+1 will be equal to vt at the end of

the t-th iteration. By Lemma 40, when the BSolution(τ, M )
algorithm reaches Step 9, it will find {g(t)

2m, g
(t)
2m+1}p ∈ Ci

such that m > t. Thus, there is a good-path between g2t+1

and one of the nodes g2m, g2m+1 (the closest one between
them to g2t+1), and the index of this node is denoted by j
(Step 10). Due to Lemma 13, by executing Fat(g2t+1, gj),
the matrix G(t) is updated to a matrix G(t+1) such that only
the two following pair summations are correctly changed to

g
(t+1)
2t + g

(t+1)
2t+1 = g

(t)
2t + g

(t)
2t+1 + at = vt

g
(t+1)
2m + g

(t+1)
2m+1 = g

(t)
2m + g

(t)
2m+1 + at.

Lastly, Steps 12–13 handle the last recovery set in a similar
way as was done in the proof of Theorem 22.
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VIII. CONCLUSION

In this paper, functional k-batch codes and the value
FB(s, k) were studied. It was shown that for all s � 6,
FB(s, � 562s−1� − s) � 2s − 1. In fact, we believe that by
using a similar technique, this result can be improved to
� 782s−1� − s requests, but this proof has many cases and
thus it is left for future work. We also showed a family of
FB-(2s+�(3α−2)·2s−2�−1, s, �α·2s−1�) codes for all 2/3 �
α � 1. Yet another result in the paper provides an optimal
solution for k = 2s which is FB(s, 2s) = 2s+1−2. While the
first and main result of the paper significantly improves upon
the best-known construction in the literature, there is still a
gap to the conjecture which claims that FB(s, 2s−1) = 2s−1.
We believe that the conjecture indeed holds true and it can be
achieved using extended Simplex codes.

APPENDIX A

Theorem 1: For any triple-set (G,B,R) if |B| � � 13 · 2s−1�
then |B| � |R|.

Proof: According to the definition of (G,B,R) and since
G ∪ B = [� 23 · 2s−1�] it holds that

|R| =
���[2s−1] \

	
G ∪ B ∪ {2s−1 − 1}


���
= 2s−1 −

�2
3
· 2s−1

�
− 1.

Thus, in order to prove that |B| � |R|, since |B| � � 13 ·2s−1�,
we will prove inequality (a) in

|R| = 2s−1 −
�2
3
· 2s−1

�
− 1

(a)

�
�1
3
· 2s−1

�
� |B|.

This inequality is equivalent to

2s−1 − 1 �
�2
3
· 2s−1

�
+
�1
3
· 2s−1

�
.

We separate the proof for the following two cases.
Case 1: If s is even, then

2s ≡ 1(mod3), 2s−1 ≡ 2(mod3).

Thus,�2
3
· 2s−1

�
+
�1
3
· 2s−1

�
=
�2s

3

�
+
�2s−1

3

�
=

2s − 1
3

+
2s−1 − 2

3
=

3 · 2s−1 − 3
3

= 2s−1 − 1.

Case 2: If s is odd, then

2s ≡ 2(mod3), 2s−1 ≡ 1(mod3).

Thus,�2
3
· 2s−1

�
+
�1
3
· 2s−1

�
=
�2s

3

�
+
�2s−1

3

�
=

2s − 2
3

+
2s−1 − 1

3
=

3 · 2s−1 − 3
3

= 2s−1 − 1.

Therefore, it is deduced that in both cases if |B| � � 13 · 2s−1�
then |B| � |R|.
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