
DNA Synthesis Using Shortmers
Maria Abu-Sini

Technion - Israel Institute of Technology
Haifa 3200009, Israel

maria.as@cs.technion.ac.il

Andreas Lenz
Technical University of Munich

DE-80333 Munich, Germany
andreas.lenz@mytum.de

Eitan Yaakobi
Technion - Israel Institute of Technology

Haifa 3200009, Israel
yaakobi@cs.technion.ac.il

Abstract—In conventional DNA synthesis machines many
strands are usually synthesized in parallel by iterating through
a supersequence s and adding in each cycle a single nucleotide
to a subset of the strands. Then, the length of s determines the
number of the cycles, hence the time and the cost of the syn-
thesis process too. Recently, in order to optimize the synthesis
process, researchers have suggested to append in each cycle a
shortmer instead of a single nucleotide. The present work studies
this optimization from a theoretical point of view. In particu-
lar, it discusses which shortmers are the best to use, and how to
calculate the number of cycles required to synthesize in parallel
a set of strands using a set of shormers. Lastly, and following
a previously described connection between the DNA synthesis
problem and costly constrained graphs, the paper investigates
calculating the capacities of such non-deterministic graphs.

I. INTRODUCTION

In DNA storage systems archival data is stored by synthe-
sizing artificial DNA strands of specific sequences. This pro-
cess is known by its high runtime complexity and monetary
costs, hence its optimization has been the main goal of sev-
eral recent papers [1], [2], [5], [7], [11]–[13], [15]–[17]. The
present work, as well, investigates the DNA synthesis process;
specifically by extending the study of [11] and [12].

To describe the operation of the synthesis machine let
S ⊆ {A, C, G, T}∗ be the set of strands we aim to synthe-
size. Moreover, let B ⊆ {A, C, G, T}∗ be a set of b shortmers
(sequences of nucleotides) and s be a length-ℓ sequence over
B referred to as the synthesis sequence. Then the machine it-
erates over s and in each cycle adds to some strands the next
shortmer in s. Such a process synthesizes in parallel all of
the strands of S in ℓ cycles, which means, the length of s de-
termines the number of cycles, hence the time and monetary
cost too [1], [3], [4], [10]. Therefore, one should aim to de-
crease the number of cycles; for example by choosing s to be
a shortest common supersequence of the strands of S when
B = {A, C, G, T}. However, usually an enormous number of
strands are synthesized in parallel. Thus, choosing s accord-
ingly might be unfeasible in terms of runtime complexity.
In this case, s is chosen independently, yet wisely to enable
synthesizing many strands using a small number of cycles.
That is, instead of choosing s according to S, we fix s to
some semi-infinite sequence and use its prefix to synthesize
in parallel the strands of S.

In conventional synthesis machines B = {A, C, G, T} and
this case was extensively studied in [11] and [12]. The present
work follows the lines of these papers to investigate the general
case of B ⊆ {A, C, G, T}∗. In particular, Section III tack-
les the case of unfixed synthesis sequence and proposes an
efficient algorithm to find a shortest possible s given S and
B. Then, Section IV addresses the case of fixed synthesis se-
quence by formalizing and discussing the following questions.

• Given b ∈ N, assume one may choose the set of b short-
mers B and the synthesis sequence s ∈ B∗ arbitrarily.
Which shortmers and synthesis sequence should be used?

• Given b, ℓ ∈ N, assume B = {A, C, G, T} ∪ {x}
and s = (A, C, G, T, x, A, C, G, T, x, . . .), where

x ∈ {A, C, G, T}ℓ. Which shortmer x should be used?
Next, Section V reviews the connection between the syn-

thesis problem and calculating capacities of costly constrained
graphs as established in [11] and [12]. It also shows that for
the study of the case B ⊆ {A, C, G, T}∗, one may need to cal-
culate the capacity of lossy costly constrained graphs. Though
deterministic costly constrained graphs have been extensively
studied in [9], [12] and [14], to the best of our knowledge,
non-deterministic ones have never been addressed. Therefore,
Section V takes the first steps towards studying these graphs by
deriving bounds on their capacities. Lastly, before discussing
the topics mentioned earlier in Sections III, IV, and V, Sec-
tion II provides the notations used throughout the paper. Due
to the lack of space, proofs are omitted from the paper.

II. DEFINITIONS AND PRELIMINARIES

This section introduces the notations and the problems tack-
led in the present work. First, for n ∈ N, [n] = {1, 2, . . . , n}.
Second, given an alphabet Σ =

{
σ1, . . . ,σq

}
, a sequence y =

y1 · · · yn ∈ Σ∗ is sometimes written as a vector (y1, . . . , yn).
In addition, y[i, j] denotes the substring yi · · · y j =

(
yi , . . . , y j

)
and |y| stands for the length of the sequence. A sequence
z ∈ Σℓ is called a supersequence of y if there exist indices
1 ⩽ i1 < i2 < · · · < in ⩽ ℓ such that y =

(
zi1 , zi2 , . . . , zin

)
.

Given a set S, |S| refers to the size of the set while SCS(S)
denotes the set of all shortest common supersequences of S.

Though for the study of DNA storage systems it suffices to
consider the alphabet {A, C, G, T}, we derive all of the results
for an arbitrary alphabet of size q, Σ = {σ1,σ2, . . . ,σq}. Next,
let B = {x1, x2, . . . , xb} ⊆ Σ∗. Then a sequence y ∈ Σ∗ may
be obtained by concatenating B’s sequences, just as it is ob-
tained by concatenating Σ’s symbols. Therefore, B may be seen
as an alphabet of size b, and we define a mapping G : B∗ → Σ∗

as follows. Given z ∈ B∗, G(z) is the sequence over Σ ob-
tained by concatenating z’s elements. Example 1 clarifies this
definition and shows that sometimes a sequence in Σ∗ may be
obtained by several concatenations of B’s sequences, thereby
G is not necessarily an injective mapping.

Example 1 Let Σ = {A, C, G, T},
B = {x1 = A, x2 = C, x3 = AC, x4 = G, x5 = T},

B′ =
{

u1 = AC, u2 = AA, u3 = C, u4 = G, u5 = T
}

,

and y = ACAC ∈ Σ∗. Furthermore, let z1 =
(
x1, x2, x1, x2)=

(A, C, A, C), z2 =
(
x1, x2, x3) = (A, C, AC) , z3 =(

x3, x1, x2) = (AC, A, C), and z4 =
(
x3, x3) = (AC, AC).

Then, z1, z2, z3, z4 ∈ B∗ where
∣∣z1

∣∣ = 4,
∣∣z2

∣∣ =
∣∣z3

∣∣ =
3,
∣∣z4

∣∣ = 2, and G
(
z1) = G

(
z2) = G

(
z3) = G

(
z4) =

y. Moreover, the length-2 sequence z5 =
(
u1, u1) =

(AC, AC) ∈ B′∗ is the only representation of ACAC over
B′, i.e., is the only sequence in B′∗ satisfying G

(
z5) = y.

Example 1 motivates introducing the following defini-
tion, which states that B given in Example 1 provides a
non-uniquely decodable presenation, while B′ provides a
uniquely decodable one.

2023 IEEE International Symposium on Information Theory (ISIT)

978-1-6654-7554-9/23/$31.00 ©2023 IEEE 585

Definition 1. Let B ⊆ Σ∗. Then B provides a uniquely
decodable presentation if for every sequence y ∈ Σ∗,
|{z ∈ B∗ : G(z) = y}| ⩽ 1. Otherwise, B provides a
non-uniquely decodable presentation.

In the present work we borrow the term shortmer (mean-
ing a sequence of nucleotides in biology) to refer to specific
short sequences in Σ∗ (which might be of length 1). Moreover,
Subsection II-A describes the synthesis process while Subsec-
tions II-B and II-C pose the problems studied in the paper.

A. Description of the DNA Synthesis Process

First, we dedicate the following definition to explain the
operation of the synthesis machine.
Definition 2. Let Σ =

{
σ1,σ2, . . . ,σq

}
be an alphabet of

size q. A synthesis machine uses the set of b shortmers
B = {x1, . . . , xb} where

∣∣xi
∣∣ = ℓi for every 1 ⩽ i ⩽ b and op-

erates as follows. Let S =
{

y1, . . . , ym} ⊆ Σ∗ be a set of m
sequences to synthesize where

∣∣yi
∣∣ = ni for every 1 ⩽ i ⩽ m.

Then the synthesis machine iterates over a sequence s ∈ B∗,
referred to as the synthesis sequence, and in each cycle adds
the next shortmer to some strands until they are all synthesized.

The following observation plays an integral role in the rest
of the paper and is further emphasized in Example 2.
Observation 1 Following the notations of Definition 2, the
length of the synthesis sequence s determines the number of
the synthesis cycles. Furthermore, a sequence yi ∈ S may be
synthesized only using a sequence of cycles z ∈ B∗ that ful-
fills G(z) = yi. Since s enables synthesizing all of the m
sequences of S, then for every yi ∈ S, s is a supersequence
of some z ∈ B∗ that satisfies G(z) = yi.
Example 2 Let Σ={A,C,G,T} and B=Σ∪{AT, AC,CCG}.
In addition, let y1 = ACCG. Then, y1 may be synthesized
using the synthesis sequence s1 = (A, C, C, G) , s2 =
(AC, C, G) , s3 = (A, CCG) in 4, 3, 2, cycles, respectively,
for G

(
s1) = G

(
s2) = G

(
s3) = y1. However, y1 can-

not be synthesized using (AT, CCG) for only complete
shortmers are added to the strands in each cycle. Next, let
S =

{
y2 = ATAT, y3 = CAAT, y4 = CTAT

}
. Then, the

synthesis sequence s4 = (C, A, T, A, T) , s5 = (C, A, T, AT)
enables synthesizing in parallel the 3 strands of S in 5, 4
cycles, respectively. Furthermore, as mentioned in Observa-
tion 1, for every 2 ⩽ i ⩽ 4, there exists a subsequence zi of
s4 that satisfies G

(
zi) = yi, and the same holds for s5 too.

B. Problems Pertaining to the DNA Synthesis Study

This paper extends the study of the case B = Σ as published
in [11] and [12] to investigate the general case of B ⊆ Σ∗. As
demonstrated throughout the paper, when B ⊆ Σ∗ provides a
uniquely decodable presentation, many problems can be easily
solved using the techniques of [11] and [12]. It hence remains
to tackle the challenging case of B providing a non-uniquely
decodable presentation, as done in the upcoming sections.

By Observation 1, the length of the synthesis sequence de-
termines the number of the cycles, consequently the runtime
and monetary cost too. Thus, we aim to use the shortest pos-
sible synthesis sequences as formalized in Problem 1.
Problem 1 Let Σ, B, and S be as given in Definition 2 and
define F(S, B) to be a set of shortest possible sequences in
B∗ that enable synthesizing in parallel all of the sequences of
S. Design an algorithm that receives Σ and B, and outputs an
arbitrary sequence in F(S, B).

For instance, in continuation of Example 2, F
({

y1} , B
)
={

s3} and F(S, B) =
{

s5}. However, in DNA storage systems,

usually S is very large, which makes any solution to Problem 1
impractical. As a result, s is usually chosen (independently)
to be a fixed semi-infinite synthesis sequence and a prefix of
it is used to synthesize S. The length of this prefix deter-
mines the number of the synthesis cycles. For example, when
Σ = {A, C, G, T} and s = (A, C, G, T, A, C, G, T, . . .) is a
semi-infinite periodic alternating sequence, 4, 13 cycles are re-
quired to synthesize ACGT, AAAA, respectively. Therefore,
it is preferable to use synthesis sequences that enable synthe-
sizing many strands using short prefixes. The following def-
inition taken from [11] and [12] formalizes this discussion.

Definition 3. Let s ∈ B∗ be a semi-infinite synthesis sequence
and Ns(t) be the number of distinct sequences over Σ that can
be synthesized using s[1,t]. Then the information rate of s is

given by Rs = lim supt→∞ log2 Ns(t)
t .

Problem 2, which will be addressed in Section IV, seeks
sequences with optimal information rates.

Problem 2 Given b ∈ N and Σ, find a set of shortmers B ⊆
Σ∗ of size b and a semi-infinite synthesis sequence s ∈ B∗

that attain the maximum possible information rate Rs, which
we denote by F1(Σ, b).

Problem 2 allows using arbitrary sets B. However, to enable
synthesizing any strand of any length, B should include all of
Σ in addition to other shortmers, thereby we pose Problem 3
and tackle it in Section IV.
Problem 3 Given k ∈ N and Σ, find x1, . . . , xk ∈ Σ∗

such that the set of shortmers B = Σ ∪ {x1, . . . , xk} and
the semi-infinite periodic alternating synthesis sequence
s =

(
σ1, . . . ,σq, x1, . . . , xk,σ1, . . . ,σq, x1, . . . , xk, . . .

)
attain

the maximum possible information rate Rs, which we denote
by F2(Σ, k).

C. Calculating the Capacity of Non-deterministic Costly Con-
strained Graphs

When B = Σ, [11] and [12] developed a technique to cal-
culate the information rate by computing the capacity of some
costly constrained graph. According to Section V, the infor-
mation rate can be successfully calculated using this technique
if B ⊆ Σ∗ provides a uniquely decodable presentation. Other-
wise, this technique requires computing the capacity of lossy
costly constrained graphs, which to the best of our knowledge
has not been investigated before. Therefore, and since calculat-
ing capacities of such graphs is an interesting topic by itself,
we raise Problem 4 and approach it in Section V. First we
formally define lossy costly constrained graphs.
Definition 4. A costly constrained graph G = (V, E,σ , τ) has
vertices V and directed edges E. Each edge has a label, weight
determined by the function σ : E → Σ, τ : E → N, respec-
tively. Then a path p = (e1, e2, . . . , en) ∈ En generates the
sequence σ(p) = (σ (e1) ,σ (e2) , . . . ,σ (en)) and has cost
τ(p) = ∑

n
i=1 τ (ei).

Definition 5. Let G = (V, E,σ , τ) be a costly constrained
graph. G is called a non-deterministic graph if for some vertex
there are two outgoing edges with the same label. Furthermore,
a graph is said to be lossy if there exist two distinct paths p1
and p2 in G with the same starting and terminating vertices that
satisfy σ (p1) = σ (p2). Otherwise, G is a lossless graph.

Definition 6. Given a strongly connected graph G=(V, E,σ , τ)
and state v ∈ V, define NG(v, t) to be the number of dis-
tinct sequences generated by paths of cost at most t outgoing
from vertex v. Then the capacity of the graph G is defined as

2023 IEEE International Symposium on Information Theory (ISIT)

586

CG ≜ lim supt→∞ log2 NG(v,t)
t , where v is an arbitrary ver-

tex in the graph (as the same limit is obtained for all of the
vertices).
Problem 4 Let G = (V, E,σ , τ) be a non-deterministic costly
constrained graph. Calculate CG.

III. UNFIXED SYNTHESIS SEQUENCE - PROBLEM 1
This section tackles Problem 1, where the naive so-

lution to this problem follows from Observation 1 and
suggests to first construct for every yi ∈ S the set
T
(

yi) ≜
{

z ∈ B∗ : G(z) = yi}, then to find an ar-
bitrary sequence in SCS

{
z1, . . . , zm} for every tuple(

z1, . . . , zm) ∈ T
(

y1) × · · · × T (ym). A shortest SCS
found for a tuple belongs to the set F(S, B). When B pro-
vides a uniquely decodable presentation,

∣∣T (
yi)∣∣ ⩽ 1 for

every yi ∈ S, thereby Problem 1 translates to finding (once)
an SCS of m sequences over B. In contrast, B providing a
non-uniquely decodable presentation might incur an unfeasi-
ble runtime complexity due to a large number of tuples to
consider. Therefore, and as a first step to optimize this al-
gorithm one may ask whether it suffices to consider tuples(

z1, . . . , zm) ∈ F
({

y1} , B
)
× · · · × F ({ym} , B), i.e., does

an SCS of the optimal sequences to synthesize separately
each strand in S necessarily belong to F(S, B)? Exam-
ple 2 answers this question negatively, for F

({
y2} , B

)
={

s6 = (AT, AT)
}

, F
({

y3} , B
)
=

{
s7 = (C, A, AT)

}
, and

F
({

y4} , B
)
=

{
s8 = (C, T, AT)

}
. Hence the sequences in

SCS
({

s6, s7, s8}) are of length 5, where those in F(S, B)
are of length 4. Second, to solve Problem 1, note that apply-
ing the greedy algorithm to synthesize

{
y1} from Example 2,

i.e., using at each step the longest possible shortmer, results
in the synthesis sequence s2. However, s2 /∈ F

({
y1} , B

)
,

which exhibits the flaw of the greedy algorithm. Subsec-
tion III-B resolves these difficulties by providing a solution
to Problem 1, which follows the notations of Definition 2 and
uses the graph G(S, B) defined in Subsection III-A.
A. Definition of the Graph G(S, B)
Definition 7. Let Σ, B, and S be as given in Definition 2. Define
G(S, B) = (V, E,σ , τ) to be a constrained graph in which

V =
{
(i1, i2, . . . , im) : ∀ j ∈ [m], i j ∈

[
n j + 1

]}
and an edge ((i1, i2, . . . , im) , (i′1, i′2, . . . , i′m)) of label xh ∈ B
is added if (i1, i2, . . . , im) ̸= (i′1, i′2, . . . , i′m) and the following
conditions hold for every j ∈ [m].

• i′j ∈
{

i j, i j + ℓh
}

.

• If i′j = i j + ℓh, then y j
[i j ,i j+ℓh−1]

= xh.

The function τ sets cost zero to all of the edges in G(S, B).
The following example illustrates the construction of the

graph G(S, B).
Example 3 Let Σ = {A, C, G, T}, B = {A, C, AC, G, T},
and S =

{
y1 = AC, y2 = AAC

}
. Then, the graph

G(S, B) is depicted in Figure 1. Note that in this case
F(S, B) = {(A, AC)}.

B. Solution to Problem 1
The key idea of Algorithm 1 is using the vertices of

G(S, B) to represent the intermediate states of the syn-
thesis process. Namely, each vertex is a set of indices
where index i j points to the first symbol in y j that has
not been synthesized yet, and n j + 1 means that the whole
sequence y j was synthesized. For example, (1, 1, . . . , 1) rep-
resents the initial state in which all of the strands should

(1, 1) (1, 2) (1, 3) (1, 4)

(2, 1) (2, 2) (2, 3) (2, 4)

(3, 1) (3, 2) (3, 3) (3, 4)

A

A

A

AC

A

A A

AC

AC

AC

C

A
AC

A
AC

A

C

A

C

AC

C

C
C C

A A

AC

C

Fig. 1: Graph G(S, B) when Σ = {A, C, G, T}, B =
{A, C, AC, G, T}, and S =

{
y1 = AC, y2 = AAC

}
.

be synthesized, and (n1 + 1, n2 + 1, . . . , nm + 1) indi-
cates that all of the strands have been synthesized. An edge
((i1, i2, . . . , im) , (i′1, i′2, . . . , i′m)) with label xh implies that

the sequences
{

y j
[i j ,n j]

: i j ̸= i′j

}
begin with xh, hence

the corresponding strands can be expanded by appending
the shortmer xh in the next cycle. As a result, a length-k
path in G(S, B) starting at (1, 1, . . . , 1) and terminating
at (n1 + 1, n2 + 1, . . . , nm + 1) represents a length-k syn-
thesis sequence that enables synthesizing all of the strands
in parallel. Therefore, Algorithm 1 produces an optimal
sequence by finding a shortest path from (1, 1, . . . , 1) to
(n1 + 1, n2 + 1, . . . , nm + 1). For instance, in continuation
of Example 3, the shortest path (1, 1) A−→ (1, 2) AC−→ (3, 4) in
G(S, B) represents the optimal synthesis sequence (A, AC).
Next, the Breadth-first Search algorithm (Chapter 22.2 in [6])
is used to find a shortest path between two vertices.

Algorithm 1 Finding an arbitrary sequence in F(S, B).
Input: Alphabet Σ and sets S, B ⊆ Σ∗.
Output: Arbitrary sequence in F(S, B).

1: Construct the graph G(S, B).
2: Using BFS, find a shortest path p from (1, 1, . . . , 1) to

(n1 + 1, n2 + 1, . . . , nm + 1) in G(S, B).
3: return The concatenation (over B) of p’s labels.

Observe that G(S, B) does not contain self loops. In ad-
dition, from vertex (1, 1) in Figure 3b, there are 3 outgoing
edges with label A, though a reader might expect to have only
the edge (1, 1) A−→ (2, 2). Due to the lack of space we do not
elaborate on the importance of this construction, yet it is ex-
hibited in Example 3 as the shortest path traverses the edge
(1, 1) A−→ (1, 2). Interestingly, Algorithm 1 imitates (and ex-
tends) the classic SCS dynamic programming algorithm [8].
More specifically, Algorithm 1 is equivalent to the SCS dy-
namic programming algorithm when B = Σ. Lastly, the fol-
lowing theorem concludes the solution to Problem 1.
Theorem 8. Let Σ, B, and S be as given in Definition 2. Then
Algorithm 1 outputs an arbitrary sequence in F(S, B) in run-
time complexity O

(
b2mΠm

j=1
(
n j + 1

))
.

Proof: The proof follows from the construction of the
graph G(S, B) and the runtime complexity of BFS, as |V| ⩽
Πm

j=1
(
n j + 1

)
and |E| ⩽ |V|b2m.

Note that an extended dynamic programming algo-
rithm searches for the shortest path from (1, 1, . . . , 1)
to (n1 + 1, n2 + 1, . . . , nm + 1) by starting from vertex

2023 IEEE International Symposium on Information Theory (ISIT)

587

(n1 + 1, n2 + 1, . . . , nm + 1) and each time checking at most
b2m previous vertices (just as we have three edges outgoing
from state (1, 1) with label A in Figure 1). Hence, both of
the BFS and the dynamic programming algorithm have the
same runtime complexity.

IV. FIXED SYNTHESIS SEQUENCE - PROBLEMS 2 AND 3
In the following, Subsections IV-A and IV-B address Prob-

lems 2 and 3 respectively.
A. Solution to Problem 2

The following theorem solves Problem 2.
Theorem 9. Following the notations of Problem 2 the maxi-
mum information rate is attained when the b shortmers provide
a uniquely decodable presentation and s is a periodic alter-
nating sequence over B. In this case, by Theorem 3 in [11],
F1(Σ, b) = − log zb where zb is the largest root of the
polynomial ∑

b
i=1 zi − 1.

For example, given Σ = {0, 1} and b = 3, the maximum in-
formation rate F1(Σ, b) is attained when B = B′ ≜ {0, 10, 11}
and s = s′ ≜ (0, 10, 11, 0, 10, 11, . . .). That is, F1 (Σ, b) =
Rs′ and for every B of size 3 and s ∈ B∗, Rs ⩽ Rs′ . More-
over, as explained in Section V, since B′ provides a uniquely
decodable presentation, Rs′ can be calculated using the tech-
niques of [11] and [12], specifically by Theorem 3 in [11].

B. Partial Solution to Problem 3
First note that B that includes all of Σ provides a non-

uniquely decodable presentation, thereby, Theorem 9 does not
ensure such B attains the maximum information rate with some
synthesis sequence. Moreover, as mentioned in Section V, it
is still unclear how to derive the information rate in this case.
Therefore, Theorem 10 tackles this case and provides a partial
solution to Problem 3 when k = 1.
Theorem 10. Let Σ be as given in Definition 2 and ℓ, t ∈ N
be such that ℓ > q + 1 and q + 1|t. For x ∈ Σℓ, define sx =(
σ1,σ2, . . . ,σq, x,σ1,σ2, . . . ,σq, x, . . . ,σ1,σ2, . . . ,σq, x

)
to be a length-t periodic alternating sequence. In addi-
tion, define M1 =

{
σk

i σ
ℓ−k
i−1 : 2⩽ i⩽ q,1⩽ k ⩽ ℓ−1

}
, M2 ={

σℓ
i : 1⩽ i⩽ q

}
, and M3 =

{
σk

1σ
ℓ−k
q : 1⩽ k⩽ ℓ−1

}
. Then,

for sufficiently large t, arg maxx∈Σℓ Nsx(t) ∈ M1 ∪ M2 ∪ M3.
Moreover, for every u, u′ ∈ M1, Nsu(t) = Nsu′ (t), and for
every v, v′ ∈ M3, Nsv(t) = Nsv′ (t).

For example, to find the largest attainable information rate
by a synthesis sequence sx, it suffices to check all of the q
sequences in M2 in addition to two arbitrary sequences, one
taken from M1 while the other from M3. We leave studying
Problem 3 for larger values of k for future work. Mean-
while we expect the following approach to provide shortmers
x1, x2, . . . , xk with a large information rate. Choose the k
shortmers so that each concatenation xi1 xi2 · · · xih where
1 ⩽ i1 < i2 < · · · < ih ⩽ k and h ∈ [1, k] requires rela-
tively a long prefix of

(
σ1,σ2, . . . ,σq,σ1,σ2, . . . ,σq, . . .

)
to

synthesize. For example, when Σ = {A, C, G, T} and k = 2,
we expect the shortmers x1 = TG and x2 = CA to yield the
maximum possible information rate.

V. CALCULATING CAPACITIES OF COSTLY CONSTRAINED
GRAPHS - PROBLEM 4

This section focuses on Problem 4. First, Subsection V-A re-
views some ideas from [11] and [12] to motivate studying this
problem. Then, Subsection V-B derives bounds on the capac-
ity. Throughout this section, given a costly constrained graph
G, PG(v, t) denotes the set of all paths of cost at most t out-
going from vertex v in G, and PG(v, t) = |PG(v, t)|.

A. Connection between the Synthesis Problem and Costly Con-
strained Graphs

In [11] and [12] the information rate when B = Σ was cal-
culated by computing the capacities of some costly constrained
graphs referred to as the subsequence graphs. The following
applies this approach when B ⊆ Σ∗ too and the main result
of this subsection is summarized in Theorem 12. However, for
the sake of completeness we bring again the definition of the
subsequence graphs as presented in [11] and [12] and illus-
trate the theorem in Example 4. Note that the construction of
the subsequence graphs abuses Definition 4 by assigning se-
quences (and not only symbols) as labels. Nevertheless, σ(p)
given a path p is still seen as a sequence over Σ, and NG(v, t)
still counts distinct sequences over Σ (and not over B).
Definition 11. Let Σ and B be as in Definition 2. Moreover, let
s = rrr · · · be a semi-infinite periodic synthesis sequence of
seed r = (r1, . . . , rℓ) ∈ Bℓ. Define the subsequence graph of r,
G(r) = (V, E,σ , τ) as follows. V consists of ℓ vertices, where
vi is associated with the shortmer ri. An edge e =

(
vi , v j

)
is

added if either i < j and rk ̸= r j for all k ∈ {i + 1, . . . , j − 1},
or i ⩾ j and rk ̸= r j for all k ∈ {i + 1, . . . , ℓ, 1, . . . , j − 1}.
The label of such an edge is σ(e) = r j and the cost is

τ(e) =

{
j − i, i < j
ℓ− i + j, i ⩾ j

.

Let e =
(
vi , v j

)
be an edge of label r j and cost τ in the

graph G(r) constructed in Definition 11. Then, τ is the min-
imum number of cycles that should be skipped in order to
synthesize the shortmer r j after a cycle of ri.

Example 4 Let Σ = {A, C, G, T}, B = {A, CC, CA} , B′ =
{A, C, AC} , r = (A, CC, CA), and r′ = (A, C, AC).
Moreover, let s = (A, CC, CA, A, CC, CA, . . .) , s′ =
(A, C, AC, A, C, AC, . . .), be the semi-infinite periodic syn-
thesis sequence of seed r, r′, respectively. The subsequence
graph G (r) , G (r′) is depicted in Figure 2a, 2b, respectively.
Let p be a path of cost t outgoing from vertex v3 in G (r).
Then σ(p) can be synthesized using s[1,t]. For instance,

σ

(
v3

A|1−−→ v1
A|3−−→ v1

)
= (A, A) can be synthesized using

the first 4 cycles of s. In summary, Ns(t) = NG(r) (v3, t),
and consequently Rs = CG(r). The same holds for s′ too.
Since B is a uniquely decodable code, then distinct paths
outgoing from the same vertex generate distinct sequences,
which means, NG(r) (v3, t) = PG(r) (v3, t). In fact, one
can consider the labels of G(r) as symbols over the al-
phabet B. In this case G(r) is a deterministic graph and
CG(r) can be calculated just as in [9], [12] and [14]. In
contrast, B′ is a non-uniquely decodable code. As a result,
some sequences over Σ, such as (A, C), may be generated
by distinct paths outgoing from vertex v3. Mathematically
speaking, NG(r′) (v3, t) < PG(r′) (v3, t). Existing literature
reveals how to calculate the value of PG(r′) (v3, t), yet not
NG(r′) (v3, t) [9], [12], [14]. In other words, if we look at the
sequences generated in G (r′) over Σ, then G (r′) is a lossy
graph and

Rs′ = CG(r′) ⩽ lim sup
t→∞

log2 PG(v, t)
t

,

hence the motivation to study Problem 4.
Lastly Theorem 12 generalizes the observations of Exam-

ple 4 to any semi-infinite periodic synthesis sequence. It even
extends the study of [11] and [12] to the case of B ⊆ Σ∗.

2023 IEEE International Symposium on Information Theory (ISIT)

588

v1(A)

v2(CC)

v3(CA)

CC|1

CA|2

A|3 A|2

CA|1

CC|3

A|1

CC|2

CA|3

(a) Graph G (r).

v1(A)

v2(C)

v3(AC)

C|1

AC|2

A|3

A|2

AC|1

C|3

A|1

C|2

AC|3

(b) Graph G (r′).

Fig. 2: Subsequence graphs mentioned in Example 4.

Theorem 12. Let s be a semi-infinite periodic synthesis se-
quence of seed r and let v be an arbitrary vertex in G(r). Then,

Rs = CG(r)

(a)
⩽ lim sup

t→∞
log2 PG(r)(v, t)

t
,

where inequality (a) holds with equality when B provides a
uniquely decodable presentation.

B. Calculating the Capacity of Non-deterministic Costly Con-
strained Graphs

To tackle Problem 4, first note that the following lemmas
are immediate.

Lemma 13. Let G be a costly constrained graph, then CG ⩽
lim supt→∞ log2 PG(v,t)

t , where equality holds when G is a loss-
less graph.

Note that lim supt→∞ log2 PG(v,t)
t can be calculated follow-

ing existing literature [9], [12], [14]. Moreover, the proof of
Lemma 13 imitates the proof of Lemma 3.6 in [14], as the
lossless property implies that PG(v,t)

|V| ⩽ NG(v, t) ⩽ PG(v, t).

Lemma 14. Let G = (V, E,σ , τ) be a costly constrained graph.
It τ sets the same nonzero cost to all of the edges, then CG can
be derived by constructing a determinizing graph as explained
in Section 2.2.1 in [14] and calculating its capacity.

Recall that a determinizing graph defined in Section 2.2.1
in [14] is a deterministic graph that generates the same con-
strained system as the original graph. To calculate CG one may
try to apply this approach even when τ is not a constant func-
tion. Example 5 reveals the difficulty of such application and
the bounds that may be established nonetheless.

Example 5 Let Σ = {a, b, c, d}. In addition, let G =
(V, E,σ , τ) be the graph depicted in Figure 3a. Construct-
ing the determinizing graph of G, G′ as suggested in Section
2.2.1 in [14] results in the graph depicted in Figure 3b. As
marked in this graph, it is not clear which cost to assign to
the self loops of {v2, v3}. However, the capacity of the graph
obtained by assigning the minimum, maximum possible cost
1, 2 to each self loop upper, lower bounds CG, respectively.

The following theorem generalizes the conclusion of Ex-
ample 5. Let G = (V, E,σ , τ) be a non-deterministic costly
constrained graph, and let G′ = (V′, E′,σ ′) be the determiniz-
ing graph of G constructed (while ignoring τ) as defined in
Section 2.2.1 in [14]. Note that G′ is an unweighted graph,
for [14] defines determinizing graphs for unweighted ones.
Furthermore, recall that the vertices of G′ are subsets of ver-
tices in G. Thus, we denote the vertices of G′ by capital letters.

v2

v4

v1

v3

b|1

c|2

b|2

c|1
d|1 d|1

a|1 a|1

e|1

(a) Graph G.

{v2, v3}

v4

v1b|?

c|?
d|1

a|1

e|1

(b) Graph G′.

Fig. 3: Determinizing graph when τ is not constant.
In addition, recall that an edge (U, U′) ∈ E′ with label σ im-
plies that each vertex of G in U′ is accessible by an edge
of label σ from some vertex in U. Next, let G+, G− be the
graph obtained by setting the following cost function τ+, τ−

to the graph G′, respectively. That is, G+ =
(
V′, E′,σ ′, τ+

)
and G− = (V′, E′,σ ′, τ−).

τ+
((

U, U′)) = max
e=(u,u′)∈E:u∈U,u′∈U′ ,σ(e)=σ ′((U,U′))

τ (e) .

τ−
((

U, U′)) = min
e=(u,u′)∈E:u∈U,u′∈U′ ,σ(e)=σ ′((U,U′))

τ (e) .

Theorem 15. Let G = (V, E,σ , τ) be a non-deterministic
costly constrained graph. Then, CG+ ⩽ CG ⩽ CG− .

Lastly, Theorem 17 follows the analysis of [18] to establish
a lower bound on CG. The key idea of Theorem 17 is con-
structing a graph of PG(v, t) vertices, where each vertex rep-
resents a path in PG(v, t), and connecting two vertices if the
represented paths generate distinct sequences. Then NG(v, t)
equals the size of the largest clique in the graph, which mo-
tivates employing Turan’s theorem as in [18]. The following
definition is used in the statement of Theorem 17.
Definition 16. Let G = (V, E,σ , τ) be a costly constrained
graph. Given a path p ∈ PG(v, t), define PG(v, t, p) to be the
number of all distinct paths outgoing from vertex v of cost at
most t that generate the same sequence as path p. Moreover,
define

Pavg
G (v, t) ≜ E [PG(v, t, p)] =

∑p∈PG(v,t) PG(v, t, p)
PG(v, t)

.

Theorem 17. Let G = (V, E,σ , τ) be a costly constrained
graph and let v be an arbitrary vertex in G. Then,

CG ⩾ lim sup
t→∞

log2 PG(v, t)
t

−
log2 Pavg

G (v, t)
t

.

For example, consider the graph G depicted in Figure 3a
and let p ∈ PG (v1, t). p traverses the edge (v4, v1) at most
t
3 times, thereby PG(v, t, p) ⩽ 2

t
3 . Hence, Pavg

G (v1, t) ⩽ 2
t
3

and by Theorem 17, CG ⩾ lim supt→∞ log2 PG(v,t)
t − 1

3 =
2
3 . In summary, by Lemma 13 and Theorem 17, 2

3 ⩽ CG ⩽
1. However, Pavg

G (v1, t) is expected to be smaller than 2
t
3 ,

for most of the paths in PG (v1, t) traverse the edge (v4, v1)
fewer times. Due to the lack of space we leave improving the
lower bound for future work.

ACKNOWLEDGMENT

The authors would like to thank Professor Ron M. Roth and
Professor Paul H. Siegel for the helpful discussions on the
capacity of non-deterministic costly constrained graphs. The
research was Funded by the European Union (ERC, DNAS-
torage, 865630). Views and opinions expressed are however
those of the author(s) only and do not necessarily reflect those
of the European Union or the EuropeanResearch Council Ex-
ecutive Agency. Neither the European Union nor the granting
authority can be held responsible for them.

2023 IEEE International Symposium on Information Theory (ISIT)

589

REFERENCES

[1] L. Anavy, I. Vaknin, O. Atar, R. Amit, and Z. Yakhini, “Data storage in
DNA with fewer synthesis cycles using composite DNA letters,” Nature
Biotechnology, vol. 37, no. 10, pp. 1229–1236, Oct. 2019.

[2] L. Anavy, Z. Yakhini, and R. Amit, 2021. “Molecular data storage sys-
tems and methods.” United States of America Patent US20210141568A1.

[3] M. H. Caruthers, “The chemical synthesis of DNA/RNA: Our gift to sci-
ence,” Journal of Biological Chemistry, vol. 288, no. 2, pp. 1420–1427,
Jan. 2013.

[4] L. Ceze, J. Nivala, and K. Strauss, “Molecular digital data storage using
DNA,” Nature Reviews Genetics, vol. 20, no. 8, pp. 456–466, Aug. 2019.

[5] Y. Choi, T. Ryu, A. C. Lee, H. Choi, H. Lee, J. Park, S. H. Song, S.
Kim, H. Kim, W. Park, and S. Kwon, “High information capacity DNA-
based data storage with augmented encoding characters using degenerate
bases,” Scientific Reports, vol. 9, no. 1, pp. 1–7, 2019.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, “Introduction
to algorithms,” Mit Press, 2001.

[7] O. Elishco and W. Huleihel, “Optimal reference for DNA synthesis,”
arXiv preprint arXiv:2204.07013, 2022.

[8] S. Y. Itoga, “The string merging problem,” BIT Numerical Mathematics,
vol. 21, no. 1, pp. 20–30, 1981.

[9] A. Khandekar, R. McEliece, and E. Rodemich, “The discrete noiseless
channel revisited,” Coding, Communications, and Broadcasting, pp. 115–
137, 2000.

[10] S. Kosuri and G. M. Church, “Large-scale de novo DNA synthesis: Tech-
nologies and applications,” Nature Methods, vol. 11, no. 5, pp. 499– 507,
May 2014.

[11] A. Lenz, Yi. Liu, C. Rashtchian, P. H. Siegel, A. Wachter-Zeh, and E.
Yaakobi, “Coding for efficient DNA synthesis,” IEEE International Sym-
posium on Information Theory, pp. 2885–2890, Los Angeles, CA, USA,
June 2020.

[12] A. Lenz, S. Melczer, C. Rashtchian, and P. H. Siegel “Multivariate ana-
lytic combinatorics for cost constrained channels and subsequence enu-
meration,” https://arxiv.org/abs/2111.06105, 2021.

[13] K. Makarychev, M. Z. Rácz, C. Rashtchian, and S. Yekhanin, “Batch
optimization for DNA synthesis,” IEEE International Symposium on In-
formation Theory, pp. 1949–1954, Melbourne, Victoria, Australia, July
2021.

[14] B. H. Marcus, R. M. Roth, and P. H. Siegel, “An introduction to Coding
for Constrained Systems,” 2001. [Online]. Available: http://ronny.cswp.
cs.technion.ac.il/wp-content/uploads/sites/54/2016/05/chapters1-9.pdf

[15] I. Preuss, Z. Yakhini, and L. Anavy, “Data storage based on combina-
torial synthesis of DNA shortmers,” bioRxiv, 2021.

[16] N. Roquet, H. Park, and S.P. Bhatia, 2017, “Nucleic acid-based data
storage.” United States Patent Application Patent 20180137418.

[17] N. Roquet, S. P. Bhatia, S. A. Flickinger, S. Mihm, M. W. Norswor-
thy, D. Leake, and H. Park, “DNA-based data storage via combinatorial
assembly,” bioRxiv, 2021.

[18] L. M. G. M. Tolhuizen, “The generalized Gilbert-Varshamov bound is
implied by Turan’s theorem,” IEEE Transactions on Information Theory,
vol. 43, no. 5, pp. 1605–1606, Sep. 1997.

2023 IEEE International Symposium on Information Theory (ISIT)

590

