
On the Capacity of DNA Labeling
Dganit Hanania1, Daniella Bar-Lev1, Yevgeni Nogin2, Yoav Shechtman2 3 4 and Eitan Yaakobi1

1Department of Computer Science, Technion—Israel Institute of Technology, Haifa 3200003, Israel
2Russel Berrie Nanotechnology Institute, Technion, Haifa 320003, Israel
3Department of Biomedical Engineering, Technion, Haifa 320003, Israel

4Lorry I. Lokey Center for Life Sciences and Engineering, Technion, Haifa 320003, Israel
Email: {dganit ,daniellalev, yaakobi}@cs.technion.ac.il, yevgeni.nogin@gmail.com, yoavsh@bm.technion.ac.il

Abstract—DNA labeling is a powerful tool in molecular biology
and biotechnology that allows for the visualization, detection,
and study of DNA at the molecular level. Under this paradigm,
a DNA molecule is being labeled by specific k patterns and is
then imaged. Then, the resulted image is modeled as a (k + 1)-
ary sequence in which any non-zero symbol indicates on the
appearance of the corresponding label in the DNA molecule. The
primary goal of this work is to study the labeling capacity, which
is defined as the maximal information rate that can be obtained
using this labeling process. The labeling capacity is computed
for any single label and several results are provided for multiple
labels as well. Moreover, we provide the optimal minimal number
of labels of length one or two that are needed in order to gain
labeling capacity of 2.

I. INTRODUCTION
Labeling of DNA molecules with fluorescent markers is a

widely used approach in molecular biology and medicine, with
many applications in genomics and microbiology [1]–[3]. This
powerful tool allows for the visualization, detection, and study
of DNA at the molecular level. Various techniques can be
employed to achieve targeted labeling of DNA molecules, such
as Fluorescence in situ hybridization (FISH) [1], CRISPR [2],
[4] and Methyltransferases [5]. Labeling is also done for other
bio-molecules such as proteins and RNA, for applications
in sensitive molecular analysis [6], [7] and studying gene
expression and regulation [8], respectively.

DNA labeling is used for both specific target sequences
and per-base labeling. Per-base labeling is used for DNA
sequencing based on sequencing by synthesis (such as illu-
mina sequencing) [9] and Bisulphite sequencing to study of
methylation and epigenomics (genetic information beyond the
genome sequence) [10]. Target sequence labeling is employed
for species identification in clinical microbiology with FISH
[11], studying DNA dynamics in living cells [4], optical
mapping [12], [13] (for genomic structural variation detection
and species identification in microbiology), and the study of
DNA-protein interactions, which are fundamental in under-
standing gene expression and regulation [14]. By attaching a
fluorescent label to DNA, researchers can visualize the inter-
action between DNA and proteins in real-time [14], providing
insights into how DNA is packaged, organized, and interacts
with proteins in the cell nucleus and how this affects gene
expression.

This work takes a first step towards mathematically model-
ing and analyzing the information rate that can be represented
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in labeled DNA molecules. More specifically, we study the
labeling capacity, which refers to the maximum information
rate that can be stored by labeling DNA with specific sequence
patterns as the labels.

In this work, the labeling process is formally modeled
as follows. Assume the DNA sequence is given by x ∈
{A,C,G, T}n and let α ∈ {A,C,G, T}ℓ be a short se-
quence which is being used as the label. That is, the DNA
sequence x is being labeled wherever α appears. As a
result, a binary sequence z ∈ {0, 1}n is being received in
which zi = 1 if and only if (xi, . . . , xi+ℓ−1) = α. For
example, let α = AC be a label of length ℓ = 2. For
x = AAACGATGACAC, the received output binary se-
quence is z = (0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0). Clearly, there are
other sequences, for example y = TAACTTTTACAC ̸= x,
which result with the same output binary sequence z. So, the
full capacity is not obtained and the goal of this work is to
understand the maximum information rate of this paradigm,
and the labeling capacity is referred as the asymptotic ratio
between the number of information bits that can be stored and
the length n. First, we show that the labeling capacity depends
on the length of the used label. For example, for |α| = 1, any
binary sequence can be achieved by the labeling process and
thus the labeling capacity is 1. However, for length-2 labels
α = (α1, α2), where α1 ̸= α2, binary sequences with two
consecutive ones cannot be achieved, i.e., they satisfy the
so-called (d, k) run length limited (RLL) constraint [15] for
(d, k) = (1,∞) and we show that the labeling capacity is
the same as the capacity of the (1,∞) constraint. Besides the
label’s length, several more properties, such as its periodicity,
may affect the labeling capacity. For example, the labeling
capacity of AA is larger than the one of the label AC and we
extend this result to find the labeling capacity of any label.

The labeling process can also be done using k > 1
labels. In this case, the output is a sequence over {0, . . . , k}.
For example, let α1 = AC,α2 = G be two labels. For
x = AAACGATGACAC it holds that the received output
sequence is z = (0, 0, 1, 0, 2, 0, 0, 2, 1, 0, 1, 0). The definition
of the labeling capacity is extended to multiple labels and we
find this capacity when there is no overlap between the labels
or for two non-cyclic labels in the special case where there is
a unique way for the two labels to overlap each other.

The last part of this work is dedicated to finding the minimal
number of needed labels of a given length in order to obtain
the maximum labeling capacity 2. For example, for labels of
length 1, three different labels are necessary and sufficient
to decode every sequence over {A,C,G, T}n and to have
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capacity 2. For labels of length 2, it is clear that achieving
labeling capacity 2 may be obtained using any 15 different
labels of length two. Our main result here claims that this can
be accomplished with 10 labels and no less than 10.

The rest of this paper is organized as follows. Section II
formally defines the labeling channel and several useful def-
initions. Section III calculates the labeling capacity for a
single label while considering its periodicity and overlap.
In Section IV we extend the results for multiple labels. Lastly,
in Section V, the minimum number of labels needed to obtain
the full capacity is studied for labels of length one or two. All
missing proofs will be presented in the extended version of
the paper.

II. DEFINITIONS AND PRELIMINARIES
Let Σq denote the q-ary alphabet {0, 1, . . . , q − 1}. For

q = 4, we mostly refer to the DNA alphabet, that is,
Σ4 = {A,C,G, T}. Denote by [n] the set {1, 2, . . . , n}. For
a sequence x = (x1, . . . , xn) ∈ Σn

q , and 1 ≤ i ≤ n− k + 1 ,
let x[i;k] = (xi, . . . , xi+k−1). A label α ∈ Σℓ

q is a relatively
short (typically at most 6 bases long) sequence over Σq . Next,
the labeling model studied in this work is formally defined.
Definition 1. Let α1, . . . ,αk be k labels of lengths ℓ1, . . . , ℓk,
respectively. Among the k labels, there is no label that is a
prefix of another label. Denote α = (α1, . . . ,αk).
• The α-labeling sequence of x = (x1, . . . , xn) ∈ Σn

q is the
sequence Lα(x) = (c1, . . . , cn) ∈ Σn

k+1, in which ci = j
if x[i;ℓj ] = αj and i ≤ n − ℓj + 1, and if such j does not
exist then ci = 0.

• A sequence u ∈ {0, . . . , k}n is called a valid α-labeling
sequence if there exists a sequence x ∈ Σn

q such that
u = Lα(x).

• Denote by Fn(α) the set of all valid α-labeling sequences
of length n, which means, the image of the mapping Lα.
That is, Fn(α) = {Lα(x)|x ∈ Σn

q }. Denote the labeling
capacity of α by

cap(α) ≜ lim sup
n→∞

log2(|Fn(α)|)
n

.

In case there is only one label that is being used, another
equivalent way to represent the labeling sequence is given in
the next definition. This equivalent definition is used merely
to ease the notations in some of the proofs in the paper.
Definition 2. Let α be a label of length ℓ.
• The complete-α-labeling sequence of x=(x1,. . . , xn)∈Σn

q

is the binary sequence L̂α(x) = (c1, . . . , cn), in which
c[i;ℓ] = (1, . . . , 1) if x[i;ℓ] = α and i ≤ n− ℓ+ 1.

• A sequence u ∈ Σn
2 is called a valid complete-α-labeling

sequence if there exists a sequence x ∈ Σn
q such that

u = L̂α(x).
• Denote by F̂n(α) the set of all valid complete-α-labeling

sequences of length n.
Note that there is a bijection between Fn(α) and F̂n(α). So,

in order to compute the labeling capacity, in some of the cases,
F̂n(α) will be computed instead of Fn(α), for convenience.
Example 1. For α1 = CG,α2 = A, x = ACCGGCGATA,
it holds that L(α1,α2)(x) = (2, 0, 1, 0, 0, 1, 0, 2, 0, 2). More-
over, L̂α1(x) = (0, 0, 1, 1, 0, 1, 1, 0, 0, 0) and Lα1(x) =
(0, 0, 1, 0, 0, 1, 0, 0, 0, 0).

The following definitions will be helpful in order to discuss
different types of labels.

Definition 3. Let α,α′ be a label of length ℓ, ℓ′, respectively.
• The period of α is P(α) ≜ min{p ∈ [ℓ] : p|ℓ,α[1;p] =
α[(t−1)p+1;p] for t ∈ [ ℓp ]}. In case p = ℓ, there is no period
in α and the label is called a non-periodic label.

• The overlap between α and α′ ̸= α is O(α,α′) ≜
max{r ∈ [min{ℓ, ℓ′}] : α′

[1;r] = α[ℓ′−r+1;r]}. In other
words, O(α,α′) is the maximal size of a suffix of α which
is identical to a prefix of α′. In case O(α,α′) does not exist,
we define O(α,α′) ≜ 0. The labels α and α′ are called
overlapping labels if O(α,α′) > 0 or O(α′,α) > 0.

• The cyclic overlap of α is O(α) ≜ O(α[1;ℓ−1],α[2;ℓ−1]) if
ℓ > 1, and otherwise O(α) ≜ 0. In case O(α) = 0, α is
called a non-cyclic label.
Note that a periodic label is also a cyclic label but a cyclic

label is not necessarily periodic. For a periodic label α of
length ℓ, it holds that O(α) = ℓ − P(α). The next example
exemplifies the definitions above.
Example 2. The labels α1 = CGCGCG and α2 = GATG
are overlapping labels. It holds that O(α1,α2) = 1 and
O(α2,α1) = 0. Moreover, O(α1) = 4 and P(α1) = 2.
In contrast, O(α2) = 1 but it is a non-periodic label.

One of the goals in this work is to calculate the labeling
capacity using one or more labels. Some of the results will
be derived by drawing a connection to constrained systems.
In order to establish this connection, several more definitions
are introduced as described in [15].
Definition 4. A finite labeled1 directed graph G = (V,E, L)
is a graph which consists of a finite set of states V , a finite set
of edges E, and an edge labeling L : E −→ Σq . A sequence w
over Σq is generated by π (and G) if π is a path in G which is
labeled by the sequence w. A labeled graph G is deterministic
if the outgoing edges from each state are labeled distinctly.
A constraint S is the set of all sequences over Σq that are
generated by a labeled graph G. In this case, it is said that G
presents S and it is denoted by S = S(G). Denote the set of
sequences of length n in the constraint S by S(n) = |S∩Σn

q |.
It is known that for each constraint, there exists a deterministic
graph that presents it. The capacity of a constraint S is

cap(S) ≜ lim sup
n→∞

1

n
log2(S(n)).

For a deterministic presentation G of S, it holds that cap(S) =
log2(λ(AG)), where λ(AG) is the spectral radius (Perron
eigenvalue) which is the largest real eigenvalue in absolute
value of the adjacency matrix of G.

Some of the results in the paper will be connected to a
specific constraint, known as the the run-length limited (RLL)
constraint, as described in the next definition.
Definition 5. A sequence over Σq satisfies the (q, d, k)-RLL
constraint if between every two consecutive non-zero symbols
there are at least d zeroes and there is no run of zeroes of
length k+ 1. Denote the set of all sequences of length n that

1Contrary to the definition of labeling in this work, here the meaning of
labeling is giving labels to the edges of the graph.
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satisfy the (q, d, k)-RLL constraint by Cq,d,k(n). For the case
of q = 2, this constraint is called the (d, k)-RLL constraint,
and C2,d,k will be denoted by Cd,k.

It has been proven that cap(CM,d,∞) = log2 λ when λ is
the largest real root of xd+1 − xd − (M − 1) [16]. Lastly, for
S ⊆ Σn1

q , u ∈ Σn2
q , let S ◦ u ≜ {w ∈ Σn1+n2

q |∃s ∈ S,w =
su}.

In this work, the following problems will be solved.
Problem 1. The k-labeling capacity problem: Let α =
(α1, . . . ,αk) be k labels that are being used in order to label
sequences over Σn

q . Find the labeling capacity cap(α).
Problem 2. Let α = (α1, . . . ,αs) be s labels of length ℓ ≥ 1.
Find the minimal s such that ”almost” every x ∈ Σn

q can be
determined given its α-labeling sequence. More specifically,
we are interested in computing the minimal number of labels
of a fixed length ℓ that are needed in order to gain capacity
of two. Mathematically, the problem is to find the value of
s(ℓ) ≜ min{s ∈ N|∃α = (α1, . . . ,αs) ∈ Σs

qℓ , cap(α) = 2}.

III. THE LABELING CAPACITY OF A SINGLE LABEL
In this section, we provide a full solution to the labeling

capacity in case a single label is used. The next theorem solves
the case where the label is non-cyclic.
Theorem 1. Let α be a non-cyclic label of length ℓ. Then,
cap(α) = cap(Cℓ−1,∞). That is, cap(α) = log2 λ when λ is
the largest real root of xℓ − xℓ−1 − 1.

Proof: Let α be a non-cyclic label of length ℓ. For
x ∈ Σn

q , let y ∈ Σn
2 be the α-labeling sequence of x,

i.e., y ≜ Lα(x). By definition, it holds that yi = 1
if and only if x[i;ℓ] = α. Since the label α is non-
cyclic it holds that if x[i;ℓ] = α, then x[j;ℓ] ̸= α for
i+ 1 ≤ j ≤ i+ ℓ− 1. Hence, for every α-labeling sequence
it holds that after each one there are at least ℓ − 1 zeroes,
i.e., y satisfies the (ℓ − 1,∞)-RLL constraint and ends with
ℓ − 1 zeros. So, Fn(α) ⊆ Cℓ−1,∞(n − (ℓ − 1)) ◦ 0ℓ−1.
In order to prove inclusion in the other direction, let
u ∈ Cℓ−1,∞(n − ℓ + 1) ◦ 0ℓ−1. Let v ∈ Σn

q such that
v[i;ℓ] = α if and only if ui = 1. It holds that Lα(v) = u.
From the definition of Cℓ−1,∞(n− (ℓ− 1)) ◦ 0ℓ−1, after each
one in u there are at least ℓ − 1 zeros and |α| = ℓ, so such
a v exists. Hence, for n ≥ ℓ − 1, |Fn(α)| = |Cℓ−1,∞(n −
ℓ + 1) ◦ 0ℓ−1|. So, cap(α) = lim sup

n→∞

log2(|Fn(α)|)
n =

lim sup
n→∞

log2(|Cℓ−1,∞(n−ℓ+1)|)·(n−ℓ+1)
n·(n−ℓ+1) =

lim sup
n→∞

cap(Cℓ−1,∞)·(n−ℓ+1)
n = cap(Cℓ−1,∞) = log2 λ,

where λ is the largest real root of xℓ − xℓ−1 − 1.
Before we continue with the labeling capacity for periodic

labels, the next example motivates the solution of this case.
Example 3. Let α = CGCG, so P(α) = 2. Let x ∈
{A,C,G, T}n and let y ∈ Σn

2 be the complete-α-labeling
sequence of x, i.e., y ≜ L̂(α)(x). It holds that if x[i;4] =
CGCG, then y[i,4] = (1, 1, 1, 1). So, if for k ≥ 2, x[i;2k]

consists of a run of k CGs and x[i+2k;2] ̸= CG, then
y[i;2k] = (1, 1, . . . , 1) and yi+2k = 0, because otherwise this
implies that x[i+2k;4] = CGCG but x[i+2k;2] ̸= CG. It can
be concluded that every valid complete-α-labeling sequence

is a binary sequence in which the length of every run of
ones is even and at least four. Denote this set by SE≥4 and
SE≥4(n) ≜ SE≥4∩Σn

2 . After proving that F̂n(α) ⊆ SE≥4(n),
in order to prove equality between those sets, we prove
inclusion in the other direction next. Let u ∈ SE≥4(n) and
let v ∈ Σn

4 be such that for k ≥ 2, v[i;2k] = CGCG · · ·CG
if u[i;2k] = (1, . . . , 1) and ui−1 = 0 or i = 0. It holds that
L̂α(v) = u.

Hence, we have that |F̂n(α)| = |SE≥4(n)|. Denote the
constraint that is presented in the graph in Figure 1 by S.

v0 v1 v2 v3 v4

0

1 1 1 1

0

1

Fig. 1: The Constrained Graph for Example 3.

From the structure of the graph, for any sequence
y′ of length n − 6, when n ≥ 6, that is gener-
ated by the graph, there exist sequences y′′,y′′′ ∈ Σ3

2,
such that y ≜ y′′′ ◦ y′ ◦ y′′ ∈ SE≥4(n) ⊆ S(n). Hence, we
have an injection from S(n − 6) to SE≥4(n) and
|S(n− 6)| ≤ |SE≥4(n)| ≤ |S(n)|. Hence, cap(α) = cap(S).
The adjacency matrix of this graph is

1 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 1 0

 ,

and its characteristic polynomial is x5−x4−x3+x2−1. Thus,
the capacity of S is log2(λ) when λ ≈ 1.44 is the largest real
root of this polynomial.

This example will lead to the general case of calculating
the labeling capacity of a label with period p < ℓ.
Theorem 2. Let α be a label of length ℓ with P(α) < ℓ. It
holds that cap(α) = log2(λ) when λ is the largest real root
of the polynomial xℓ+1 − xℓ − xℓ−p+1 + xℓ−p − 1.

Proof: Let α be a label of length ℓ with p = P(α) < ℓ.
Denote α′ = α[1;p]. Let x ∈ Σn

q and let y ≜ L̂α(x). It
holds that if x[i;ℓ] = α, then y[i;ℓ] = (1, . . . , 1). So, if there
exists k ≥ ℓ

p such that x[i;pk] consists of the concatenation of
α′ k times and x[i+pk;p] ̸= α′, then y[i;pk] = (1, . . . , 1) and
yi+pk = 0, since otherwise this implies that x[i+pk;ℓ] = α but
x[i+pk;p] ̸= α′. It can be concluded that every valid complete-
α-labeling sequence is a binary sequence in which the length
of every run of ones is at least ℓ and divisible by p. Denote
this set by Sp≥ℓ and Sp≥ℓ(n) ≜ Sp≥ℓ ∩ Σn

2 . After proving
that F̂n(α) ⊆ Sp≥ℓ(n), in order to prove equality between
those sets, we prove inclusion in the other direction next. Let
u ∈ Sp≥ℓ(n) and let v ∈ Σn

q be a sequence in which if
for k ≥ ℓ

p , u[i,pk] = (1, . . . , 1) and ui−1 = 0 or i = 0,
then v[i,pk] = α′ · · ·α′. It holds that L̂α(v) = u. Hence, it
holds that |F̂n(α)| = |Sp≥ℓ(n)|. Denote the constraint that is
presented in Figure 2 by S, where the missing edges of the
graph are labeled with 1.
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v0 v1 vℓ−p+1 vℓ−1 vℓ

0

1

1

. . . . . . 1

0

Fig. 2: Graph for Theorem 2.

From the structure of the graph, for any sequence y′ of
length n − 2(ℓ − 1), when n ≥ 2(ℓ − 1), that is gen-
erated by the graph, there exist sequences y′′,y′′′ ∈ Σℓ−1

2 ,
such that y ≜ y′′′ ◦ y′ ◦ y′′ ∈ Sp≥ℓ(n) ⊆ S(n). Hence, we
have an injection from S(n − 2(ℓ − 1)) to Sp≥ℓ(n)
and |S(n− 2(ℓ− 1))| ≤ |Sp≥ℓ(n)| ≤ |S(n)|. It implies that
cap(α) = cap(S). The adjacency matrix of this graph is

A =


1 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
. . .

...
1 0 0 1 · · · 0

 ,

where Ai,j = 1 for (i, j) such that: i = 0, j = 0 or i = j−1 or
i = ℓ, j = 0 or i = ℓ, j = ℓ−p+1 and otherwise, Ai,j = 0. It
can be shown that the characteristic polynomial of this matrix
is xℓ+1 − xℓ + xℓ−p − xℓ−p+1 − 1. Thus, cap(S) = log2(λ)
where λ is the largest real root of the last polynomial.

Lastly, we examine the case of a non-periodic label with a
cyclic overlap r > 0. An example and the proof for the general
case of a label with a non-periodic overlap will be presented
in the extended version of the paper. The case of a label with
a periodic cyclic overlap can be studied in a similar way.
Theorem 3. Let α be a non-periodic label of length ℓ with
a non-periodic cyclic overlap r > 0. It holds that cap(α) =
log2(λ) when λ is the largest real root of the polynomial xℓ−
xℓ−1 − xr + xr−1 − 1.

IV. THE LABELING CAPACITY OF MULTIPLE LABELS
In this section we study the labeling capacity in case

multiple labels are being used. The next theorem solves the
case of k non-overlapping non-cyclic labels.
Theorem 4. Let α = (α1, . . . ,αk) be k non-overlapping non-
cyclic labels of lengths ℓ1 ≤ · · · ≤ ℓk respectively. Denote the
number of labels of length j by mj . It holds that cap(α) =
log2(λ) where λ is the largest real root of the polynomial
xℓk − (1 +m1)x

ℓk−1 −
∑ℓk

i=2 mix
ℓk−i.

Proof: The valid α-labeling sequences are the sequences
over Σk+1 in which after each i ∈ [k] there are at least ℓi − 1
zeroes. The valid α-labeling sequences could be presented in
a graph G, for which the adjacency matrix Aℓk×ℓk will be as
follows. For (i, j) such that i = j + 1, Ai,j = 1. Moreover,
A0,0 = 1 + m1 and for j > 0, A0,j = mj+1. Otherwise,
Ai,j = 0. It can be shown that the characteristic polynomial
of this matrix is xℓk − (1 +m1)x

ℓk−1 −
∑ℓk

i=2 mix
ℓk−i. So,

it holds that cap(α) = cap(S(G)) = log2(λ), where λ is the
largest real root of this polynomial.

Note that in case the k non-overlapping non-cyclic labels
are of the same length ℓ, cap(α) = log2 λ when λ is the

largest real root of xℓ − xℓ−1 − k. It has been proven in [16]
that this is the capacity of the (k+1, ℓ−1,∞)-RLL constraint.

The last case to be discussed is the case of using overlapping
labels. In this paper, the labeling capacity of two non-cyclic
labels α1,α2, when O(α1,α2) > 0,O(α2,α1) = 0 will be
provided. Additional cases can be studied in a similar way as
is done in the following example and theorem.
Example 4. Let α = (α1,α2) when α1 = ACGT,α2 =
GTT , are two non-cyclic labels of lengths ℓ1 = 4, ℓ2 = 3. It
holds that O(α1,α2) = t = 2,O(α2,α1) = 0. Let x ∈ Σn

4

and let y ∈ Σn
3 be the α-labeling sequence of x, i.e., y ≜

Lα(x). From the definition, it holds that:
• If x[i;4] = ACGT and xi+4 ̸= T , then y[i;4] = (1, 0, 0, 0).

In the general case, if x[i;ℓ1] = α1 and x[i+ℓ1;ℓ2−t] ̸=
α2[1+t;ℓ2−t], then y[i;ℓ1] = (1, 0, . . . , 0).

• If x[i;4] = ACGT and xi+4 = T , then y[i;5] =
(1, 0, 2, 0, 0). In general, if x[i;ℓ1] = α1 and x[i+ℓ1;ℓ2−t] =
α2[1+t;ℓ2−t], then y[i;ℓ1−t] = (1, 0, . . . , 0), y[i+ℓ1−t;ℓ2] =
(2, 0, . . . , 0).

• If x[i;3] = GTT then y[i;3] = (2, 0, 0). In general, if
x[i;ℓ2] = α2 then y[i;ℓ2] = (2, 0, . . . , 0).

• Else, yi = 0.
The correctness is due to the fact that the sequences are
non-cyclic. So, every valid α-labeling sequence is a ternary
sequence in which (1) each one is followed by three zeroes
or zero and two, and (2) each two is followed by at least two
zeroes.

Denote the set of ternary sequences that hold these two
conditions by Sc and Sc(n) ≜ Sc ∩ Σn

3 . After proving that
Fn(α) ⊆ Sc(n), in order to prove equality between those sets,
we prove inclusion in the other direction next. Let u ∈ Sc(n)
and let v ∈ Σn

4 be a sequence in which if ui = 1, then
v[i;4] = ACGT and if ui = 2, then v[i;3] = GTT . It holds
that Lα(v) = u. So, the valid α-labeling sequences of length
n are the sequences in Sc(n), which means that Fn(α) =
Sc(n). Denote the constraint that is presented in Figure 3 by
S.

v0 v1 v2 v3

v4 v5

0

1 0 0

0

2

0

0 2

Fig. 3: Graph for Example 4.

From the structure of the graph, for any sequence y′ of length
n−3, when n ≥ 3, that is generated by the graph, it holds that
y ≜ y′ ◦ 000 ∈ Fn(α) ⊆ S(n). So, |S(n − 3)| ≤ |Fn(α)| ≤
|S(n)|. As a result, cap(α) = cap(S). The adjacency matrix
of this graph is 

1 1 0 0 1 0
0 0 1 0 0 0
0 0 0 1 1 0
1 0 0 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0
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which has the characteristic polynomial x6−x5−x3−x2−x.
Thus, the capacity of S is log2(λ) when λ ≈ 1.685 is the
largest real root of this polynomial.
Theorem 5. Let α1,α2 be two non-cyclic labels of lengths
ℓ1, ℓ2 respectively when O(α1,α2) = t > 0,O(α2,α1) = 0.
It holds that cap(α1,α2) = log2(λ), where λ is the largest
real root of xℓ1+ℓ2−1 − xℓ1+ℓ2−2 − xℓ1−1 − xℓ2−1 − xt−1.

The proof for this theorem is similar to the previous example
and will be presented in the extended version of the paper.

V. THE MINIMAL NUMBER OF LABELS PROBLEM

In this section, we solve Problem 2 for ℓ = 1, 2. That is, we
find the minimal number of labels of length ℓ that are needed
in order to gain labeling capacity of two.
Theorem 6. It holds that s(1) = 3.

Proof: Let α = (A,C,G). The valid α-labeling se-
quences are all the sequences over Σn

4 . So, cap(α) =
log2(4) = 2. Additionally, w.l.o.g, let α = (A,C). The
valid α-labeling sequences are all the sequences over Σn

3 . So,
cap(α) = log2(3) < 2.

Our main result in this section is stated next.
Theorem 7. It holds that s(2) = 10.

In order to prove this theorem, first, consider the following
definition and theorem.
Definition 6. Let G = (V,E) be a directed graph. This graph
is said to be a path unique graph if for any k ≥ 1, between
any two vertices there exists at most one path of length k.
Example 5. The graph in Figure 4a is a path unique graph
since there are no paths from v to u and every different path
from u to v is of different length. The graph in Figure 4b is
not a path unique graph since there are two paths of length
two from u to v.

u v

(a)

u v

(b)

Fig. 4: Examples for a path unique graph (a) and a graph
which is not path unique (b).
Theorem 8. Let S be a subset of the labels of length two.
Let G = (V,E) be a directed graph in which V = Σ4

and E = {(x, y)|xy ∈ S}. Denote S̄ = {α1, . . . ,α16−|S|}
the set of labels of length two which are not in S and
α = (α1, . . . ,α16−|S|). It holds that cap(α) = 2 if and only
if G is a path unique graph.

Proof: Let S be a subset of labels of length two, let S̄ =
{α1, . . . ,α16−|S|} be the set of labels of length two which
are not in S and α = (α1, . . . ,α16−|S|). Let G = (V,E) be
a directed graph in which V = Σ4 and E = {(x, y)|xy ∈ S}.
Additionally, for x ∈ Σn

4 let y ∈ Σn
1+|S̄| be the α-labeling

sequence of x, so, yi = i if and only if x[i;2] = αi.
First, assume that G is a path unique graph. Note that from

the definition of path unique graph, G is not a full graph, which
means that S̄ is not an empty set. Let ab ∈ S̄. In order to prove
that cap(α) = 2, it will be shown that the capacity of the
sequences that start and end with ab is 2, and so cap(α) = 2.
It will be shown that using sequences of length n that start and

end with ab, the mapping Lα is one-to-one, which means that
the number of valid α-labeling sequences of length n is 4n−4

and the labeling capacity is cap(α) = lim sup
n→∞

log2(4
n−4)

n = 2.

Let x1,x2 ∈ Σn
4 be sequences that start and end with ab

such that y = Lα(x1) = Lα(x2) ̸= (0, . . . , 0). It will be
shown that x1 = x2. If yi = j for j > 0, from the definition
of α-labeling sequences, it holds that x1[i;2] = x2[i;2] = αj .
Otherwise, assume yi = 0 and denote by iℓ the largest
index such that iℓ ≤ i, and yiℓ ̸= 0. Additionally, let
ir be the smallest index such that ir ≥ i, and yir ̸= 0.
From the definition of α-labeling, it holds that x1[i′;2] ∈ S
for iℓ ≤ i′ < ir. There is only one path in G of length
m = ir − iℓ between any two vertices. And so, x1[iℓ;m] is
uniquely determined, so x1[iℓ;m] = x2[iℓ;m].

On the other direction, assume that G is not path unique.
So, there exist two vertices u, v ∈ V with two different paths
between u and v of the same length m > 1. Denote these two
paths by w1 = ut1t2 · · · tm−1v and w2 = us1s2 · · · sm−1v
when ti, si ∈ V for 1 ≤ i ≤ m− 1, (ti, ti+1), (si, si+1) ∈ E
for 1 ≤ i ≤ m− 2, (u, t1), (tm−1, v), (u, s1), (sm−1, v) ∈ E.
From the definition of E, titi+1, sisi+1 ∈ S for 1 ≤ i ≤ m−2,
and ut1, tm−1v, us1, sm−1v ∈ S . So, Lα(w1) = Lα(w2) =
(0, . . . , 0). In other words, the function Lα(·) does not distin-
guish between the substrings w1 and w2.

Denote the set of all sequences of length n over Σ4 which
do not contain w2 as a substring by Kw2 = {w ∈ Σn

4 |w ̸=
pw2q,p, q ∈ Σ∗

4}. Let L∗
α : Kw2 → Σn

|S|+1 be a function
for which ∀w ∈ Kw2 , L

∗
α(w) = Lα(w). Let w′ ∈ Σn

4 \ Kw2

be a sequence that contains w2 as a substring. Let w∗ ∈ Σn
4

be such that w∗
[i;m+1] = w1 if w′

[i;m+1] = w2 and w∗
i =

w′
i otherwise. It holds that w∗ ∈ Kw2

and so Lα(w
′) =

Lα(w
∗) = L∗

α(w
∗). As a result, |Im(Lα)| = |Im(L∗

α)| ≤
|Kw2 |, where Im(f) is the image of f . Since the length of w2

is fixed, it holds that cap(Kw2) < 2, and thus cap(α) < 2.

The proof of Theorem 7 will be divided into two claims.
Claim 1. There exist ten labels of length two, α =
(α1, . . . ,α10), such that cap(α) = 2.

Proof: Consider the set of the following six labels: S =
{AA,AC,AT,GG,GC,GT} and α = (α1, . . . ,α10) when
∀i ∈ [10],αi ∈ S̄. Let G = (V,E) be a directed graph in
which V = Σ4 and E = {(x, y)|xy ∈ S}. Since G is a path
unique graph, from Theorem 8, cap(α) = 2.

A C G T

Fig. 5: The Constrained Graph G for Claim 1.

Claim 2. Let G = (V,E) be a path unique graph with V =
Σ4. So, |E| ≤ 6.

The proof is based on dividing into cases according to the
number of self-loops in the graph.
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