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Abstract—Although the expenses associated with DNA se-
quencing have been rapidly decreasing, the current cost stands
at roughly $1.3K/TB, which is dramatically more expensive than
reading from existing archival storage solutions today. In this
work, we aim to reduce not only the cost but also the latency
of DNA storage by studying the DNA coverage depth problem,
which aims to reduce the required number of reads to retrieve
information from the storage system. Under this framework, our
main goal is to understand how to optimally pair an error-
correcting code with a given retrieval algorithm to minimize the
sequencing coverage depth, while guaranteeing retrieval of the
information with high probability. Additionally, we study the
DNA coverage depth problem under the random-access setup.

I. INTRODUCTION

As a result of its remarkable density and durability, DNA is
a promising storage medium. One of the main components
in any DNA storage system [1], [8], [17], [23] is a DNA
sequencer, which reads back the user’s pre-stored informa-
tion. Nowadays, DNA sequencers suffer from relatively slow
throughput as well as high costs relative to other alternative
storage technologies [19], [24], [25]. These issues are related
to the so-called coverage depth of DNA storage, which is
defined as the ratio between the number of reads that are se-
quenced and the number of synthesized oligos [12]. Reducing
the coverage depth can improve the latency of any existing
DNA storage system and reduce its costs.

Motivated by the connection between the coverage depth,
latency, and cost, in this work we initiate the study of a
novel problem, referred to as the DNA coverage depth prob-
lem. Simply stated, the DNA coverage depth problem aims
to minimize the coverage depth while maintaining system
reliability. In this work, we study the required coverage depth
as a function of the DNA storage channel, the error-correcting
code, and the reconstruction algorithm. Furthermore, we seek
to understand how to pair an error-correcting code with a given
reconstruction algorithm in order to minimize the coverage
depth. This problem will be studied under both the random
and non-random access settings.

The DNA coverage depth problem is related to the coupon
collector’s (CCP), dixie cup, and urn problems [7], [9], [10],
[16]. For all these problems, it is assumed that there are n
different types of coupons and the question of interest is
how many coupons one should collect before possessing one
coupon of each type. It is well known that if the coupons are
drawn uniformly at random (with repetition), then the expected
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number of coupons necessary to have at least one coupon from
each type is roughly n log n. Under our setting, the coupons
refer to the copies of the synthesized oligos and the goal is to
read at least one copy of every oligo.

The CCP has several generalizations [7], [10], [16], some
of which will be explored in this work. One such problem,
which is referred to as the MDS coverage depth problem
studied in Section III, is how many coupons one should collect
before possessing t copies of k coupons. This generalization
represents the scenario where a reconstruction algorithm that
requires t reads of an oligo for successful decoding is used
along with an MDS code that requires retrieving k out of
the n synthesized sequences to recover the stored encoded
information. Our main result is a closed-form expression that
upper bounds the expected number of coupons that need to
be collected along with an upper bound that shows that in
many cases the random variable of interest is, with high
probability, below this upper bound. We also show that using
the corresponding MDS code minimizes the expected number
of coupons one needs to collect to retrieve the information.

Motivated by the random-access setting where one wishes
to retrieve a single strand of DNA from a storage system, in
Section IV we consider another problem that is related to the
CCP, but to the best of our knowledge has not been studied
before. Suppose we are given k information coupons which we
can encode into a set of n total coupons. For any information
coupon say i, what is the expected number of coupons that
need to be collected in order to retrieve the information in
coupon i? Trivially, if no code is used, then the expected
number of coupons that need to be collected is equal to k.
In Section IV, we initiate the study of this problem, which
we refer to as the singleton-random-access problem. Our main
result shows that it is indeed possible to design coding schemes
that allow random access that requires less than k coupons and
provide an example of such a scheme.

This paper is organized as follows. Section II, introduces
the definitions that are used throughout the paper. Section III
presents our results for the MDS coverage depth problem. We
also show that in several instances MDS codes are optimal in
the sense that they minimize the expected number of strands
necessary for retrieval. Section IV introduces and presents our
results for the singleton-random-access problem. Due to space
limitations, some of the proofs can be viewed in the extended
version of this paper [2].

II. DEFINITIONS AND CHANNEL MODEL

In the typical model of DNA-based storage systems [8],
[17], [23], the data is stored as a codeword that can be
described by a vector of length-ℓ sequences or strands over
the alphabet Σ = {A,C,G, T}. In many cases an outer error-
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correcting C is used to encode the data over the length-ℓ
sequences, so it is assumed that the outer code C receives
a vector of k length-ℓ sequences, U = (u1,u2, . . . ,uk) ∈
(Σℓ)k and returns a vector of n length-ℓ sequences X =
(x1,x2, . . . ,xn) ∈ (Σℓ)n. The vector X is the input to the
DNA storage system which we now describe in more detail.

The DNA storage channel, denoted by S, first produces
several noisy copies for each of the strands in X . Then, these
noisy copies are amplified using PCR, and lastly a sample of
M of these strands is sequenced using a DNA sequencing tech-
nology [12]. Therefore, the output of the DNA storage channel
can be described as a multiset YM = {{y1,y2, . . . ,yM}},
where each yj ∈ Σ∗ for j ∈ [M ] is called a read and is
a noisy version of some xi, i ∈ [n], where [n] denotes the set
{1, . . . , n}. The number of reads in YM that are noisy copies
of the i-th strand xi, i ∈ [n], depends upon some probability
distribution p = (p1, . . . , pn), where for i ∈ [n], pi is the
probability to sample a read of xi. The probability distribution
p is a function of the DNA storage channel S and is referred
by the channel probability distribution, or in short channel
distribution; Note that p might also depend on the design of
the DNA strands in X , however for simplicity, in this work
we assume that p is only a function of the channel S.
Remark 1. Note that in several works; see e.g. [15], [21], it
is assumed that a set (and not a vector) of strands is stored in
the DNA storage system. However, since the strands in these
sets are anyway tagged by indices, we assume for simplicity
that the information is a vector of strands. Furthermore, it may
also be possible that every strand is encoded using an inner
code [8], [17]. Nevertheless, since this part is independent of
our study in this work, it is not treated as part of the encoding
step. Still, it is taken into account in the success probability
of a retrieval algorithm, as will be explained next.

The decoding process of X (and thus U) starts with par-
titioning the reads in YM into groups, also called clusters,
according to their origin strand, i.e., for i ∈ [n], the i-th
cluster should contain all the reads yj that are noisy copies
of xi. To simplify the analysis, we assume that this step is
accomplished error-free. In practice, this assumption can be
reached using indices in the sequences which can be further
protected using some error-correcting code [23]. Hence, the
probability of successfully retrieving X , U mainly depends on
the following two components of the solution being used.
1) Error-correcting code. When X is a codeword in some

error-correcting code C, it is possible to successfully re-
trieve X even if not all of its n strands were decoded
successfully. In particular, if C is an [n, k] MDS code, then
any k strands are sufficient to decode the data.

2) The retrieval algorithm. The success probability to retrieve
the strand xi also depends on the retrieval algorithm,
which aims to decode a sequence using several of its
noisy copies [3]. Typically, this probability depends on the
number of noisy copies, the channel error rates, and the
use of an inner code in the strands.

The main goal of this paper is to study the required sample
size M that guarantees successful decoding of the information.
According to our model, this sample size depends on the
channel, the error-correcting code, and the channel probability

distribution p. We study two main problems in the following
two sections. Section III covers the case where the goal is
to retrieve the information vector U , while in Section IV the
goal is to retrieve a single information strand in U , i.e., some
ui, for i ∈ [k]. For these problems, we calculate the expected
required sample size for noiseless/noisy channels and study
how it can be minimized using coding schemes.
Remark 2. The analysis presented in this work relies on the
assumption that the reads are received sequentially from the
DNA storage channel. This is indeed the case when using
Nanopore sequencing [22]. Moreover, we note that even in
the case where the reads are obtained altogether, our results
are relevant as we show that the required number of reads in
the sequential case is with high probability below our bound.

Throughout this paper, we will use the notation log to denote
natural logarithms with base e.
III. COVERAGE DEPTH IN THE DNA STORAGE CHANNEL

This section studies the required sample size to retrieve
the information vector U as a function of the DNA storage
channel, the error-correcting code, and the retrieval algorithm.
Under this framework, our goal is to understand how to
optimally pair an error-correcting code with a given retrieval
algorithm in order to minimize the sample size, while guaran-
teeing successful decoding with high probability.

The code C is denoted by (n, k) or [n, k] to indicate that
it is an MDS code. To simplify the analysis, it is further
assumed that the retrieval algorithm is characterized by t ∈ N
which indicates for every strand xi the required minimum
number of noisy reads that guarantee its successful retrieval.
The decoding of U is successful when “enough unique strands”
are successfully recovered by the retrieval algorithm (i.e., these
are the strands with at least t reads). Here, enough refers to sets
of unique strands which allow to decode the information vector
U . For example, for MDS codes, this refers to any k out of
the n strands. According to this characterization, we let νpt (C)
be the random variable that governs the number of reads that
should be sampled for successful decoding of U . When C is
an [n, k] MDS code, this notation is replaced by νpt (n, k). The
uniform distribution is denoted by pu ≜ ( 1n , . . . ,

1
n ) and for

brevity, we let νt(n, k) ≜ ν
pu
t (n, k). The two main problems

of this section are defined below.
Problem 1. (The MDS coverage depth problem.) For given
values of k and n, find the followings.
1) The expectation value E [νt(n, k)] .
2) The probability distribution of νt(n, k), i.e., for any m ∈ N

find the value of P [νt(n, k) > m].
Problem 2. (The coding coverage depth problem.) For a
given value of k, find the following.
1) Given n and p, find an (n, k) code C that is optimal with

respect to minimizing E [νpt (C)].
2) The minimum value of E [νpt (C)] over all possible codes

C and channel distributions p. That is, find the value
Mopt(k) ≜ lim infC,p{E [νpt (C)]}.

This section first presents a survey of related work and
known results. Next, Problem 2 is solved for the noiseless
channel in Theorems 2 and 3. The solution to Problem 1.1
is in fact a known result and the expectation is given in (1).
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However, we present in Theorem 5 a random variable, which
is closely related to this value and is easier to compute, and
a lower bound on its expectation. Furthermore, Theorem 4
shows an upper bound for the value in Problem 1.2, which
also implies an upper bound for the value in Problem 1.1.
A. Related Work

For the noiseless channel, it is sufficient to have a sin-
gle read of each xi, i ∈ [n], to retrieve it. We note that
if the channel distribution is the uniform distribution pu,
and no code is defined on the data (i.e., k = n) then
Problem 1.1 is equivalent to the classical coupon collector’s
problem [9]. This problem was first studied by Feller [9]
where it was referred to as the dixie cup problem. Under the
assumption that we have n coupons and it is equally likely
to collect any coupon, the expected number of draws (i.e.,
sample size) required to get a single copy for each coupon is
E[ν1(k = n, n)] = n log n + γn + O(1), where γ ∼ 0.577
is the Euler–Mascheroni constant. Furthermore, it was also
proven [10] that E[ν1(n, k)] = n(Hn − Hn−k), where Hn

is the n-th harmonic number. It is well-known that when
n − k → ∞ and n

n−k < ∞, this expression is roughly
E[ν1(n, k)] ≈ n log(n)− n log(n− k) = n log( n

n−k ).
For noisy channels, i.e., t > 1, the problem is closely related

to the classical urn problem [7], [16]. Suppose there are n
labeled urns and each can be filled with identical balls. At
every round, a ball is thrown into one of the urns randomly.
In each round the probability of throwing a ball to the j-th urn
is denoted by pj , for 1 ≤ j ≤ n, and we let p = (p1, . . . , pn).
In [16], it was shown that in order to have t balls in each urn
(or equivalently t copies per coupon), the expected sample size
is E[νt(k = n, n)] = n log n+n(t−1) log log n+nCt+o(n),
where Ct is a constant that depends on t. Following that,
Erdős and Rényi [7] proved that the distribution is tightly
concentrated around the expectation. Flajolet et al. [10] gen-
eralized these results to a general discrete distribution on the
coupons/balls and proved that the expected sample size to have
at least t copies/balls for k out of the n coupons/urns is

E[νp
t (n, k)]=

k−1∑
q=0

∫ ∞

0

[uq]

n∏
i=1

(et−1(piv)+u (epiv−et−1(piv)))e
−vdv,

(1)
where et(x) =

∑t
i=0

xi

i! and for a polynomial Q(u), [uq]Q(u)
is the coefficient of uq in Q(u). This known result solves
Problem 1.1, not only for pu but for any channel distribution.
As can be seen, for practical purposes, the expression in (1)
is not easy to calculate. Hence, in Section III-C we solve a
closely related problem and present a closed-form expression.
B. The Coding Coverage Depth Problem - Noiseless Channel

In this section, we focus on the setup where the channel is
noiseless which refers to t = 1. Under this setup, the minimum
sample size M is equivalent to the quantity which is governed
by νp1 (n, k). Our main result is to solve Problem 2 and to
show that MDS codes are optimal for any channel distribution.
Furthermore, we show that E[νp1 (n, k)] is minimized when p
is the uniform distribution.

In light of the existing results and as a first step toward
obtaining Theorem 3, we first show that for the uniform
channel distribution, E[ν1(n, k)] decreases as n increases.

Claim 1. For all n ≥ k, E[ν1(n, k)] > E[ν1(n+ 1, k)].

The next claim solves Problem 2.1 and states that given
k information strands, for any channel distribution p, using
an [n, k] MDS code results with the minimal expectation
compared to any other length-n codes. This can be verified
by showing that the number of subsets of size k sufficient to
retrieve the information is maximized by MDS codes.

Claim 2. Given k, n and p, and an (n, k) code C which is
not an MDS code. It holds that, E[νp1 (n, k)] ≤ E[νp1 (C)].

The next theorem states that, when using an MDS code,
E[νp1 (n, k)] is minimized when p = pu.
Theorem 1. For any p, E[νp1 (n, k)] ≥ E[ν1(n, k)].

Theorem 1, together with the above claims imply a lower
bound on E[νp1 (n, k)], which is given next.
Theorem 2. For any channel distribution p it holds that,
E[νp1 (n, k)] ≥ E[ν1(n, k)] =

∑k−1
i=0

n
n−i ≈ n log( n

n−k ).

Finally, we give the asymptotic value for E[ν1(n, k)].
Theorem 3. If k

n = R, for fixed 0 < R < 1, we have that,
limn→∞

E[ν1(n,k=nR)]
k = 1

R log
(

1
1−R

)
. Otherwise, for any

fixed k, it holds that, limn→∞
E[ν1(n,k=nR)]

k = 1.

C. The MDS Coverage Depth Problem - Noisy Channel
In this section a noisy channel with uniform distribution is

considered. Under this setup, we assume the data is encoded
with an [n, k] MDS code and that each strand xi can be
retrieved given t > 1 reads, which are noisy copies of it,
and cannot be retrieved given less than t reads.

Our main result in this section is Theorem 4, in which
an upper bound on the probability distribution of νt+1(k, n)
(Problem 1.2) is given. This theorem is stated as follows.
Theorem 4. For n large enough and rx

n ≥ t− 1, we have

P [νt+1(n, k) > rx] ≤ 1− e
− e−x

(t−1)! .

In particular, for any ε > 0, if at least rx reads are sampled
for x = − log((t− 1)! · log((1− ε)−1)) and rx as in (2), then
the probability to fail to decode the information is at most ε.

The above theorem implies that when sampling more (or
less) than r0 reads, the upper bound on P [νt+1(n, k) > r0]
approaches zero (or one) according to a double exponential
function. Thus, it can be said that the above probability is
tightly concentrated below r0 and hence we believe that r0 is
a closed-form expression that approximates E[νt(n, k)].

To prove Theorem 4 we recall that within the context of
the urn problem (see Section III-A), the random variable
νt+1(n, k) denotes the number of balls (or rounds) necessary
to guarantee that we have a set of k urns where each urn has
at least t+ 1 balls. For shorthand, for x ∈ R, we let

rx = n log

(
n

n− k

)
+ nt log logn+ 2n log(t+ 1) + nx. (2)

If rx balls are drawn, then our main result, which is formally
stated in Theorem 4, is to show that the probability that there
are at least k urns each with at least t+1 balls is no more than
1− e−

e−x

(t−1)! . Analogous to the approach used in the previous
section, we will show that if the number of balls thrown is
at least rx, then the probability to have a most n − k + 1
urns which are not filled with t + 1 balls is upper bounded
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by 1 − e−
e−x

(t−1)! . The approach leveraged in this section is
based on a technique first employed by Erdős and Rényi in [7]
where they derived a concentration result for the classical urn
problem that holds precisely when n = k. In the following,
we show that a similar result holds for a more general setup.
First, the following two related events are considered.
E

(r)
<,s: After r rounds, there exists a set S<,s, of n − k + 1

urns, each containing less than s balls. This event is our
main interest in the section where s = t+ 1.

E(r)
= : After r rounds, there exists a set S=, of n−k+1 urns,

each containing less than t + 1 balls and there exists at
least one urn in S= with exactly t balls.

At a high level, the proof works as follows. We first prove
that P (E

(r)
<,t+1)− P (E(r)

= ) ≤ P (E
(r)
<,t). Afterwards, we show

that the probability of E(rx)
<,t approaches zero when n is large.

Thus, P (E(rx)
= ) can be used to approximate P (E

(rx)
<,t+1) when

n is large. Finally, we show that P (E(rx)
= ) ≤ 1 − e−

e−x

(t−1)! ,
which implies our main result in Theorem 4.
Claim 3. For any real x, P (E

(rx)
<,t+1)−P (E(rx)

= ) ≤ P (E
(rx)
<,t ).

Claim 4. For n large enough and rx
n ≥ t− 1, P (E

(rx)
<,t ) → 0.

The previous claim states that the probability that there are
at least n − k + 1 urns with less than t balls goes to zero
as n grows. As a result of the previous two claims, we can
bound the probability of E

(rx)
<,t+1 by the probability the event

E(rx)
= occurs. To this end, we can work with the probability a

simpler event occurs. We will consider the event that there is
at least one urn (amongst all n) that contains exactly t balls in
it. We denote this event by At(n) and P (E=) ≤ P (At(n)).
The next claim was proved in [7].
Claim 5. For n large enough, P (At(n)) ≤ 1− e−

e−x

(t−1)! .
Theorem 4 follows from Claim 3, Claim 4, and Claim 5.
As mentioned above, the solution to Problem 1.1 is given

in (1). Nevertheless, the expression in (1) is not a closed-
form expression, and thus it might be hard to compute it. For
practical purposes of DNA storage systems, it is sometimes
required to plan ahead and sample the number of reads
that guarantees successful decoding. Hence, we turn to the
following strongly related problem and give a closed-form
expression to this related value. Turning back to the urn
problem terminology, the goal is to find a lower bound on
the number of rounds r, that guarantees that the expected
number of urns that are not filled with t + 1 balls is at
most n − k. In order to derive this result, we first consider
the probability that any fixed urn is not filled with t + 1 or
more balls by the r-th round. For r ≥ nt, this probability
is given by, p =

∑t
j=0

(
r
j

)
n−j

(
1− 1

n

)r−j ≤ e−rD( t
r ||

1
n ),

where the last inequality follows from Chernoff bound [5] and
D(a||p) is the Kullback–Leibler divergence which is given by
D(a||p) ≜ a log2

a
p + (1− a) log2

1−a
1−p .

Under this setup, each of the n urns can be interpreted as a
Bernoulli random variable with probability p, which is denoted
by X

(r)
i for 1 ≤ i ≤ n. Let X(r) ≜

∑n
i=1 X

(r)
i be the number

of urns that are not filled with at least t+1 balls after r rounds,
which implies that the number of urns that have at least t+1
balls is n−X(r). Our approach will be to determine a value

for r, which guarantees (in expectation) that X(r) is at most
n− k. From the linearity of expectation,

E[X(r)] = np ≤ ne−t log2(
nt
r )−(r−t) log2(

(r−t)n
r(n−1) ). (3)

The next claim will be used in the derivation to follow.
Claim 6. For r ≥ nt, we have that E[X(r)] ≤ n− k, if,

−
r

nt
e−

r
nt ≥ −

1

e

(
1−

k

n

) log 2
t

. (4)

The values of r for which (4) holds can be deduced using
the Lambert W function [6, Section IV], [4, Theorem 1].
Theorem 5. Let R = k

n . For any r ≥ nt + n log 2 log(1 −
R)+nt

√
− 2 log 2

t log (1−R), we have that E[X(r)] ≤ n−k.

Practically speaking, as mentioned above, the noisy channel
fits the real scenario of DNA storage systems. Hence, it
should be mentioned that a similar problem was studied
experimentally by Erlich and Zielinski [8], however, with a
slightly different setup. They presented the DNA fountain,
a Luby transform-based scheme and assumed that the total
number of reads is fixed and given (from the DNA sequencer)
and it is distributed with a negative binomial distribution. Thus,
they were able to calculate the average number of copies per
strand and empirically evaluate the required sample size as a
function of the distribution’s parameters. It should be noted
that they only considered reads of the design length and thus
the error rates were reduced. They also evaluated how dilution
affects the distribution and the required sample size.

Finally, another variation of the noisy channel S is studied,
which is relevant to the DNA fountain [8] and similar schemes.
Here, it is required to obtain a single noiseless copy from k out
of the n synthesized strands. Assuming uniform distribution
on the strands, in this channel, any sampled read is drawn
noiseless with some probability 0 < α < 1. We use the
notation of ωα(n, k) to denote the random variable describing
the required sample size to ensure successful decoding of this
case. This case is easier to analyze, and the following results
can be derived using similar techniques to the one used to
solve the classical coupons collector’s problem [9].
Theorem 6. For any k ≤ n, E[ωα(n, k)] =

n
α (Hn −Hn−k) .

IV. RANDOM ACCESS

In this section we define the problem of optimizing the sam-
ple size for random access queries in DNA storage systems. In
this problem, a vector of k information strands, each of length
ℓ, U = (u1,u2, . . . ,uk) ∈ (Σℓ)k, is encoded into a vector of
n strands of length ℓ, X = (x1,x2, . . . ,xn) ∈ (Σℓ)n that are
stored in the DNA storage channel as described in Section II.
Later, the user wishes to retrieve a subset of the k information
strands. In this work, we consider the special case in which
this subset is a singleton, i.e., the case where the user wishes
to retrieve a single information strand ui for some i ∈ [k].
More formally, we are interested in the following problem.
Problem 3 (The singleton coverage depth problem). Given
an (n, k) code C, for i ∈ [k], let τi(C) be the random
variable that denotes the number of samples to recover the
i-th information strand. Find the following:
1) The expectation value E[τi(C)] and the probability distri-

bution P [τi(C) > r] for any r ∈ N.
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2) The maximal expected number of samples to retrieve an
information strand, i.e., T C

max ≜ max1≤i≤k E[τi(C)].
When no coding is used, C is removed from the notations.

The next claim solves Problem 3 when no coding is used.
Lemma 1. Let n ≥ 1. For any 1 ≤ i ≤ n, we have that
E[τi] = n and Tmax = n. Additionally, for any r ∈ N we have
that P [τi > r] =

(
1− 1

n

)r
, and P [τi = r] = 1

n ·
(
1− 1

n

)r−1
.

Before we continue to more involved cases, we define the
n random variables τ̂i(C), i ∈ [n], such that τ̂i(C) governs
the required sample size to retrieve the i-th encoded strand.
Additionally, for every set J ⊆ [n], let τ̂J(C) ≜ maxi∈J τ̂i(C).
These random variables are used as a technical tool in our
analysis and the key idea is given in the next lemma.
Claim 7. For any (n, k) code C and any J ⊆ [n] of size ρ we
have that E[τ̂J ] = nHρ.

The structure of C defines for each information strand all
possible sets of encoded strands that are sufficient for its
recovery. This concept is similar to recovery sets in locally
repairable codes [20] as well as the ones with availability [14].

Definition 1. Let C be an (n, k) code. We say that J ⊆ [n] is
a retrieval set of the i-th information strand (i.e., ui) if it is
possible to decode the information strand ui from the encoded
strands whose indices belong to J . The set of all retrieval sets
of ui is denoted by D̂(i), and D(i) is the set of all minimal
retrieval sets of ui (with respect to inclusion relation).

Next, we consider the case of non-systematic codes for k =
n (i.e., U ̸= X ). Since X ,U have the same length, given
any set of strands {xi : i ∈ J}, we can recover at most |J |
information strands from U . Our goal is to extend Lemma 1
to the coded case when k = n using this basic insight.
Claim 8. For any (n = k, k) code C, we have that T C

max ≥
Tmax = n. In particular, if we let ρi be the size of the smallest
retrieval set for the information strand ui, then E[τi(C)] =
nHρi and T C

max = nHρ, where ρ ≜ maxi ρi.
Proof: If each ui can be retrieved from a single strand

xj , then we have that T C
max = Tmax = n. Otherwise, assume

w.l.o.g. that u1 can not be retrieved from a single strand and
let J ⊆ [n] be a set of minimal size |J | = ρ1 such that
J ∈ D(1). Since k = n, |D(1)| = 1, i.e. the set J is unique
and hence by Claim 7, E[τi(C)] = E [τ̂J(C)] = nHρ1

> n,
where the last inequality holds since |J | = ρ1 > 1. Thus,

T C
max = max

1≤i≤k
E[τi(C)] = max

1≤i≤k
nHρi = nHρ.

We continue by studying cases where n > k. Next, the case
where the minimal retrieval sets are disjoint is considered.
Theorem 7. Let C be an (n, k) code and i ∈ [k]. If D(i) =
{A,B} for two disjoint retrieval sets, i.e. A ∩ B = ∅, then
E [τi(C)] = n ·

(
H|A| +H|B| −H|A|+|B|

)
.

The proof of Theorem 7 relies on the inclusion-exclusion
principle and can be extended to more than two retrieval sets.
Corollary 1. For i ∈ [k], if D(i) = {A1, A2, . . . , Av} for
mutually disjoint retrieval sets, then

E [τi(C)] = n ·
v∑

s=1

(−1)s+1
∑

1≤j1<···<js≤v

H(|Aj1
|+···+|Ajs |).

An additional conclusion from Theorem 7 is given below.

Corollary 2. Assume C is the (n = k + 1, k) simple parity
code (i.e., X = (u1, . . . ,uk,

∑k
j=1 uj). Then, for any i ∈ [k],

we have that, E [τi(C)] = k and T C
max = k.

Corollary 2 states that the simple parity code does not
improve the value of T C

max. This observation raises the problem
of finding codes that indeed improve this parameter, and
next we consider MDS codes for this purpose. First recall
that by Lemma 1, if no code is used, then we have that
Tmax = E [τi] = k for any i ∈ [k]. On the other hand, if a
non-systematic [n, k] MDS code is used, then to retrieve any
specific information strand, one should sample a subset of k
distinct encoded strands. Hence, by Theorem 2, for any i ∈ [k],
we have that, T C

max ≥ E [τi(C)] =
∑k−1

i=0
n

n−i ≈ n log( n
n−k ),

while by Theorem 3, if k
n = R, for fixed 0 < R < 1 it

follows that T C
max ≥ E [τi(C)] > k. Next, the case where C is

a systematic MDS code is analyzed.
Theorem 8. Let C be a systematic [n, k] MDS code and
assume that k > n

2 . For any i ∈ [k] we have that E[τi(C)] = k.
In all the codes we studied so far, the expected number of

reads to retrieve a single information strand ui, was at least
k, which means that these code do not improve upon the case
where no coding is used. Next, we give an example for a code
C that can achieve T C

max < k.
Example 1. Let U = (u1,u2,u3,u4) ∈ (Σℓ)4 and let
X = (u1,u2,u3,u4,u1 + u2,u2 + u3,u3 + u4,u4 + u1).

Denote xi,j ≜ ui + uj and w.l.o.g. assume that we are
interested in retrieving u1. It can be verified that

D(1) =

{
{u1} , {u2,x1,2} , {u4,x1,4} ,
{u3,x2,3,x1,2} , {u3,x3,4,x1,4} ,

{u4,x3,4,x2,3,x1,2} , {u2,x3,4,x2,3,x1,4}

}
,

while D(1) is given with an abuse of notation, in which the
retrieval sets are given in terms of the encoded strands rather
than their indices. Let Er−1 be the number of unique strands
that were sampled in the first r− 1 draws. Since any set of 6
or more unique strands is a retrieval set of u1, we have that

P [τ1(C) ≥ r] =

5∑
i=1

P [τ1(C) ≥ r|Er−1 = i] · P [Er−1 = i] .

It can be verified that P [τ1(C) ≥ r|Er−1 = 1] = 7
8 . In case

Er−1 = 2, there are
(
8
2

)
= 28 different pairs of strands,

and since τ1(C) ≥ r, we should consider only the pairs
from which u1 can not be retrieved. Hence we have that
P [τ1(C) ≥ r|Er−1 = 2] = 19

28 . Similarly, it can be verified
that P [τ1(C) ≥ r|Er−1 = 3] = 23

56 , P [τ1(C) ≥ r|Er−1 = 4] =
8
70 , and P [τ1(C) ≥ r|Er−1 = 5] = 1

56 . Furthermore, using
the inclusion-exclusion principle, it can be proved that

P [Er−1 = i] =
(8i)
8r−1

∑i−1
j=0

(
i
j

)
(−1)j(i− j)r−1. By combining

all of the above together we obtain that

E[τ1(C)] =
∞∑
r=1

P
[
T C
1 ≥ r

]
=

403

105
≈ 3.838.

This section concludes with a lower bound on E[τi(C)].

Lemma 2. For any (n, k) code C, T C
max ≥ k+1

2 .
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Magyar Tud. Akad. Mat. Kutató Int. vol. 6, no. 1-2, pp. 215–220, 1961.

[8] Y. Erlich, and D. Zielinski, “DNA Fountain enables a robust and efficient
storage architecture,” Science, vol. 335, no. 6328, pp. 950-954, 2017.

[9] W. Feller, “An introduction to probability theory and its applications,”
Wiley, vol. 1, 2nd edition, 1967.

[10] P. Flajolet, D. Gardy, and L. Thimonier, “Birthday paradox, coupon
collectors, caching algorithms and self-organizing search,” Discrete
Applied Mathematics, vol. 39, no. 3, pp. 207-229, 1992.

[11] F. E. Harris, “Chapter 9 - gamma function,” in Mathemat-
ics for Physical Science and Engineering, Academic Press, pp.
325–347, https://www.sciencedirect.com/topics/mathematics/digamma-
function ,2014.

[12] R. Heckel, G. Mikutis, and R. N. Grass, “A Characterization of the DNA
Data Storage Channel,” Scientific Reports, vol. 9, no. 9663, 2019.

[13] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” The collected works of Wassily Hoeffding, pp. 409–426, 1994.

[14] P. Huang, E. Yaakobi, H. Uchikawa and P. H. Siegel, “Linear locally
repairable codes with availability,” IEEE International Symposium on
Information Theory (ISIT), pp. 1871-1875, 2015.

[15] A. Lenz, P. H. Siegel, A. Wachter-Zeh, and E. Yaakobi, “Coding Over
Sets for DNA Storage,” IEEE Transactions on Information Theory, vol.
66, no. 4, pp. 2331–2351, 2020.

[16] D. J. Newman, “The Double Dixie Cup Problem,” The American
Mathematical Monthly, vol. 67, no. 1, pp. 58-61, 1960.

[17] L. Organick, S.D. Ang, Y. J. Chen , R. Lopez, S. Yekhanin, K.
Makarychev, M. Z. Racz, G. Kamath, P. Gopalan, B. Nguyen, C. N.
Takahashi, S. Newman, H. Y. Parker, C. Rashtchian, K. Stewart, G.
Gupta, R. Carlson, J. Mulligan, D. Carmean, G. Seelig, L. Ceze, K.
Strauss, “Random access in large-scale DNA data storage,” Nature
Biotechnology, vol. 36, no. 3, pp. 242–248, 2018.

[18] A. N. Philippou, C. Georghiou, G. N. Philippou, “A generalized geo-
metric distribution and some of its properties,” Statistics & Probability
Letters, vol. 1, no. 4, pp.171–175, 1983.

[19] I. Shomorony and R. Heckel, “Information-Theoretic Foundations of
DNA Data Storage,” Foundations and Trends in Communications and
Information Theory vol. 19, no. 1, pp 1–106, 2022.

[20] D. S. Papailiopoulos, and A. G. Dimakis, “Locally Repairable Codes,”
IEEE Transaction on Information Theory, vol. 60, no. 10, 2014.

[21] J. Sima, N. Raviv, and J. Bruck, “On Coding Over Sliced Information,”
IEEE International Symposium on Information Theory (ISIT), pp. 767–
771, 2019.

[22] Y. Wang, Y. Zhao, A. Bollas, Y. Wang, and K. F. Au, “Nanopore se-
quencing technology, bioinformatics and applications,” Nature Biotech-
nology, no. 39, pp. 1348–1365, 2021.

[23] S.M.H.T. Yazdi, R. Gabrys, and O. Milenkovic, “Portable and Error-Free
DNA-Based Data Storage,” Scientific Reports vol. 7, no. 5011, 2017.

[24] S. M. H. T. Yazdi, H. M. Kiah, E. Garcia-Ruiz, J. Ma, H. Zhao,
and O. Milenkovic, “DNA-Based Storage: Trends and Methods,” IEEE
Transactions on Molecular, Biological and Multi-Scale Communications,
vol. 1, no. 3, pp. 230–248, 2015

[25] White paper by DNA Data Storage Alliance, “Preserving Our Digital
Legacy: an Introduction to DNA Data Storage,” a publication of DNA
Data Storage Aliance, 2021.

2023 IEEE International Symposium on Information Theory (ISIT)

375


