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Reconstruction from Substrings with Partial Overlap
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Abstract—This paper introduces a new family of reconstruc-
tion codes which is motivated by applications in DNA data storage
and sequencing. In such applications, DNA strands are sequenced
by reading some subset of their substrings. While previous works
considered two extreme cases in which all substrings of some
fixed length are read or substrings are read with no overlap,
this work considers the setup in which consecutive substrings
are read with some given minimum overlap. First, upper bounds
are provided on the attainable rates of codes that guarantee
unique reconstruction. Then, we present efficient constructions
of asymptotically optimal codes that meet the upper bound.

I. INTRODUCTION

String reconstruction refers to a large class of problems

where information about a string can only be obtained in

the form of multiple, incomplete and/or noisy observations.

Examples of such problems are the reconstruction problem by

Levenshtein [14], the trace reconstruction problem [3], and

the k-deck problem [6], [7], [16], [24].

Notably, when observations are composed of consecutive

substrings, the reconstruction from substring-compositions

problem [1], [1], [4], [10], [12], [17], [19], [20], [25], [27],

[31], [32] and the torn-paper problem [2], [21], [22], [28]

(a problem closely related to the shuffling channel [11], [13],

[26], [30]) have received significant interest in the past decade

due to applications in DNA- or polymer-based storage systems,

resulting from contemporary sequencing technologies [4], [9],

[20]. The former arises from an idealized assumption of full

overlap (and uniform coverage) in read substrings, while the

latter results from an assumption of no overlap; in applications,

this models the question of whether the complete information

string may be replicated and uniformly segmented for sequenc-

ing, or if segmentation occurs adversarially in the medium

prior to sequencing.

Motivated by these two paradigms, we study in this paper

a generalized (or intermediate) setting where an information

string is observed through an arbitrary collection of its sub-

strings, where the minimum length Lmin of each retrieved

substring, as well as the length Lover of overlap between

consecutive substrings, are bounded from below. A similar

setting was recently studied [23], where both substrings’
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lengths and overlap were assumed to be random; we study

the problem in the aforementioned worst-case regime. We ask

what the minimum value of Lmin is for which there exist

codes of length n strings allowing for unique reconstruction in

this channel with asymptotically non-vanishing rates, and then

what is the asymptotically optimal obtainable rate given the

value of Lover. Having answered both questions, we demon-

strate that in these regimes it is possible to efficiently encode

and decode information for unique reconstruction attaining

asymptotically optimal rates.

The rest of this paper is organized as follows. In Section II

we present notation and definitions used throughout the paper.

In Section III we bound from above the asymptotically attain-

able rate of codes for unique reconstruction as a function of

Lmin, Lover, and then in Section IV we develop efficient en-

coding and decoding algorithms for such codes, asymptotically

meeting this bound.

II. DEFINITIONS AND PRELIMINARIES

Let Σ be a finite alphabet of size q. Where advantageous, we

assume Σ is equipped with a ring structure, and in particular

identify elements 0, 1 ∈ Σ. For a positive integer n, let [n]
denote the set [n] , {0, 1, . . . , n− 1}.

For two non-negative functions f, g of a common variable n,

denoting L , lim supn→∞
f(n)
g(n) (in the wide sense) we say

that f = on(g) if L = 0, f = Ωn(g) if L > 0, f = On(g) if

L < ∞, and f = ωn(g) if L = ∞. We say that f = Θn(g)
if f = Ωn(g) and f = On(g). If f is not positive, we say

f(n) = On(g(n)) (f(n) = on(g(n))) if |f(n)| = On(g(n))
(respectively, |f(n)| = on(g(n))). If clear from context, we

omit the subscript from aforementioned notations.

Let Σ∗ denote the set of all finite strings over Σ. The length

of a string x is denoted by |x|. For strings x,y ∈ Σ∗, we

denote their concatenation by x◦y. We say that v is a substring

of x if there exist strings u,w such that x = u ◦ v ◦ w. If

u (respectively, w) is empty, we say v is a prefix (suffix) of

x. If the length of v is ℓ, we specifically say that v is an ℓ-
substring of x (similarly, an ℓ-pre/suffix). For I ⊆ [|x|], we let

xI denote the subsequence of x obtained by restriction to the

coordinates of I; specifically, for i ∈ [|x|−ℓ+1] we denote by

xi+[ℓ] the ℓ-substring of x at location i (we reserve the term

index for a different use), where i + [ℓ] = {i+ j : j ∈ [ℓ]}
follows the standard co-set notation.

We consider in this paper the problem of string recon-

struction from substrings with partial overlap. That is, we

assume that a message x ∈ Σn is observed only through
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a multiset of its substrings, without order, with the follow-

ing restrictions: (i) all observed substrings are of length at

least Lmin; and (ii) succeeding substrings overlap with length

at least Lover (in particular, every symbol of x is observed in

some substring).

More formally, a substring-trace of x ∈ Σn is a multiset
{{

xij+[ℓj ]

}}m

j=1
, for some m ∈ N, such that i1 < i2 < · · · <

im and ℓj ∈ [n−ij+1]. A substring-trace is complete if i1 = 0,

ij+1 < ij+ℓj for all j < m, and im+ℓm−1 = n. A complete

substring-trace of x ∈ Σn is called an (Lmin, Lover)-trace if

ℓj > Lmin > Lover for all j ∈ [m] and ij + ℓj − ij+1 > Lover

for all j ∈ [m− 1]. For example, for x = 11101110101111

• {{1110111, 111010, 101111}} is a (6, 2)-trace of x;

• {{111011, 110101, 101111}} is a complete trace of x

which is not a (6, 2)-trace; and

• {{110111, 110101, 01111}} is a trace of x which is not

complete.

The (Lmin, Lover)-trace spectrum of x ∈ Σn, denoted

T Lover

Lmin
(x), is the set of all (Lmin, Lover)-traces of x. Our

channel accepts x ∈ Σn and outputs some (Lmin, Lover)-trace

of x error free.

For all C ⊆ Σn we denote the rate, redundancy of C
by R(C) , 1

n log|C|, red(C) , n − log|C|, respectively.

Throughout the paper, we use the base-q logarithms. Moti-

vated by the above channel definition, a code C ⊆ Σn is

called an (Lmin, Lover)-trace code if for all x1 6= x2 ∈ C,

T Lover

Lmin
(x1) ∩ T Lover

Lmin
(x2) = ∅. The main goal of this work

is to find, for Lmin, Lover as functions of n, the maximum

asymptotic rate of (Lmin, Lover)-trace codes. We will also

be interested in efficient constructions of (Lmin, Lover)-trace

codes with rate asymptotically approaching that value.

For convenience of analysis we denote by LLover

Lmin
(x) ∈

T Lover

Lmin
(x), for x ∈ Σn, the (Lmin, Lover)-trace of x con-

taining specifically its Lmin-prefix, and subsequent Lmin-

substrings overlapping in precisely Lover coordinates. For

example, if x = 11101110101111 then

L2
4(x) = {{1110, 1011, 1110, 1010, 1011, 1111}}.

(Here, if Lmin − Lover does not divide n − Lmin we allow

the ℓ-suffix to contain a longer overlap with its preceding ℓ-
substring; in the sequel we assume for ease of presentation

that this does not occur, a fact that again shall not affect

our asymptotic analysis.) Since LLover

Lmin
(x) ∈ T Lover

Lmin
(x) for all

x ∈ Σn, observe that any (Lmin, Lover)-trace code C ⊆ Xn,k

satisfies

|C| 6
∣

∣

∣

{

LLover

Lmin
(x) : x ∈ Σn

}∣

∣

∣
; (1)

Applying the profile-vectors argument [5], we count the inci-

dences of each possible u ∈ ΣLmin in LLover

Lmin
(x) and observe

that the sum of incidences equals ⌈n/(Lmin − Lover)⌉; thus,

we have an embedding of
{

LLover

Lmin
(x) : x ∈ Σn

}

into







f : ΣLmin → N :
∑

u∈ΣLmin

f(u) =

⌈

n

Lmin − Lover

⌉







,

and therefore

|C| 6

(⌈

n
Lmin−Lover

⌉

+ qLmin − 1

qLmin − 1

)

6

(⌈

n
Lmin−Lover

⌉

+ qLmin

qLmin

)

. (2)

Before concluding this section we discuss the pertinent

notion of repeat-free strings [8], which we denote herein for

all ℓ < n by

RFℓ(n) ,
{

x ∈ Σn : xi+[ℓ] 6= xj+[ℓ], ∀i < j ∈ [n− ℓ+ 1]
}

.

It was observed in [29] that for x ∈ RFℓ(n), Lℓ
ℓ+1(x) 6=

Lℓ
ℓ+1(y) for all y ∈ Σn\{x}. A straightforward generalization

of the arguments therein demonstrates the following lemma.

Lemma 1 Given Lmin > Lover, for all x ∈ RFLover
(n),

there exists an efficient algorithm reconstructing x from any

(Lmin, Lover)-trace of x.

Proof: Let T be any (Lmin, Lover)-trace of x. For any

u ∈ T , suppose by negation that there exist v1,v2 ∈ T ,

v1 6= v2, such that the ℓi-suffix of vi equals the ℓi-prefix of

u, where ℓi > Lover, for i ∈ {1, 2}. Since v1 6= v2, they occur

in distinct locations in x, and in particular their min{ℓ1, ℓ2}-

suffix occurs in distinct locations; this in contradiction to x ∈
RFLover

(n). The same argument proves that there do not exist

v1,v2 ∈ T , v1 6= v2, such that the ℓi-prefix of vi equals the

ℓi-suffix of u, where again ℓi > Lover, for i ∈ {1, 2}.

Hence, matching prefix to suffix, of lengths at least Lover,

one reconstructs x from T . Equivalently, for each u ∈ T ,

finding the unique v ∈ T that contains the Lover-prefix of u

as a substring (which exists unless u is itself a prefix of x)

results with complete reconstruction. A naive implementation

requires O(n2Lover) run-time.

Further, we note that if lim inf Lover/ log(n) > 1, then [8]

showed that RFLover
(n) forms a rate 1 − on(1) code in Σn

with an efficient encoder/decoder pair; we summarize their

result in the following lemma.

Lemma 2 [8, Sec. V] For k = ⌈2 log log(n)⌉ there exists an

efficient encoder into RF⌈log(n)⌉+5(k+2)(n), which in addition

produces strings containing no (2k + 2)-length run of zeros.

Redundancy is introduced only in the initialization phase

encoding into

Z(n, k) , {u ∈ Σn : u has no length-k run of zeros}

(this is the well-understood Run-length-limited (RLL) con-

straint; see, e.g., [18, Sec. 1.2]).

Further, an efficient decoder exists for the provided encoder.

Analysis of the asymptotic rate achieved by the encoder of

Lemma 2 is given in the following lemma.

Lemma 3 There exist encoders into Z(n, k) requiring
⌈

q
q−2n/q

k
⌉

redundant symbols for q > 2 [31, Lem. 5], or

2
⌈

2n/2k
⌉

for q = 2 [15, Sec. III].



For our purposes, however, it will be beneficial to observe

that the arguments used in [8, Sec. V] apply without change

to any other choice of k, resulting in the following corollary.

It demonstrates that RFLover
(n) forms a rate 1− on(1) code

in Σn as long as Lover − log(n) = ω(1).

Corollary 4 For ℓ(n) = ⌈log(n)⌉+ ωn(1) and any

t 6 2⌊(ℓ(n)− ⌈log(n)⌉)/5⌋ − 3

there exists an efficient encoder/decoder pair into RFℓ(n)(n),
producing strings containing no t-length run of zeros, and

requiring at most

⌈

q2

q−2q
−⌊t/2⌋n

⌉

redundant symbols for q > 2

or 2
⌈

4 · 2−⌊t/2⌋n
⌉

symbols for q = 2, i.e., rate 1−On(q
−t/2).

Proof: For any s 6 ⌊(ℓ(n)− ⌈log(n)⌉)/5⌋ − 2, letting

k = s in Lemma 2 produces ℓ′-repeat-free strings, for some

ℓ′ 6 ℓ(n), hence in particular also ℓ(n)-repeat-free strings,

containing no (2s+ 2)-length run of zeros.

Letting s , ⌊t/2⌋ − 1 we encode ℓ(n)-repeat-free strings

containing no t-length run of zeros. Finally, the encoders of

Lemma 3 then require the claimed redundancy.

Given Corollary 4 and the preceding discussion, we fo-

cus in the sequel on the complement, unsolved case of

lim supLover/ log(n) 6 1.

III. BOUNDS

In this section we demonstrate an upper bound on the

achievable asymptotic rate of (Lmin, Lover)-trace codes.

Lemma 5 If Lmin = a log(n)+On(1) and Lover = γLmin+
On(1), for some a > 1 and 0 < γ 6 1

a , then any

(Lmin, Lover)-trace code C ⊆ Σn satisfies

R(C) 6
1− 1/a

1− γ
+O

(

log log(n)

log(n)

)

.

(Note that
1−1/a
1−γ 6 1 if and only if limLover/ log(n) = γa 6

1.)

Proof: Observe for v > u > 0 that

log

(

u+ v

u

)

< log
(u+ v)u

u!
< log

((

e
u (u + v)

)u)

= u
(

log(e) + log
(

u+v
u

))

= u
(

log(e) + log
(

v
u

)

+ log
(

u+v
v

))

6 u
((

1 + u
v

)

log(e) + log
(

v
u

))

6 u
(

2 log(e) + log
(

v
u

))

.

Letting v , qLmin and u , ⌈n/(Lmin − Lover)⌉, we observe

that log( vu ) = O(log(n)) and hence by Eq. (2) we have

log|C| 6 n
Lmin − log(n) + log(Lmin − Lover) + 2 log(e)

Lmin − Lover

+O(log(n))

= n

(

Lmin − log(n)

Lmin − Lover
+O

(

log log(n)

log(n)

))

= n

(

1− 1/a

1− γ
+O

(

log log(n)

log(n)

))

.
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Figure 1. Index generation. Each index ci is first partitioned into F + 1
non-overlapping segments of length f(n). Then, each of the segments is
concatenated with a single 1 in each edge.

In particular, Lemma 5 implies the following lower bound

on Lmin for the existence of codes with asymptotically non-

vanishing rates.

Corollary 6 If lim supn Lmin/ log(n) 6 1, then R(C) =
on(1) for any (Lmin, Lover)-trace code C ⊆ Σn.

IV. CONSTRUCTION

In this section we present an efficient encoder for

(Lmin, Lover)-trace codes, achieving asymptotically optimal

rate, for the case lim supLover/ log(n) 6 1. Throughout the

section, we let Lmin , ⌈a log(n)⌉ and Lover , ⌈γLmin⌉, for

some a > 1 and 0 < γ 6 1/a. Further, we let f be any

function satisfying f(n) = ω(1) and f(n) = o(log(n)), and

finally I ,
⌈

1−γa
1−γ log(n) + (log(n))0.5+ǫ

⌉

for some small

ǫ > 0. In the sequel we tacitly assume that qILmin divides n.

Construction A The construction is based on the following

two ingredients:

• Index generation. Let (ci)i∈[qI ], ci ∈ ΣI be indices

in ascending lexicographic order. We encode each ci

independently as follows (see Figure 1). Denoting F ,
⌈I/f(n)⌉−1, we partition ci into F +1 non-overlapping

segments; more formally, define
{

c
(k)
i

}

k∈[F ]
⊆ Σf(n),

and c
(F )
i ∈ ΣI mod f(n), by

c
(0)
i ◦ c

(1)
i ◦ · · · ◦ c

(F )
i = ci.

Lastly, denote c
′
i
(k) , 1 ◦ c

(k)
i ◦ 1 ∈ Σf(n)+2 (similarly,

c
′
i
(F )). We refer to ci (or simply i) as an index in the

construction, and to
{

c
′
i
(k)
}

k∈[F+1]
as segments of an

encoded index.

• Repeat-free (RF) encoding. For ℓ ∈ N, we use an RF

encoder which receives strings of length m and returns

strings of length Nn,ℓ(m) which contain no repeated

substrings of length ℓ, and no zero-runs of length f(n)
(see Corollary 4). We denote such an encoder by ERF

m,ℓ .



The constructed code, denoted by CA(n), is carried as

follows. Denote

r , f(n) + 3 + (F + 1)(f(n) + 2),

ℓ ,

⌈

Lover − 2f(n)− 5

1 + (f(n) + 2)
/⌊

Lmin−r
F+1

⌋

⌉

.

Let m be an integer such that

Nn,ℓ(m) = q−In(1− r/Lmin).

(See the proof of Theorem 8 for an explanation of why such m
exists for the choices of n, Lmin, f(n), I, r, ℓ.) An information

string x ∈ ΣqIm is first partitioned into qI non-overlapping

segments x = x0 ◦ · · · ◦ xqI−1, where xi ∈ Σm for each

i ∈ [qI ]. Each xi is then independently encoded into a string

zi of length q−In as explained below; the motivation for

this step, which we later describe more formally, is to satisfy

two properties: (i) the index i can be decoded from any

Lmin-substring of zi; and (ii) the string zi can be uniquely

reconstructed from an (Lmin, Lover)-trace of zi. Lastly, we let

EncA(x) , z = z0 ◦ · · · ◦ zqI−1.

The encoding xi 7→ zi, for all i ∈ [qI ], is performed as

follows (see Figure 2).

1) Let yi , ERF
m,ℓ (xi), where yi ∈ ΣNn,ℓ(m).

2) Partition yi into n/(qILmin) non-overlapping segments

of length Lmin − r (recall (Lmin − r)n/(qILmin) =
Nn,ℓ(m)) by denoting

yi = yi,0 ◦ yi,1 ◦ · · · ◦ yi,n/(qILmin)−1.

3) For all j ∈ [n/(qILmin)]:

a) Partition each yi,j into F+1 non-overlapping segments

of equal lengths (up to ±1, if necessary)

yi,j = y
(0)
i,j ◦ y

(1)
i,j ◦ · · · ◦ y

(F )
i,j .

b) Combine
{

y
(k)
i,j : k ∈ [F + 1]

}

with segments of the

encoded index i, as follows. Define for all k ∈ [F +1]

z
(k)
i,j , y

(k)
i,j ◦ c′i

(k),

then

zi,j ,

{

10f(n)11 ◦ z
(0)
i,j ◦ · · · ◦ z

(F )
i,j , j = 0;

10f(n)01 ◦ z
(0)
i,j ◦ · · · ◦ z

(F )
i,j , j > 0

(where we refer to the substrings 10f(n)01, 10f(n)11
as synchronization markers).

4) Concatenate

zi , zi,0 ◦ · · · ◦ zi,n/(qILmin)−1.

�

Before we prove the correctness of Construction A, we first

analyze R(CA).

Lemma 7 1) r = I + 2I
f(n) + 2f(n) +O(1).

2) Denoting λ , 1− I
Lmin

, we have ℓ = λLover −O(f(n)).

Figure 2. Encoding xi into zi, as detailed in Construction A.

Based on these properties, we have the following theorem.

Theorem 8 Letting f(n) ,
⌈

√

log(n)
⌉

we have

red(CA(n)) 6 n

(

1/a− γ

1− γ
+

1/a

(log(n))0.5−ǫ

+O

(

1
√

log(n)

))

.

Proof: Observe that

red(CA(n)) = qI
(

(Nn,ℓ(m)−m) +
n

qILmin
r

)

.

Recalling qINn,ℓ(m) =
(

1− r
Lmin

)

n, we observe

log(Nn,ℓ(m)) = log(n)− I + log

(

1−
r

Lmin

)

=
(a− 1)γ

1− γ
log(n)− (log(n))0.5+ǫ +O(1)

whereas by part 2 of Lemma 7

ℓ =

(

1−
1/a− γ

1− γ
−

(log(n))ǫ

a
√

log(n)

)

γa log(n)−O
(

√

log(n)
)

=
(a− 1)γ

1− γ
log(n)− γ(log(n))0.5+ǫ −O

(

√

log(n)
)

.

Hence

ℓ− log(Nn,ℓ(m)) = (1− γ)(log(n))0.5+ǫ −O
(

√

log(n)
)

and for sufficiently large n,

f(n) 6 2⌊(ℓ− ⌈log(Nn,ℓ(m))⌉)/5⌋ − 3,

satisfying the condition of Corollary 4. We can therefore

efficiently encode yi = ERF
m,ℓ (xi) (and vice versa, decode

xi) while attaining

Nn,ℓ(m)−m 6 O
(

q−f(n)/2Nn,ℓ(m)
)

.



It follows that

red(CA(n)) 6 qI + n

(

r

Lmin
+O

(

q−f(n)/2
)

)

.

By part 1 of Lemma 7,

r

Lmin
=

1/a− γ

1− γ
+

1/a

(log(n))0.5−ǫ
+O

(

1
√

log(n)

)

,

satisfying the claim.

We note that the choice f(n) =
⌈

√

log(n)
⌉

in Theorem 8

is optimal, since ǫ in Construction A must satisfy ǫ >

max
{

log(f(n))
log log(n) , 1−

log(f(n))
log log(n)

}

− 0.5.

Finally, we prove the correctness of Construction A. We

begin with two technical lemmas.

Lemma 9 Every Lmin-substring u of z contains as subse-

quences at least an (I − µ)-suffix of ci, and an µ-prefix of

either ci or ci+1, for some i ∈ [qI ] and µ ∈ [I], in identifiable

locations.

Proof: For all i ∈ [qI ] and j ∈ [n/(qILmin)], observe
∣

∣yi,j

∣

∣ = Lmin − r by construction. Since
∣

∣c
′
i
(k)
∣

∣ 6 f(n) + 1
for all k ∈ [F + 1], we have by part 3 of Construction A that

|zi,j | 6
∣

∣yi,j

∣

∣+(f(n)+3)+(F +1)(f(n)+2) =
∣

∣yi,j

∣

∣+r =
Lmin.

Next, observe that instances of synchronization markers

only appear in z at the beginning of {zi,j}i,j . From the

last paragraph, either u contains a complete synchronization

marker as substring, or it contains a suffix-prefix pair whose

concatenation is an instance of a synchronization marker; in

both cases, the exact locations in which symbols of the indices
{

c
′
i
(k)
}

appear can be determined. Extracting
{

ci
(k)
}

, these

contain a suffix of ci and a prefix of either ci, ci+1 (depending

on whether u is a substring of zi for some i) whose combined

lengths is I , again since for all i, j, |zi,j | 6 Lmin and zi,j

contains all symbols of ci. Taking µ ∈ [I] to be the length of

the prefix (µ = 0 indicates the possibility that all symbols of

the same index appear in u) concludes the proof.

Lemma 10 Every Lover-substring v of z contains at least ℓ
consecutive symbols of y , y0 ◦ · · · ◦ yqI−1.

Proof: At worst, v either begins or ends with a complete

instance of a synchronization marker; hence the remaining

Lover−f(n)−3 symbols are sampled from the z
(k)
i,j segments,

and again, at worst end with a complete segment of an encoded

index. Since
∣

∣c
′
i
(k)
∣

∣ 6 f(n) + 2 and
∣

∣y
(k)
i,j

∣

∣ >
⌊

Lmin−r
F+1

⌋

for

all i, j, k, v contains at least
⌈

Lover − 2f(n)− 5

1 + (f(n) + 2)
/⌊

Lmin−r
F+1

⌋

⌉

= ℓ

consecutive symbols of y.

Combining both lemmas, we have the following theorem.

Theorem 11 For all admissible values of n, the code CA(n)
is an (Lmin, Lover)-trace code.

Proof: Take z ∈ CA(n) and let T ∈ T Lover

Lmin
(z) be any

(Lmin, Lover)-trace of z.

For u ∈ T , we extract the (I − µ)-suffix of ci, and an µ-

prefix of either ci or ci+1, for some i, guaranteed by Lemma 9.

Observe that if this prefix belongs to ci+1, then u also contains

a complete synchronization marker 10f(n)11 (the instance

appearing as prefix of zi+1), hence these two cases may be

distinguished. Further, note that the µ-prefix of ci+1 equals the

µ-prefix of ci, unless the (I − µ)-suffix of ci is the greatest

element of ΣI−µ (in lexicographic order). In both cases, one

can correctly deduce that the location of u in z begins in the

segment zi. It is therefore possible to partition T by index i
(corresponding to the starting location of each substring).

For each substring u of index i, intersecting both yi,yi+1,

u must contain a complete synchronization marker 10f (n)11
(the instance appearing as prefix of zi+1); hence its location in

u implies the exact location of u in z. For all other substrings

of index i, it holds by Lemma 10, and since each yi is ℓ-
repeat-free, that there exist a unique way to concatenate these

substrings (excluding overlap) as shown in Lemma 1.

Finally, once z is reconstructed we may extract {yi}i∈[qI ],

then decode {xi}i∈[qI ] with the decoder of ERF
m,ℓ .
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