
The Zero Cubes Free and Cubes Unique
Multidimensional Constraints

Sagi Marcovich
Technion - Israel Institute of Technology

Haifa 3200003, Israel
sagimar@cs.technion.ac.il

Eitan Yaakobi
Technion - Israel Institute of Technology

Haifa 3200003, Israel
yaakobi@cs.technion.ac.il

Abstract—This paper studies two families of constraints for
two-dimensional and multidimensional arrays. The first family
requires that a multidimensional array will not contain a cube of
zeros of some fixed size and the second constraint imposes that
there will not be two identical cubes of a given size in the array.
These constraints are natural extensions of their one-dimensional
counterpart that have been rigorously studied recently. For both
of these constraints we present conditions of the size of the cube
for which the asymptotic rate of the set of valid arrays approaches
1 as well as conditions for the redundancy to be at most a sin-
gle symbol. For the first family, we present an efficient encoding
algorithm that uses a single symbol to encode arbitrary infor-
mation into a valid array and for the second family we present
a similar encoder for the two-dimensional case. The results in
the paper are also extended to similar constraints where the sub-
array is not necessarily a cube, but a box of arbitrary dimensions
and only its volume is bounded.

I. INTRODUCTION

Coding for two-dimensional and multidimensional arrays is
a topic which attracted significant attention in the last three
decades due to its various applications in different areas. This
includes optical storage such as page-oriented optical memo-
ries [8], [16] and holographic storage [7]. Other applications in
robotics are robot localization [19], camera localization [20],
projected touchscreens [2], just to name a few, and there are
several more in structured light; see e.g. [9], [15], [18], [17].
Examples of coding schemes for these applications include
error-correction codes [6], constrained codes [21], pseudo ran-
dom arrays and perfect maps [11], [5], codes for self locating
patterns [1], and more.

This paper takes one more step in advancing the theory of
coding for multidimensional and studies two special constraint
families for two-dimensional and multidimensional arrays. In
the first constraint, it is said that a d-dimensional array is zero
L-cubes free if it does not contain any zero cube of volume
Ld. In the second constraint, we say that W is L-cubes unique
if it does not contain any two identical cubes of volume Ld.
Only little is known on these families of codes and the goal of
this paper is to rigorously study them for all values of L and
d and in particular for d = 2, as well as to construct efficient
encoding and decoding algorithms for these constraints.

The zero L-cubes free constraint was studied for the
one-dimensional case in [10]. It was shown that if L =
logq(n) − f (n) where f (n) satisfies that n − 2(logq(n) −
f (n)) = Θ(n) then the redundancy of the sequences that
satisfy the constraint is Θ(q f (n)). An encoding scheme for
the binary case that uses a single redundancy bit and avoids
zero-runs of length L = dlog(n)e+ 1 was also proposed. The
L-cubes unique constraint was studied in [3], [4] and it was
shown that for values of L satisfying Ld =

⌊
ad logq(n)

⌋

with a > 1, the asymptotic rate of these arrays approaches 1.
For the one-dimensional case, two encoding schemes were
proposed. The first one uses a single redundancy symbol and
supports L = 2dlog(n)e + 2, while the second works for
substrings of length L = da log(n)e where 1 < a 6 2 and
its asymptotic rate approaches 1.

In this paper, it is shown that for the zero L-cubes free
constraint, if L = ω(1) then the asymptotic rate of the
set of arrays that satisfy the constraint approaches 1 and
for L > d

√
d logq(n) + logq(

q
q−1), its redundancy is at

most a single symbol. Then, an efficient algorithm for en-
coding L-cubes free arrays that uses a single redundancy

symbol is presented for L =

⌈
d

√⌈
d logq(n)

⌉
+ 1
⌉

. Note

that the difference between these two values of L is at most
1 + d
√

2. For the L-cubes unique constraint, it is shown that
if L > d

√
2d logq(n) + logq(

q
q−1), then the redundancy

of this set of arrays is at most a single symbol. For the
binary two-dimensional case, an encoding algorithm that
uses a single redundancy bit is proposed which supports
L = 2

⌈√
d3 log(n)e+ 2

⌉
.

The rest of the paper is organized as follows. In Section II,
the constraints that will be studied in the paper are formally
defined. In Section III, we study the zero cubes free constraint
and in Section IV we address the cubes unique constraint. Due
to the lack of space, some of the proofs in the paper are omit-
ted. These proofs and several more results can be found in the
full version of this work in [14].

II. DEFINITIONS AND PRELIMINARIES

In this section, we formally define the notations and con-
straints studied in this paper. For integers i, j ∈ N such that
i 6 j we denote by [i, j] the set {i, i + 1, . . . , j− 1, j}. We
notate by [i] a shorthand for [0, i − 1]. For a set A, let |A|
denote the number of elements in A. Let Σq denote a finite
alphabet of size |Σq| = q. When q = 2, we omit the subscript
q from this and from similar notations.

Let d ∈ N be an integer, let Nd be the d-dimensional grid,
and let v = (v0, v1, . . . , vd−1) ∈ Nd denote a vector of length
d. For A ⊆ Nd, a set of coordinate vectors, we denote by
v + A the set

{(v0 + u0, . . . , vd−1 + ud−1) | u = (u0, . . . , ud−1) ∈ A},
and by c · A, where c ∈ N, the set

{(cu0, . . . , cud−1) | u = (u0, . . . , ud−1) ∈ A}.
The set v− A is defined similarly. Next, for a set A ⊆ Nd we
denote by ΣA

q the set of all functions from A to Σq. We denote

by
⋃

A⊆Nd ΣA
q the set of all d-dimensional arrays. For an inte-

ger n ∈ N, we denote by [n]d the set [n]d = ⊗d−1
i=0 [n] and say

that Σ
[n]d
q is the set of all d-dimensional n-cubes. Through-

out this paper, we sometimes remove the d-dimensional prefix
when using those notations if the dimension d is clear from
the context. When d = 2, we refer to d-dimensional n-cubes
as n-squares. Additionally, the redundancy of a set A ⊆ Σ

[n]d
q

is defined as red(A) = nd − logq(|A|).
Let W ∈ ΣA

q be an array and A′ ⊆ A ⊆ Nd be sets of
coordinate vectors. We denote by WA′ the restriction of W to
the coordinates in A′. When A′ contains a single coordinate
vector A′ = {v} we simplify the representation and write
Wv. Next, we define a total order over Nd.

Definition 1. Let u = (u0, . . . , ud−1), v = (v0, . . . , vd−1) ∈
Nd be two different coordinate vectors. We say that u < v if
there exists 0 6 s 6 d − 1 such that us < vs and for every
0 6 t < s, ut = vt.

For a finite set A ⊆ Nd and a vector v ∈ A, the mapping
BA,q(v) returns a q-ary vector of the index representation of
v in A, where the vectors are ordered increasingly according
to the total order presented in Definition 1. Note that the size
of the mapping output is

⌈
logq(|A|)

⌉
. For an integer i ∈ [d],

let ei ∈ Σd
2 denote the i-th unit vector, i.e., a vector with one

at its i-th bit and zeros elsewhere. For two vectors v, u we
denote their concatenation by v ◦ u. Additionally, we denote
the bijection MDA : Σ|A|q → ΣA

q which transforms a sequence
to its multidimensional representation under the coordinates
of A, and its inverse SDA : ΣA

q → Σ
|A|
q . MDA reorders the

symbols using the order of Definition 1 over the coordinates
of A, i.e., the i-th symbol of the input sequence will transform
to the symbol in the i-th coordinate in A. We will sometimes
omit A from the notations when it is clear from the context.

Example 1. Let d = 2, n = 4, and

X =

1 1 0 0
1 0 1 1
0 0 0 1
0 0 0 1


 ∈ Σ[n]2 .

Then, SD[n]2(X) = 1100101100010001 ∈ Σ16 (notice that
|[n]2| = 16). Moreover, let s = 0101101000111100 ∈ Σ16,
then,

MD[n]2 (s) =

0 1 0 1
1 0 1 0
0 0 1 1
1 1 0 0


 ∈ Σ[n]2 .

Next, the main families of constraints that are studied in the
paper are defined. For simplicity, we define these constraints
only over arrays which are d-dimensional n-cubes.

Definition 2. Let W ∈ Σ
[n]d
q be a d-dimensional array. We say

that W contains a zero L-cube (or zero L-square for d = 2)
at position v ∈ [n − L + 1]d, if Wv+[L]d = 0. An array W

satisfies the zero L-cubes free constraint if it does not contain
any zero L-cube.

Throughout the paper, we may refer to an array satisfying the
constraint in Definition 2 as a zero L-cubes free array.

Example 2. Let n = 5, d = 2, and

Y =


1 1 0 0 1
1 0 1 1 1
0 0 0 1 0
0 0 0 0 1
0 1 0 1 0

 ∈ Σ[n]2 .

Then, Y contains two zero 2-squares, at positions (2, 0) and
(2, 1). For L > 2, Y contains no zero L-squares and thus Y
satisfies the zero L-squares free constraint.

For positive integers n, q, d, L, we denote by Cd,q(n, L)

the set of all arrays over Σ
[n]d
q that satisfy the zero L-cubes

free constraint. The authors of [10] studied the one di-
mensional variation of this problem and showed that if
L = logq(n) − f (n), where f (n) is a function that satis-
fies n− 2(logq(n)− f (n)) = Θ(n), then the redundancy of
C1,q(n, f (n)) is Θ(q f (n)). They also proposed an encoding
scheme for the binary case that uses a single redundancy bit
and avoids zero-runs of length L = dlog(n)e+ 1.

In Section III, we analyze the cardinality of Cd,q(n, L) for
any d, q, and present lower bounds for L for two cases: 1) the
asymptotic rate of Cd,q(n, L) is 1, and 2) the redundancy of
Cd,q(n, L) is at most a single symbol. Then, we present an
algorithm that encodes arrays from Cd,q(n, L) using a single
redundancy symbol, where L almost achieves the lower bound
that we found for this case. Moreover, we analyze this con-
straint for the two-dimensional case and present tight bounds
for its redundancy for every n, L.

Next, the second constraint studied in the paper is defined.

Definition 3. Let W ∈ Σ
[n]d
q be a d-dimensional array. We say

that W contains two identical L-cubes (or identical L-squares
for d = 2) at positions u 6= v ∈ [n− L + 1]d, if Wu+[L]d =
Wv+[L]d . An array W satisfies the L-cubes unique constraint
if it does not contain any two identical L-cubes.

Throughout the paper, we may refer to an array that satisfies
the constraint in Definition 3 as an L-cubes unique array.

Example 3. Let n = 5, d = 2, and

Z =


1 1 0 0 1
1 0 1 1 1
0 0 1 1 0
0 0 1 0 1
0 1 0 0 1

 ∈ Σ[n]2 .

Then, Z contains two identical 3-squares at positions (0, 0)
and (2, 2). However, Z contains no identical 4-squares and
thus Z satisfies the 4-squares unique constraint.

Denote by Dd,q(n, L) the set of all arrays over Σ
[n]d
q that

satisfy the L-cubes unique constraint. In [4], the authors ana-
lyzed the cardinality of Dd,q(n, L) and proved the following.

Theorem 4.[4] For L that satisfies Ld =
⌊

ad logq(n)
⌋

with
a > 1, the asymptotic rate ofDd,q(n, L) approaches 1. Namely,

lim
n→∞

logq(|Dd,q(n, L)|)
n

= 1.

Additionally, the authors of [3], [4] proposed two encoding
schemes for the one dimensional case of the set D1(n, L),
which is also known as the set of L-substring unique se-
quences [12], [13]. The first scheme is applied for substrings
of length L = 2dlog(n)e + 2 with a single bit of redun-
dancy, and the second one works for substrings of length
L = da log(n)e for any 1 < a 6 2 and its asymptotic rate
approaches 1. In Section IV, we present for all d, q a lower
bound for L such that the redundancy of Dd,q(n, L) is at
most 1. Then, we present an encoding scheme for the binary
two-dimensional case that uses a single redundancy bit, while
the value of L is far from the lower bound we found only by
a factor of

√
3.

III. THE ZERO CUBES FREE CONSTRAINT

First, we have the following two theorems regarding the
cardinality of Cd,q(n, L).

Theorem 5. Let L = f (n) be a function of n that is not con-
stant, i.e., L = ω(1). Then, the asymptotic rate of Cd,q(n, L) is
1. Namely,

lim
n→∞

logq(|Cd,q(n, L)|)
n

= 1.

Theorem 6. For an integer L > d
√

d logq(n) + logq(
q

q−1), it

holds that |Cd,q(n, L)| > qnd−1. That is, red(Cd,q(n, L)) 6 1.

Our next goal in the paper is to provide an algorithm that
encodes d-dimensional arrays over Σ[n]d

q which satisfy the zero
L-cubes constraint for

L =

⌈
d

√⌈
d logq(n)

⌉
+ 1

⌉
.

Note that the difference between this value of L and the lower
bound derived in Theorem 6 is at most 1 + d

√
2. The algo-

rithm uses a single redundancy symbol and its encoding and
decoding time complexities is O(dnd log(n)).

Algorithm 1 receives a d-dimensional array W ∈
Σ
[n]d\{(n−1)·1}
q with a single symbol missing at its corner,

and outputs a cube X ∈ Cd,q(n, L). First, we initialize X
with W and set 1 at the missing entry to mark the start of
the algorithm. Then, we scan over all L-cubes in X from
start to end and look for a zero L-cube. When such a cube is
found, it is replaced with the non-zero cube at the position
(n − L) · 1 which will be referred as the lookup-cube. The
lookup-cube is then filled with an encoding of the position of
the zero cube that was found and at least one more additional
zero symbol to mark the occurrence of the zero cube to the
decoding process. In the case which the found cube and the
lookup-cube intersect, we backup only the non-intersecting
part of the lookup-cube, since we know the rest of it is zero.

In order to reconstruct W ∈ Σ
[n]d\{(n−1)·1}
q from X, the

output of Algorithm 1, we repeatedly inverse the encoding

Algorithm 1 Zero L-Cubes Free Encoding

Input: A d-dimensional array W ∈ Σ
[n]d\{(n−1)·1}
q

Output: A d-dimensional array X ∈ Cd,q(n, L)

1: Set an array X ∈ Σ[n]d with X[n]d\{(n−1)·1} = W and
X(n−1)·1 = 1

2: for every v ∈ [n− L+ 1]d (iterate in an increasing order)
do

3: if Xv+[L]d = 0 then
4: if A = (v + [L]d) ∩ [n− L, n− 1]d = ∅ then
5: Set Xv+[L]d = X[n−L,n−1]d
6: else
7: Set y = SD(X([n−L,n−1]d\A))
8: Set Xv+[L]d\A = MD(y)
9: end if

10: Set
X[n−L,n−1]d = MD(B[n]d ,q(v + ed) ◦ 0Ld−

⌈
d logq(n)

⌉
)

11: end if
12: end for

loop by recovering a position from the lookup-cube, replac-
ing encoding its data in the lookup-cube and filling it with
zeros. The decoder terminates when X(n−1)·1 = 1, which de-
notes the start of the encoding loop. The time complexity of
Algorithm 1 and its decoder is Θ(dnd log(n)).

Lastly, we note that Algorithm 1 works also for the
one-dimensional case, which achieves the same value of L as
the one achieved by the algorithm presented in [10]. How-
ever the complexity of the algorithm in [10] is Θ(n) while
the complexity of Algorithm 1 for the one dimensional case
is Θ(n log(n)). The correctness of Algorithm 1 appears in
the full version of this work in [14]

Example 4. Let n = 7, L = 3, and the input array is

W =

0 0 1 0 0 0 1
0 0 0 0 1 1 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 1 0 0 1 0 0
0 0 0 1 0 0




.

The algorithm appends one at the missing entry to initialize
X. Then, it iterates the coordinates in an increasing order until
a zero 3-square is found. In the following figures, the lookup-
square and the found zero square are highlighted.

X =

0 0 1 0 0 0 1
0 0 0 0 1 1 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 1 0 0 1 0 0
0 0 0 1 0 0 1




A zero 3-square found in v = (1, 0). It is replaced with

the lookup-square, and the latter is filled with the encoding

of v + e2 = (1, 0) + (0, 1) = (1, 1) using six bits, which is
B((1, 1)) = 000100, and appending three more zeros to have
a 3-square.

X =

0 0 1 0 0 0 1
0 0 1 0 1 1 1
1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 1 0 0
0 0 0 1 0 0 0




Next, a zero 3-square found in v = (2, 3). It intersects with

the lookup-square at positions A = {(4, 4), (4, 5)}. Hence,
the algorithm fills only the non-intersecting part of X(2,3)+[3]2
with the non-intersecting portion of the lookup-square, y =
0100000. The lookup-square is filled with the encoding of v+
e2 = (2, 3) + (0, 1) = (2, 4), that is, B((2, 4)) = 010010,
appended by zeros.

X =

0 0 1 0 0 0 1
0 0 1 0 1 1 1
1 0 0 0 1 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0
0 1 0 0 0 1 0
0 0 0 1 0 0 0




The algorithm finishes iterating the entries of X without find-

ing additional zero 3-squares. The result is indeed a zero 3-
square free array.

Redundancy Analysis for the Two-Dimensional Case:

The proof of the next theorem is given in [14] by deriving
lower and upper bounds for the cardinality of C2,q(n, L) using
various enumeration techniques.

Theorem 7. There exist constants C1, C2 such that for any pos-
itive integer n it holds that

C2
(n− 2L)2

qL2 6 red(C2,q(n, L)) 6 C1
n2

qL2 .

The next corollary follows immediately.

Corollary 8. Let n, L be integers such that n − 2L = Θ(n).
Then,

red(C2,q(n, L)) = Θ

(
n2

qL2

)
.

IV. THE CUBES UNIQUE CONSTRAINT

First, we derive a lower bound for L which assures that the
redundancy of Dd,q(n, L) is at most a single symbol.

Theorem 9. For L > d
√

2d logq(n) + logq(
q

q−1), it holds that

|Dd,q(n, L)| > qnd−1. That is, red(Dd,q(n, L)) 6 1.

Next, we focus on the two-dimensional case and present a
generic encoding algorithm that uses a single redundancy bit
in order to encode binary n-squares that are L-squares unique,
for

L = 2
⌈√
d3 log(n)e+ 2

⌉
.

Note that this value of L is far from the value derived in The-
orem 9 only by roughly a factor of

√
3. For simplicity, we

sometimes omit ceiling notations in the rest of this section.
We introduce first a new type of two-dimensional arrays,

denoted as bottom semi squares, or semi squares in short. For
a vector v ∈ [n]2, the set A = [n]2 \ (v + [n]2) contains
coordinates of a semi square with a corner at v. Hence, we
say that X ∈ ΣA

q is an (n, v)-semi square.
Let X be an (n, v)-semi square for v ∈ [n]2, let t be an in-

teger, and let Y be a (t, u)-semi square for u ∈ [t]2. We denote
by X ◦ Y the concatenation of X and Y which is defined by
placing Y at position v of X, and restricting the result to the
coordinates in [n]2. It follows that X ◦Y is a (n, v + u)-semi
square if and only if for every i ∈ [2], ui = 0 or vi + t > n.
Example 5.

X =


1 1 0 0 1
1 0 1 1 1
0 0 0 1 0
0 0
0 1

 ∈ Σ[5]2\((3,2)+[5]2)

is a (5, v)-semi square for v = (3, 2), and

Y =

0 0 1
1
0

 ∈ Σ[3]2\((1,1)+[3]2)

is a (3, u)-semi square for u = (1, 1). Then, the concatena-
tion X ◦Y is a semi (5, v + u)-square,

X ◦Y =


1 1 0 0 1
1 0 1 1 1
0 0 0 1 0
0 0 0 0 1
0 1 1

 .

Definition 10. Let X be an (n, v)-semi square for v ∈ [n]2,
such that v 6= 0. We denote by CR(X) the iterative self-
concatenation of X to an n-square, that is,

CR(X) = X
⌈

n
vmin

⌉
,

where vmin is the smallest entry of v that is not 0.
It can be shown by induction that after m concatenations,

Xm is a (n, m · v)-semi square, since vi + n > n for every
i ∈ [2]. Thus, the self-concatenation of an (n, v)-semi square
for every v 6= 0 is defined properly, and in fact an n-square
since for every i ∈ [2],

⌈
n

vmin

⌉
· vi > n.

Example 6. Let X, Y from Example 5. Then,

CR(X) =


1 1 0 0 1
1 0 1 1 1
0 0 0 1 0
0 0 1 1 0
0 1 1 0 1

 , CR(Y) =

0 0 1
1 0 0
0 1 0

 .

Additionally, we define the matching upper semi squares, de-
scribed by a coordinate vectors set of A = [n]2 \ (v− [n]2)
for v ∈ [n]2. We similarly define concatenation and
self-concatenation to an n-square of upper semi squares.

Algorithm 2 receives a two-dimensional array W ∈
Σ[n]2\{(0,0)}, an n-square with a single missing entry, and
outputs an n-square X ∈ D2(n, L). The algorithm con-
sists of two main procedures, elimination and expansion.

Algorithm 2 L-Squares Unique Encoding

Input: A two-dimensional array W ∈ Σ[n]2\{(0,0)}

Output: An n-square X ∈ D2(n, L)
1: Set a square X ∈ Σ[n]2 with X0,0 = 0, X[n]2\{(0,0)} = W
2: Denote (im, jm) = (n, 0), append X(im , jm)+[k]2 = PM

First part - Elimination
3: while at least one of the occurences in cases 1,2,3 exists do
4: case 1: A k-square equals to PM exists at (i1, j1) < (im, jm)
5: Remove square X(i1 , j1)+[k]2

6: Set v = 101 ◦ B[n]2(i1, j1) ◦ 1k2−2 log(n)−3, insert MD[k]2(v) at X0,0

7: case 2: Identical L-squares exist at (i1, j1) < (i2, j2)
8: Remove square X(i1 , j1)+[L]2

9: Set v = 100 ◦ B[n]2(i1, j1) ◦ B[n]2(i2, j2) ◦ 13k2−4 log(n)−3, insert MD[k]×[3k](v) at X0,0

10: case 3: Identical (k, L)-rectangles exist at (i1, j1) < (i2, j2), where

(i2, j2) ∈ I = ({im − k} × [jm − k, n− 1]) ∪ ({im} × [jm − k− 1]),

11: Remove rectangle X(i1 , j1)+[k]×[L]
12: Set v = 11 ◦ B[n]2(i1, j1) ◦ BI(i2, j2), insert MD[k]2(v) at X0,0

13: If cases 2 or 3 were executed, decrement (im, jm) by a k-square
14: end while
15: If |X| > n2, return X[n]2

Second part - Expansion
16: while |X| < n2 do
17: Set indexes (ie, je) to point to the next missing k-square in X
18: Let Ie = ((ie, je)− [k]2) ∩ [n]2. Set

S = {X(i, j)+[k]2 | (i, j) /∈ Ie} ∪ {CR(X(i, j)+[k]2) | (i, j) ∈ Ie}

19: Pick Y ∈ Σ[k]2/S and set X(ie , je)+[k]2 = Y
20: end while
21: Return X

First, we initialize X with W and set 0 at the missing en-
try to mark the start of the elimination. Then, we append
to X a marker (L/2)-square that will mark the transition
between the elimination and the expansion parts of the en-
coder. At the elimination part, we iteratively shorten X by
an (L/2)-square at a time by eliminating one of the two
occurrences in X: 1. two identical L-squares, 2. two iden-
tical rectangles of size [L/2] × [L] (notated for the rest of
this section as (L/2, L)-rectangles) where one of them is at
the bottom of X. Likewise, we make sure that the marker
(L/2)-square appears only once in X. Later, at the expansion
part, we enlarge X to an n-square by iteratively append-
ing (L/2)-squares while making sure that no new identical
L-squares are created.

For convenience, we denote for the rest of this sec-
tion k = L/2 =

⌈√
3 log(n) + 2

⌉
, and define the marker

k-square denoted as PM as the following square,

PM =


1 0 · · · 0
0
... 0
0

 ∈ Σ[k]2 .

We also explain the notion of removal and insertion of
squares with granularity. We assume that n mod k = 0, and

let X ∈ Σ[n]2\At where At contains the coordinates of the last
t k-squares in [n]2, i.e., At = ([it − k, n− 1]× [jt, n− 1])∪
([it, n − 1] × [n]) where (it, jt) = (n − btk/nc , n − (tk
mod n)). We look at X as a grid of k-squares, and allow
only removals and insertions in granularity of k-square units.
Removal or insertion actions on a k-square at an aligned posi-
tion (î · k, ĵ · k) are performed by transforming X to a k-rows
array with coordinates [k]× [|X|/k], executing the action on
the (i · k + j)-th k-square like in a one-dimensional array, and
transforming back to a grid of k-squares.

However, during the elimination part of the algorithm we
sometimes need to remove a k-square from an unaligned po-
sition (i, j). Such an action is done by finding the closest
aligned position (î · k, ĵ · k), then replacing the data of the non-
intersecting parts of X(î·k, ĵ·k)+[k]2 and X(i, j)+[k]2 , and finally
removing the aligned k-square at position (î · k, ĵ · k). This is
a technical procedure that can be transparent to the reader of
the encoder in Algorithm 2. All of the above ensures that ap-
pended k-squares, and specifically the marker k-square, are not
trimmed or modified accidentally as a result of unrelated re-
moval of insertion actions. The correctness of the Algorithm 2
as well as the explanation for the decoding can also be found
in [14].

REFERENCES

[1] A. M. Bruckstein, T. Etzion, R. Giryes, N. Gordon, R. J. Holt, and
D. Shuldiner, “Simple and robust binary self-location patterns,” IEEE
Transactions on Information Theory, vol. 58, no. 7, pp. 4884–4889,
2012.

[2] J. Dai and C. R. Chung, “Touchscreen everywhere: On transferring a
normal planar surface to a touch-sensitive display,” IEEE Transactions
on Cybernetics, vol. 44, no. 8, pp. 1383–1396, 2014.

[3] O. Elishco, R. Gabrys, M. Mèdard, and E. Yaakobi, “Repeat free codes,”
in Proc. of the IEEE International Symposium of Information Theory,
Paris, France, 2019, pp. 932–936.

[4] O. Elishco, R. Gabrys, E. Yaakobi, and M. Médard, “Repeat-free codes,”
IEEE Transactions on Information Theory, vol. 67, no. 9, pp. 5749–
5764, 2021.

[5] T. Etzion, “Constructions for perfect maps and pseudorandom arrays,”
IEEE Transactions on Information Theory, vol. 34, no. 5, pp. 1308–
1316, 1988.

[6] T. Etzion and E. Yaakobi, “Error-correction of multidimensional bursts,”
IEEE Transactions on Information Theory, vol. 55, no. 3, pp. 961–976,
2009.

[7] C. Gu, J. Hong, I. McMichael, R. Saxena, and F. Mok, “Cross-talk-
limited storage capacity of volume holographic memory,” J. Opt. Soc.
Am. A, vol. 9, no. 11, pp. 1978–1983, Nov 1992.

[8] J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic
storage and retrieval of digital data,” Science, vol. 265, no. 5173, pp.
749–752, 1994.

[9] Y. C. Hsieh, “Decoding structued light patters for three-dimensional
imaging systems,” Pattern Recognition, vol. 34, pp. 343–349, 2001.

[10] M. Levy and E. Yaakobi, “Mutually uncorrelated codes for DNA stor-
age,” IEEE Transactions on Information Theory, vol. 65, no. 6, pp.
3671–3691, 2019.

[11] F. J. MacWilliams and N. J. A. Sloane, “Pseudo-random sequences and
arrays,” in Proceedings of the IEEE, vol. 64, no. 12, 1976, pp. 1715–
1729.

[12] S. Marcovich and E. Yaakobi, “Reconstruction of strings from their sub-
strings spectrum,” in ”Proc. of the IEEE International Symposium on
Information Theory, Los Angeles, USA”, 2020, pp. 658–663.

[13] ——, “Reconstruction of strings from their substrings spectrum,”
Submitted to: IEEE Transactions on Information Theory, 2020.

[14] ——, “The zero cubes free and cubes unique multidimensional con-
straints,” to: IEEE Transactions on Information Theory, 2021.

[15] R. A. Morano, C. Ozturk, R. Conn, S. Dubin, S. Zietz, and J. Nissanov,
“Structured light using pseudorandom codes,” IEEE Transactions Pat-
tern Analysis and Machine Intelligence, vol. 20, pp. 322–327, 1998.

[16] M. A. Neifeld and M. McDonald, “Error correction for increasing the
usable capacity of photorefractive memories,” Opt. Lett., vol. 19, no. 18,
pp. 1483–1485, Sep 1994.

[17] J. Pages, J. Salvi, C. Collewet, and J. Forest, “Optimised de Bruijn
patterns for one-shot shape acquisition,” Image and Vision Computing,
vol. 23, pp. 707–720, 2005.

[18] J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “State of the art in
structured light patterns for surface profilometry,” Pattern Recognition,
vol. 23, pp. 2666–2680, 2010.

[19] E. R. Scheinerman, “Determining planar location via complement-free
de brujin sequences using discrete optical sensors,” IEEE Transactions
on Robotics and Automation, vol. 17, no. 6, pp. 883–889, 2001.

[20] I. Szentandrasi, M. Zacharias, J. Havel, A. Herout, M. Dubská, and
R. Kajan, “Uniform marker fields: Camera localization by orientable de
bruijn tori,” IEEE International Symposium on Mixed and Augmented
Reality, pp. 319–320, 2012.

[21] I. Tal and R. M. Roth, “Bounds on the rate of 2-d bit-stuffing encoders,”
IEEE Transactions on Information Theory, vol. 56, no. 6, pp. 2561–
2567, 2010.

