
Data-Driven Bee Identification for DNA Strands
Shubhransh Singhvi∗, Avital Boruchovsky†, Han Mao Kiah‡ and Eitan Yaakobi†

∗Signal Processing & Communications Research Center, International Institute of Information Technology, Hyderabad, India
†Department of Computer Science, Technion—Israel Institute of Technology, Haifa 3200003, Israel
‡School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore

Abstract—We study a data-driven approach to the bee
identification problem for DNA strands. The bee-identification
problem, introduced by Tandon et al. (2019), requires one to
identify M bees, each tagged by a unique barcode, via a set of
M noisy measurements. Later, Chrisnata et al. (2022) extended
the model to case where one observes N noisy measurements
of each bee, and applied the model to address the unordered
nature of DNA storage systems.

In such systems, a unique address is typically prepended to
each DNA data block to form a DNA strand, but the address
may possibly be corrupted. While clustering is usually used to
identify the address of a DNA strand, this requires M2 data
comparisons (when M is the number of reads). In contrast, the
approach of Chrisnata et al. (2022) avoids data comparisons
completely. In this work, we study an intermediate, data-driven
approach to this identification task.

For the binary erasure channel, we first show that we can
almost surely correctly identify all DNA strands under certain
mild assumptions. Then we propose a data-driven pruning
procedure and demonstrate that on average the procedure
uses only a fraction of M2 data comparisons. Specifically, for
M = 2n and erasure probability p, the expected number of
data comparisons performed by the procedure is κM2, where(

1+2p−p2

2

)n
≤ κ ≤

(
1+p
2

)n.

I. INTRODUCTION

Existing storage technologies cannot keep up with the
modern data explosion. Current solutions for storing huge
amounts of data uses magnetic and optical disks. Despite
improvements in optical discs, storing a zettabyte of data
would still take many millions of units, and use significant
physical space. Certainly, there is a growing need for a
significantly more durable and compact storage system. The
potential of macromolecules in ultra-dense storage systems
was recognized as early as in the 1960s, when the cele-
brated physicists Richard Feynman outlined his vision for
nanotechnology in the talk ‘There is plenty of room at the
bottom’. Using DNA is an attractive possibility because it is
extremely dense (up to about 1 exabyte per cubic millimeter)
and durable (half-life of over 500 years). Since the first
experiments conducted by Church et al. in 2012 [4] and
Goldman et al. in 2013 [5], there have been a flurry of
experimental demonstrations (see [11], [13] for a survey).

The work of Han Mao Kiah was supported by the Ministry of Education,
Singapore, under its MOE AcRF Tier 2 Award MOE-T2EP20121-0007.

The work of Shubhransh Singhvi, Avital Boruchovsky, and Eitan Yaakobi
was funded by NSF Grant CCF 2212437 and by the European Union (ERC,
DNAStorage, 865630). Views and opinions expressed are however those of
the author(s) only and do not necessarily reflect those of the European Union
or the European Research Council Executive Agency. Neither the European
Union nor the granting authority can be held responsible for them.

Amongst the various coding design considerations, in this
work, we study the unsorted nature of the DNA storage
system [8], [11].

A DNA storage system consists of three important com-
ponents. The first is the DNA synthesis which produces
the oligonucleotides, also called strands, that encode the
data. The second part is a storage container with compart-
ments which stores the DNA strands, however without order.
Finally, to retrieve the data, the DNA is accessed using
next-generation sequencing, which results in several noisy
copies, called reads. The processes of synthesizing, storing,
sequencing, and handling strands are all error prone. Due to
this unordered nature of DNA-based storage systems, when
the user retrieves the information, in addition to decoding the
data, the user has to determine the identity of the data stored
in each strand. A typical solution is to simply have a set of
addresses and store this address information as a prefix to
each DNA strand. As the addresses are also known to the
user, the user can identify the information after the decoding
process. As these addresses along with the stored data are
prone to errors, this solution needs further refinements.

In [9], the strands (strand = address + data) are first
clustered with respect to the edit distance. Then the authors
determine a consensus output amongst the strands in each
cluster and finally, decode these consensus outputs using a
classic concatenation scheme. For this approach, the cluster-
ing step is computationally expensive. When there are M
reads, the usual clustering method involves M2 pairwise
comparisons to compute distances. This is costly when the
data strands are long, and the problem is further exacerbated
if the metric is the edit distance. Therefore, in [10], a
distributed approximate clustering algorithm was proposed
and the authors clustered 5 billion strands in 46 minutes on
24 processors.

In [3], the authors proposed an approach that avoids
clustering. Informally, the bee-identification problem requires
the receiver to identify M “bees” using a set of M un-
ordered noisy measurements [12]. Later, in [3], the authors
generalized the setup to multi-draw channels where every bee
(strand) results in N noisy outputs (reads). The task then is
to identify each of the M bees from the MN noisy outputs
and it turns out that this task can be reduced to a minimum-
cost network flow problem. In contrast to previous works, the
approach in [3] utilizes only the noisy addresses, which are
of significantly shorter length, and the method does not take
into account the associated noisy data. Hence, this approach
involves no data comparisons.

2023 IEEE International Symposium on Information Theory (ISIT)

978-1-6654-7554-9/23/$31.00 ©2023 IEEE 797

In this work, we consider an intermediate, data-driven
approach to the identification task by drawing ideas from the
clustering and the bee identification problems. Specifically,
we focus on the case of the binary erasure channel and
the case where the addresses are uncoded. We first show
that we can almost surely correctly identify all DNA strands
under certain mild assumptions. Then we propose a data-
driven pruning procedure and demonstrate that on average
the procedure uses only a fraction of M2 data comparisons
(when there are M reads). We formally define our problem
in the next section. Due to space limitations, all the proofs
have been omitted and are presented in the full version of
the paper [1].

II. PROBLEM FORMULATION

Let N and M be positive integers. Let [M] denote the set
{1, 2, . . . ,M}. An N -permutation ψ over [M] is an NM -
tuple (ψ(j))j∈[MN] where every symbol in [M] appears
exactly N times, and we denote the set of all N -permutations
over [M] by SN (M). Let C ⊆ {0, 1}n be a binary code
of length n and size M (the addresses), and assume that
every codeword xi ∈ C is attached to a length-L data part
di ∈ {0, 1}L to form a strand, which is the tuple, (xi,di).
We denote the ratio of the length of the data part to the length
of the address part by β, i.e., L ≜ βn, where β ∈ R+. Let the
multiset of data be denoted by D = {{di : i ∈ [M]}} and the
set of strands by R = {(xi,di) : i ∈ [M]}. Throughout this
paper, we assume that D is drawn uniformly at random over
{0, 1}L and that C is the whole space. Let SN ((x,d)) denote
the multiset of channel outputs when (x,d) is transmitted N
times through the channel S. Assume that the entire set R
is transmitted through the channel S, hence an unordered
multiset, R′

N = {{(y1,d
′
1), (y2,d

′
2), . . . , (yMN ,d

′
MN)}},

of MN noisy strands (reads) is obtained, where for every
j ∈ [MN], (yj ,d

′
j) ∈ SN ((xπ(j),dπ(j))) for some N -

permutation π over [M], which will be referred to as the true
N -permutation. Note that the receiver, apart from the set of
reads R′

N , has access to the set of addresses C but does not
know the set of data D. In this work, we first consider the
following problem.

Problem 1. Given S and ϵ, find the region R ∈ R2
+, such that

for (N, β) ∈ R, it is possible to identify the true permutation
with probability at least 1− ϵ when the code C is the whole
space and the data D is drawn uniformly at random.

For (N, β) ∈ R, we can find the true permutation by
making at least (N |C|)2 data comparisons. This may be
expensive when the data parts are long, i.e., when L is large.
Therefore, our second objective is to reduce the number of
data comparisons.

Problem 2. Let κ < 1. Given S and ϵ and (N, β) ∈ R,
design an algorithm to identify the true permutation with
probability at least 1− ϵ using κ(N |C|)2 data comparisons.
As before, C is the whole space and D is drawn uniformly
at random.

Unless otherwise stated, we assume that S is the BEC(p)
channel with 0 < p < 1. In Section III, we first propose
an extension of the Peeling Matching Algorithm [6] to the
multi-draw erasure channel. We then demonstrate that the
peeling matching algorithm identifies the true permutation
with a vanishing probability as n grows. In Section IV, we
address Problem 1 and identify the region R for which there
exists only one valid permutation, viz. the true permutation.
In Section V, we propose a data-driven pruning algorithm that
identifies the true-permutation with probability at least 1− ϵ
when (N, β) ∈ R. In Section VI, we analyse the expected
number of data comparisons performed by the data-driven
pruning algorithm.

III. THE PEELING MATCHING ALGORITHM (PMA)
In this section, we extend the Peeling Matching Algorithm

(PMA), presented in [6] for N = 1 to a general value of N .
The PMA-based approach uses solely the information stored
in the addresses to identify the true-permutation, and does not
take into consideration the noisy data that is also available to
the receiver. The first step in the peeling matching algorithm
is to construct a bipartite undirected graph G = (X ∪Y, E),
where the left nodes are the addresses (X = C) and the right
nodes are the noisy reads (Y = R′

N). There exists an edge
between x ∈ X and (y,d′) ∈ Y if and only if P (y|x) > 0,
where P (y|x) is the likelihood probability of observing y
given that x was transmitted. For x ∈ X and (y,d′) ∈ Y let
Ex and E(y,d′) denote the multiset of neighbours of x and
the set of neighbours of (y,d′) in G, respectively, i.e., Ex =
{{(y,d′)|(x, (y,d′)) ∈ E}}, E(y,d′) = {x|(x, (y,d′)) ∈
E}. Note that the degree of every left node is at least N
as SN ((x,d)) ⊆ Ex. For right nodes and left nodes with
degrees 1 and N respectively, the corresponding neighbor(s)
can be matched with certainty. For ease of exposition, we
refer to such nodes as good nodes.

Definition 1. A node (y,d′) ∈ Y is said to be a good right
node if |E(y,d′)| = 1. A node x ∈ X is said to be a Type-A
good left node if |Ex| = N or a Type-B good left node if
|{(y,d′) ∈ Ex : |E(y,d′)| = 1}| = N .

(y9,d
′
9)

(y8,d
′
8)

(y7,d
′
7)

(y6,d
′
6)

(y5,d
′
5)

(y4,d
′
4)

(y3,d
′
3)

(y2,d
′
2)

(y1,d
′
1)

x1

x2

x3

Type-B

Type-A

Fig. 1: Let N = 3. If x1 is peeled, then x2 becomes a Type-B
good left node, and if x3 is peeled then x2 becomes a Type-A
good left node.

Let Yg,XgA and XgB denote the set of good right nodes,
Type-A good left nodes and Type-B good left nodes, respec-

2023 IEEE International Symposium on Information Theory (ISIT)

798

tively. The peeling matching algorithm when executed over
G, finds good left nodes and identifies the corresponding
N channel outputs until there are no good left nodes. Let
PG = (X ∪ Y,PE) denote the bipartite matching identified
by the Peeling Matching Algorithm.

Algorithm 1 Peeling Matching Algorithm

1: procedure PEEL(PG ,G,x)
2: if x ∈ XgA then
3: for (y,d′) ∈ Ex do
4: Remove {(x̃, (y,d′)) : x̃ ∈ E(y,d′)} from E
5: Add (x, (y,d′)) to PE

6: Remove (y,d′) from Y
7: Remove x from X
8: else if x ∈ XgB then
9: Add {(x, (y,d′)) : (y,d′) ∈ Ex ∩ Yg} to PE

10: Remove {(x, (y,d′)) : (y,d′) ∈ Ex} from E and
remove Ex ∩ Yg from Y

11: Remove x from X
12: procedure PMA(PG ,G)
13: for x ∈ XgA ∪ XgB do
14: PEEL(PG ,G,x)
15: if |PE | = N2n then
16: return PG
17: else
18: return FAILURE

Note that as shown in Fig. 1, peeling Type-A and Type-B
good left nodes might generate new Type-A and Type-B good
left nodes, respectively. Thus, at any instant during the course
of the algorithm, we assume XgA ,XgB to reflect the Type-A
and Type-B good left nodes, respectively, at that instant.

Proposition 1. [7] Algorithm 1 finds the true permutation if
only if there are no cycles in G.

Let the multiset of right nodes that are in a cycle be
denoted by Ycycle. In the next lemma, we derive a lower
bound on the probability of observing at least one cycle in
G.

Lemma 1. The probability of observing at least one cycle
in G is lower bounded by

P (|Ycycle| > 1) > 1− Ucycle

N2n(1− Ucycle)
,

where Ucycle ≜ 2−N
(
(1+p2)n−1

)
.

Hence, from Proposition 1 and Lemma 1, it is highly
improbable (vanishingly low probability) to find the true per-
mutation using only the addresses and its noisy measurements
(i.e., x and y’s). In the next section, we see that by making
use of the data parts, we can find the true permutation under
certain mild assumptions.

IV. UNIQUENESS OF THE N -PERMUTATION

In this section, we study Problem 1 when S = BEC(p).
Specifically, in Lemmas 3 and 4, we determine the values

βTh and NTh, respectively, such that for all β ≥ βTh and
N ≥ NTh, we are able to find the true permutation with high
probability. The result is formally stated in Theorem 1.

For S = BEC(p), the task of identifying the true permu-
tation π, can be split into two steps. We can first identify
the partitioning {SN ((xi,di)) : i ∈ [M]} and then for each
partition (SN ((xi,di))) identify the label, viz. the channel
input (xi), where i ∈ [M]. Hence, given R′

N and C, we are
able to find the true permutation if and only if there exists
only one valid partitioning and one valid labelling.

Before formally defining partitioning and labelling, we in-
troduce some notations. Let a1,a2 ∈ {0, 1}ℓ. For i ∈ {1, 2},
let bi ∈ {0, 1, ∗}ℓ be the output of ai through BEC(p). We
denote the event of b1 and b2 agreeing at the non-erased
positions by b1 ∼= b2. For example, let a1 = 00000,a2 =
00011 and let b1 = 0000*,a2 = 000*1 then b1=̃b2.
Furhter, by abuse of notation, we would denote the event
of all sequences in A ⊆ SN (a1) agreeing at the non-erased
positions with all sequences in B ⊆ SN (a2) by A ∼= B,
where SN (ai) denotes the multiset of channel outputs when
ai is transmitted N times through the channel S, i ∈ 1, 2.
A right node (y,d′) ∈ Y is said to be faulty if there
exists (ỹ, d̃′) ∈ Y\{(y,d′)} with (y,d′) ∈ SN ((x,d)) and
(ỹ, d̃′) ∈ SN ((x̃, d̃)) such that (y,d′) ∼= (ỹ, d̃′). Let Yfaulty

denote the multiset of such faulty nodes. In the next lemma,
we calculate the probability of right node being faulty.

Lemma 2. For (y,d′) ∈ Y , P ((y,d′) ∈ Yfaulty) is

1−
n∏

r=1

(
1− (2p− p2)r

(
1− 1

2
(1− p)2

)L
)N(nr)

.

Definition 2. A partitioning P = {P1, P2, . . . , PM} of Y is
defined as the collection of disjoint submultisets of Y , each of
size N , such that for i ∈ [M], for (j, k) ∈

(
[N]
2

)
, (yj ,d

′
j)

∼=
(yk,d

′
k), where (yj ,d

′
j), (yk,d

′
k) ∈ Pi.

We will refer to P∗ ≜ {SN ((xi,di)) : i ∈ [M]} as the
true partitioning of Y . Let PY denote the set of all possible
partitionings of Y . Note that if |PY | = 1 then PY = {P∗}.
Let G′ = (Y, E′). Now consider the graph, G′ = (X , E′),
where Y = R′

N . For (y,d′), (ỹ, d̃′) ∈ Y, ((y,d′), (ỹ, d̃′) ∈
E′ if (y,d′)=̃(ỹ, d̃′). Note that a partitioning P ∈ PY
corresponds to partitioning the graph G′ into M cliques each
of size N .

Proposition 2. |PY | = 1 if and only if there exists a unique
partitioning of the graph G′ into M cliques each of size N .

In the next lemma, we derive a threshold on β such that
for β ≥ βTh,PY = {P∗} with probability at least 1− ϵ1.

Lemma 3. For β ≥ βTh ≜
log2

(
N((1+2p−p2)n−1)

N
√

ϵ1/2n

)
n(1−log2(1+2p−p2)) , we have

that PY = {P∗} with probability at least 1− ϵ1.

Definition 3. Given a partitioning P = {P1, P2, . . . , PM},
we define a labelling, denoted by L, as a length-M vector of
distinct addresses from C such that L[i] ∈ {x : ∀(y,d′) ∈

2023 IEEE International Symposium on Information Theory (ISIT)

799

Pi, P (x|y) > 0, }, where L[i] denotes the i-th element of L,
and i ∈ [M].

We denote the set of all possible labellings for a given
partitioning P by LP,Y . Given the true partitioning P∗, we
define the true labelling, denoted by L∗, as the labelling in
which for each partition SN ((xi,di)), the assigned label is
xi, where i ∈ [M]. Note that if P ̸= P∗ then L∗ /∈ LP,Y .
Further, if |LP∗,Y | = 1 then LP∗,Y = {L∗}. Let G′′ =
(X , E′′), where X = C. There is a directed edge x → x̃ if
all of the N channel outputs of x are erased at the positions
where x and x̃ differ, i.e., {x̃} ∈ {

⋂
(y,d′)∈SN (x,d)E(y,d′)}.

Proposition 3. |LP∗,Y | = 1 if and only if there are no
directed cycles in G′′.

In the next lemma, we derive a threshold on N such that
for N ≥ NTh,LP∗,Y = {L∗} with probability at least 1−ϵ2.

Lemma 4. For N ≥ NTh ≜
log2

(
n
√

ϵ2+2n

2n −1

)
log2(p)

, we have that
LP∗,Y = {L∗} with probability at least 1− ϵ2.

Thus, we define the region R as R ≜ {(β,N) : β ≥
βTh, N ≥ NTh}. The next theorem follows from Lemma 3
and 4.

Theorem 1. For (β,N) ∈ R, it is possible to identify the true
permutation with probability at least 1− ϵ, when ϵ1, ϵ2 < ϵ

2 .

Fig. 2: Plot of βTh versus n for N = 2, p = 0.2, ϵ1 = 0.01.

Fig. 3: Plot of NTh versus n for p = 0.3, ϵ2 = 0.01.

From Lemma 3 and 4, we observe that βTh < β∗ and
NTh < ν∗n for some constants β∗ and ν∗. This means that

we only require data parts to be of length L = β∗n and the
number of reads to be N = ν∗n so that correct identification
occurs with high probability. In the next section, we design
an algorithm to find the true permutation with a small number
of data comparisons.

V. DATA-DRIVEN PRUNING ALGORITHM

As the receiver has access to the set of addresses, we
design an algorithm that reduces the number of data compar-
isons by comparing a pair of reads if and only if they agree
at the positions that are not erased in the address part. Hence,
similar to the peeling matching algorithm, we first build the
bipartite graph G = (X ∪ Y, E) as described in Section III.
Let N(y,d′) denote the two-hop neighborhood of (y,d′) in
G. Note that for (y,d′), (ỹ, d̃′) ∈ Y , (y,d′) ∈ N(ỹ,d̃′) if and
only if y ̸∼= ỹ. In the next lemma, we calculate the expected
value of |N(y,d′)|.

(y6,d
′
6)

(y5,d
′
5)

(y4,d
′
4)

(y3,d
′
3)

(y2,d
′
2)

(y1,d
′
1)

x1

x2

Fig. 4: Let N = 3. For (y6,d
′
6), we can potentially identify

the remaining 2 copies by performing only |N(y6,d
′
6)
| = 3 data

comparisons.

Lemma 5. For a given (y,d′) ∈ Y ,

E[|N(y,d′)| | (y,d′)] = N2r(1 + p)n−r − 1,

where r denotes the number of erasures in y. Further,
E[|N(y,d′)|] = N(1 + 2p− p2)n − 1.

The data-driven pruning algorithm as described below,
iteratively selects the right node (y,d′) with the smallest
two-hop neighborhood in Y and then as shown in Fig. 4,
performs |N(y,d′)| data comparisons to identify the remaining
N − 1 copies. Note that this pruning procedure finds the
remaining N − 1 copies if and only if (y,d′) ̸∈ Yfaulty. Let
PG = (X ∪ Y,PE) denote the bipartite matching identified
by the data-driven pruning algorithm.

Proposition 4. For (β,N) ∈ R, Algorithm 2 finds the true
permutation with probability at least 1− ϵ, when ϵ1, ϵ2 < ϵ

2 .

VI. ANALYSIS OF DATA-DRIVEN PRUNING ALGORITHM

In this section, we analyse the expected number of data
comparisons performed by Algorithm 2 for three subregions
of R. In the next lemma, we give an upper bound on
the expected number of data comparisons performed by
Algorithm 2 when (β,N) ∈ R.

2023 IEEE International Symposium on Information Theory (ISIT)

800

Algorithm 2 Data-driven Pruning Algorithm

1: procedure PRUNE(G, (ỹ, d̃′))
2: (ỹ, d̃′) −→ Pruned, T = {}
3: for (y,d′) ∈ N(ỹ,d̃′) do
4: if (y,d′) ∼= (ỹ, d̃′) then
5: (y,d′) −→ T
6: if |T | = N − 1 then
7: Let X ∗ =

⋂
(y,d′)∈T E(y,d′)

8: for (y,d′) ∈ T do
9: Remove {(x, (y,d′)) : x /∈ X ∗} from E

10: (y,d′) −→ Pruned

11: procedure PRUNING ALGORITHM(PG ,G)
12: Pruned = {}
13: while |Pruned| < N2n do
14: (ỹ, d̃′) = argmin{|N(y,d′)| : (y,d′) ∈ Y}
15: PRUNE (G, (ỹ, d̃′))

16: return PMA(PG ,G)

Lemma 6. The expected number of data comparisons per-
formed by Algorithm 2 when (β,N) ∈ R is at most

U0 ≜ N22n
(
1 + 2p− p2

)n
.

Let β0 be a threshold on β such that for β ≥ β0,
P (|Yfaulty| > 1) < ϵ1. In the next lemma, we derive this
threshold β0.

Lemma 7. For β ≥ β0 ≜
log2

(
ϵ1

2nN2((1+2p−p2)n−1)

)
n log2(1− 1

2 (1−p)2)
,

P (|Yfaulty| > 1) < ϵ1.

We define R′ ⊆ R as R′ ≜ {(β,N) : β ≥ β0, N ≥
NTh}. To analyse the expected number of data comparisons
performed by Algorithm 2 when (β,N) ∈ R′, we define the
notion of order of a left node.

Definition 4. A node x ∈ X has order s if min{|E(y,d′)| :
(y,d′) ∈ SN (x,d)} = s.

For s ∈ [2n], let Xs denote the set of left nodes with order
s. In the next lemma, we calculate the probability that a left
node has order s.

Lemma 8. For x ∈ X , before the initiation of Algorithm 2,
P (x ∈ Xs) is

(
n∑

i=ℓ

(
n

i

)
pi(1− p)n−i

)N

−

(
n∑

i=ℓ+1

(
n

i

)
pi(1− p)n−i

)N s ∈ {2ℓ, ℓ ∈ [0 : n]}

0 otherwise.

In the next lemma, we derive an upper bound on the
expected number of data comparisons performed by Algo-
rithm 2 when (β,N) ∈ R′.

Lemma 9. For (β,N) ∈ R′, the expected number of data
comparisons performed by Algorithm 2 is at most

U1 ≜
n∑

r=0

E[|X2r |]N2r((1 + p)n−r).

We now define the notion of confusability for left nodes.

Definition 5. Let x, x̃ ∈ X then x is confusable with x̃,
denoted by x → x̃, if there exists at least one (ỹ, d̃′) ∈
SN ((x̃, d̃′)) such that E(ỹ,d̃′) = {x, x̃}.

Next, we build a graph of left nodes, T = (X ,Econf). Let
x, x̃,x′ ∈ X . Note that before the initiation of Algorithm 2,
for x → x̃, it must be that dH(x, x̃) = 1. For ease of
analysis, we do not consider the confusable edges that would
be generated over the course of Algorithm 2. Thus, there is
an edge x → x̃ ∈ Econf if and only if x is confusable with
x̃ before the initiation of the algorithm. In the next lemma,
we derive the probability that x has edges to all nodes in
S ⊆ {x′ : dH(x,x′) = 1}.

Lemma 10. Let x ∈ X and let S ⊆ {x′ : dH(x,x′) = 1}.
Then,

P

 |S|⋃
j=1

(x → xi)

 =

|S|∏
j=1

(
1−

(
1− p(1− p)n−1

)N−j+1
)
,

where xi ∈ S for i ∈ [|S|].

Next, let GA = (X , E) be a directed n-cube [2]. A vertex
x ∈ X has outgoing edges to the vertices {x′ : dH(x,x′) =
1,x′ ∈ X}. Let GA(pe) denote a random sub-graph of GA

where every edge in E is selected with probability pe.

Proposition 5. The probability of the appearance of a
connected component is greater in T than in GA(pT), where
pT ≜

(
1−

(
1− p(1− p)n−1

)N−n+1
)

.

Lemma 11. For N > N0 ≜ n − 1
log(1−p(1−p)n−1) =

Op

(
1

p(1−p)n−1

)
, T is almost surely connected.

We define region R′′ ⊆ R′ as R′′ ≜ {(β,N) : β ≥
β0, N ≥ N0}.

Lemma 12. The expected number of data comparisons
performed by Algorithm 2 when (β,N) ∈ R′′ is at most

U2 ≜ N2n (1 + p)
n
.

Hence, from Lemmas 6, 9 and 12, the expected number of
data comparisons performed by Algorithm 2 is only a κβ,N -
fraction of data comparisons required by clustering based
approaches, where

(
1+2p−p2

2

)n
≤ κβ,N ≤

(
1+p
2

)n
.

2023 IEEE International Symposium on Information Theory (ISIT)

801

REFERENCES

[1] S. Singhvi, A. Boruchovsky, H. M. Kiah and E. Yaakobi, ”Data-
Driven Bee Identification for DNA Strands”, arXiv preprint,
arXiv:2305.04597, 2023.

[2] B. Bollobás, C. Gotsman, and E. Shamir, “Connectivity and dynamics
for random subgraphs of the directed cube,” ISRAEL JOURNAL OF
MATHEMATICS, vol 83, pp 321–328, 1993.

[3] J. Chrisnata, H. M. Kiah, A. Vardy, and E. Yaakobi, “Bee identifi-
cation problem for DNA strands,” IEEE International Symposium on
Information Theory (ISIT), pp. 969–974, June, 2022.

[4] G. M. Church, Y. Gao, and S. Kosuri. “Next-generation digital infor-
mation storage in DNA,” Science, vol. 337, no. 6102, pp. 1628–1628,
2012.

[5] N. Goldman, P. Bertone, S. Chen, C. Dessimoz, E. M. LeProust,
B. Sipos, and E. Birney. “Towards practical, high-capacity, low-
maintenance information storage in synthesized DNA,” Nature, vol.
494, no. 7435, pp. 77–80, 2013.

[6] H. M. Kiah, A. Vardy, and H. Yao, “Efficient bee identification,” IEEE
International Symposium on Information Theory (ISIT), pp. 1943–
1948, July, 2021.

[7] H. M. Kiah, A. Vardy, and H. Yao, “Efficient algorithms for the bee-
identification problem,” arXiv preprint arXiv:2212.09952, 2022.

[8] A. Lenz, P. H. Siegel, A. Wachter-Zeh and E. Yaakobi, “Coding over
sets for DNA storage,” IEEE Transactions on Information Theory, vol.
66, no. 4, pp. 2331–2351, April 2020.

[9] L. Organick, S. Ang, Y.J. Chen, R. Lopez, S.Yekhanin, K. Makarychev,
M. Racz, G. Kamath, P. Gopalan, B. Nguyen, C. Takahashi, S. New-
man, H. Y. Parker, C. Rashtchian, K. Stewart, G. Gupta, R. Carlson, J.
Mulligan, D. Carmean, G. Seelig, L. Ceze, and K. Strauss, “Random
access in largescale DNA data storage,” Nature Biotechnology, vol. 36,
no. 3, pp 242–248, 2018.

[10] C. Rashtchian, K. Makarychev, M. Racz, S. Ang, D. Jevdjic, S.
Yekhanin, L. Ceze, and K. Strauss, “Clustering billions of reads
for DNA data storage,” Advances in Neural Information Processing
Systems, vol. 30, 2017.

[11] I. Shomorony, and R. Heckel, “Information-theoretic foundations of
DNA data storage,” Foundations and Trends®in Communications and
Information Theory, 19(1), 1–106, 2022

[12] A. Tandon , V.Y.F. Tan, and L.R. Varshney, “The bee-identification
problem: Bounds on the error exponent,” IEEE Transactions on Com-
munications, vol. 67, issue no.11, pp. 7405–7416, November, 2019.

[13] S. Yazdi, H. M. Kiah, E. R. Garcia, J. Ma, H. Zhao, and O. Milenkovic,
“DNA-based storage: Trends and methods,” IEEE Trans. Molecular,
Biological, Multi-Scale Commun., vol. 1, no. 3, pp. 230–248, 2015.

2023 IEEE International Symposium on Information Theory (ISIT)

802

