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Abstract—This paper introduces a new solution to DNA
storage that integrates all three steps of retrieval, namely
clustering, reconstruction, and error correction. DNA-correcting
codes are presented as a unique solution to the problem of
ensuring that the output of the storage system is unique for
any valid set of input strands. To this end, we introduce a novel
distance metric to capture the unique behavior of the DNA
storage system and provide necessary and sufficient conditions
for DNA-correcting codes. The paper also includes several
upper bounds and constructions of DNA-correcting codes.

I. INTRODUCTION

The first two experiments that showed the potential of
using synthetic DNA as a means for a large-scale information
storage system were done in [6] and [8]. Since then,
together with the developments in synthesis and sequencing
technologies, more research groups showed the potential of
in vitro DNA storage; see e.g. [1]–[4], [7], [12], [19], [20].

A typical DNA storage system consists of three compo-
nents: (1) synthesizing the strands that contain the encoded
data. In current technologists, each strand has millions of
copies, and the length of these strands is usually limited to
250-300 nucleotides; (2) a storage container that stores the
synthetic DNA strands; (3) a DNA sequencer that reads the
strands, the output sequences from the sequencing machine
are called reads. This novel technology has several properties
that are fundamentally different from its digital counterparts,
while the most prominent one is that the erroneous copies
are stored in an unordered manner in the storage container
(see e.g. [11]). The most common solution to overcome
this challenge is to use indices that are stored as part of
the strand. Each strand is prefixed with some nucleotides
that indicate the strand’s location, with respect to all other
strands, these indices are usually protected using an error-
correcting code (ECC) [2], [3], [10], [12], [19]. The retrieval
of the input information is usually done by the following
three steps. The first step is to partition all the reads into
clusters such that the reads at each cluster are all copies of
the same information strand. The second step is applying
a reconstruction algorithm on every cluster to retrieve an
approximation of the original input strands. In the last step,
an ECC is used in order to correct the remaining errors and
to retrieve the user’s information.

While previous works tackled each of these steps inde-
pendently (see e.g. [1], [2], [3], [12], [18], [19]), this work
aims to tackle all of them together. This is accomplished by
limiting the stored messages in the DNA storage system, such
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that for any two input messages, the sets of all the possible
outputs will be mutually disjoint, we call this family of codes
DNA-correcting codes. Our point of departure is the recent
work [17] of clustering-correcting codes that proposed codes
for successful clustering. However, their results have been
established under the assumption that the correct reads in
every cluster satisfy some dominance property. Furthermore,
the codes in [17] do not aim to recover the input data, but
only to achieve a successful clustering. On the contrary, our
suggested codes also guarantee the recovery of the input
data, while eliminating the dominance assumption. Similar
to [17], it is assumed that every information strand consists
of an index-field and a data-field.

The rest of the paper is organized as follows. Section II
presents the definitions and the problem statement. In
Section III, we consider the case where the data-field is
error-free. In addition, we present the DNA-distance metric,
which is used in order to prove necessary and sufficient
conditions for DNA-correcting codes. In section IV, we study
codes over the index-field. Using these codes we present
constructions for DNA-correcting codes and bounds on the
size of DNA-correcting codes. Lastly, several generalizations
and open problems are discussed in Section V. Due to space
limitations, some of the proofs do not appear here, but they
can all be viewed in the extended version of the paper [5].

II. DEFINITIONS, PROBLEM STATEMENT, AND RELATED
WORKS

The following notations will be used in this paper. For
a positive integer n, the set {0, 1, . . . , n − 1} is denoted
by [n] and {0, 1}n is the set of all length-n binary vectors.
For two vectors x,y, of the same length, the Hamming
distance between them is the number of coordinates in which
they differ and is denoted by dH(x,y). For two sets of
vectors of the same size Z, Y , let BI(Z, Y ) be the space
of all bijective functions (matchings) from Z to Y and for
a matching π ∈ BI(Z, Y ), let wH(π) denote the maximal
Hamming distance between any two matched vectors, i.e.,
wH(π) = max

z∈Z
{dH(z, π(z))}. We assume a binary alphabet

in the paper as the generalization to higher alphabets will
be immediate and all logs are taken according to base 2.

Assume that a set of M length-L strands are stored in a
DNA-based storage system. We will assume that M = 2βL

for some 0 < β < 1, and for simplicity it is assumed that
βL is an integer. Every stored length-L strand s is of the
form s = (ind,u), where ind is the length-ℓ index-field
of the strand (which represents the relative position of this
strand in relation to all other strands) and u is the length-
(L− ℓ) data-field of the strand. Different strands are required
to have a different index-field, as otherwise, it will not be
possible to determine the order of the strands. The length of
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the index-field of all the strands is the same and since all
indices are different it holds that ℓ ≥ log(M) = βL.

For M,L, and ℓ, the space of all possible messages that
can be stored in the DNA storage system is:
XM,L,ℓ =

{
{(ind1,u1), (ind2,u2), . . . , (indM ,uM )}|
∀i : indi ∈ {0, 1}ℓ,ui ∈ {0, 1}L−ℓ, (1)
∀i ̸= j : indi ̸= indj

}
.

Note that |XM,L,ℓ| =
(
2ℓ

M

)
2(L−ℓ)M since there are

(
2ℓ

M

)
options to choose the different set of index-fields and then
2(L−ℓ)M more options to choose the data-field for every
index. Under this setup, a code C will be a subset of XM,L,ℓ.

When a set Z = {(ind1,u1), . . . , (indM ,uM )} is synthe-
sized, each of its strands has a large number of noisy copies,
and during the sequencing process a subset of these copies is
read, while the number of copies depends on the biological
process and the technologies that are being used. Throughout
this paper, it is assumed that the number of copies for each
strand is exactly K, and so, the sequencer’s output is a set
of MK reads, where every output read is a noisy copy of
one of the input strands. It is also assumed that the noise is
of substitution type and in Section V we explain how most
of the results hold for edit errors as well when changing the
Hamming distance to edit. Let τ denote the maximal relative
fraction of incorrect copies that every input strand can have
and by ei, ed the largest number of errors that can occur at
the index, data-field of each strand, respectively. Formally,
the DNA storage channel is modeled as follows.
Definition 1. A DNA-based storage system is called a
(τ, ei, ed)K-DNA storage system if it satisfies the following
properties: (1) Every input strand (ind,u) has exactly K
output copies, (2) at most ⌊τK⌋ of these copies are erroneous,
and (3) if (ind′,u′) is a noisy copy of (ind,u) then
dH(ind, ind′) ≤ ei and dH(u,u′) ≤ ed.

For a set Z ∈ XM,L,ℓ, let BK
(τ,ei,ed)

(Z) be the set
of all possible MK reads one can get from Z after it
passes through a (τ, ei, ed)K -DNA storage system (i.e., every
element in BK

(τ,ei,ed)
(Z) is a multiset of MK reads). Under

this setup, a code C ⊆ XM,L,ℓ is called a (τ, ei, ed)K-DNA-
correcting code if for every two codewords Z,Z ′ ∈ C such
that Z ̸= Z ′, it holds that BK

(τ,ei,ed)
(Z)∩BK

(τ,ei,ed)
(Z ′) = ∅,

i.e., the sets of possible outputs for all codewords are
mutually disjoint when the parameters are τ, ei, ed, and
K. The redundancy of such a code is defined by r(C) =
log2(|XM,L,ℓ|)− log2(|C|).

Let AM,L,ℓ(τ, ei, ed,K) denote the size of a largest
(τ, ei, ed)K-DNA-correcting code given the parameters
M,L, ℓ, τ, ei, ed, and K. The goal of this work is to find
necessary and sufficient conditions for a code to be a DNA-
correcting code and to study the value of AM,L,ℓ(τ, ei, ed,K)
for different values.
A. Related Work

Previous studies on information retrieval in DNA storage
systems have typically tackled the problem by addressing
the three steps (i.e., clustering, reconstruction, and error
correction) individually, utilizing a combination of ECC and
algorithmic methods. In most works, the clustering step

was performed by protecting each of the indices with an
ECC and then using the decoder of this code to correct
the indices and cluster the reads [2], [3], [10], [12], [19].
Consequently, this process results in a fixed set of indices to
the code. Other works used algorithmic methods which are
usually time-consuming or not accurate enough in clustering
[13], [14]. The reconstruction task is commonly studied
independently, and it is usually assumed that the clustering
step was successful [9], [15], [18]. Additionally, in most
previous works, an ECC is applied on the data and is used
for correcting errors on the reconstructed strands, see e.g. [3],
[12], [19]. Another approach, which is the most related to
ours, appears in [17], where the authors studied the clustering
problem from a coding theory perspective, however, their
work only tackles the first step in the retrieval process of
the data, i.e., the clustering step. Our approach in this work
considers the indices together as a set, this may result in
different indices sets which are used for different information
messages. The key advantage of this work with respect to
previous studies is that we present a novel approach for error-
correcting codes in DNA storage systems that encapsulate
all the information retrieval steps together into a single code.

III. ERROR FREE DATA-FIELD

We start by studying the case where the data part
is free of errors, i.e., ed = 0. For a set Z =
{(ind1,u1), . . . , (indM ,uM )} ∈ XM,L,ℓ, let S(Z) denote
the data-field set of Z which is defined by S(Z) =
{u1, . . . ,uM} and MS(Z) denotes the data-field multiset
of Z, MS(Z) = {{u1, . . . ,uM}}. We use the notation of
MS(XM,L,ℓ) to denote the set of all possible data-field
multisets of the elements in XM,L,ℓ.

For a code C ⊆ XM,L,ℓ and a data-field multiset U ∈
MS(XM,L,ℓ), let CU ⊆ C be the set of all codewords Z ∈ C
for which MS(Z) = U . The next claim presents a necessary
and sufficient condition for DNA-correcting codes for ed = 0.
Claim 1. A code C ⊆ XM,L,ℓ is a (τ, ei, ed = 0)K-DNA-
correcting code if and only if for every data-field multiset
U ∈ MS(XM,L,ℓ), it holds that CU is a (τ, ei, 0)K-DNA-
correcting code.

Proof: If C ⊆ XM,L,ℓ is a (τ, ei, 0)K-DNA-correcting
code, then every subset of it is a (τ, ei, 0)K -DNA-correcting
code as well. On the other hand, if Z1, Z2 ∈ C such that
MS(Z1) ̸= MS(Z2) then BK

(τ,ei,0)
(Z1)∩BK

(τ,ei,0)
(Z2) = ∅

since the data-field is free of errors, and for Z1, Z2 ∈ C
such that MS(Z1) = MS(Z2) we have that BK

(τ,ei,0)
(Z1)∩

BK
(τ,ei,0)

(Z2) = ∅, since CMS(Z1) is a (τ, ei, ed)K-DNA-
correcting code.

For a data-field multiset U ∈ MS(XM,L,ℓ), let
AM,L,ℓ(τ, ei, ed,K)U denote the largest size of a
(τ, ei, ed)K-DNA-correcting code whose all codewords are
with a data-field multiset U . The next corollary follows
immediately from Claim 1.
Corollary 1. It holds that

AM,L,ℓ(τ, ei, 0,K) =
∑

U∈MS(XM,L,ℓ)

AM,L,ℓ(τ, ei, 0,K)U .

The last corollary implies that for ed = 0, in order to find
the largest DNA-correcting code it is sufficient to find the
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Figure 1: All possible matchings between I(u, Z1) and
I(u, Z2) for every date field u ∈ S(z1).

largest DNA-correcting code for every data-field multiset U .
To this end, we define the DNA-distance, a metric on XM,L,ℓ,
which will be useful for determining what conditions a
(τ, ei, 0)K-DNA-correcting code CU must hold.

A. The DNA-Distance

For Z = {(ind1,u1), . . . , (indM ,uM )} ∈ XM,L,ℓ and
u ∈ S(Z), let I(u, Z) be the set of all indices of u in Z,
that is, I(u, Z) = {indi | ui = u}. For Z1, Z2 ∈ XM,L,ℓ,
their DNA-distance is defined as

D(Z1, Z2)=

{
∞, if MS(Z1) ̸= MS(Z2),

max
u∈S(Z1)

min
π∈BI(I(u, Z1), I(u, Z2))

{wH(π)}, otherwise.

That is, if the data-field multisets are different, then the
distance is infinity. Otherwise, for each data-field u we look
at all the possible matchings between the two sets of indices
of u in Z1 and Z2, and choose the matching with minimal
Hamming weight. Then we take the maximal data-field u
and the distance is the Hamming weight of the minimal
matching for this data-field. The motivation for using the
DNA-distance is Claim 1 and the observation that if the
codewords Z1 and Z2 have different data-field multisets then
they cannot share the same output. However, if their data-
field multisets are the same, then we consider the Hamming
distance between the index-fields of the same data-field.
Given a set Z ∈ XM,L,ℓ, we define the radius-r ball1 of Z
by Br(Z) = {Y ∈ XM,L,ℓ | D(Z, Y ) ≤ r}.
Example 1. Consider the following two words in X4,5,2

Z1 = {(00, 111), (01, 000), (10, 111), (11, 001)},
Z2 = {(00, 111), (01, 111), (10, 001), (11, 000)}.

Both words have the same data-field multiset and thus
the DNA-distance between them is not infinity. In Fig. 1,
for every u ∈ S(Z1), we show all possible matchings
between I(u, Z1) and I(u, Z2). The data-fields 000 and
001 have only one index in both Z1 and Z2. Thus, there
is only one matching in both cases and the weight of each
matching is one. On the other hand, the data-field 111 has
two indices in Z1 and Z2, and thus there are two optional
matchings, corresponding to the dashed red one and the
solid green. The weight of the red matching is 2 since
max{dH(00, 00), dH(10, 01)} = 2 and the weight of the

1We use the terminology of a ball since D is a metric, as shown in
Lemma 1.

green matching is 1 since max{dH(00, 01), dH(10, 00)} = 1.
Hence, D(Z1, Z2) = 1.

As will be seen later, the DNA-distance D will be essential
in order to determine if a code is a DNA-correcting code.
First, we give the following two important results regarding
the distance function D.
Lemma 1. The DNA-distance D is a metric on XM,L,ℓ.
Claim 2. The metric D is not a graphic metric2.

Even though the DNA-distance is not a graphic metric, it
still satisfies several properties that hold trivially for such
ones. In particular, using the metric D it is possible to derive
necessary and sufficient conditions for a code to be a DNA-
correcting code, which are shown in the next subsection.

B. Necessary and Sufficient Conditions for DNA-Correcting
Codes

For a code C ⊆ XM,L,ℓ, the DNA-distance of C is defined
by D(C) ≜ min

Z1 ̸=Z2∈C
D(Z1, Z2). Next, we draw connections

between DNA-correcting codes and their DNA-distance.
These connections will depend upon the value of τ . First,
the case τ = 1 is considered. In the proof of Theorem 2, we
use Hall’s marriage theorem, which is stated next.
Theorem 1 (Hall, 1935). For a finite bipartite graph G =
(L ∪ R,E), there is an L-perfect matching if and only if
for every subset Y ⊆ L it holds that |Y | ≤ |NG(Y )|, where
NG(Y ) is the set of all vertices that are adjacent to at least
one element of Y .

Theorem 2. A code C ⊆ XM,L,ℓ is a (1, ei, 0)K-DNA-
correcting code if and only if D(C) > 2ei.

Proof: From Claim 1 it is sufficient to show
that the claim holds for every CU ⊆ C. Let U =
{{u1,u2, . . . ,uM}} ∈ MS(XM,L,ℓ) and assume that CU ⊆
XM,L,ℓ is a (1, ei, 0)-DNA-correcting code. Assume to
the contrary that there are two codewords Z1, Z2 ∈ CU
such that D(Z1, Z2) ≤ 2ei. It will be shown that there
exists W ∈ BK

1,ei,0(Z1) ∩ BK
1,ei,0(Z2). For every data-field

ui ∈ S(Z1), there exists πi ∈ BI ((I(ui, Z1), I(ui, Z2)))
such that wH(πi) ≤ 2ei. Thus, for every index ij ∈ I(ui, Z1)

there exists rij ∈ {0, 1}ℓ with dH(ij , rij ) ≤ ei and
dH(πi(ij), rij ) ≤ ei (since the Hamming metric is graphic).
The word W is built in the following way. For every index ij
there are K copies of the form (rij , ui), i.e., we move all the
copies of each strand in both codewords to a word in the mid-
dle. It is easy to verify that W ∈ BK

1,ei,0(Z1) ∩BK
1,ei,0(Z2),

which is a contradiction since C is a (1, ei, 0)K-DNA-
correcting code.

For the opposite direction, let Z1, Z2 ∈ CU such that Z1 ̸=
Z2. Our goal is to show that BK

(1,ei,0)
(Z1)∩BK

(1,ei,0)
(Z2) = ∅.

From the assumption that D(Z1, Z2) > 2ei and the definition
of D, we have that there exists a data-field u ∈ S(Z1)
such that there is no π ∈ BI ((I(u, Z1), I(u, Z2))) with
wH(π) ≤ 2ei. Equivalently, if we construct a bipartite graph
G = (L ∪ R,E) where L = I(u, Z1), R = I(u, Z2) and

2A metric D : X ×X → N is graphic if the graph G = (V,E) with
V = X and edges connect between any two words of distance one, satisfies
the following property: for x1, x2 ∈ X it holds that D(x1, x2) = t if and
only if the length of the shortest path between x1 and x2 in G is t as well.
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E = {(i, j)|i ∈ L, j ∈ R, dH(i, j) ≤ 2ei} then from Hall’s
marriage theorem there is a subset Y ⊆ L such that |Y | >
|NG(Y )|.

We say that a read s = (ind,u) is in the ei area of
Y , if its index-field is at distance at most ei from at least
one of the indices in Y . Consider a general output word
W1 ∈ BK

(1,ei,0)
(Z1), the number of reads in W1 that are in

the ei area of Y is at-least K · |Y |. On the other hand, for
every W2 ∈ BK

(1,ei,0)
(Z2), the number of reads in W2 that

are in the ei area of Y is at most K · |NG(Y )| < K · |Y |.
Thus BK

(1,ei,0)
(Z1) ∩BK

(1,ei,0)
(Z2) = ∅.

Next, we study the case of τ < 1 such that K
2 ≤ ⌊τK⌋

and present a similar necessary condition for this case.
Lemma 2. For τ < 1 such that K

2 ≤ ⌊τK⌋ and U ∈
MS(XM,L,ℓ), if CU is a (τ, ei, 0)K-DNA-correcting code
then D(CU ) > ei.

The opposite direction of Lemma 2 does not hold in
general, however, it holds if one assures that all data-fields
in the stored sets are different. Let XM,L,ℓ denote all such
sets, i.e., XM,L,ℓ = {Z ∈ XM,L,ℓ| |S(Z)| = M}. Note that
the size of XM,L,ℓ is

(
2ℓ

M

)(
2L−ℓ

M

)
M !, and that XM,L,ℓ ̸= ∅

if and only if L− ℓ ≥ log2(M). Although restricting to only
sets in XM,L,ℓ might reduce the number of information bits
that is possible to store in the DNA storage system, it is
verified in the next lemma, using the results from [17], that
for practical values of β there is only a single-bit reduction.

Lemma 3. For β < 1
2

(
1− ℓ

L

)
it holds that r(XM,L,ℓ) < 1.

Furthermore, for β ≤ ln(2)(L−ℓ)+2ℓ
L(ln(2)+2ℓ) there exists an efficient

construction of XM,L,ℓ that uses a single redundancy bit.

The notation MS(XM,L,ℓ) is used to denote the set of all
possible data-field multisets of elements in XM,L,ℓ, which
are in essence sets. The next lemma presents a sufficient
condition for such sets.
Lemma 4. For τ < 1 such that K

2 ≤ ⌊τK⌋ and U ∈
MS(XM,L,ℓ) if D(CU ) > ei then CU is a (τ, ei, 0)K -DNA-
correcting code.

The next corollary summarizes this discussion.
Corollary 2. For τ < 1 such that K

2 ≤ ⌊τK⌋ and U ∈
MS(XM,L,ℓ), CU is a (τ, ei, 0)K-DNA-correcting code if
and only if D(CU ) > ei.

We continue to study the case of τ such that ⌊τK⌋ < K
2

in the next two lemmas.
Lemma 5. For τ such that ⌊τK⌋ < K

2 , it holds that for
every ei, XM,L,ℓ is a (τ, ei, 0)K-DNA-correcting code.
Lemma 6. For τ such that ⌊τK⌋ < K

2 , if C ⊆ XM,L,ℓ is a
code with D(C) > ei then C is a (τ, ei, 0)K -DNA-correcting
code.

C. Codes for a Fixed Data-Field Set
So far in the paper we focused on properties and conditions

of DNA-correcting codes that guarantee successful decoding
of the data. In particular, Corollary 1 showed that it is
enough to construct codes for every data-field multiset
U ∈ MS(XM,L,ℓ) independently, while the conditions with
respect to the DNA-distance were established in Theorem 2,

and Lemmas 2, 4, 5, and 6. These conditions depend upon
the value of τ and whether U is a set/multiset. In Lemma 3,
it was shown that for all practical values of β, restricting
to using only sets in XM,L,ℓ imposes only a single bit of
redundancy and therefore, the rest of the paper provides
DNA-correcting codes for XM,L,ℓ.

Note that for U,U ′ ∈ MS(XM,L,ℓ) it holds
that AM,L,ℓ(τ, ei, 0,K)U = AM,L,ℓ(τ, ei, 0,K)U ′

and thus for the rest of the paper we fix
U = {u1,u2, . . . ,uM} ∈ MS(XM,L,ℓ) and our goal is to
find DNA-correcting codes for U with a given DNA-distance.
Note that for Z = {(ind1,u1), . . . , (indM ,uM )}, Z ′ =
{(ind′1,u1), . . . , (ind

′
M ,uM )}, it holds that

D(Z1, Z2) = max
1≤i≤M

dH(indi, ind
′
i).

Thus, we focus on studying the next family of codes for
the index-fields.
Definition 2. Let I(ℓ,M) = {(ind1, . . . , indM )|∀i : indi ∈
{0, 1}ℓ,∀i ̸= j : indi ̸= indj}. For every two codewords
c = (c1, . . . , cM ), c′ = (c′1, . . . , c

′
M ) ∈ I(ℓ,M), their index-

distance is defined by DI(c, c
′) ≜ max

1≤i≤M
dH(ci, c

′
i) and

for a code C ⊆ I(ℓ,M), its index-distance is defined by
DI(C) ≜ min

c̸=c′∈C
DI(c, c

′). A code C ⊆ I(ℓ,M) will be

called an (ℓ,M, d) index-correcting code if DI(C) ≥ d. We
denote by F (ℓ,M, d) the size of a maximal (ℓ,M, d) index-
correcting code.

Example 2. The rows of the following matrix form a (2, 4, 2)
index-correcting code, while each row corresponds to a
codeword,

P =


00 01 11 10
00 11 10 01
00 10 01 11
11 01 00 10
11 00 10 01
11 10 01 00

 . (2)

One can verify, that for every two different rows i, i′, there
exists a column j such that dH(P (i, j), P (i′, j)) = 2.

The motivation for studying this family of codes comes
from the following observation which results from Theorem 2,
Corollary 2, and Lemma 5.

Observation 1. For U ∈ MS(XM,L,ℓ), it holds that

AM,L,ℓ(τ, ei, 0,K)U =


F (ℓ,M, 2ei + 1), τ = 1

F (ℓ,M, ei + 1), K
2
≤ ⌊τK⌋ < K(

2ℓ

M

)
M !, ⌊τK⌋ < K

2

Note that the study of index-correcting codes and in
particular the value of F (ℓ,M, d) is interesting on its own
and can be useful for other problems, independently of the
problem of designing codes for DNA storage. The next
section is dedicated to a careful investigation of these codes.

IV. INDEX-CORRECTING CODES
We start by studying the special case of ℓ = log(M).

A. ℓ = log(M)

In this case, every possible codeword in I(log(M),M) is a
permutation over {0, 1}log(M), and for f, g ∈ I(log(M),M),
their index-distance is equivalent to the ℓ∞ distance over
the Hamming distance of the indices, i.e., DI(f, g) =
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max
i∈{1,2,...,M}

dH(f(i), g(i)). For f ∈ I(log(M),M), let

Br(f) be the ball of radius r centered at f in I(log(M),M),
i.e., Br(f) = {g ∈ I(log(M),M)|DI(f, g) ≤ r}. In this
case, it holds that DI is right invariant, i.e., for f, g, p ∈
I(log(M),M) it holds that DI(f, g) = DI(f ◦p, g ◦p), and
thus the size of the balls is the same. Let Br,M denote the
size of the balls of radius r in I(log(M),M). An important
matrix with respect to Br,M is the matrix Ar,M = (ai,j) of
size M ×M which is defined by ai,j = IdH(i,j)≤r where
i, j ∈ {0, 1}log(M). Let per(A) denote the permanent of a
square matrix A. Then the next lemma, which follows in a
similar way to the one presented in [16], holds.
Lemma 7. It holds that Br,M = per(Ar,M ).

Next, two bounds on F (log(M),M, d) are presented.
Lemma 8 uses the sphere packing bound with a known
bound on the permanent of a matrix, while Lemma 9 uses a
method that is similar to the proof of the Singleton bound.

Lemma 8. Let r(d,M) =
∑⌊ d−1

2 ⌋
i=0

(
log(M)

i

)
then

F (log(M),M, d) ≤ M !

(r(d,M)!)
M

r(d,M)

.

Lemma 9. F (log(M),M, d) ≤ M !

(2d−1!)2
log(M)−d+1 .

Note, that the code in Example 2 achieves the bound in
Lemma 9, and hence this bound can be tight in some cases.

Next, we present a construction by building a matrix whose
rows form an (log(M),M, d) index-correcting code. Such
a matrix whose rows form an (ℓ,M, d) index-correcting
code will be called an (ℓ,M, d)-matrix. The construction
uses codes over {0, 1}log(M) with Hamming distance d and
afterward an example for small values of d is presented.

Construction 1. Let C ⊆ {0, 1}log(M) be a maximal linear
code with Hamming distance d. Denote by A the size of
C and note that the M

A cosets of C form a partition of
{0, 1}log(M). Denote the cosets of C by C1 = C, C2, . . . , CM

A
.

We start by building a matrix that consists of (A!)
M
A rows,

where the first A entries of every row are permutations over
the first coset, the second A entries are permutations over the
second coset, and so on. Since the entries of every column
belong to the same coset, the distance between different rows
is at least d. Next, we take every coset Ci for 2 ≤ i ≤ M

A
and remove from it all words that are at distance at most d
from the zero vector 0, and denote by C′

i the achieved codes.
Then, for every c′ ∈ C′

i, we can look at all the rows in the
matrix where c′ and 0 are fixed to the first entry of their
coset (note that there are (A− 1)!2(A!)

M
A −2 such rows) and

add the same row where we replace the entry of c′ with 0.
Since we do so for every i we have (MA −1) · |C′| · 1

A2 (A!)
M
A

more rows.

Example 3. We apply Construction 1 to the case of d = 2
and d = 3. For d = 2 we have that the maximal linear code
C is the parity with |C| = M

2 , and that |C′| = M
2 − log(M).

Thus in this case we get a (log(M),M, 2) index-correcting
code with size of (M2 !)2 + (M2 − log(M))(M−2

2 !)2. For
d = 3 and log(M) = ℓ = 2m − 1 we have that the
maximal linear code C is the binary Hamming code with
|C| = 22

m−1−m, and that there are 2m cosets (including

the code itself). In addition, every coset Ci ̸= C has one
word of weight 1 and 2m−2

2 words of weight 2. Thus
we have a (2m − 1, 22

m−1, 3) index-correcting code with
size of ( M

log(M)+1 !)
log(M)+1 (1 + g(M)), where g(M) =

Θ( log
2(M)
M ). For more detailed analyses, see the extended

version [5].
B. ℓ > log(M)

In this case, the set of possible indices is larger than the
number of strands. We show how to construct an (ℓ′,M, d)
index-correcting code from an (ℓ,M, d) index-correcting
code for ℓ < ℓ′.
Lemma 10. For ℓ′ = ℓ + ⌈d

2⌉ it holds that F (ℓ′,M, d) ≥
F (ℓ,M, d) · 2M

Proof: We show an iterative construction of a matrix P ′

using a maximal (ℓ,M, d)-matrix P with F (ℓ,M, d) rows
and the proof that the matrix P ′ is a legal (ℓ′,M, d)-matrix
with F (ℓ,M, d) · 2M rows appears in the extended version
of the paper [5]. The construction is described next.

1) Obtain a matrix P ′
0 by adding ⌈d

2⌉ bits of 0 at the end
of every entry in P .

2) For j = 1, 2, . . . ,M : Denote the matrix obtained after
the j’th step by P ′

j . For every row i of P ′
j−1, add a

similar row bj(i) which differs from the i-th row only
in the j-th column. The difference is that in bj(i), the
first and last ⌈d

2⌉ bits of the j-th entry, are the transpose
of the corresponding entry in row i.

Example 4. The next matrix is the matrix P ′
1 which is

obtained from the matrix in Example 2.

P ′
1 =



000 010 110 100
000 110 100 010
000 100 010 110
110 010 000 100
110 000 100 010
110 100 010 000
101 010 110 100
101 110 100 010
101 100 010 110
011 010 000 100
011 000 100 010
011 100 010 000


(3)

V. GENERALIZATIONS AND FUTURE WORK

Note, that in all the proofs of the necessary and sufficient
conditions, only the fact that the Hamming metric is graphic
was used. Thus all the results for ed = 0 hold also when
replacing every instance of the Hamming distance with the
edit distance. The case of ed > 0 is more complicated since
Claim 1 does not hold for ed > 0. Nonetheless, if one
wishes to construct a (τ, ei, ed)K-DNA-correcting code CU
for U ∈ MS(XM,L,ℓ) with DNA distance larger than 2ed+1,
then the constructions in Section IV will work. For future
work, we plan to continue studying the value of F (ℓ,M, d),
especially for ℓ > log(M) which is an interesting and
important question, as well as to study the case of ed > 0,
and in particular, find necessary and sufficient conditions for
this case.
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