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Abstract— This paper investigates the problem of correcting
multiple criss-cross insertions and deletions in arrays. More
precisely, we study the unique recovery of n × n arrays affected
by t-criss-cross deletions defined as any combination of tr row and
tc column deletions such that tr + tc = t for a given t. We show
an equivalence between correcting t-criss-cross deletions and
t-criss-cross insertions and show that a code correcting t-criss-
cross insertions/deletions has redundancy at least tn+ t log n−
log(t!). Then, we present an existential construction of a t-criss-
cross insertion/deletion correcting code with redundancy bounded
from above by tn + O(t2 log2 n). The main ingredients of
the presented code construction are systematic binary t-deletion
correcting codes and Gabidulin codes. The first ingredient helps
locating the indices of the inserted/deleted rows and columns,
thus transforming the insertion/deletion-correction problem into
a row/column erasure-correction problem which is then solved
using the second ingredient.

Index Terms— Insertion/deletion correcting codes, array codes,
criss-cross deletion errors.

I. INTRODUCTION

CODES correcting insertions and deletions have recently
witnessed an increased attention due to their application

in DNA-based storage systems, file synchronization, and
communication systems [2]–[8]. The problem of correcting
insertions and deletions, referred to as indel errors, dates
back to the 1960s. In [9], Levenshtein defined the notion of
t-deletion-correcting codes and showed that a code can correct
any combination of t indels if and only if it can correct
t deletions. The main property of the codes that is usually
optimized is the redundancy defined as R � n − log |C|
where n is the length of the codewords in C and |C|
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is the cardinality of the code. Levenshtein bounded the
redundancy of any binary t-indel-correcting code from below
by t log n − O(1). Moreover, he proved that the Varshamov-
Tenengolts codes [10], originally designed to correct a sin-
gle asymmetric error, can also correct a single indel and
have redundancy roughly log(n + 1) bits. Several recent
works studied the problem of constructing binary t-indel-
correcting codes, for t > 1, with redundancy approaching
Levenshtein’s bound [11]–[17]. Of particular importance to
us is the work of Sima et al. [18] in which the authors present
a binary systematic t-indel-correcting code with redundancy
4t log(n) + o log(n). This code can correct any combination
of t indel errors.

This paper considers the problem of coding for indels in
the two-dimensional space. The motivation stems from the
two-dimensional erasure and substitution correction problem
where it has been shown that leveraging the structure of the
array is more beneficial than applying one-dimensional error
correcting codes on each dimension of the array. The deletion
(and clearly also the indel) correction problem is however
more involved due to the loss of synchronization in the
locations of the inserted and deleted rows and columns. Along
this line of thought, the trace-reconstruction problem, which
is related to coding for deletions, is investigated for the two-
dimensional space in [19]. Moreover, coding for deletions over
the two-dimensional space is also considered in [20]–[22].
In [20], [21] codes that can correct bursts of deletions in the
one-dimensional space are constructed. The main idea is to
view the codeword as a binary array and use the structure
of that array to detect and correct bursts of deletions that
happen in the one-dimensional codeword. In [22], the authors
consider the problem of database matching under column
deletions.

Given a certain number of deletions t and an array X,
we assume that the array can be affected by any combination
of tr row and tc column deletions such that tr + tc = t. This
type of deletions are referred to as t-criss-cross deletions.
We define t-criss-cross insertions similarly. Our goal is to
construct codes that can uniquely recover the array X from
any t-criss-cross deletion or any t-criss-cross insertion and we
refer to these codes as t-criss-cross indel codes. We borrow
this terminology from previous works that studied the problem
of correcting criss-cross erasures and substitution errors in the
two-dimensional space, e.g., [23]–[30].

The first works to study the criss-cross deletion problem
were [31]–[33]. In [31], [32], we investigated the problem
of correcting exactly one row and one column inser-
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tion/deletion in arrays. We showed that the redundancy of
codes designed for this special case is bounded from below
by 2n + 2 logn − O(1). We also presented an existential
and an explicit construction with redundancy approximately
2 logn and 7 log n far from the lower bound, respectively.
Furthermore, we showed that, for tr = tc, a code can correct
any t-criss-cross deletion if and only if it can correct any
t-criss-cross insertion. In [33], Hagiwara constructed codes
correcting criss-cross deletions with at most tr row deletions
and at most tc column deletions, for given values of tr and
tc. The constructed codes have redundancy in the order of
n(t2r + t2c + (tr + tc) log n). The construction splits the array
into locators and information part. The locators are carefully
structured arrays that can exactly recover the index of any
deleted rows and columns in the array. Then, a tensor-product
erasure-correcting code is used to recover the lost symbols in
the information part.

Our contributions in this paper can be summarized as
follows. We present an asymptotic upper bound (in the code
length) on the cardinality of t-criss-cross indel codes. Our
bound implies that the redundancy of any t-criss-cross indel
code is bounded from below by approximately tn+t log n. We
extend the equivalence between correcting deletions and inser-
tions to the general t-criss-cross deletion model considered in
this paper. Then, we construct existential t-criss-cross indel
codes based on locator arrays, binary systematic t-deletion
correcting codes, and Gabidulin codes. We also show that
this code can correct t-criss-cross insertions by providing an
explicit decoder. The main improvements of our construction
over the one in [33] is to use a collection of binary deletion-
correcting codes to locate the indices of the deleted columns
and a Gabidulin code to correct the erasures. This significantly
reduces the redundancy of the code. However, small locator
arrays are still needed to complement the deletion-correcting
codes. Then, the deletion-correction problem is transformed
into a row/column erasure-correction problem which can be
solved by using Gabidulin codes that have optimal redundancy
for row/column erasure-correction [24]. The redundancy of the
presented construction is tn+O(t2 log2 n). For the considered
problem setting, we substantially improve upon the current
state-of-the-art construction of [33] that needs a redundancy
of approximately 2n · (t2 + t log n) in this setting.

II. DEFINITIONS AND PRELIMINARIES

This section formally defines the codes and notations that
are used throughout this paper. Let Σ � {0, 1} be the binary
alphabet. We denote by Σn×n the set of all binary arrays of
dimension n × n. All logarithms are base 2 unless otherwise
indicated.

For an integer n ∈ N, the set {1, . . . , n} is denoted by
[n]. For an array X ∈ Σn×n and i, j ∈ [n], we refer to the
entry of X positioned at the i row and the j column by Xi,j .
We denote the i row and the j column of X by Xi,[n] and
X[n],j , respectively. Similarly, we denote by X[i1:i2],[j1:j2] the
subarray of X formed by rows i1 to i2 and their corresponding
entries from columns j1 to j2. We denote by XT the transpose
of the array X. Moreover, for two arrays X ∈ Σn×m1 and

Y ∈ Σn×m2 we denote by Z = (X | Y) the concatenation
of these two arrays with Z ∈ Σn×(m1+m2). For any binary
array X, we refer to the complement of X, i.e., every bit in
X is flipped, by X. In an array X ∈ Σn×m, a column-run
of length r is defined as a sequence of r consecutive equal
columns X[n],j = X[n],j+1 = · · · = X[n],j+r−1. Row-runs in
an array X are defined similarly. Given a vector x ∈ Σn a
run of length r in x is defined as a sequence of r consecutive
equal bits xi = xi+1 = · · · = xi+r−1.

For positive integers tr, tc we define a (tr, tc)-criss-cross
deletion in a binary array X to be the deletion of any
tr rows and tc columns of X. For a positive integer t,
we define a t-criss-cross deletion in a binary array X to be
the collection of all (tr, tc)-criss-cross deletions in X such that
tr + tc = t. Further, (tr, tc)-criss-cross insertion and a t-criss-
cross insertion are defined similarly. We denote by Dtr,tc(X)
the set of all arrays that result from X after a (tr, tc)-criss-
cross deletion (i.e., the two-dimensional deletion ball1). In a
similar way we define the set Itr,tc(X) for the insertion case.
We refer to X̃ as the array resulting from a t-criss-cross
deletion or insertion in X, where the number and type of
errors (deletions or insertions) that happened in X is clear
from the context. A code C ⊆ Σn×n that can correct any
(tr, tc)-criss-cross deletion or any (tr, tc)-criss-cross insertion
is called a (tr, tc)-criss-cross indel-correcting code. A t-criss-
cross indel-correcting code is defined similarly. We abbreviate
those codes as (tr, tc)-criss-cross indel code and t-criss-cross
indel code, respectively. Throughout this paper we assume that
t is a constant with respect to n. We write f(n) ≈ g(n),
f(n) � g(n), and f(n) � g(n) if the equality or inequality
holds for n → ∞.

III. EQUIVALENCE BETWEEN INSERTION

AND DELETION CORRECTION

In the following, we show the equivalence between t-criss-
cross deletion-correcting codes and t-criss-cross insertion-
correcting codes (Theorem 1). The proof of Theorem 1 follows
by first showing that the equivalence holds for all (tr, tr + c)-
criss-cross indel codes, where c is a positive integer. Then,
by symmetry the equivalence holds for (tc + c, tc)-criss-cross
indel codes which completes the proof.

Theorem 1: A code C ⊂ Σn×n is a t-criss-cross deletion-
correcting code if and only if C is a t-criss-cross insertion-
correcting code.

We need the following results from [31] showing that any
(tr, tr)-criss-cross deletion-correcting code can also correct
insertions and extending the properties of balls intersections
from the one-dimensional space to the two-dimensional space
for only one indel.

Theorem 2 ([31]): For all integers tr ∈ [n − 1], a code
C ⊂ Σn×n is a (tr, tr)-criss-cross deletion-correcting code if
and only if it is a (tr, tr)-criss-cross insertion-correcting code.

1Strictly speaking, the set Dtr,tc(X) must be called the two-dimensional
deletion sphere of X. However, we abuse terminology and refer to this set as
the deletion ball to follow the nomenclature used by the literature on deletion-
correcting codes. The same holds for the set Itr,tc(X).
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Lemma 3 ([31]): For a positive integer m and two arrays
X ∈ Σm×m and Y ∈ Σm×m,

D1,0(X) ∩ D1,0(Y)=∅ ⇔ I1,0(X) ∩ I1,0(Y)=∅,
D0,1(X) ∩ D0,1(Y)=∅ ⇔ I0,1(X) ∩ I0,1(Y)=∅.

Lemma 4 ([31]): For a positive integer m and two arrays
X ∈ Σ(m+1)×m and Y ∈ Σm×(m+1),

D1,0(X) ∩ D0,1(Y)=∅ ⇔ I0,1(X) ∩ I1,0(Y)=∅.
We now use the previous results to prove Theorem 1.

Proof: [Proof of Theorem 1] The goal is to show that for
any X1,X2 ∈ Σn×n and any two integers tr and tc such that
tr + tc = t, the following holds.

Dtr,tc(X1) ∩ Dtr,tc(X2)=∅ ⇔ Itr,tc(X1) ∩ Itr,tc(X2)=∅.
We only show the equivalence for (tr, tr + c)-criss-cross

indel codes, i.e., for any X1,X2 ∈ Σn×n and any integers tr
and c such that 2tr + c = t we have

Dtr,tr+c(X1) ∩ Dtr,tr+c(X2) = ∅
⇔ Itr,tr+c(X1) ∩ Itr,tr+c(X2) = ∅.

Assuming that the equivalence holds for (tr, tr + c)-criss-
cross indel codes, then the following implies that the equiv-
alence holds for (tr + c, tr)-criss-cross indel codes which
completes the proof.

Dtr,tr+c(X1) ∩ Dtr,tr+c(X2) = ∅
(a)⇔ Dtr+c,tr(X

T
1 ) ∩ Dtr+c,tr(X

T
2 ) = ∅

(b)⇔ Itr+c,tr(X
T
1 ) ∩ Itr+c,tr(X

T
2 ) = ∅

(c)⇔ Itr,tr+c(X1) ∩ Itr,tr+c(X2) = ∅.
The statements (a) and (c) follow trivially by examining the
transpose of the arrays X1 and X2. The statement (b) follows
from the assumed equivalence.

The proof of equivalence for (tr, tr + c)-criss-cross
indel codes proceeds by contraposition, i.e., we show that
Dtr,tr+c(X1)∩Dtr,tr+c(X2) �= ∅ if and only if Itr,tr+c(X1)∩
Itr,tr+c(X2) �= ∅. In what follows, we only show the “only
if” parts since the “if” parts follow similarly.

We prove the equivalence for (tr, tr + c)-criss-cross indel
codes by induction over c = tc − tr.

A. Base Case c = 1

For the reader’s convenience, a flowchart of the proof is
presented in Figure 1.

Assume that there exists an array E ∈ Σ(n−tr)×(n−tr−1)

such that E ∈ Dtr,tr+1(X1) ∩ Dtr,tr+1(X2). Let k = 2tr,
we define the series of arrays {Cs}k

s=1 to be the intermediate
arrays obtained by deleting a row or a column from X2 to
reach E. For notational convenience we let C0 � X2 and
Ck+1 � E. We follow an alternating order of deletion between
columns and rows, i.e.,

Cs ∈
{

D0,1(Cs−1), if s is odd,

D1,0(Cs−1), otherwise.

Fig. 1. A flowchart of the proof of Theorem 1. Given an array Ck+1 ∈
Dtr,tr+1(X1)∩Dtr,tr+1(X2), we show that there exists an array Gk+1 ∈
Itr,tr+1(X1)∩ Itr,tr+1(X2). The series of orange marked arrays are given
by the first assumption. Out of these we can proof the existence of the series
of green marked arrays by Lemma 3 and 4. The brown marked arrays are
then given by applying Theorem 2. Lastly, the existence of the purple arrays
can be shown again by Lemma 3 and 4.

Furthermore, we have Ck+1 ∈ D0,1(Ck). We denote by
Bk ∈ Σ(n−tr)×(n−tr) the array resulting from deleting tr
columns and tr rows from X1 such that E ∈ D0,1(Bk).

We now want to show that there exists a series of arrays
{Bs}k−1

s=0 such that

Bs ∈
{

I0,1(Bs+1) ∩ I0,1(Cs+1), if s is odd,

I1,0(Bs+1) ∩ I0,1(Cs+1), otherwise.

By definition, k is even and Ck+1 ∈ D0,1(Bk)∩D0,1(Ck).
By Lemma 3 there exists an array Bk−1 ∈ Σ(n−tr)×(n−tr+1)

such that Bk−1 ∈ I0,1(Bk) ∩ I0,1(Ck). Moreover, we know
that there exists Ck−1 ∈ Σ(n−tr+1)×(n−tr) such that
Ck ∈ D1,0(Ck−1). Consequently, we have that Ck ∈
D0,1(Bk−1) ∩ D1,0(Ck−1). By Lemma 4 there exists a
Bk−2 ∈ Σ(n−tr+1)×(n−tr+1) such that Bk−2 ∈ I1,0(Bk−1) ∩
I0,1(Ck−1). Following the same arguments as above, one can
show that for all even values of s ∈ {1, . . . , k}, the arrays
Cs, Bs and Cs+1 satisfy Cs+1 ∈ D0,1(Cs)∩D0,1(Bs). Thus,
by Lemma 3 there exists an array Bs−1 ∈ I0,1(Cs)∩I0,1(Bs).
Similarly, for all odd values of s ∈ {1, . . . , k}, the arrays Cs,
Bs and Cs+1 satisfy Cs+1 ∈ D1,0(Cs) ∩ D0,1(Bs). Thus,
by Lemma 4 there exists an array Bs−1 ∈ I1,0(Cs)∩I0,1(Bs).
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Subsequently, we will end up with an array B0 ∈ Σn×n

such that Bk ∈ Dtr,tr(X1) ∩ Dtr,tr(B0). Therefore, by The-
orem 2 there exists an array Fk ∈ Σ(n+tr)×(n+tr) such that
Fk ∈ Itr,tr(X1) ∩ Itr,tr(B0).

Let F0 � B0 and F−1 � C1, we denote again the series of
arrays {Fs}k

s=1 that are the intermediate arrays obtained by a
row or a column insertion starting from F0 until reaching Fk.
We again consider alternating insertions of rows and columns,
i.e.,

Fs ∈
{

I1,0(Fs−1), if s is odd,

I0,1(Fs−1), otherwise.

Define the array G0 � X2, we will now show the existence
of the series of arrays {Gs}k+1

s=1 such that

Gs ∈
{

I0,1(Gs−1) ∩ I0,1(Fs−1), if s is odd,

I1,0(Gs−1) ∩ I0,1(Fs−1), otherwise.

Following the same arguments used to construct the series
{Bs}k−1

s=0 , one can show that for all even values of s ∈
{0, . . . , k}, the arrays Fs, Gs and Fs−1 satisfy Fs−1 ∈
D0,1(Fs) ∩ D0,1(Gs). Thus, by Lemma 3 there exists an
array Gs+1 ∈ I0,1(Fs) ∩ I0,1(Gs). Similarly, for all odd
values of s ∈ {0, . . . , k}, the arrays Fs, Gs and Fs−1

satisfy Fs−1 ∈ D1,0(Fs) ∩ D0,1(Gs). Thus, by Lemma 4
there exists an array Gs+1 ∈ I1,0(Gs) ∩ I0,1(Fs). As a
consequence, we have shown that if there exists an array
Ck+1 ∈ Dtr,tr+1(X1) ∩ Dtr,tr+1(X2), then there exists an
array Gk+1 ∈ Itr,tr+1(X1) ∩ Itr,tr+1(X2).

B. Induction Hypothesis

For any integer c � 1 it holds that for any X1,X2 ∈ Σn×n,
Dtr,tr+c(X1)∩Dtr,tr+c(X2) �= ∅ if and only if Itr,tr+1(X1)∩
Itr,tr+c(X2) �= ∅.

C. Induction Step

Assume that the induction hypothesis holds for all values
0 � tc − tr � c. We prove that the hypothesis holds for
tc − tr = c + 1.

Assume that there exists an array E ∈ Σ(n−tr)×(n−tr−c−1)

such that E ∈ Dtr,tr+c+1(X1)∩Dtr,tr+c+1(X2). Let k = 2tr,
define C0 � X2 and Ck+c+1 � E. We denote by {Cs}k+c+1

s=0

the series of arrays resulting from a deletion of a row or a
column starting from X2 until obtaining E as follows

Cs ∈
{

D0,1(Cs−1), if s is odd or s > k,

D1,0(Cs−1), otherwise.

We denote by Bk+c ∈ Σ(n−tr)×(n−tr−c) the array resulting
from deleting tr columns and tr + c rows from X1 such that
E ∈ D0,1(Bk+c). We now want to show that there exists a
series of arrays {Bs}k+c−1

s=0 such that

Bs ∈
{

I0,1(Bs+1) ∩ I0,1(Cs+1), if s is odd or s � k,

I1,0(Bs+1) ∩ I0,1(Cs+1), otherwise.

Following the same arguments as in the base case, one can
show that for all even values of s ∈ {0, . . . , k} and for all

values of k � s � k + c, the arrays Cs, Bs and Cs+1

satisfy Cs+1 ∈ D0,1(Cs) ∩ D0,1(Bs). Thus, by Lemma 3
there exists an array Bs−1 ∈ I0,1(Cs) ∩ I0,1(Bs). Similarly,
for all odd values of s ∈ {0, . . . , k}, the arrays Cs, Bs

and Cs+1 satisfy Cs+1 ∈ D1,0(Cs) ∩ D0,1(Bs). Thus,
by Lemma 4 there exists an array Bs−1 ∈ I1,0(Cs)∩I0,1(Bs).
Subsequently, we will end up with an array B0 ∈ Σn×n

such that Bk+c ∈ Dtr,tr+c(X1) ∩ Dtr,tr+c(B0). Therefore,
by using the induction hypothesis, we can show the existence
of the array Fk+c ∈ Σ(n+tr)×(n+tr+c) such that Fk+c ∈
Itr,tr+c(X1) ∩ Itr,tr+c(B0).

Let F0 � B0 and F−1 � C1, we denote again the series of
arrays {Fs}k+c

s=1 as the intermediate arrays obtained by a row
or a column insertion starting from F0 until reaching Fk as
follows

Fs ∈
{

I0,1(Fs−1) if s is even or s > k,

I1,0(Fs−1) otherwise.

Define the array G0 � X2, we will now show the existence
of the series of arrays {Gs}k+c+1

s=1 such that

Gs ∈
{

I0,1(Gs−1) ∩ I0,1(Fs−1) if s is odd or s > k,

I1,0(Gs−1) ∩ I0,1(Fs−1) otherwise.

Following the same arguments as in the base case, one
can show that for all even values of s ∈ {0, . . . , k} and
k � s � k + c, the arrays Fs, Gs and Fs−1 satisfy
Fs−1 ∈ D0,1(Fs) ∩ D0,1(Gs). Thus, by Lemma 3 there
exists an array Gs+1 ∈ I0,1(Fs) ∩ I0,1(Gs). Similarly, for
all odd values of s ∈ {0, . . . , k}, the arrays Fs, Gs and Fs−1

satisfy Fs−1 ∈ D1,0(Fs) ∩ D0,1(Gs). Thus, by Lemma 4
there exists an array Gs+1 ∈ I1,0(Gs) ∩ I0,1(Fs). As a
consequence, we have shown that if there exists an array
Ck+c+1 ∈ Dtr,tr+c+1(X1)∩Dtr ,tr+c+1(X2), then there exists
an array Gk+c+1 ∈ Itr,tr+c+1(X1) ∩ Itr,tr+c+1(X2). This
concludes the induction. �

IV. UPPER BOUND ON THE CARDINALITY

This section presents an asymptotic upper bound on the
cardinality of any t-criss-cross indel code. It implies an
asymptotic lower bound on the redundancy of any binary
t-criss-cross indel code, denoted by RB(n, t).

Lemma 5: Any upper bound on the cardinality of a q-ary
t-deletion-correcting code Cq,n,t with q = 2n is also an upper
bound on the cardinality of a binary t-criss-cross indel code.

Proof: Note that a 2n-ary t-deletion-correcting code
C2n,n,t can be seen also as a binary t column deletion-
correcting code by interpreting the symbols as binary columns.
Since a t-criss-cross indel code C can correct any combination
of tr row and tc column deletions such that tr + tc = t,
in particular it can also correct any t column deletions.
Therefore, any upper bound on the size of C2n,n,t is also a
valid upper bound on the size of C. �

Corollary 6: For any binary t-criss-cross indel code C it
holds that

|C| � t!2n2

(2n − 1)tnt
.

Consequently, we have RB(n, t) � tn + t log(n) − log(t!).
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Fig. 2. Illustration of an array contained in the locator set Lt(n) for t = 3.
In the first t log(n) rows there are t blocks each consisting of a systematic part
( ) and a redundancy part (red). Each row is encoded using a systematic
t-deletion-correcting code (zoomed in part). In addition, in the systematic
part of each block a window constrained is imposed. Those blocks are used
to locate column deletions. This structure is protected with the arrays L(1)

( ) against row deletions and T(1) ( ) against column deletions.
Lastly, to locate the borders of T(1) we use the marker arrays M(2,1) and
M(2,2) ( ). A symmetric structure locates row deletions.

Proof: From [34], we have for a q-ary t-deletion correcting
code that |Cq,n,t| � t!qn

(q−1)tnt when q is fixed. By following the
same arguments as in the proof of [34, Theorem 4.3] we can
show that this bound holds also true when q = 2n. Therefore,
for any binary t-criss-cross indel code C it holds by Lemma 5
that

|C| � |C2n,n,t| � t!2n2

(2n − 1)tnt
.

Therefore, we have

RB(n, t) � n2 − log(|C|) ≈ tn + t log(n) − log(t!).

�

V. CODE CONSTRUCTION

In this section we present an existential construction of t-
criss-cross indel codes. We start with an intuitive road map to
our code construction and then formally define each ingredient.

A. Road Map

Our construction uses structured arrays so that the indices
of the inserted/deleted rows and columns can be exactly
recovered. Then, the set of structured arrays is intersected
with arrays of a Gabidulin code (that can correct row/column
erasures) to recover the arrays of the code. The structure is
depicted in Figure 2.

We structure the n×n codewords C as follows. We protect
the columns with indices between t log n+1 and n− (t+1)2

using t log n codes where each one is a binary systematic
t-indel-correcting code. We divide those codes into t blocks
each of size log n. We impose what we call a window
constraint on the columns of the systematic part of every
block. This constraint ensures that every t + 1 consecutive
columns are different. Therefore, the indices of the deleted
columns within the systematic part can be located by using all
log n indel-correcting codes of any block (Claim 9). In case
of insertions, the indices of the inserted columns within the
systematic part can be located up to an interval of length at
most 2t containing at most t columns of the original array.
This ambiguity arises when the inserted rows/columns are
equal to collections of rows/columns of the original array
within an interval. We call this phenomenon block confusions
(cf. Section V-B and Claim 10).

In the redundancy part, runs may exist. Thus, the recovery of
the index of the deleted columns is only guaranteed within the
corresponding run. To recover the exact location of the deleted
columns here, we protect the redundancy part of the codes by
appending (from below) what we call a locator array that
can detect the exact positions of column deletions within this
part (Claim 7). We call this array T(1). In case of insertions,
the locator array is used to recover the index of the inserted
columns up to block confusions of length at most 2t (Claim 8).

Note that for the window constraint to work, we need to
have all log n indel-correcting codes of the considered block.
Therefore, we use the subarray C[1:t log n],[n−(t+1)2:n] as a
locator array L(1) that can detect the exact position of a deleted
row within the first t logn rows (Claim 7). As a result, if all
t deletions are row deletions within the first t log n rows,
then the locator array is enough to recover all the indices
(Lemma 13). Otherwise, we have at least one block of the
t blocks that is not affected by a row deletion. This block
is used to recover the deleted columns with indices in the
range t log n + 1 to n − (t + 1)2 (Lemma 14). The same
arguments hold for the insertion case (Claim 8, Lemma 16 and
Lemma 17). The only difference is the possibility of the
inserted row/column causing ambiguities for the exact indices
of the insertions.

One more step is needed. We must be able to locate the
position of the locator arrays within the resulting (n − tr) ×
(n−tc) array C̃. Therefore, we put four marker arrays after the
locators that are detectable even after t insertions or deletions.
We call those arrays M(1,1) and M(1,2).

The same structure (transposed) is used to index the rows.
In addition, the columns with indices between 1 and t log n
are protected by the locator array used for protecting the
indel-correcting codes indexing the rows. Note the claims
and lemmas mentioned before also include the statements to
recover the row indices.

The whole code is intersected with a Gabidulin code [35]
that can correct row/column erasures. Once the positions of
the deleted rows and columns are known to the decoder,
those positions are marked as erasures and corrected using the
Gabidulin code. In case of insertions, all inserted rows and
columns with exactly recovered indices are removed. In the
case where inserted rows/columns create block confusions
we can simply delete all involved rows/columns and insert
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erasures. The window constraint guarantees that we do not
delete more than t rows/columns of the original array by this
procedure, hence assuring to not exceed the erasure correction
capability of the Gabidulin code.

In the next subsections, we formally define the five main
ingredients of our code: (i) the locator arrays; (ii) the
binary systematic t-deletion-correcting codes with window
constraints; (iii) the marker arrays; (iv) the locator set which
is the combination of all the previously mentioned parts; and
(v) a Gabidulin code [35] that is used to correct row/column
erasures.

B. Locator Arrays

For a positive integer a, we denote by Ia the identity array
of dimension a × a and by 1a and 0a the all-one row vector
and all-zero row vector of length a, respectively. We use ⊗ to
indicate the Kronecker product. We thus have the following
definition from [33].

Definition 1 (Locator arrays): We set L′ ∈ Σ(t+1)×(t+1)2

as L′ � It+1 ⊗ 1t+1. More precisely, L′ has the following
structure

L′ =

⎛⎜⎜⎜⎝
1t+1 0t+1 . . . 0t+1

0t+1 1t+1 . . . 0t+1

...
...

. . .
...

0t+1 0t+1 . . . 1t+1

⎞⎟⎟⎟⎠ .

Let s be a multiple of (t + 1) such that s �
⌈

t
2

(
t + 1).

We define the locator array Ls ∈ Σs×(t+1)2 as

Ls � 1T
s

t+1
⊗ L′.

Moreover, we define the locator array Ts ∈ Σ(t+1)2×s to be
the transpose of Ls, i.e.,

Ts � LT
s = 1 s

t+1
⊗ L′ T .

Throughout the paper we drop s in the notation Ls and Ts

when the value of s is clear from the context.
Claim 7 (Deletion Detection in Ls and Ts): Let Ls be

an array affected by tr row and tc column deletions such that
tr+tc = t. Divide Ls into (t+1) subarrays each consisting of
(t + 1) consecutive columns of Ls. By examining L̃s, we can
locate the exact positions of the deleted rows. We can also
determine the number of column deletions that happened in
each subarray of Ls.

Let Ts be an array affected by tr row and tc column
deletions such that tr + tc = t. The same statement above
for Ls holds for Ts by switching rows for columns.

Proof: We prove the first part of the claim, while the
second part follows similarly since Ts = LT

s and row
deletions in Ts can be seen as column deletions in Ls and
vice versa.

By construction of Ls, for any i ∈ [s − t] and j ∈ [t] it
holds that Li,[(t+1)2] �= Li+j,[(t+1)2]. This property holds true
even in the presence of at most t column deletions in Ls. Thus,
due to the fixed structure of Ls one can uniquely determine
the exact indices of the deleted rows.

Moreover, we divide Ls in subarrays consisting of (t + 1)
columns. For any a ∈ [t + 1] and b ∈ [t + 1], we have

L[s],(a−1)(t+1)+1 = L[s],(a−1)(t+1)+b. In words, we have
(t+1) identical columns in a subarray. This property holds true
even if there were at most t row deletions in Ls. Furthermore,
for s �

⌈
t
2

(
t + 1) and a, b, c ∈ [t + 1], it always holds that

L[s],(a−1)(t+1)+1 �= L[s],(c−1)(t+1)+b, unless a = c. Therefore,
we can determine the deleted columns within any subarray by
counting the number of missing columns. �

We briefly elaborate on the dimension constraint of Ls, i.e.,
s �

⌈
t
2

(
t + 1). If Ls consists of less than

⌈
t
2

⌉
copies of

L′, then a deletion of two consecutive rows in each block will
lead to an impossibility in locating a column deletion within
two adjacent subarrays. Recall that 1a is the all-one vector of
length a and let t = 3 and s = 4, we assume the following
deletion pattern:⎛⎜⎜⎝

14 04 04 04

04 14 04 04

04 04 14 04

04 04 04 14

⎞⎟⎟⎠
︸ ︷︷ ︸

L′

1st & 2nd row del.−−−−−−−→
2nd column del.

(
07 14 04

07 04 14

)
︸ ︷︷ ︸

L̃′

Even though we can locate the row deletions, we cannot locate
the column deletion within a subarray of (t + 1) columns.
Thus, it is necessary to have another copy of L′ within Ls to
guarantee a successful detection of column deletions. In the
general case, this extends to needing at least

⌈
t
2

⌉
copies of L′

in Ls. Note that this example can be directly applied for Ts

by switching in the argument rows and columns.
For the following statements and proofs in case of insertions

we have to define the terminology of block confusions.
Block confusions: Consider an array Z ∈ Σn×m. Let Z̃ be

the resulting array after t-criss-cross insertions in Z. Given a
subset B ⊆ [n], an integer a ∈ [n], and a non-negative integer
c � n, we define a row block confusion in Z̃ if Z̃a+c′,[m] =
Z̃a+b+c′,[m] for all b ∈ B and all non-negative c′ such that
c′ � c. In other words, we declare a block confusion after
insertions, when a collection of c′ consecutive rows in Z̃ are
the same as other collections of consecutive rows within an
interval determined by a and B. This actually leads to the fact
that an insertion locating algorithm cannot determine the exact
location (up to the block confusion) of the inserted rows even
when knowing Z. For convenience, we provide the following
illustration of a row block confusion.

(
1 0 1 0
0 1 0 1

)
︸ ︷︷ ︸

Z

insertion in−−−−−−−→
1st & 2nd row

⎛⎜⎜⎝
1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

⎞⎟⎟⎠
︸ ︷︷ ︸

Z̃

Given both Z and Z̃, an insertion locating algorithm cannot
distinguish whether the insertion happened in the first and
second row or third and fourth row. We call this a row block
confusion with parameters a = 1, B = {2}, and c = 1.

In the case that Z satisfies predetermined properties we
can narrow down the parameter range of the possible block
confusions. Let Z ∈ Σn×m be an array satisfying Zi,[m] �=
Zi+j,[m] for all i ∈ [n − t] and j ∈ [t]. Then, it follows
that B ⊆ [t], a ∈ [n], and 0 � c � t. Therefore, the
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window of a row block confusion, defined as [a, max(B)+c] �
{a, . . . , max(B)+c}, consists of at most 2t rows. In addition,
within this window there exists at least one and at most t rows
of the original array Z. Moreover, the bounds on the maximum
number of original columns in the confusion and the length of
the confusion, defined as the total number of rows in the block
confusion, scale proportionally with the number of insertions
responsible for the confusion. Note that the aforementioned
property on the array Z is satisfied by Ls.

We define a column block confusion similarly. The array
Ts satisfies the desired properties on the columns to limit the
parameter range of column block confusions. In the sequel,
we will drop the row and column term when referring to block
confusions when it is clear from the context.

Claim 8 (Insertion Detection in Ls and Ts): Let Ls be
affected by tr row and tc column insertions such that tr +
tc = t. Divide Ls into (t + 1) subarrays each consisting of
(t + 1) consecutive columns of Ls. By examining L̃s, we can
locate the positions of the inserted rows up to a row block
confusion of length at most 2t containing at most t columns
of the original array Ls. We can also determine the number of
column insertions (and possibly their positions up to a column
block confusion within the subarray or within the adjacent
subarray) that happened in each subarray of Ls.

Let Ts be affected by tr row and tc column insertions such
that tr + tc = t. The same statement above for Ls holds for
Ts by switching rows for columns.

Proof: The proof follows the same steps as in Claim 7.
In terms of row insertions, the difference is that if the
inserted rows in Ls create a block confusion, then we cannot
distinguish between the original rows and the inserted rows
in a window of length at most t + 1 rows. This follows from
the construction of Ls. In terms of column insertions, if the
inserted column is different from the column run in which it
is inserted and from both adjacent column runs, then it can
be exactly located. Otherwise, we can only count the number
of insertions that happened in each block up to a confusion
with an adjacent block. This is due to possible column
block confusions at the column runs located in adjacent
subarrays. �

C. Indel-Correcting Codes With Window Constraints

Indel-correcting codes: We use the construction of [18]
for our binary systematic t-indel-correcting code. We briefly
recall the results of [18]. Given a sequence k ∈ Σκ, one
can compute a redundancy vector rk ∈ Σrk with rk �
4t log(κ) + o(log(κ)). The resulting sequence (k|rk) can be
uniquely recovered after t indel errors. Note that rk is a
function of the information k and ρκ is a function of the
information length κ and the number of indel errors t.

Window constraint: We define the window constraint as the
set Wt(�, w) ⊆ Σ�×w, where for any W ∈ Wt(�, w), i ∈
[w − t] and j ∈ [t], it holds that W[�],i �= W[�],i+j .

For an array W ∈ Wt(�, w), let RW ∈ Σ�×rw be the
array formed such that for any i ∈ [�] the i row of RW is the
redundancy vector corresponding to the i row of W; computed
using the systematic construction in [18]. We refer to the array

RW ∈ Σ�×rw as the redundancy array. Let m � w + rw,
we define D(1)

t (�, m) as the set of all arrays resulting from
the concatenation of W and RW, i.e.,

D(1)
t (�, m) �

{
D ∈ Σ�×m :

D = (W | RW),
s.t.W ∈ Wt(�, w)

}
.

In words, D(1)
t (�, m) is the set of binary systematic t-indel-

correcting codes in which the systematic part satisfies the
imposed window constraint. This set will be used to index
the columns of our arrays in the constructed code. We define
D(2)

t (�, m) �
{
DT : D ∈ D(1)

t (�, m)
}

. This set is going to
be used for indexing the rows.

Claim 9: Let D = (W | RW) ∈ D(1)
t (�, m) be an

array affected by t column deletions and no row deletions,
we can locate the exact positions of the deleted columns in
the subarray W.

The same holds for any array in D(2)
t (�, m) by switching

in the argument rows and columns.
Proof: Assume D̃ = (W̃ | R̃W) is the array obtained

after the deletions. For each row in W̃ we can use the
corresponding redundancy in R̃W to correct the deletions that
happened in this row [18]. We start by looking at the position
of the first recovered bit in each row. In each row, this position
may be unique or may be in an interval of possible positions
(run). The exact location of the column is then determined by
the unique position in which all runs (of all rows) intersect.
The intersection is guaranteed to be unique by the imposed
window constraint; since for any i ∈ [w − t], and j ∈ [t],
it holds that W[�],i �= W[�],i+j . This process is repeated for
all recovered bits until all t positions are determined.

A similar argument follows for the second statement of the
claim. �

Claim 10: Given an array D = (W | RW) ∈ D(1)
t (�, m)

affected by t column insertions and no row insertions, we can
locate the positions of the inserted columns in the subar-
ray W up to column block confusion of length at most
2t + 1 containing at most t columns of the original array D..

The same holds for any array in D(2)
t (�, m) by switching

in the argument rows and columns.
Proof: The proof follows the same technique of the

proof of Claim 9. The only exception arises if the inserted
columns create a column block confusion. However, the
window constraint guarantees that in the worst case the block
confusion occurs in a window of length at most 2t. Moreover,
within this block confusion there exists at most t columns of
the original array. �

D. Marker Arrays

We define the following arrays of dimension (t + 1) ×
(t+1) which will operate as markers to locate the position of
the locator arrays in the resulting C̃. Recall that we use four
locator arrays in our construction, namely L(1), L(2), T(1), and
T(2), cf. Figure 2. We only need marker arrays for T(1) and
L(2). The position of L(1) and T(2) can be then determined.
The first marker array M(2,1), put on top of L(2), consists of
the first t+1 columns of L′. The second marker array M(2,2),
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put on the right of L(2), consists of the complement of the last
t + 1 columns of L′. The marker arrays M(1,1) and M(1,2)

are the transpose of M(2,1) and M(2,2), respectively.

E. Locator Set

We formally define the sets of arrays in Σn×n that form
our code. Let X ∈ Σn×n, we start with the set of arrays
that are used to index the columns. This set is denoted by
Ht(�, n). The arrays in this set have the first t� columns
divided into t blocks. The columns whose indices are between
t� + 1 and n − (t + 1)2 of each row consist of a systematic
t-deletion-correcting code in which the systematic part satisfies
the window constraint. We can write

Ht(�, n) �
{

X :
X[(a−1)�+1:a�],[t�+1:n−(t+1)2]

∈ D(1)
t (�, n − t� − (t + 1)2) ∀ a ∈ [t]

}
.

The set of arrays Vt(�, n) that are used to index the rows is
defined similarly to Ht(�, n) by replacing columns with rows

Vt(�, n) �
{

X :
X[t�+1:n−(t+1)2],[(b−1)�+1:b�]

∈ D(2)
t (�, n − t� − (t + 1)2) ∀ b ∈ [t]

}
.

For a value of rw that divides2 t + 1, the set of arrays
Et(�, n) that contain the locator arrays in the positions shown
in Figure 2 is defined as follows.

Et(�, n)

�

⎧⎪⎪⎪⎨⎪⎪⎪⎩X :

X[1:t�],[n−(t+1)2+1:n] = Lt�,

X[t�+1:t�+(t+1)2],[n−rw−(t+1)2+1:n] = Trw+(t+1)2 ,

X[n−(t+1)2+1:n],[1:t�] = Tt�,

X[n−rw−(t+1)2+1:n],[t�+1:t�+(t+1)2] = Lrw+(t+1)2 ,

⎫⎪⎪⎪⎬⎪⎪⎪⎭.

The set of arrays that contain the marker arrays in the
positions shown in Figure 2, is defined as follows.

Mt(�, n)

�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X :

X[t�+1:t�+(t+1)],[n−rw−(t+1)2−(t+1)+1:n−rw−(t+1)2]

= M(1,1),

X[t�+(t+1)2+1:t�+(t+1)2+(t+1)],[n−(t+1)+1:n]

= M(1,2),

X[n−rw−(t+1)2−(t+1)+1:n−rw−(t+1)2],[t�+1:t�+(t+1)]

= M(2,1),

X[n−(t+1)+1:n],[t�+(t+1)2+1:t�+(t+1)+(t+1)]

= M(2,2)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

We can conclude this subsection by defining the locator set
that is the set of all arrays that have the structure required
by our code to recover the indices of the inserted or deleted
columns and rows. The locator set is the intersection of all the
previously defined sets.

Definition 2 (Locator Set): We define the following set:

Lt(n) � Ht(�, n) ∩ Vt(�, n) ∩ Et(�, n) ∩Mt(�, n).

2If the value of rw does not divide t + 1, then one can simply expand the
dimension of the locator arrays in Et(�, n) to the next multiple of t + 1 that
is greater than rw + (t + 1)2.

The defining parameters of Lt(n) are only t and n. By fixing
those, all other parameters can be obtained from the imposed
constraints. Most noteworthy parameters are w and rw, which
are functions of n and t. Moreover, we point out that a
good choice for the parameter � is log n, which is mainly
motivated by the redundancy optimization of the construction,
thoroughly discussed in Section VII. Additionally, due to
the aforementioned constraints on the locator arrays, t� and
rw+(t+1)2 need to be multiples of (t+1) and t� �

⌈
t
2

(
t+1).

For an illustration of such arrays we refer to Figure 2. Our
construction works only when log n is a multiple of t+1 since
we choose � = log n.

F. Construction

Let Fq denote the finite field of size q, F
n
q the vector space

of length n over Fq, and the F
n×n
q the matrix space over Fq

of dimension n × n. We write CGab(n, t) ⊆ F
n×n
2 to refer to

a linear3 Gabidulin code which is able to correct any pattern
of tr row and tc column erasures in an n×n array as long as
tr + tc = t [24]. This is equivalent to stating that its minimum
rank distance4 is at least t + 1. Now we are able to present
our existential construction..

Construction 1: The code Ct,n ⊆ Σn×n is the set of arrays
that belong to

Lt(n) ∩ CGab(n, t).

Theorem 11: The code Ct,n described in Construction 1 is
a t-criss-cross indel code.

A rough concept of our construction is as follows. We
assume that the decoder knows whether a t-criss-cross deletion
or insertion has happened from the dimension of the received
array. In our codewords, we first introduce the structure Lt(n)
to locate the indices of the inserted or deleted columns and
rows. With this knowledge we can introduce erasures into the
missing rows and columns and convert the deletion problem
into an erasure problem which can be solved by the Gabidulin
code CGab(n, t) [24]. We call this type of decoding the locate-
decode strategy. Theorem 11 will be proven by providing a
generic decoding strategy in the next section.

VI. DECODER

Assume a codeword C ∈ Ct,n is transmitted and let tc and
tr be such that tc + tr = t. The decoder receives an array
C̃ ∈ Σ(n−tr)×(n−tc) obtained from C by tr row and tc column
deletions or an array C̃ ∈ Σ(n+tr)×(n+tc) obtained from C by
tr row and tc column insertions. The dimension of the received
array is assumed to be known to the decoder. As mentioned
before we first focus on locating the indices of inserted/deleted
rows and columns.

3Note that such a Gabidulin code can be represented as a set of vectors
in F

n
2n as well and is linear in F2n . For our application, it is sufficient that

such a Gabidulin code is also F2-linear and we will always represent the
codewords as binary n × n matrices.

4for the definition of the rank distance, cf. [35].
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A. Locating the Indices

Let us denote the set of indices of the rows and columns
that got inserted or deleted by I(tr) ⊂ [n + tr] and I(tc) ⊂
[n + tc], respectively, with |I(tr)| + |I(tc)| = tr + tc = t. For
clarity of presentation, we first present the decoding strategy
for locating deletions. Subsequently, we present the decoding
strategy for locating insertions.

Claim 12: Given the array C̃ affected by tr row and tc
column deletions, the marker arrays M̃(1,1), M̃(1,2), M̃(2,1),
and M̃(2,2) can be located.

Proof: We will focus on locating the arrays M̃(2,1) and
M̃(2,2). A similar proof can be given to find the arrays
M̃(1,1) and M̃(1,2) by exploiting the symmetric properties
of T(1) and L(1).

Using Claim 7 we can locate the leftmost column of L̃(2).
Moreover, the bottom row of L̃(2) is given directly by the
position of L(2) in the codeword itself.

Note that we only have to detect row or column deletions
rather than exactly locating them. Our goal is to locate the
rightmost column of L̃(2). Recall that in the last t+1 rows of
L̃(2) there is for sure an L̃′ which originates from L′ affected
by possible row and column deletions. By a similar argument
as in Claim 7, one can detect the number of column deletions
that happened in each subarray of L′ of t + 1 consecutive
columns, starting from the left. This stems from the fact that
number of column runs in L̃′ is t+1 minus the number of row
deletions in L′. Recall that from Claim 7 we know the number
of row deletions in L′. The remaining ingredient is to know
when L̃′ ends. This is guaranteed since the columns of the
marker M(2,2) are the complement of the last t + 1 columns
in L′. Therefore, we are guaranteed to have at least one column
of M̃(2,2) marking the end of L̃′ even in the presence of row
or column deletions.

Given the rightmost column of L̃(2) we focus on locating the
marker M̃(2,1) and therefore the topmost row of L̃(2). Recall
that L(2) consists of s

t+1 arrays L′ stacked on top of each
other. Using the same argument as in Claim 7, we can locate
every row deletion in L(2) until the topmost subarray L′. This
is true even in the presence of column deletions, since column
deletions do not change the fact that every t + 1 consecutive
rows in L(2) are different. By the choice of the marker M(2,1),
we ensure that the number of row deletions in the topmost L′

can be detected. This is true because the marker has the same
structure of the first t + 1 columns of L′. �

Lemma 13: Given the array C̃ affected by tr row and tc
column deletions, any row with index i ∈ I(tr) such that 1 �
i � t� or n− rw − (t+1)2 < i � n can be exactly recovered.
Similarly, any column index j ∈ I(tc) such that 1 � j � t�
or n − rw − (t + 1)2 < j � n can be exactly recovered.

Proof: We focus on recovering the indices of the deleted
rows such that i ∈ I(tr) and the indices of the deleted columns
such that j ∈ I(tc) that satisfy 1 � i � t� and n − rw −
(t + 1)2 < j � n. Recovering the remaining indices of the
statement follows by the symmetry of the construction.

From Claim 12, the location of L̃(1) and T̃(1) in C̃ can be
exactly recovered. Therefore, by Claim 7 we can locate any
column deletions with indices n − rw − (t + 1)2 < j � n by

decoding T̃(1). Consequently, having the location of L̃(1) and
using Claim 7, we can recover the indices of the deleted rows
that satisfy 1 � i � t�. Similarly, we can obtain the indices
with n − rw − (t + 1)2 < i � n and 1 � j � t�. �

Lemma 14: Given the array C̃ affected by tr row and tc
column deletions, any row index i ∈ I(tr) such that t� <
i � n− rw − (t+1)2 can be exactly recovered. Similarly, any
column index j ∈ I(tc) such that t� < j � n−rw−(t+1)2 can
be exactly recovered.

Proof: We start by proving that the column indices can
be recovered. We want to leverage the structure imposed by
the set Ht(�, n). For an array C ∈ Ht(�, n), each row of
the subarray C[1:t�],[t�+1:n−(t+1)2] is encoded using a binary
systematic t-indel-correcting code. In addition, the columns
C[1:t�],j such that t� < j � n−rw−(t+1)2 are the systematic
part of this code. Recall that the rows are divided into t blocks,
each of size �, where in each block the columns t < j �
n − rw − (t + 1)2 satisfy the window constraint. We assume
that at least one column in this interval is deleted. Therefore,
at most (t − 1) rows can be deleted in C. This means that
there exists at least one block of � rows that is not affected
by any row deletion. For the deletion case, by Lemma 13
we can locate this block. By Claim 9 we can recover the
indices of the columns deleted within the range t < j �
n − rw − (t + 1)2. Similarly, we can obtain the indices with
t� < i � n−rw−(t+1)2 by leveraging the structure imposed
by Vt(�, n) using Claim 9. �

We now present the equivalent results for the insertion case.
In the following statements we only highlight the differences
from the deletion case. The main difference is that we
need to tackle possible insertion patterns which can create
block confusions in our received array C̃. In general, the
strategy is as follows. Since all rows and columns of the
codeword C satisfy the window constraint, even after t-criss-
cross insertions, we can exploit the fact that insertions can
only create a confusion of length at most 2t with at most t
rows/columns of the original array. Therefore, we can delete
the block confusions and turn the insertion locating problem
into a deletion locating problem, which we have shown earlier
how to solve.

Claim 15: Given the array C̃ affected by tr row and tc
column insertions, the marker array M̃(1,1) can be located
up to row and column block confusion of length at most 2t,
and M̃(1,2) can be located up to column block confusion of
length at most 2t and row block confusion of length at most
2t+1. The marker array M̃(2,1) can be located up to row and
column block confusion of length at most 2t, and M̃(1,2) can
be located up to column block confusion of length at most 2t
and row block confusion of length at most 2t + 1.

Proof: We have the same preliminary information as in
Claim 8 and 12. However, if the inserted rows/columns create
block confusions exactly at the border of the arrays L(1) and
T(1), or L(2) and T(2) we can locate the desired arrays only
up to the length of the block confusion. By construction, the
length of the block confusion is limited to the parameter range
given in the statement of the claim. Moreover, we use the
following strategy for locating the border between L(1) and
T(1) in presence of block confusions, where the same can
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be applied to the border of L(2) and T(2) by symmetry of
the construction. The idea is to use a block of indel codes to
resolve the row block confusion. Note that there must be at
least one indel code block which is not affected by insertions
due to the existence of t indel code subarrays. Moreover,
we can determine the affected arrays by Claim 8. We declare
the border of the indel code to be the first expected row index
of T(1). Note that by declaring a wrong border, we add at most
t insertions to the indel code. By Claim 10 we can decode
the indel code. The correct border can then be determined
by the first index which is not marked as an insertion in
the indel code subarray. In case no insertions are declared
at the beginning of the subarray, then the chosen border
is correct.

Moreover, in case M̃(1,2) and M̃(2,2) are located up to a col-
umn block confusion and a row block confusion, respectively,
one can simply ignore the confusion to locate M̃(1,1) and
M̃(2,1) since the inserted columns must follow the structure
of T(1) and L(2) to create a confusion. �

Observe that the marker arrays M̃(1,2) and M̃(2,2) can be
located up to a row, or respectively a column block, confusion
of length at most 2t+1. The confusion may contain more than
t original rows/columns of the original array. However, since
the indices of the block confusions are within the index range
of the indel codes, we can use those as stated in Lemma 17
to tackle this problem.

Lemma 16: Given the array C̃ affected by tr row and tc
column insertions, any row with index i ∈ I(tr) such that
1 � i � t� or n− rw − (t+1)2 < i � n can be recovered up
to a row block confusion of length at most 2t consisting of at
at most t rows of the original array C. Similarly, any column
index j ∈ I(tc) such that 1 � j � t� or n − rw − (t + 1)2 <
j � n can be recovered up to a column block confusion of
length at most 2t consisting of at at most t columns of the
original array C.

Proof: We focus on recovering the indices of the inserted
rows such that i ∈ I(tr) and the indices of the inserted
columns such that j ∈ I(tc) that satisfy 1 � i � t� and
n− rw − (t + 1)2 < j � n. Recovering the remaining indices
of the statement follows by symmetry of the construction.
In general, we can use the same strategy as presented for
the deletion case using Claim 8 and 15. In case the marker
arrays are located up to a confusion, one can ignore the
rows/columns which created a confusion, i.e., we only consider
one collection of the rows/columns of the confusion, since the
inserted rows/columns must satisfy the fixed structure of the
locator arrays T(1), L(1), T(2), and L(2). �

Lemma 17: Given the array C̃ affected by tr row and tc
column insertions, any row index i ∈ I(tr) such that t� <
i � n − rw − (t + 1)2 can be recovered up to a row block
confusion of length at most 2t consisting of at at most t rows
of the original array C. Similarly, any column index j ∈ I(tc)

such that t� < j � n − rw − (t + 1)2 can be recovered up to
a column block confusion of length at most 2t consisting of
at most t columns of the original array C.

Proof: We start by proving that the column indices can
be recovered. We want to leverage the structure imposed by
the set Ht(�, n). We assume that at least one column in this

interval is inserted. This means that there exists at least one
block of � rows that is not affected by any row insertion.
By Lemma 16 we can locate this block by remarking that at
least one insertion is needed to create a block confusion and
therefore affect the block. By Claim 10 we can recover the
indices of the columns inserted within the range t < j �
n− rw − (t+1)2 up to a block confusion of length at most 2t
containing at most t columns of the original array. Similarly,
we can obtain the indices with t� < i � n− rw − (t + 1)2 by
leveraging the structure imposed by Vt(�, n), cf., Lemma 16,
and Claim 10. �

B. Recovering the Transmitted Array

Now we can present the full proof of our code construction.
Proof: [Proof of Theorem 11] If a t-criss-cross deletion
happened, we can apply Lemma 13 and 14 to determine the
sets of indices I(tr) and I(tc). Then, for all i ∈ I(tr) and
j ∈ I(tc) the decoder inserts row or column erasures in C̃
starting from the smallest index. Now the decoder applies a
Gabidulin criss-cross erasure decoder to determine the values
of the erased symbols [24].

In case of a t-criss-cross insertion we apply
Lemma 16 and 17. The decoder deletes the inserted
rows/columns which their positions are exactly recovered.
For each block confusion, the decoder deletes the whole
block confusion. This deletion strategy deletes at most t
rows/columns of the original array, since all rows/columns
follow the window constraint. Thus, the decoder inserts
row/column erasures in C̃ starting from the smallest index and
applies a Gabidulin criss-cross erasure decoder to determine
the values of the erased symbols [24]. �

VII. REDUNDANCY

In this section we perform an analysis of the redundancy of
our code denoted by R(n, t). We will refer to the redundancy
of each individual set CGab(t, n), Lt(n), Ht(�, n), Vt(�, n),
Et(�, n), Wt(�, w) and Mt(�, n) by R∗(n, t), where ∗ is
replaced with the corresponding set letter. In the following,
we give an intuition behind the computations of the redun-
dancy.

Since Ct,n = Lt(n) ∩ CGab(t, n) and due to the fact that
the Gabidulin code is a linear code, we can compute the code
redundancy as follows.

R(n, t) � RL(n, t) + RG(n, t).

Moreover, since the intersected sets in the locator set Lt(n)
impose constraints on disjoint positions in the n × n arrays,
we can further split the redundancy as follows

RL(n, t) = RH(n, t) + RV(n, t) + RE(n, t) + RM(n, t).

The sets Ht(�, n) and Vt(�, n) impose similar constraints:
t disjoint subarrays constrained with the window constraint
where each row is protected by a systematic t-deletion cor-
recting code from [18].

Claim 18: The redundancy resulting from the constraints
imposed by the two sets Ht(�, n) and Vt(�, n) is bounded as

RH(n, t) + RV(n, t) � 2t(RW(�, w) + log(n) · rw),
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where w = n− t log(n)− rw − (t+1)2 and rw � 4t log(n)+
o(log n).

Proof: The sets Ht(�, n) and Vt(�, n) impose the same
constraints, i.e., each array belonging to any of these sets has t
subarrays protected by deletion-correcting codes with window
constraints. Therefore, we have

RH(n, t) + RV(n, t) = 2t(RW(�, w) + log(n) · rw),

where rw is the length of the redundancy vector used to protect
a vector of length

w = n − t log(n) − rw − (t + 1)2 (1)

against t deletions, and log(n) is the number of protected
vectors in each subarray. Recall that for any integer κ, the
redundancy for protecting a vector of length κ is bounded by
rκ � 4t log(κ) + o(log(κ)) [18].

rw � (4t + 1) log(n). (2)

We now focus on computing RW(�, w). To compute an
upper bound on the redundancy imposed by the window
constraint Wt(�, w) we require a lower bound on w. Note
that using a lower bound on w only increases the redundancy
imposed by Wt(�, w). This will be clear from the following
calculations. From (1) and (2) we obtain

w � n − (5t + 1) log(n) − (t + 1)2.

We calculate a lower bound on |Wt(�, w)|. On a high level,
our calculations are interpreted as going through each column
of an array in Wt(�, w) and counting the number of choices
for this specific column. The first column is arbitrary, thus
has 2� choices. The second column is not allowed to be the
same as the one before, thus it has (2� −1) choices. The third
column has (2�−2) choices, since it cannot be the same as the
two preceding columns. This process continues until we reach
the (t+2)nd column. The number of choices for this vector is
(2� − (t + 1)). Since the restriction is imposed on an interval
of (t + 1) vectors, each remaining columns has (2� − (t + 1))
choices. Thus, for the window constraint the following holds.

|Wt(�, w)| � 2� · (2� − 1) · . . . · (2� − (t + 1))

· (2� − (t + 1))w−t−2

� (2� − (t + 1))w

= 2�w

(
1 − t + 1

2�

)w

.

We denote the redundancy resulting from the constraints
imposed by the window constraint as RW(�, n − t� − rw).
We continue the calculations recalling that � = log(n).

RW(�, n − t� − rw)
� �(n − t� − rw) − log (|Wt(�, n − t� − rw)|)

� log

((
1 − t + 1

2�

)n−t�−rw
)

� log
((

1 − t + 1
n

)n)
− log

((
1 − t + 1

n

)(5t+1) log(n)
)

(a)

� log(e(t+1)) − (5t + 1) log(n) · log
((

1 − t + 1
n

))
(b)

� (t + 1) log(e) + (5t + 1) log(n)
� (5t + 1) log(n) + 2(t + 1).

We used in (a) the inequality
(
1 − x

n

)n � ex and exploited
in (b) the fact that 1

2 � (1 − t+1
n ) � 1 for our choice of

parameters and for sufficiently large n.
Recall that any array in D(1)

t (�, n−t�−(t+1)2) consists of
log(n) binary t-deletion correcting codes. Therefore, we have

RH(n, t)

� t ·
⎛⎝(5t + 1) log(n) + 2(t + 1)︸ ︷︷ ︸

window constraint

+ log(n) · (4t + 1) log(n)︸ ︷︷ ︸
binary deletion correcting codes

⎞⎟⎠
= (4t2 + t) log2(n) + (5t2 + t) log(n) + 2t(t + 1)2.

Since the arrays in Vt(�, n) have a similar structure imposed
(only transposed) and the regions of the imposed constraints
are disjoint, one can conclude that

RH(n, t) + RV(n, t)

� 2(4t2 + t) log2(n) + 2(5t2 + t) log(n) + 4t(t + 1)2.

�
Observe that the constraints for the remaining sets fix values
for certain subarray boundaries. Therefore, the following can
be obtained.

Claim 19: The redundancy RL(n, t) resulting from the
constraints imposed by the set Lt(n) is bounded as

RL(n, t) � (8t2 + 2t) log2(n) + o(log2(n)).

Proof: We argued that since the different constraints are
imposed on disjoint subarrays in Lt(n), then the redundancy
RL(n, t) can be written as

RL(n, t) = RH(n, t) + RV(n, t) + RE(n, t) + RM(n, t)

The redundancy imposed by the locator arrays and marker
arrays is equal to the dimension of the subarrays with fixed
entries. We can then write

RE(n, t) � (6t3 + 13t2 + 8t + 1) log(n),
RM(n, t) = 4(t + 1)2.

The other terms of the redundancy in RL(n, t) are computed
in Claim 18. �

We can conclude this section with the statement on the
redundancy R(n, t) of the code Ct,n presented in Construc-
tion 1. Note that the redundancy added by the Gabidulin code
is tn.

Lemma 20: The redundancy of the code Ct,n is bounded as

R(n, t) � tn + (8t2 + 2t) log2(n) + o(log2(n)).
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Proof: By construction we have that Ct,n = Lt(n) ∩
CGab(n, t). By Claim 19 we have that

|Lt(n)| � 2n2

n((8t2+2t)+o(1)) log(n)
.

From [24] we have that |CGab(n, t)| = 2n2

2tn . Further, due to
the fact that CGab(n, t) is a linear code, there exists a coset
such that the following is satisfied by means of the pigeon
hole principle.

|Ct,n| � 2n2 · 1
2tn︸︷︷︸

Gabidulin Code

· 1
n((8t2+2t)+o(1)) log(n)︸ ︷︷ ︸

Locator Set

Hence, we can conclude that the total redundancy of the Ct,n

satisfies

R(n, t) = n2 − log(|Ct,n|)
� tn + (8t2 + 2t) log2(n) + o(log2(n)).

�

VIII. CONCLUSION

In this work we have considered the t-criss-cross inser-
tion/deletion problem in binary arrays. First, we have shown
that the one-dimensional insertion-deletion equivalence also
holds in the two-dimensional array setting. Moreover, we have
shown that the asymptotic lower bound on the redun-
dancy for any t-criss-cross correcting code is RB(n, t) �
tn + t log(n) − O(1). We have presented our t-criss-cross
indel code construction which is based on the strategy of
transforming the insertion/deletion problem to an erasure
problem. The redundancy of the constructed t-criss-cross
indel code is O(t2 log2(n)) far from the derived lower
bound. We note that given an order optimal systematic
construction of n-ary t-indel-correcting codes, we could
improve our construction such that the redundancy is only
O(t3 log(n)) far from the derived lower bound. This results
from replacing the 2t log n binary t-indel-correcting codes
indexing the columns/rows by 2t n-ary t-indel-correcting
codes.

On a final note, improvements on the problem of coding for
indel errors in arrays remain possible. It would be interesting
to generalize the problem to study possible combinations of
simultaneous insertions and deletions in arrays. In this case,
generalizing the one-dimensional equivalence between inser-
tions and deletions amounts to generalizing the equivalence
between criss-cross insertion correcting codes and criss-cross
deletion correcting codes (Theorem 1) to proving that a code
able to correct t criss-cross deletions can correct any number
of tr row insertions (or deletions) and tc column deletions (or
insertions) such that t = tr + tc. The next step would then be
finding a code construction, with redundancy close to the lower
bound derived in this paper, that can correct a mixtures of indel
column and row errors. Further research topics in this direction
include studying the characteristics of the indel spheres of an
array X.
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