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Abstract— A new family of codes, called clustering-correcting
codes, is presented in this paper. This family of codes is motivated
by the special structure of the data that is stored in DNA-based
storage systems. The data stored in these systems has the form
of unordered sequences, also called strands, and every strand is
synthesized thousands to millions of times, where some of these
copies are read back during sequencing. Due to the unordered
structure of the strands, an important task in the decoding
process is to place them in their correct order. This is usually
accomplished by allocating part of the strand for an index.
However, in the presence of errors in the index field, important
information on the order of the strands may be lost. Clustering-
correcting codes ensure that if the distance between the index
fields of two strands is small, their data fields have large distance.
It is shown how this property enables to place the strands together
in their correct clusters even in the presence of errors. We present
lower and upper bounds on the size of clustering-correcting codes
and an explicit construction of these codes which uses only a
single symbol of redundancy. The results are first presented for
the Hamming metric and are then extended for the edit distance.

Index Terms— DNA, indexes, noise measurement, encoding,
decoding, error correction codes, DNA-based storage systems,
unordered sequences, clusters.

I. INTRODUCTION

THE idea of using DNA molecules as a volume for storing
data was first introduced in 1959 [9]. DNA molecules

have the unique qualities of density and durability that make
them an attractive solution for storing archivable data. In 1990,
the human genome project was initiated with the objective of
determining the DNA sequence of the entire human genome,
leading to a valuable progress in DNA sequencing and assem-
bly methods. The two main DNA manipulation processes for
data storage are synthesis and sequencing. DNA synthesis
hereby is the process of creating DNA molecules. Current
synthesis methods allow to chemically synthesize arbitrary
single-stranded DNA sequences of length a few hundreds [10].
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This process results in a DNA pool which consists of all the
synthesized strands. Synthesis thus is the process to write data
to a DNA storage system. On the other hand, sequencing is
the process of reading sequences from the DNA pool.

A rapid growth in synthesis and sequencing technologies
has paved the way for the development of non-volatile data
storage based on DNA molecules, rendering it a compet-
itive candidate for future archiving technologies. The first
large-scale experiments that demonstrated the potential of
in vitro DNA storage were reported by Church et al. who
recovered 643KB of data [5] and Goldman et al. who accom-
plished the same task for a 739KB message [11]. However,
in both of these works the data was not completely recovered
successfully due to the lack of using the appropriate coding
solutions to correct errors. Since then, several more groups
have demonstrated the ability to successfully store data of
large scale using DNA molecules; see e.g. [1], [2], [8],
[18], [28]. Other works developed coding solutions which are
specifically targeted to correct the special types of errors inside
DNA-based storage systems, e.g., [4], [13]–[17], [19], [23],
[24], [26]–[28].

In the experiment by Church et al. 10-bit errors occured
and Goldman et al. lost two strands of 25 nucleotides. Later,
in [29], Grass et al. reported the first system with a usage of
error-correcting codes in DNA-based storage and managed to
perfectly recover an 81KB message. Bornholt et al. similarly
retrieved a 42KB message [2]. Since then, several groups have
built similar systems, storing even larger amounts of data.
Among these, Erlich and Zielinski [8] stored 2.11MB of data
with high storage rate, Blawat et al. [1] successfully stored
22MB, and more recently Organick et al. [18] stored 200MB.
Yazdi et al. [28] developed a method that offers both random
access and rewritable storage.

A DNA storage system consists of three steps. (see Fig. 1).
First, a DNA synthesizer produces strands that contain the
encoded data to be stored in DNA. In order to produce strands
with an acceptable error rate, the length of the strands is
typically limited to no more than 250 nucleotides. The second
part is a storage container that stores the DNA strands in
an unordered manner. The third part is a DNA sequences
that reads back the strands and restores the original, digital,
data from them. The encoding and decoding are two external
processes to the system that convert the data to DNA strands
and back. The structure of a DNA storage system is different
from all other existing storage systems. Since the strands are
stored in an unordered manner, it is unclear what part of the
data each strand represents, even if no error occurred. For
more details we refer the reader to [12], [16] and referencers
therein. Storing DNA strands in a way that will allow to
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Fig. 1. Illustration of a DNA-based storage system.

reconstruct them back in the right order is an important task.
The common solution to address this problem is to use indices
that are stored as part of the strand. Each strand is prefixed
with some nucleotides that indicate the strand’s location, with
respect to all other strands. In DNA storage systems, every
strand is synthesized thousands of times (or even millions) and
thus more than a single copy of each strand is read back upon
sequencing. Thus, the first task based on the sequencer’s input
is to partition all the reads into clusters such that all output
strands at each cluster are copies of the same information
strand. Indices can be handy in this step as well, as a possible
solution is to use the indices in order to identify the strands
and cluster them together.

Although using indices is a simple solution it has several
drawbacks. One of them is that in case of an error within the
index, important information on the strand’s location is lost as
well as the ability to place it in the correct position between the
other strands. Also in the presence of errors, clustering based
on the index may result with mis-clustered strands which can
cause errors in the recovered data. Hence, finding codes and
algorithms for the clustering process is an important challenge.
One solution is to add redundancy to the index part in order to
correct potential errors in the index. While this technique can
be used for random-access [3], this will incur an unavoidable
reduction in the storage rate of the DNA storage system.

In this paper a new coding scheme, called clustering-
correcting codes, is presented which enables to cluster all
strands in the right clusters even with the presence of errors in
the indices (see Fig. 2), while the redundancy is minimized.
We will show how clustering-correcting codes can also be used
to correct the errors in the indices. In fact, for a large range of
parameters clustering and index-correction can be done with
only a single symbol of redundancy for all the strands together.

The rest of the paper is organized as follows. In Section II,
some useful definitions that will be used throughout
the paper are presented. In Section III, the family of
clustering-correcting codes and their capabilities are presented.
In Section IV, we present explicit and asymptotic lower
and upper bounds on the size of clustering-correcting codes.
In Section V, we present an explicit construction of these codes

which uses only a single symbol of redundancy. In Section VI,
we describe the modifications needed to extend our solution
to work under the edit distance as well. Lastly, Section VII
concludes the paper.

II. DEFINITIONS AND PRELIMINARIES

The following notation will be used throughout the paper.
For a positive integer n, the set {0, 1, . . . , n − 1} is denoted
by [n]. Let [q] be the alphabet {0, 1, . . . , q − 1}. For two
vectors x, y ∈ [q]n we denote the i-th symbol of x by xi.
The subvector of x starting at the i-th index of length � is
denoted by x[i,�]. We also denote the length of the vector x
by |x|. The Hamming distance between x and y is denoted
by dH(x, y) and the weight of the symbol s ∈ [q] in x is
w#s(x) � |{i|xi = s}|. The radius-r ball of a vector x ∈ [q]n

is Br(x) = {y | dH(x, y) � r}. Since the size of the ball
Br(x) does not depend on the choice of x in the Hamming
metric we denote this size by Br(n) �

∑r
i=0

(
n
i

)
(q − 1)i

where n denotes the length of x. The function

Hq(x) = x logq(q − 1)−x logq(x) − (1− x) logq(1 − x)

for 0 � x � 1 denotes the q-ary entropy function, and the
inverse function H−1

q (x) for 0 � x � 1 is defined to return
values between 0 and q−1

q .
Assume M strands are stored in a DNA-based storage

system where the length of every strand is L. We will assume
that M = qβL for some 0 < β < 1 and for simplicity, it is
assumed that βL is integer. For any integer i ∈ [M ], its q-ary
representation of length logq(M) is denoted by indi. Every
length-L strand s that will be stored in the system is of the
form s = (ind, u), where ind is the length-logq(M) index field
of the strand (the representation of a number between 0 and
M − 1 using an alphabet of size q) and u is the data field of
L− logq(M) symbols that are used to store the information or
the redundancy of an error-correcting code and other coding
schemes. Every stored message will have M strands of this
form and the space of all possible messages that can be stored
in the DNA storage system is denoted by

XM,L={{(ind0,u0), . . . , (indM−1,uM−1)}|uj∈[q]L−logq(M)}.
Codes that can correct errors in such sets have been pro-

posed in [30]. Clearly, as the index fields are unique and
the data fields are not required to be distinct, |XM,L| =
qM(L−logq(M)). Under this setup, a code C will be a subset
of XM,L, where each codeword S of C is a set of the form
S = {(ind0, u0), . . . , (indM−1, uM−1)}. Note that, due to
indexing, the strands in S are unique and therefore S is
indeed a set. For shorthand, in the rest of the paper the term
L− logq(M) = L(1− β) will be abbreviated by LM .

When a set S = {(ind0, u0), . . . , (indM−1, uM−1)} is
synthesized, each of its strands (indi, ui), which are called
the input strands, has thousands to millions of copies and
during the sequencing process a subset of these copies is read.
Hence, the sequencer’s output is another set G of some R
strands, called the output strands, where R is significantly
larger than M . Each output strand in the set G is a copy of one
of the input strands in S, however with some potential errors.
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We consider here only substitution errors while extensions for
deletions, insertions, and more generally the edit distance will
be analyzed in Section VI of the paper. Formally, we define
the channel model as follows.

Definition 1: A DNA-based storage system is called a
(ti, td)-DNA system if it satisfies the following property: If the
output strand (ind′, u′) ∈ G is a noisy copy of the input strand
(ind, u) ∈ S, then dH(ind, ind′) � ti and dH(u, u′) � td.

That is, the index field has at most ti substitutions while
the data field has at most td substitutions. Since the set G
contains several noisy copies of each input strand in S, the
first task in the decoding process is to partition the set of all
R output strands into M cluster sets, such that the output
strands in every cluster are noisy copies of the same input
strand. Since every strand contains an index, the simplest way
to operate this task is by partitioning the output strands into
M sets based upon the index field in every output strand. This
process will indeed be successful if there are no errors in the
index field of every output strand, however other solutions are
necessary since the error rates in DNA storage systems are
not negligible [12]. Another approach to cluster the strands
is based upon the distances between pairs of output strands,
as was studied in [19]. This approach sorts the strands into
buckets based on hash values and then iteratively merges
clusters based on the similarity of some representatives.

III. CLUSTERING-CORRECTING CODES

In this work, we propose a different approach that allows
accurate clustering based on indices. In contrast to common
clustering methods, we use the fact that it is possible to
influence the original strands by encoding them in a carefully
chosen manner. We will design the sequences such that we can
perform time-efficient clustering described in the following.
First, we cluster the output strands based on the indices of
the output strands. Then, we scan for output strands which
were mis-clustered, that is, were placed in the wrong cluster
because of errors in their index field. This is accomplished
by checking the distances between the output strands in every
cluster in order to either remove completely output strands that
were incorrectly placed in a cluster due to errors in their index
or move them to their correct cluster set. Since we compute
the distances only between pairs of strands that were placed
in the same cluster (and not between all pairs of strands),
this step will result in a small complexity. In fact, there is no
need to take into account all pairs of strands in a cluster for
this operation to succeed. That is, the complexity of this step
can be reduced even more. However, in order to succeed in
this new approach we need the strands stored in the set S to
satisfy several constraints. These constraints will be met by
the family of clustering-correcting codes which are presented
in this paper. Note that our approach is different from previous
work in several aspects. First, while most clustering methods
rely on (pseudo-)randomness of the stored DNA strands for
good clustering properties, we encode the original strands to
ensure that the strands will have properties that allow accurate
and fast clustering. Further, to the best of our knowledge, this
is the first work that provides guarantees on perfect clustering
based on an adversarial channel model.

We proceed by formally defining clustering accuracy. Let
Ci0 , . . . , CiM−1 be an arbitrary partition of the output strands
G into M clusters. Also let C′

0, . . . , C
′
M−1, k ∈ [M ] be the

correct clusters, i.e., C′
k is the cluster of all strands that are

noisy copies of (indk, uk). We define two types of clustering
accuracy: accurate-clustering and complete-clustering.

Definition 2 (Accurate Clustering): A partition is an
accurate-clustering if the multisets of clusters agree, i.e.,
there exists a perfect matching between the partitioned
{Ci0 , . . . , CiM−1} clusters and the correct clusters
{C′

0, . . . , C
′
M−1}.

Remark 1: Upon reading the strands, we read multiple
copies of each strand, that may be noisy. Hence, it is possible
that the exact same strand appears more than once in a cluster.
For this reason, a cluster Ci is represented by a multiset.

Definition 3 (Complete Clustering): A partition is a com-
plete clustering if it is an accurate clustering and also ih = h
for all h ∈ [M ]. That is, the original index of each output
strand is known.

The main idea to move strands which were misplaced in
a cluster due to errors in their index field works as follows.
Assume the strand si = (indi, ui) has a noisy copy of the form
s′i = (ind′i, u′

i), and let j be such that sj = (indj , uj) and
indj = ind′i. We need to make sure that the distance between
u′

i and uj is large enough as this will allow to identify that
the output strand s′i is erroneous and therefore does not belong
to the cluster of index indj ; see Fig. 2. We will be interested
in either identifying that the output strand s′i does not belong
to this cluster or more than that, place it in its correct cluster.
This motivates us to study the following family of constrained
codes.

Definition 4 ((τi, τd)-Clustering Constraint): A set S =
{(ind0, u0), . . . , (indM−1, uM−1)} ∈ XM,L is said
to satisfy the (τi, τd)-clustering constraint if for
all (indi, ui), (indj , uj) ∈ S in which i �= j and
dH(indi, indj) � τi, it holds that dH(ui, uj) � τd.

A code C ⊆ XM,L is called an (τi, τd)-clustering-
correcting code (CCC) if every S ∈ C satisfies the (τi, τd)-
clustering constraint.

The redundancy of a code C ⊆ XM,L will be defined by

r = MLM − logq |C|.
Remark 2: A similar name, Cluster-Correcting Codes has

been used in other works for codes which are capable to
correct a cluster of errors in 2-dimensional arrays [21]. In this
work we are dealing with a different kind of clustering,
regarding partitioning DNA strands into groups defined by
their original data.

Our goal in this work is to find (τi, τd)-CCCs for all
τi and τd. We denote by AM,L(τi, τd) the size of the
largest (τi, τd)-CCC in XM,L, and by rM,L(τi, τd) the optimal
redundancy of an (τi, τd)-CCC, so rM,L(τi, τd) = MLM −
logq(AM,L(τi, τd)).

Before we state our main results about the clustering proper-
ties of CCCs, we introduce two properties on the clusters after
the index-based clustering. Under these conditions, we achieve
even stronger clustering properties. The first property is called
majority property and is defined as follows. Let the cluster Ci
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Fig. 2. Exemplary realization of the DNA channel model. A set S of M = 4 binary strands is stored and R = 6 strands are drawn with errors (highlighted
in bold). The strands are clustered according to their indices. The outlier can be identified as it has large distance w.r.t. all other strands in the cluster and be
put into the correct cluster.

be the group of all strands read with index indi (with potential
errors in the index).

Definition 5 (Majority Property): Let C = {C′
0, . . . ,

C′
M−1} be a clustering of strands and let j ∈ [M ]. Denote by

Xj the number of strands in Cj whose index has been received
without errors.We say that the set C satisfies the majority
property if it holds that Xj � |Cj|

2 for all j ∈ [M ]. In other
words, A clustering set has the majority property if in every
cluster the majority of the strands have the correct index, i.e.,
they have no error in the index.

Alternatively, we will discuss a weaker property, which will
be referred to as the dominance property. Assume we assign
a color to each strand in Ci based on the index this strand
originated from, so strands that originated from the same index
receive the same color.

Definition 6 (Dominance Property): Let C = {C′
0, . . . ,

C′
M−1} be a clustering of strands and let j ∈ [M ]. For all

i ∈ [|Cj |], an element si ∈ Cj is of the form (indj , u
′
ki

) where
ki ∈ [M ]. Every such strand si = (indj , u

′
ki

) is a noisy copy of
the strand (indki , uki). Denote by Xj the number of strands in
Cj whose index has been received without errors. We say that
the set C satisfies the dominance property if for all i, j ∈ [M ]
it holds that Xj � |{(indj , u

′
k) ∈ Cj | k = i}|. In other

words, A clustering set satisfies the dominance property if
the dominant color, which has the most occurrences, in every
cluster Ci is assigned to the strand whose index is correct,
which is indi.

That is, if a cluster could be partitioned into subsets based
on the correct origin of each strand (their true index), the
largest subset in the cluster contains the strands with the
correct index field which, are therefore clustered correctly.
However, partitioning a cluster this way is not necessarily pos-
sible in general but we will show how this can be accomplished
by using clustering-correcting codes. Lastly, note that majority
also implies dominance.

Remark 3: The dominance property can be motivated using
the example of a binary symmetric channel (BSC). Assume
that the strands are received as a result of transmitting the
original strands over a BSC with error probability α. Then,
the index of a strand will be received correctly (and thus the
strand is clustered correctly) with probability (1− α)logq(M).
However, a strand from another index will be misclustered into

this cluster with probability (1−α)logq(M)−dαd, where d is the
Hamming distance between the two indices. This probability

is smaller by a factor
(

α
1−α

)d

and therefore, the dominant
fraction of strands will be from the correct index.

An expression for the probability that a read cluster sat-
isfies the dominance property is derived as follows. Let
R0, . . . , RM−1 be the number of copies read for each strand
encoded in the DNA system. We consider a binary symmetric
channel, therefore, τi = logq(M), as all the symbols in an
index field can be erroneous. We compute the probability that
the cluster of the j-th strand satisfy the dominance property.
Denote the set of indices of the neighbor clusters of the j-th
index with Nj = {k| dH(indj , indk) � τi, indk �= indj}.
τi = logq(M) and therefore it holds that Nj = {k|0 � k <
M, k �= j}. Let k ∈ Nj . The probability that a strand from
the k-th cluster was misclustered into the j-th cluster is

Pk = (1 − α)logq(M)−dH(indk,indj)αdH(indk,indj).

Assume for all k ∈ Nj that Xk represents the number of
copies of the k-th strand ended up in the j-th cluster. Also let
X = (X0, . . . , Xj−1, Xj+1, . . . , XM−1) The probability that
the j-th cluster satisfies the dominance property is

Dj(X) =
Rj∑
i=I

(
Rj

i

)
(1−α)logq(M)·i ·

(
1−(1−α)logq(M)

)Rj−i

for I = maxk∈Nj {Xk} + 1. Let X = [R0] × · · · × Rj−1 ×
Rj+1 × · · · × [RM−1], and combining these together, the
requested probability is given by:∑

X∈X
Dj(X) ·

∏
k∈Nj

(
Rk

Xk

)
Pk

Xk · (1 − Pk)Rk−Xk .

In Figure 3 we plot the probability that a cluster satisfies
the dominance property as a function of α.

For the rest of this section, the integers M, L, q, τi, τd are
fixed, and C is an (τi, τd)-CCC. The next theorem states the
clustering capabilities of CCCs.

Theorem 7: Assume that a set S ∈ C is stored in a (ti, td)-
DNA system where 4td < τd. Then, the following properties
hold:

1) If 4ti � τi then accurate clustering of all output strands
can be accomplished.
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Fig. 3. The probability that a cluster satisfies the dominance property as a function of the probability that a bit is erroneous. The graphs were generated for
a DNA-system that contains 1024 strands (M = 1024) with a varying number of read strands in each cluster.

2) Under the dominance property, if 2ti � τi then complete
clustering of all output strands can be accomplished.

3) Under the majority property, if ti � τi then every
mis-clustered output strand, according to its index, can
be detected.

Before we prove the theorem, we start with two aux-
iliary lemmas that will be used in the proof of the
theorem.

Lemma 8: Assume that a set S ∈ C is stored in a (ti, td)-
DNA system. For i �= j, let (ind′i, u

′
i), (indj , u

′
j) be a noisy

copy of the strand (indi, ui), (indj , uj) respectively, such that
ind′i = indj . If ti � τi and 4td < τd, it holds that dH(u′

i, u
′
j) >

2td.
Proof: Since the data is stored in a (ti, td)-DNA system,

it holds that dH(indi, ind′i) = dH(indi, indj) � ti � τi and
dH(ui, u

′
i) � td. From the fact that S ∈ C we derive that

dH(ui, uj) � τd > 4td, and thus dH(uj , u
′
i) � dH(ui, uj) −

dH(ui, u
′
i) > 3td. Also, dH(uj , u

′
j) � td which yields that

dH(u′
i, u

′
j) � dH(uj , u

′
i)− dH(uj , u

′
j) > 2td.

Lemma 9: Assume that a set S ∈ C is stored in a (ti, td)-
DNA system. Let (ind′j , u

′
j), (ind′k, u′

k) be a noisy copy of the
strands (indj, uj), (indk, uk) respectively, such that ind′j =
ind′k. If 2ti � τi and 4td < τd, it holds that dH(u′

j , u
′
k) � 2td

if and only if indj = indk.
Proof: It holds that dH(indj , ind′j) � ti � τi

2 and
also, dH(indk, ind′k) � ti � τi

2 . As ind′j = ind′k it holds
that, dH(indj , indk) � τi, and therefore they need to satisfy
the clustering constraint, that is, for indj �= indk it holds
that dH(uj , uk) � τd. Similarly to Lemma 8 it holds that
dH(u′

j , u
′
k) > 2td. Hence, if dH(u′

j , u
′
k) � 2td then indj =

indk. For the opposite direction, if indj = indk, since the data
is stored in a (ti, td)-DNA system, it holds that dH(uj , u

′
j) �

td and dH(uk, u′
k) � td. Therfore dH(u′

j , u
′
k) � 2td.

Proof of Theorem 7: For convenience we prove the claims
at the opposite order.

3) Let (ind′i, u′
i) be a noisy copy of the strand (indi, ui) and

j �= i ∈ [M ] such that indj = ind′i. Let (indj , u
′
j) be a noisy

copy of the strand (indj , uj), that is, errors might occur in

the data field but not in the index field. Thus, from Lemma 8,
it holds that dH(u′

i, u
′
j) > 2td. On the other hand, the distance

between the data fields of the two strands that belong to the
same cluster is at most 2td as the data fields reside in the same
radius-td ball of the original data. That is, under the majority
property, a mis-clustered strand will have a distance larger than
2td from the majority of the strands in the cluster, and so it
can be removed instead of being mis-clustered. All remaining
strands have a correct index field and are thus placed in their
correct cluster.

2) Let (ind′i, u′
i), (ind′k, u′

k) be a noisy copy of (indi, ui),
(indk, uk) that ended up in the same cluster of the j-th strand,
respectively. That is, ind′i = ind′k = indj . According to
Lemma 9 it is deduced that dH(u′

i, u
′
k) � 2td if and only

if indi = indk. This way, each cluster can be partitioned
into mutually disjoint subsets, such that every subset contains
copies of the same information strand. At most one of those
subsets contains strands with the correct index. Therefore,
under the dominance property, it is possible to identify the
subset with the correct index, since it is the subset of the
largest size. For i ∈ [M ], the subset of index indi will be
denoted by Ci.

After applying this partitioning to all clusters we seek to
move subsets that are not dominant into their correct cluster.
Let W be one of those subsets. Also let s′i = (ind′i, u

′
i) ∈W

be a noisy copy of the strand si = (indi, ui). It holds that
dH(indi, ind′i) � ti, and hence, indi ∈ Bti(ind′i). In other
words Bti(ind′i) is the set of all candidates for the correct index
indi. As the partitioning to subsets was already completed,
for each indk ∈ Bti(ind′i) there exists some strand s′k =
(indk, u′

k) ∈ Ck. From Lemma 9 it holds that indk = indi

if and only if dH(u′
i, u

′
k) � 2td. At this point each cluster

contains strands with a single unique index. That is, going
through all index candidates and verifying this criteria, exactly
one of the candidates will match. Therefore, we can find
the correct cluster that the noisy strand s′i (and the subset
it represents) belongs to. Hence, the index fields of all the
output strands can be corrected, and the achieved clustering
will be complete.

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:36:05 UTC from IEEE Xplore.  Restrictions apply. 



SHINKAR et al.: CLUSTERING-CORRECTING CODES 1565

1) We first apply the same partitioning from the proof
of 2). This is possible to accomplish since 2ti < 4ti � τi.
Next, we seek to unify subsets that originated with the same
index. Let Wi, Wk be a subset of strands read with index field
ind′i, ind′k respectively. Also assume that ind′i, ind′k is a noisy
copy of indi, indk respectively. It holds that dH(ind′i, indi) � ti,
and dH(ind′k, indk) � ti. The subsets Wi, Wk should be unified
if and only if i = k. Note that in case i = k it holds
that dH(ind′i, ind′k) � dH(indi, ind′i) + dH(indk, ind′k) � 2ti.
Therefore, any subset Wk that is a candidate to be unified with
a subset Wi satisfies ind′k ∈ B2ti(ind′i). Let Wj be a subset
of strands read with index field ind′j which is a noisy copy
of indj . Assume Wj is a candidate, hence, ind′j ∈ B2ti(ind′i).
That is, dH(ind′j , ind′i) � 2ti. It holds that

dH(indi,indj)�dH(indi, ind′i)+dH(ind′i, ind′j)+dH(ind′j , indj),

and hence, dH(indi, indj) � 4ti � τi. In particular, any two
strands si = (ind′i, u

′
i) ∈ Wi and sj = (ind′j , u

′
j) ∈Wj satisfy

the clustering constraint. Furthermore, from Lemma 9, indi =
indj if and only if dH(u′

i, u
′
j) � 2td. Therefore, by measuring

the distance between their two data fields, it can be deduced
whether indi = indj . Note that a single comparison is enough
to determine if the two subsets should be combined. Repeating
the process for every two subsets that might be unified it is
possible to produce M clusters Ci0 , . . . , CiM−1 such that every
cluster Cij contains exactly the strands that originated from the
same input strand. However, the complete mapping between
the clusters and the indices is not guaranteed. Hence, it is
possible to output an accurate clustering. �

We note that as a result of this theorem, if the number of
errors is not too large, it is already possible to place every
output strand in its correct cluster. Note that in Theorem 7,
while the condition on the relation between ti and τi is relaxed
from the first to the third claim, the requirement on the number
of strands with the correct index in a cluster strengthens. Yet,
the best clustering output is guaranteed in the second claim
of Theorem 7. In this claim we could use the dominance
property instead of the stronger majority property as we also
assumed that 2ti � τi, which is a necessity to perform the error
correction of the indices and thus the clusters. On the other
hand, majority implies dominance and therefore this claim
works.

The third claim of Theorem 7 guarantees accurate cluster-
ing, that is, the index fields of the output strands may still
remain erroneous. Yet, it is still possible to reduce the set of
candidate indices for each cluster. Namely, let Ci0 , . . . , CiM−1

be an accurate clustering. The correct index of the cluster Cij

must belong to the following set of indices⋂
(indk,uk)∈Cij

Bti(indk).

The clustering algorithm according to Theorem 7 first
partitions the strands to clusters according to the indices
and then compares the distances only between strands in the
same cluster. According to Theorem 7, when reading data
stored with the (τi, τd)-clustering constraint, even if all index
fields are erroneous, it is possible to achieve an accurate
clustering. In this process strands which are read with the same

Algorithm 1 Error Identification for the Majority Property
Using the (τi, τd)− Clustering Constraint

Input: R read strands (indi0 , u0), . . . , (indiR−1 , uR−1) ∈
[q]L

Output: Clusters C0, . . . , CM−1

1: Ck ← {(indij , uj)|indij = indk}, 0 � k < M
2: for k ← 0, 1, . . . , M − 1 do
3: F ← Ck

4: while |F | > |Ck|/2 do
5: Pick (indk, u) ∈ Ck

6: F ← {(indk, v)|(indk, v) ∈ Ck ∧ dH(v, u) > 2td}
7: if |F | � |Ck|/2 then Ck ← Ck \ F else Ck ← F
8: end while
9: end for

index are compared to form a partitioning of the reads into
subsets. Then, comparisons between representatives of those
subsets are performed. The amount of comparisons in this last
step is independent of the number of output strands. Hence,
the amount of comparisons is minimized significantly with
respect to comparing between all pairs of all output strands.
In addition, if the dominance property holds, it is also possible
to correct all the index fields in all output strands while the
complexity is reduced even further.

From Theorem 7 we can derive two algorithms. The first
one, Algorithm 1, handles identification of errors in the
index field of the read strands under the majority property.
Algorithm 2, performs also the correction of the erroneous
indices and requires only the dominance property.

Assume that a set S ∈ C is stored in a (ti, td)-DNA system.
In addition, let R be the number of reads upon sequencing.

Theorem 10: Under the majority property, if ti � τi and
4td < τd then the output clusters C0, . . . , CM−1 of Algo-
rithm 1 contain only strands with the correct index. Further-
more, the complexity of Algorithm 1 isO(Bti(logq(M))·R·L)
symbol operations.

Proof: Algorithm 1 starts by iterating over the range of
possible indices. For each index k the algorithm first gathers
all output strands read with index field indk in Step 1. Then the
loop in Step 4 removes strands with errors in the index field out
of the cluster Ck . Thus, if Algorithm 1 terminates, the clusters
C0, . . . , CM−1 contain only strands with the correct index.
In every iteration of the while loop in Step 4 the algorithm
picks a strand (indk, u) in Step 5 from the cluster and
compares it with all other strands in this cluster. In Step 6 the
algorithm computes the set of all strands which the Hamming
distance between their data field and u is greater than 2td.
Lastly, according to Theorem 7, if the picked strand has the
correct index then the majority of the strands in the cluster
will not belong to the set F , hence |F | � |Ck|/2. Therefore,
in Step 7 strands that are not copies of the k-th input strand are
detected as erroneous and are removed from the cluster Ck.
Note also that when a strand with the correct index is picked,
all strands with errors in their index fields must be in F . When
picking such a strand, the condition of the while loop in Step 4
no longer holds and the while loop terminates. Furthermore,
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Algorithm 2 Error Correction for the Dominance Property
Using the (τi, τd)− Clustering Constraint

Input: R read strands (indi0 , u0), . . . , (indiR−1 , uR−1) ∈
[q]L

Output: Clusters C0, . . . , CM−1

1: I ← ∅
2: Ck ← {(indj , u)|indj = indk}, 0 � k < M
3: for i = 0, 1, . . . , M − 1 do
4: P ← {{(indj , v)| dH(v, u) � 2td}|(indi, u) ∈ Ck}
5: Ck ← argmax

C∈P
|C|

6: I ← I ∪ (P \ Ck)
7: end for
8: for W ∈ I, let (indi, u) ∈W do
9: for indj ∈ Bti(indi), let (indj , v

′
j) ∈ Cj do

10: if dH(v′
j , u) � 2td then

11: Cj ← Cj ∪ {(indj , v)|(indi, v) ∈W}
12: end if
13: end for
14: end for

a strand with the correct index will be picked after at most
|Ck|/2 iterations and therefore the algorithm terminates.

Next, for the complexity notice that Step 1 can be done with
one pass over all strands by reading the indices and moving the
strands to the matching clusters. Let I ′ = {indi1 , . . . , indik

}
be the set of the correct indices of the different strands in
Ck. In each iteration of the while loop in Step 4 we remove
from Ck at least one of the indices in I ′. This is true since all
strands in Ck which originated from the same input strand will
be removed together in Step 5. Since |I′| � Bti(logq(M)) we
can bound the number of iterations needed to successfully
complete the identification of the erroneous indices with
Bti(logq(M)). At the end of this process each cluster contains
only the strands that were read with an error-free index field.
Denote by C0, C1, . . . , CM−1 the different read clusters after
their initialization in Step 1, so it holds that

∑m−1
i=0 Ck = R.

The comparisons performed in Step 6 requires |Ck| · L sym-
bol operations. Therefore, the number of symbol operations
required to identify errors in the k-th cluster is

O(Bti(logq(M)) · |Ck| · L).

Summing up for all clusters, the overall complexity of the
algorithm is

O(Bti(logq(M)) · R · L).

Next, we present the second algorithm derived from Theo-
rem 7, which can correct errors in the index fields and provide
a complete clustering.

Theorem 11: Under the dominance property, if ti � τi/2
and 4td < τi then Algorithm 2 outputs clusters C0, . . . , CM−1

such that all strands in all clusters have correct index fields.
Furthermore, its complexity is

O(Bti(logq(M)) · L · (R+ Bti(logq(M)) ·M))

symbol operations.

Proof: Algorithm 2 starts by detecting which strands are
mis-clustered. The error identification process ends in Step 6.
Theorem 7 states that two strands originated from the same
index if and only if the Hamming distance of the data fields
between the two strands is at most 2td. Therefore, in Step 4
the cluster is partitioned into subsets based on the distances
between the data fields of all strands. Then the largest set in
the partition is selected as Ck in Step 5. In Step 6 the other
sets in the partition are stored in I so we can correct their
indices later on.

The partition of Ck can be done with O(Bti(logq(M))·|Ck|)
comparisons. This is done by picking a strand (indk, u) ∈ Ck

and computing the set F as done in Step 6 of Algorithm 1.
The set Ck \ F is exactly the subset in the partition that
contains (indk, u). Next, partition F recursively until there are
Bti(logq(M)) subsets in the partition. Hence, Bti(logq(M))
iterations. This process requires

O(Bti(logq(M)) · |Ck| · L)

symbol operations per cluster, and a total of

O(Bti(logq(M)) · R · L)

for all clusters together.
In Steps 8 to 11 the algorithm performs error correction

in the index fields of the erroneous strands. For every subset
W ∈ I, a strand is picked to be the representative of this
subset. Next its data field is compared against a strand from
each of the clusters that their index is in Bti(indi)). From
Theorem 7, the representative must have been originated in
one of those clusters. Thus, the single cluster Cj in Bti(indi))
that will match in Step 10 is the correct cluster for W .

The correction process requires Bti(logq(M)) comparisons
for each set in I. The size of I is at most M ·Bti(logq(M))
as the size of the partition in Step 4 is at most Bti(logq(M)).
That is, the error correction part requires

O((Bti(logq(M)))2 ·M · L)

symbol operations. Lastly, it is concluded that the overall
complexity of Algorithm 2 is

O(Bti(logq(M)) · L · (R+ Bti(logq(M)) ·M).

IV. BOUNDS

In this section, upper and lower bounds on the size of
the largest (τi, τd)-CCC AM,L(τi, τd) are presented. Recall
that LM = L(1 − β) and let Cn(d) be the size of the
largest length-n error-correcting code C ⊆ [q]n with minimum
Hamming distance d. For the rest of the section, let B1 =
Bτi(logq(M))−1, B2 = Bτd−1(LM ), leq = logq(exp(1)), and
it is also assumed that β < 1/2. For the rest of this section
we assume that B1 · B2 < qLM .

We start with an upper bound on the redundancy of CCCs.
Theorem 12: For all M, L, q, τi, and τd it holds that

AM,L(τi, τd) � qMLM

(
1− B1B2

qLM

)M−E
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and hence

rM,L(τi, τd) <
leq · (M − E)B1B2

qLM −B1B2
,

where E = Clogq(M)(τi + 1).
Proof: In order to verify the lower bound, we construct an

(τi, τd)-CCC C that will yield a lower bound on AM,L(τi, τd).
Let C1 ⊆ [q]logq(M) be a length-logq(M) error-correcting
code with minimum Hamming distance τi + 1 and cardinality
E = |C1| = Clogq(M)(τi + 1).

Each codeword S = {(ind0, u0), . . . , (indM−1, uM−1)} ∈
C is constructed in two steps. First, we choose the data field
of strands with indices that belong to the code C1, that is, all
strands of the form (ind, u) such that ind ∈ C1. There are
qLM options for each strand and thus (qLM )E options for the
first step. Since the Hamming distance between all pairs of
indices of these strands is at least τi + 1, their data fields can
be chosen independently.

For the rest of the strands we assume the worst case. That
is, for each strand left, all of its neighbors are chosen and
their radius-(τd− 1) balls are mutually disjoint. Therefore we
exclude all the data vectors in the balls of all the neighboring
indices. Thus, there are at least

qLM − (Bτi(logq(M))− 1) · Bτd−1(LM ) = qLM −B1B2

options to choose the data field of each remaining strand.
In conclusion, there are qLME

(
qLM −B1B2

)M−E
options

for choosing a valid set S ∈ C, and hence

AM,L(τi, τd) � qMLM

(
1− B1B2

qLM

)M−E

.

We can also deduce an upper bound on the redundancy

rM,L(τi, τd) = M · LM − logq(AM,L(τi, τd))

� −(M − E) · logq

(
1− B1B2

qLM

)

<
leq · (M − E)B1B2

qLM −B1B2
,

where here the inequality − logq(1 − x) � leq · x
1−x for all

0 < x < 1 is used.
The next corollary follows directly from Theorem 12.
Corollary 13: For M = qβL and all τd such that

τd � LMH−1
q

(
1− 2β

1− β
− logq(leq)

(1 − β)L
+

β

1− β
· Hq

(
τi

βL

))
it holds that rM,L(τi, τd) < 1.

Proof: From Theorem 12 it holds that

rM,L(τi, τd) <
leq · (M − E)B1B2

qLM −B1B2
,

where E = Clogq(M)(τi + 1). Hence it is enough to prove

that B1B2 � qLM

leq·(M−E)+1 . According to Lemma 4.7 in [20],

Br(n) � qn·Hq( r
n ) and so it is sufficient to show that

q
LMHq

�
τd−1
LM

�
� qLM

B1(leq·(M−E)+1) . Now, as M = qβL and
we assumed

τd � LMH−1
q

(
1− 2β

1− β
− logq(leq)

(1− β)L
+

β

1− β
· Hq

(
τi

βL

))
,

the following holds

Hq

�
τd − 1

LM

�
� 1 − 2β

1 − β
− logq(leq)

(1 − β)L
+

β

1 − β
· Hq

�
τi

βL

�

=
1

LM
·
�

LM − logq(M) − logq(leq) − logq(M) · Hq

�
τi

logq(M)

��

=
1

LM

·
�

LM − logq(M · leq) − logq(M) · Hq

�
τi

logq(M)

��

� 1

LM

· �LM − logq(M · leq) − logq(B1)
�

� 1

LM

· �LM − logq(1 + leq · (M − E)) − logq(B1)
�

.

Hence,

q
LMHq

�
τd−1
LM

�
� qLM

B1(leq · (M − E) + 1)
.

A similar expression for a lower bound on rM,L(τi, τd) is
presented next.

Theorem 14: For all M, L, τi and τd it holds that

AM,L(τi, τd) � qM·LM

(
1− B2

qLM

)M−1

,

and hence

rM,L(τi, τd) >
leq · (M − 1) · B2

qLM
.

Proof: Let C be an (τi, τd)-CCC of maximal size
AM,L(τi, τd) and let S ∈ C be a codeword. For two strands
(indi, ui), (indj , uj) we say that they are τi-neighbors if
dH(indi, indj) � τi. By definition, the codeword S ∈ C
satisfies the (τi, τd)-clustering constraint, and therefore each
strand (indi, ui) ∈ S satisfies the constraint with respect to its
τi-neighbors. That is, for each τi-neighbor strand (indj , uj) ∈
S it holds that dH(ui, uj) � τd, or equivalently ui /∈ Bτd

(uj).
Next, we list all possible codewords in C, and deduce an upper
bound on the cardinality of C. This is done by going through
the indices of the M strands in each codeword, ordered by
their weight, starting from zero. The order in every group
of indices with the same weight is arbitrary. For the first
strand, any length-LM vector can be assigned for its data
field, without violating the clustering constraint, and hence,
there are at most qLM options. Then, for each strand si there
are qLM − ki · Bτd

(LM ) options to assign for its data field,
where ki is defined as ki = |{uj |sj = (indj , uj) and sj is
an already assigned τi-neighbor of si}|. It is safe to say that
ki � 1 for all i without miscounting any valid codeword. This
is true as τi � 1 (for τi = 0 we get trivially C = XM,L) and
there always exists a 1-neighbor that already has its data-field
assigned. The case of ki = 1 refers to the scenario where for
each si all its τi-neighbors were assigned with identical data.
For this reason the resulting bound does not dependent on τi.

Hence, for each strand, besides the first one, we have at
most qLM −B2 options for its data field, and all together we
get

AM,L(τi, τd)�qLM
(
qLM−B2

)M−1
=qM·LM

(
1− B2

qLM

)M−1

.
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Lastly, the lower bound on the redundancy is derived to be

rM,L(τi, τd) = M · LM − logq(AM,L(τi, τd))

� −(M − 1) · logq

(
1− B2

qLM

)

>
leq · (M − 1) · B2

qLM
,

where in the last step we used the inequality − logq(1−x) >
leq · x for all 0 < x < 1.

As a direct result of Theorem 14, the next corollary holds.
Corollary 15: For M = qβL and all τd such that

τd � LMH−1
q

(
1− 2β

1− β
+

logq(LM + 1)
(1− β)L

)
+1

it holds that rM,L(τi, τd) > 1.
Proof: From Theorem 14 it holds that

rM,L(τi, τd) >
leq · (M − 1) · B2

qLM
.

Hence, rM,L(τi, τd) > 1 if B2 � qLM

leq·(M−1) . According to

Lemma 4.8 in [20], B2 � 1
LM+1 · q

LMHq

�
τd−1
LM

�
and therefore

it is enough to show that 1
LM+1 · q

LMHq

�
τd−1
LM

�
� qLM

leq·(M−1) .

As M = qβL and

τd � LMH−1
q

(
1− 2β

1− β
+

logq(LM + 1)
(1− β)L

)
+1,

it holds that

LMHq

(
τd − 1
LM

)
� LM ·

(
1− 2β

1− β
+

logq(LM + 1)
(1− β)L

)
= LM − logq(M) + logq(LM + 1)
� LM − logq(M − 1)− logq(leq) + logq(LM + 1).

Finally,

1
LM + 1

· qLMHq

�
τd−1
LM

�
� qLM

leq · (M − 1)
.

Lastly, based upon Corollaries 13 and 15 we conclude with
the following result.

Corollary 16: Let τd
∗ be the solution to rM,L(τi, τd

∗) = 1.
For any τi= o(L) and large L it holds that

τd
∗ = LM · H−1

q

(
1− 2β

1− β

)
(1 + o(1))

Proof: From Corollary 13 we get that for

τd � LMH−1
q

(
1− 2β

1− β
− logq(leq)

(1 − β)L
+

β

1− β
· Hq

(
τi

βL

))

it holds that rM,L(τi, τd) < 1. Also, by Corollary 15, for

τd � LMH−1
q

(
1− 2β

1− β
+

logq(LM + 1)
(1− β)L

)
+1

is holds that rM,L(τi, τd) > 1. When L goes to infinity, we get
that both bounds approach

LM · H−1
q

(
1− 2β

1− β

)
(1 + o(1)).

Henceforth, the bounds on τd for rM,L(τi, τd) < 1 and
rM,L(τi, τd) > 1 asymptotically agree and the crossing point
rM,L(τi, τd) lies in between.

An asymptotic improvement to the lower bound on the
redundancy from Theorem 14 for τi = 1, which matches the
upper bound from Theorem 12, is proved in the next theorem.

Theorem 17: For fixed ε, δ > 0, if τd

LM
< H−1

q

(
1−2β
1−β

)
− ε,

then it holds that

AM,L(1, τd) � qMLM

(
1− logq(M) · B2

qLM

) (q−1)M
q

(1 + δ),

for LM large enough, and hence

rM,L(1, τd) �
M(q − 1) · logq(M) ·B2

qLM+1 − q logq(M) ·B2
− log(1 + δ).

Proof: Let C be a (1, τd)-CCC of maximal size
AM,L(1, τd). First, note that

Clogq(M)(2) =

∣∣∣∣∣∣
⎧⎨
⎩c ∈ [q]logq(M)

∣∣∣ logq(M)−1∑
i=0

ci ≡ 0(mod q)

⎫⎬
⎭
∣∣∣∣∣∣

=
M

q
.

The minimum distance of the given set is 2. On the contrary,
let c1, c2 ∈ [q]logq(M) such that dH(c1, c2) = 1, and let
j be the only index in which c1,j �= c2,j . It holds that∑logq(M)−1

i=0 (c1,i − c2,i)(mod q) ≡ (c1,j − c2,j) (mod q),
which is not 0 (mod q) and therefore it is impossible for
them both to belong to the set Clogq(M)(2). In addition,
the size of the set is M

q . Let c ∈ [q]logq(M)−1, it is
trivial that there is a single possible symbol to concatenate
into c such that it belongs into the set, therefore there are
qlog(M)−1 = M

q different words in the set. Also, according
to the Singleton bound the size of Clogq(M)(2) cannot be
greater than M

q . Let I be a code of this size. For every set
S = {(ind0, u0), . . . , (indM−1, uM−1)} ∈ C, let

Ssafe = {ui|indi ∈ C} ∈ ([q]LM )M/q � ΣM,L

be the vector projection of S to the data fields of the strands
with indices that belong to I and let

Isafe � {i |indi ∈ I} , Isafe � [q]logq(M) \ Isafe.

The sets of the strands in the code C are partitioned
according to their projection on the indices in Isafe. More
specifically, for every v ∈ ΣM,L, let Cv be the subcode of
C,

Cv = {S ∈ C | Ssafe = v},
so it holds that C =

⋃
v∈ΣM,L

Cv.
A set of vectors v = (vi)i∈Isafe ∈ ΣM,L is good if for

all i, j ∈ Isafe such that dH(indi, indj) = 2 it holds that
Bτd−1(vi) ∩ Bτd−1(vj) = ∅, and otherwise it is bad. Denote
by Xgood, Xbad the number of good, bad sets of vectors in
ΣM,L, respectively. If v ∈ ΣM,L is bad, then there are at
least two indices i, j ∈ Isafe such that dH(indi, indj) = 2 and
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Bτd−1(vi)∩Bτd−1(vj) �= ∅, i.e., dH(vi, vj) � 2τd−2. Hence,
we get that

Xbad � M(logq(M) · (q − 1))2 · B3 · qLM( M
q −1),

where B3 = B2τd−2(LM ).
Consider the size of Cv when v is good. For every S ∈ Cv,

we only need to assign the data fields for strands with indices
in Isafe. Since v is a good set of vectors, for every index in
Isafe, the radius-(τd − 1) balls of at least 1/(q − 1) of its
neighbor strands are mutually disjoint (have indices in Isafe)
so there are at most

qLM − logq(M)(q − 1)
q − 1

·B2 = qLM − logq(M) ·B2

options to choose the data field of the i-th strand. For every
bad set of vectors v ∈ ΣM,L, it is enough to take the loose

bound in which |Cv| �
(
qLM

)M(q−1)
q . In conclusion we get

that

|C| =
��� �
v∈ΣM,L

Cv

��� =
��� �
v∈ΣM,L:v is good

Cv

��� + ��� �
v∈ΣM,L :v is bad

Cv

���

� Xgood

�
q

LM − logq(M) · B2
� (q−1)M

q + Xbad

�
q

LM
� (q−1)M

q

� q

MLM
q

�
q

LM − logq(M) · B2
� (q−1)M

q + Xbad · q

(q−1)MLM
q

� q
MLM

�
1 −

logq(M) · B2

qLM

� (q−1)M
q

+
M(logq(M) · (q − 1))2 · B3 · qMLM

qLM

= q
MLM

�
1 −

logq(M) · B2

qLM

�(q−1)M
q

�
�������	
1+

M(logq(M)(q − 1))2 · B3

qLM ·
�
1 − logq(M)·B2

qLM

� (q−1)M
q



��������
.

According to − log(1−x) � leq · x
1−x for all 0 < x < 1 we

get that

(
1− logq(M) ·B2

qLM

) (q−1)M
q

� q
− leq·logq(M)·B2(q−1)M

qLM +1−logq(M)·q·B2 .

We use again the inequality B2 � q
LMHq

�
τd−1
LM

�
and B3 �

q
LMHq

�
2(τd−1)

LM

�
, while for τd

LM
< H−1

q

(
1−2β
1−β

)
− ε it holds

lim
LM→∞

leq · logq(M) ·B2 · (q − 1) ·M
qLM − logq(M) · q · B2

� lim
LM→∞

leq · logq(M) · qLMHq

�
τd−1
LM

�
· (q − 1) ·M

qLM+1 − logq(M) · q · qLMHq

�
τd−1
LM

�

� lim
LM→∞

leq · logq(M) · qLMHq

�
τd−1
LM

�
· qβL

qLM
= 0,

and

lim
LM→∞

M(logq(M) · (q − 1))2 ·B3

qLM

� lim
LM→∞

M(logq(M) · (q − 1))2 · qLMH
�

2(τd−1)
LM

�

qLM

� lim
L→∞

qβL · (βL)2 · q(1−2β−ε′)L

q(1−β)L
= lim

L→∞
(βL)2

qε′L = 0,

for some ε′ > 0. Thus,

lim
L→∞

M(logq(M)(q − 1))2 · B3

qLM ·
(
1− logq(M)·B2

qLM

) (q−1)M
q

= 0,

which confirms the theorem’s statements.

V. A CONSTRUCTION OF CCCS

In this section we propose a construction of CCCs. It is
shown that with a single symbol of redundancy it is possible
to construct CCCs for relatively large values of τd.

The algorithm will use the following functions (For a
detailed demonstration of these functions refer to Example 18):

• The function w�(S, t) is defined over a set of vectors S
and a positive integer t and outputs a vector w ∈ [q]�

which satisfies the following condition. For all v ∈ S,
dH(w, v[logq(M),�]) � t. The value of � will be deter-
mined later as a function of τi, τd, and M .

• The function Δ1(indi, indj) encodes the difference
between the two indices i and j of Hamming distance at
most τi using τi�logq(logq(M) ·(q−1))� symbols which
mark the positions where the indices indi, indj differ and
the difference between the values in these positions. It is
possible that there are less than τi such indices. In such a
case the last index is replicated to get the desired length.
All indices are written in an increasing order

• The function Δ2(ui, uj) encodes the difference between
the two data fields ui, uj ∈ [q]LM of Hamming distance
at most τd − 1 using (τd − 1)�logq(LM · (q − 1))�
symbols which mark the positions where they differ and
the difference between the values in these positions. It is
possible that there are less than τd − 1 such indices.
In such a case the last index is replicated to get the desired
length. All indices are written in an increasing order and
in case ui = uj , Δ2(ui, uj) will output a sequence of
indices in a decreasing order in order to flag this case.

Note that the functions Δ1(indi, indj), Δ2(ui, uj) can be
optimized to use �logq(Bτi(logq(M)))�, �logq(Bτd−1(LM ))�
symbols respectively. We will consider both options and use
either one of them based upon the statement we claim.

The input to the algorithm is a set of M vectors
v0, . . . , vM−1. All vectors are of length LM symbols, except
for vM−1 which has length of LM − 1 symbols. The idea
behind the presented algorithm is to find all pairs of vectors
that do not satisfy the clustering constraint, and correct them in
a way that they satisfy the constraint and yet the original data
can be uniquely recovered. One symbol is added to vM−1,
hence, the code has a single symbol of redundancy, to mark
whether some vectors were altered by the algorithm.

For a given word S = {(ind0, u0), . . . , (indM−1, uM−1)},
the notation S(τi, i) in the algorithm, for i ∈ [M ], will be used
as a shortcut to the set {uj | (indj , uj) ∈ S , dH(indi, indj) �
τi, j �= i} of data fields corresponding to indices indj of
Hamming distance at most τi from indi. The elements in
S(τi, i) are referred as the neighbors of ui and S(τi, i) itself
as its neighborhood. At any iteration of the while loop, when
the i-th strand is corrected, the function w�(S(τi, i), τd) will be
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Algorithm 3 (τi, τd)− CCC Construction
Input: M vectors v0, . . . , vM−1 such that v0, . . . , vM−2 ∈

[q]LM and vM−1 ∈ [q]LM−1

Output: a codeword S = {(ind0, u0), . . . , (indM−1, uM−1)}
1: ∀i ∈ [M − 1] : ui = vi, uM−1 = (vM−1, 0)
2: p←M − 1
3: B ← {(i, j) |i < j ∧ dH(indi, indj) � τi ∧dH(ui, uj) <

τd}
4: while B �= ∅ do
5: Pick (i, j) ∈ B
6: repl← (w�(S(τi, i), τd), Δ1(indi, indj), Δ2(ui, uj))
7: (up)LM−1 ← 1
8: (up)[0,logq(M)] ← indi

9: (ui)[logq(M),len] ← repl
10: B ← {(i, j) | i < j ∧ dH(indi, indj) � τi

∧dH(ui, uj) < τd}
11: p← i
12: end while
13: (up)LM−1 ← 0
14: (up)[0,logq(M)] ← (vM−1)[0,logq(M)]

Fig. 4. The input data for Algorithm 3 in Example 18. The red question
mark indicates the redundancy bit that has not been set yet.

used to update the data field ui such that it does not violate the
clustering constraint and yet can be decoded. In order to make
room for the vector generated by the function w�(S(τi, i), τd),
ui is encoded based on its similarity to one of its close
neighbors uj . These modifications are encoded together as
a repelling vector of length

len = � + �logq(Bτi(logq(M)))�+ �logq(Bτd−1(LM ))�.
Finally the vectors that were altered are chained, starting at

uM−1, so it is possible to traverse these vectors and restore
the original data.

Example 18: We demonstrate the encoding process by
applying Algorithm 3 for τi = 1, τd = 4 on input of M =
8 strands over the binary alphabet. Each strand consists of an
index field of length 3 and a data field of length 28, hence,
L = 31. We will also use w�(S, i) for � = 8, using the
construction that will be described in Lemma 21.

There are eight strands over the binary alphabet as can
be seen in Fig. 4. These strands are encoded such that the
resulting codeword satisfies the (1, 4)-clustering constraint.

Fig. 5. Distances of the data fields visualization for all pairs of strands with
Hamming distance of 1 between their index fields. Pairs violating the (1, 4)−
clustering constraint are colored in red. Note that v0, v1, and v5 are in the
same node since their data is the same.

The first step is to compute the set B of pairs that violate
this constraint in Step 3. As can be seen in Fig. 5, B =
{(1, 5), (2, 3), (0, 1)}. Those are the pairs of indices with
Hamming distance 1 for which the data fields of the strands
have Hamming distance less than 4.

On the first iteration of the while loop in Step 4 we handle
the pair (1, 5). First we set the flag bit in u7 to 1 (Step 7) and
we also need to update u7 to link to u1 in the chain (Step 8).
The data fields u1 and u5 are identical, hence, Δ2(u1, u5) can
be any unsorted sequence of indices, for example 25, 16, 22
or (11001 10000 10110). Also Δ1(ind1, ind5) = (11) as
those differ in the third bit. For w�(S(τi, i), τd) we take
the vector (10011100). After calculating the repelling terms
w8(S(1, 1)), Δ1(ind1, ind5), Δ2(u1, u5) we have the whole
repelling vector

repl = (10011100 11 11001 10000 10110),

and u1 is updated as in Step 9. Note that after altering u1,
it satisfies the clustering constraint with respect to both u0 and
u5. Therefore, after updating the set B (Step 10) it contains
a single pair (2, 3).

Moving on to the next iteration we handle the pair (2, 3).
We start by placing a link to u2 in u1 (Step 8). We set the
flag bit of u1 to be 1 as well (Step 7). Now Δ1(ind2, ind3) =
(01). For w�(S(τi, i), τd) we take the vector (10011100) based
on Lemma 21 as before. The two data fields differ in the
indices 1 and 7, therfore Δ2(u2, u3) = (00001 00111 00111).
Updating B again (Step 10) results with an empty set. Hence,
the flag bit of u2 is set to 0 (Step 13) and its first log2(M) = 3
bits are set to v7[0,3] = (011) (Step 14). This ends the process
and the result can be seen in Fig. 6.

Theorem 19: For any input vectors v0, . . . , vM−1, Algo-
rithm 3 returns a valid (τi, τd)-CCC codeword for any τd that
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Fig. 6. The output of Algorithm 3 on the data given in Example 18. Bits changed by the algorithm are colored in red.

satisfies:

L−2 logq(M) � � + logq(Bτi(logq(M)) ·Bτd−1(LM )) + 3.

Furthermore, it is possible to decode the vectors
v0, . . . , vM−1, and Algorithm 3 uses a single symbol of
redundancy.

Proof: Algorithm 3 starts by initializing the data fields
u0, . . . , uM−1 of the output set S, with the input vectors
v0, . . . , vM−1, while adding the zero symbol at the end of
the data field uM−1 to mark that no operation is needed
for the decoding at this point. In Step 3 the algorithm gathers
the indices of all pairs of strands that both their index and
data fields are too close to each other, hence, violating the
constraint. The algorithm iterates over the set B, handling one
pair at a time. In Step 10, this set is updated and the algorithm
stops when the set B is empty, i.e., there are no bad pairs and
so {(ind0, u0), . . . , (indM−1, uM−1)} satisfies the constraint.

Each strand modified by the algorithm has its index written
as part of the data field of the strand modified in the previous
iteration of the while loop. Thus, the algorithm creates a linked
list of the modified strands. This list will be used in the
decoding process and will be referred as the decoding chain,
or simply the chain.

On each iteration of the while loop, the algorithm takes a
pair of strands, say of indices i and j, where i < j, which
violates the constraint and changes the data field in the i-th
strand. First, the flag symbol at the end of the previous strand is
changed to 1 (Step 7). This denotes that it is not the last strand
in the decoding chain. In Step 6, the algorithm calculates the
vector w = w�(S(τi, i), τd) and embeds it in the data field of
the i-th strand in Step 9.

In Steps 7 and 8 up is modified. In the first iteration if
j = p = M − 1, it is possible that dH(ui, uj) is affected
by the modifications in up and is greater than or equal to
τd. For this reason the computation of Δ2(ui, uj) takes place
before the modifications of ui. Denote by (ui)∗ the value of
ui after it was changed. The vector w satisfies that for all
u ∈ S(τi, i), dH

(
w, u[logq(M),�]

)
� τd. Since after Step 9

(ui)∗[logq(M),�] = w it is deduced that for all u ∈ S(τi, i),

dH

(
(ui)∗[logq(M),�], u[logq(M),�]

)
� τd

and thus dH ((ui)∗, u) � τd. Therefore the i-th and the j-th
strands satisfy the constraint and thus do not belong to the
set B when it is updated in Step 10. In fact any bad pair
of indices which includes the i-th strand will be removed
as well from the set B in this iteration of the while loop.
Furthermore, since the i-th strand has been updated in such
a way that it satisfies the constraint with respect to all of its
neighbors, no bad pairs with the index i have been created.
As mentioned, in Steps 7 and 8 up is modified. In general,
when up is modified in these steps, this does not create any
new entries in B, since [up][logq(M),len] is not altered and
this field has been chosen in the previous step such that the
distance to all of its neighbors is large enough. Yet, this does
not hold in the first iteration when p = M−1. Hence, the size
of B can increase on the first iteration. That is, the size of the
set B decreases on each iteration except to the first one, and
the algorithm terminates. The constraint

L− 2 logq(M) � � + logq(Bτi(logq(M)) ·Bτd−1(LM )) + 3
��+�logq(Bτi(logq(M)))�+�logq(Bτd−1(LM ))�+1,

guarantees that the data field is large enough in order to write
the information required on each update step of the while loop.

In Step 8 the first logp(M) bits of up are overwritten with
indi which is the index of the strand that is about to be
modified on this iteration. Also, in Step 11, p is updated to
have the value of i. Thus, the algorithm creates a chain starting
at uM−1, that can be traversed by reading these logp(M) bits
of the link and interpreting them as the index of the next strand
in the chain. The strand uM−1 cannot be altered, because it
results in loss of parts of the chain. To make sure it will not
happen, the data field of the strand with the smaller index in
the pair is always the one to be altered. Additional logq(M)
symbols are required to encode the index of the first strand
in the chain. For this purpose, the first logq(M) symbols of
vM−1 are placed at the end of the chain (Step 14). This is
possible because the last strand in the chain has logq(M)
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spare symbols, as there is no need to encode the index for the
next strand.

The idea of the decoding process is to track the chain of the
strands and then traverse the chain in the opposite direction
while recovering the input vectors. The decoding process starts
with the (M−1)-st strand. If the flag at the end of the data field
uM−1 is zero then there is nothing to be done. Otherwise, the
first logq(M) symbols of uM−1 indicate the index indi of the
first altered vector ui. This process repeats until we encounter
a vector with a flag symbol of value zero. This is the last
vector in the chain, and furthermore, its first logq(M) symbols
of the data field are the first logq(M) symbols of vM−1.
We traverse the chain in the opposite direction, recovering
each vector using the vectors Δ1(indi, indj), Δ2(ui, uj) that
are encoded in the data field of the i-th strand. We stop at
uM−1. Then, we recover vM−1 which requires only to place
back its original logq(M) symbols. Note that this is sufficient
to recover vM−1 as the (M−1)-th strand will not be changed
after the first iteration where up = uM−1.

This decoding process works as the order we go through
the chain in the second time is exactly the inverse of the
encoding order. This way all of the encoding operations can
be reverted, just as running the algorithm backwards. Note
that the decoding is done backwards as each of the altered
vectors is encoded with respect to some neighbor that may be
changed later on in the encoding process. Since the decoding is
operated in a reverse order, this guarantees that each vector is
recovered with respect to the exact same vector in which it was
encoded. Recall that in the first iteration there is the possibility
that uj = up = uM−1. In this case, it will not be possible to
decode the first strand that was altered without first recovering
uM−1. Fortunately, the only logp(M) bits that were altered in
uM−1 are stored at the end of the chain. Hence, the decoding
process yields the correct original data for all strands.

Remark 4: Algorithm 3 achieves a single bit of redundancy
using the fact that two strands with similar data can be
compressed and represented with a relatively small number
of symbols. This approach is used in other works as well.
For example in [25], this method was used in encoding
algorithms for constraints over two-dimensional binary arrays.
More specifically, one of the array constraints considered in
that paper, referred by t-conservative arrays, imposes each row
and each column to have at least t transitions of the form ’0’
→ ’1’ or ’1’→ ’0’. Rows that have less than t such transitions
are called t-bad rows, and the same applies for t-bad columns.
Those rows and columns can be ‘recycled‘ during the encoding
process, taking advantage of the fact that those rows/columns
can be represented using a relatively small number of symbols.
The spare space is used to encode the information required
to decode the original rows and columns. In particular they
maintain a linked list used in the decoding to get which rows
and columns were recycled.

Theorem 20: The complexity of Algorithm 3 is O(M ·
Bτi(logq(M)) ·Bτd−1(�) ·L+M · L2) symbol operations. Fur-
thermore, the complexity of the decoding process is O(M ·L2)
symbol operations.

Proof: For the encoding, we first note that each vector
ui is modified at most once. This is due to the fact that after

the modifying any of the strands, it satisfies the constraint
with respect to any of its neighbors. Hence, it is enough to go
through the strands one by one, and check if any modification
is needed. In other words, it is checked whether this strand vio-
lates the constraint with respect to some other strand. Checking
every strand requires a comparison with Bτi(logq(M)) other
strands. In case the strand has to be modified, compressing
it, i.e. computing Δ1(indi, indj), Δ(ui, uj)2, requires O(L2)
symbol operations. This is done by computing the index of
the compressed data indi, ui in the ball Bτi(indj),Bτd

(uj)
respectively, based on the method presented in Proposition 1 of
the enumerative coding scheme in [7]. This method requires
the computation of a sum with q · L elements, where each of
them is a binomial coefficient. The binomial coefficients

(
n
k

)
can be pre-calculated for all n, k � L, yielding a quadratic
complexity in L. Lastly, finding the vector w�(S(τi, i), τd) can
be done with a brute force search that is guaranteed to end
after at most Bτi(logq(M)) ·Bτd−1(�) iterations, each requires
� symbol operations. Therefore, modifying every strand at each
iteration of the while loop requires at most

O(Bτi(logq(M)) · L + L2 + Bτi(logq(M)) · Bτd−1(�) · �)
symbol operations, which is equivalent to

O(Bτi(logq(M)) ·Bτd−1(�) · L+L2)

symbol operations. Over all M strands, the overall complexity
of the encoding process is

O(M · Bτi(logq(M)) · Bτd−1(�) · L+M · L2).

For the decoding, we need to traverse the chain start-
ing at uM−1. This requires reading at most M indices,
or M logq(M) symbol operations. Next, going backwards in
the chain, we need to extract the compressed data. That is, for
some ui that is compressed with respect to uj , we need to read
the values of Δ1(indi, indj), Δ2(ui, uj), followed by reading
uj and computing the original data stored in ui. This is done
by performing the reverse function of the enumerative coding
scheme presented in [7]. In order to recover one symbol at
a time. This process also requires O(L2) symbol operations.
Overall each strand requires

�logq(Bτi(logq(M)))�+ �logq(Bτd−1(LM ))�+ L2 + L · q
symbol operations which is O(L2) symbol operations for
extraction. Therefore, the overall complexity of the decoding
process is O(M · L2).

Next we discuss the function w�(S, t). This function takes
a set of vectors S as input and outputs a vector w ∈ [q]� such
that for all v ∈ S[logq(M),�] � {v[logq(M),�] |v ∈ S}, it holds
that dH(w, v) � t. The length � of the vector w is determined
by the smallest value of � for which

q� > |S[logq(M),�]| ·Bt−1(�).

That is, a length that allows us to choose a vector that does
not fall into any of the radius-(t − 1) balls of the vectors in
the set S[logq(M),�].

We first show how such a vector w�(S, t) can be constructed
efficiently. The presented method is not optimal in the output’s
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Fig. 7. Construction of w�(S(eτi, 0), t) for M = 16, � = 12, τi = 1, and
t = 5.

length. However, it does improve the encoding complexity
with respect to the one presented in Theorem 20, which
requires an exhaustive search.

Lemma 21: For all t, a vector w�(S, t) can be constructed
for � = t · �logq(|S|+1)�. The complexity of the construction
process is O(t · |S| · logq(|S|)) symbol operations.

Proof: Denote the required output by w. In order to
construct w as required, we split each v ∈ S[logq(M),�] into t
windows, each of length �logq(|S| + 1)�. Note that for each
such window we can choose at least qlogq(|S|+1) = |S| + 1
different values. On the other hand, for the i-th window,
we have at most |S| different values in v ∈ S[logq(M),�]. That
is, we can find a value that does not appear in this window, and
hence it has Hamming distance at least 1 from any other value
in this window. Concatenating the values of the t different
windows we get a vector w that has distance at least t from
each of the vectors in S[logq(M),�].

For the complexity, it is clear that each window can be
handled independently. For each of these windows we use a
binary vector of size |S| + 1 that has entry for each possible
value over logq(|S|+1) symbols. The binary vector is initiated
in a way that it has 1 in some entry if its index representation
over [q] appears in the window. Then, we only need to find an
entry in the binary vector with value 0. Searching the binary
vector requires at most |S| + 1 bit operations. Initiating the
binary vector requires |S| · logq(|S| + 1) symbol operations.
We get an overall of

(|S|+ 1) · logq(|S|+ 1) + (|S|+ 1) = O(|S| · logq(|S|))
symbol operations. And for all windows together,

O(t · |S| · logq(|S|)).

Example 22: We demonstrate the computation of w�(S, t)
using the construction from Lemma 21. In this example S =
S(1, 1) and t = 4 for the same strands in Example 18.

Recall that in Example 18 we picked u1 as the first strand to
be fixed. In order to fix u1 we had to compute w�(S(1, 1), 4)
for � = 4 · �log2(|S(1, 1)|+ 1)� = 4 · (2 + 1) = 8. Note that,

S(1, 1)[3,8] = {(01110011), (00001011), (01110011)},
and hence, we seek to find a vector w such that
dH(w, 01110011) � 4 and also dH(w, 00001011) � 4. using

the construction from Lemma 21, S(1, 1)[3,8] is split into t = 4
windows:

S(1, 1)[3,2] = {(00), (01)}, S(1, 1)[5,2] = {(00), (11)},
S(1, 1)[7,2] = {(00), (10)}, S(1, 1)[9,2] = {(11)}.

For every window we find wi such that wi /∈
S(1, 1)[3+2i,2], and get w = (w0, w1, w2, w3). For example
a possible choice of the vector is

w0 = (10) /∈ S(1, 1)[3,2], w1 = (01) /∈ S(1, 1)[5,2],

w2 = (11) /∈ S(1, 1)[7,2], w3 = (00) /∈ S(1, 1)[9,2].

Then w�(S(1, 1), 4) = w = (10011100) and it holds that

dH(w, 01110011) � 4, dH(w, 00001011) � 4.

In Algorithm 3, the function w� is evaluated for
w�(S(τi, i), τd), and hence S = S(τi, i). The size of the
set S(τi, i) is at most Bτi(logq(M)) − 1, and therefore,
|S[logq(M),�]| � Bτi(logq(M))− 1. We denote by �(τi, τd, M)
the smallest value of � such that

q� >
(
Bτi(logq(M))− 1

) ·Bτd−1(�).

Next, we study the value of �(τi, τd, M). From Lemma 21
we derive a construction for w�(S, t) of length t · �logq(|S|+
1)�. Hence, for S = S(τi, i) it holds that

�(τi, τd, M) � τd · �logq(Bτi(logq(M)))�.
The following upper bound Bτi(logq(M)) �(

logq(M) · (q − 1)
)τi also suggests that

�(τi, τd, M) � τd ·
(
τi · logq logq(M) + τi · logq(q − 1) + 1

)
.

The next lemma provides a better upper bound on the value
of �(τi, τd, M).

The next lemma will be used in the subsequent one and in
the rest of the paper. Its proof is deferred to Appendix A.

Lemma 23: Let x ∈ [0, 1]. It holds that

4 logq(2) · x(1− x) � Hq(x) � 2 logq(2)
√

x(1− x) + x.

Lemma 24: For all τi, τd, M it holds that

�(τi, τd, M) � 5τd + 2τi · logq logq(M) + 2τi · logq(q − 1).

Proof: We start by denoting the size of S[logq(M),�] by
N . We show that for � � 5τd + 2 logq(N) − 5 the following
inequality is satisfied:

q� > N ·Bτd−1(�),

and therefore for N = Bτi(logq(M)) − 1, using the inequal-
ity Bτi(logq(M)) �

(
logq(M) · (q − 1)

)τi , we achieve the
desired result:

�(τi, τd, M) � 5τd + 2 logq(N)− 5
� 5τd + 2τi · logq logq(M) + 2τi · logq(q − 1).

Let � � 5τd + 2 logq(N) − 5 and v = τd − 1. Using the
inequality of arithmetic and geometric means, 2

√
a · b � a+b

(where equality holds if and only if a = b) it holds that

� � 5v + 2 logq(N) > 3v + logq(N) + 2
√

v · (v + logq(N)
)
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with a = v, b = v+logq(N) and note that a �= b. Rearranging
this inequality and squaring both sides we get that

(�− 3v − logq(N))2 > 4v2 + 4v logq(N)

and consequently, after squaring 2v out of the left binomial,

(�− v − logq(N))2 > 4v(�− v).

We therefore get,

�− logq(N)>2
√

v(�− v)+v = � ·
(

2
√

v

�
·
(
1− v

�

)
+

v

�

)
.

Now, from Lemma 23 the following inequality holds:

Hq

(v

�

)
� 2 logq(2)

√
v

�

(
1− v

�

)
+

v

�
,

and hence the following can be deduced

� > logq(N) + � · Hq

(
τd − 1

�

)
= logq

(
N · q�·Hq

�
τd−1

�

�)
.

Lastly

q� > N ·Bτd−1(�),

using the inequality Bτd−1(�) � q
�·Hq

�
τd−1

�

�
.

Corollary 25: Let x = logq(M)+3τi logq logq(M)+3τi+3.
For all

τd � 3
10
· LM − 1

5
· (logq(M) + 3τi logq logq(M) + 3τi + 3

)
=

3− 5β

10
· L− 3

5
· (logq(βL) + τi + 1

)
and L �

√
2x, there exists an explicit construction of an

(τi, τd)-CCC using Algorithm 3 which uses a single symbol
of redundancy.

Proof: Note that for

τd � 3
10
· LM − 1

5
· (logq(M) + 3τi logq logq(M) + 3τi + 3

)
=

3
10

LM − 1
5
x

=
1
80
· (16LM − 12x + 8LM − 4x)

=
1
80
·
(
16LM − 12x + 4

√
(2LM − x)2

)
� 1

80
·
(

16LM − 12x + 4
√

5LM
2 − 4LM · x− x2

)
,

it holds that

40τd
2 − (16LM − 12x) · τd + (LM − x)2 � 0.

In order to verify this inequality, we simply solve this
quadratic equation and get

τd1,2 =
1
80
·
(
16LM − 12x±

√
Δ
)

,

where

Δ = (16LM − 12 x)2 − 160 · (LM − x)2

= 96LM
2−64LM · x−16 x2 =16(5LM

2−4LM · x−x2).

Therefore τd � 1
5LM− 3

20x+ 1
20 ·
√

5LM
2 − 4LM · x− x2.

Rearranging this inequality we get that

36τd
2 − 12τd · (LM − x) + (LM − x)2 � 4 · τd · (LM − τd).

Observe that

36τd
2 − 12τd · (LM − x) + (LM − x)2 = (LM−x− 6τd)2,

and that LM−x− 6τd is negative. Therefore

LM−x− 5τd � 2
√

τd · (LM − τd) + τd.

Recall that according to Lemma 23

2
√

τd · (LM − τd) + τd

� LM ·
(

2 logq(2) ·
√

τd

LM
·
(

1− τd

LM

)
+

τd

LM

)

� LM · Hq

(
τd

LM

)
.

Hence, Br(n) � qn·Hq( r
n ) � (n · (q − 1))r, and we get

that

LM − logq(M) � 5τd + x− logq(M) + LM · Hq(
τd

LM
)

� 5τd+3τi logq logq(M)+3τi+3+logq(B2)
� 5τd + 3 logq(B1) + logq(B2) + 3.

Lastly, from Theorem 19 the value of τd should satisfy

� + logq(Bτi(logq(M)) ·Bτd−1(LM )) + 3 � L− 2 logq(M),

which concludes the proof with � = 5τd + 2 logq(B1) that is
computed in Lemma 24.

According to Section IV, rM,L(τi, τd) = 1 when τd

is approximately LM · H−1
q

(
1−2β
1−β

)
. However, this is not

achieved by an explicit construction of such codes. Here,
we presented an explicit construction in which the maximum
value of τd is roughly 3LM−2β

10 .
The results from Corollary 15 and Corollary 25 are pre-

sented in Figures 8 and 9 for some fixed values of β, L, and τi.
Remark 5: Based on the results, and in particular Figure 9,

in [31], the error rate of substitutions is approximately 1.32 ·
10−3. For L = 160, β = 1

10 , the expectation of the number
of errors in the index field and data field of the strands is
0.02112 and 0.19008 respectively. We can use τi = 8, and
according to Corollary 25 achieve τd � 33.4. According to
Theorem 7, if the dominance property is satisfied, we can
handle up to 8 errors in the data field and 3 errors in the
index field. Hence, we can support any (ti, td)-DNA system
such that ti � 3 and td � 8. In case the dominance property
is not satisfied we can still support any (ti, td)-DNA system
such that ti � 1 and td � 8, which is 40 times more than the
expectation.

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:36:05 UTC from IEEE Xplore.  Restrictions apply. 



SHINKAR et al.: CLUSTERING-CORRECTING CODES 1575

Fig. 8. Corollary 15 (in blue) and Corollary 25 (in orange) for τi = 10 over binary alphabet p = 2. The blue graph represents the upper bound on the
value of τd when using a single symbol of redundancy, while the orange graph represents the value of τd can be achieved using the construction described
in Algorithm 3.

Fig. 9. Corollary 15 (in blue) and Corollary 25 (in orange) for τi = 10 over binary alphabet p = 2. The blue graph represents the upper bound on the
value of τd when using a single symbol of redundancy, while the orange graph represents the value of τd can be achieved using the construction described
in Algorithm 3.

VI. EDIT DISTANCE EXTENSIONS

In this section we show how the concept of CCCs can be
extended to support errors in the form of insertions, deletions,
and substitutions. So far we considered only substitution errors
while data stored in DNA storage systems can also be read
with insertions and deletions. Most of our results in the paper
so far are independent of the type of errors that occur in the
data. Yet, there are some results that should be revisited and
extended for the edit distance.

First we define the edit distance between two vectors x
and y to be the minimum number of insertion, deletion
and substitution operations required to transform x into y.
We denote this distance by dE(x, y). The radius-r edit ball of
a vector x ∈ [q]n is BE

r (x) = {y | dE(x, y) � r} and note
that the size of BE

r (x) depends on the vector x. We denote
the size of the largest radius-r edit ball over all vectors of
length � by BE

r (�). For the rest of this section, the radius-r
ball Br(x) for substitutions of a length-n vector x defined
in Section II will be referred as BH

r (x) and its size will be
referred as BH

r (n).
Next, recall that we have defined a (ti, td)-DNA system in

Definition 1. The meaning of ti and td has to change slightly
when shifting to the edit distance as follows.

Definition 26: A DNA-based storage system is called a
(ti, td)E-DNA system if it satisfies the property that for each
v′ = (ind′, u′) which is a noisy copy of the input strand
v = (ind, u), it holds that

dE

(
v[0,logq(M)], v

′
[0,logq(M)]

)
� ti

and

dE

(
v[logq(M),LM ], v

′
[logq(M),|v′|−logq(M)]

)
� td.

Lastly, the definition of CCCs from Definition 4 must
also be modified to support the edit distance. The defini-
tion itself is almost identical, and a proper version for the
edit distance is provided by replacing all occurrences of dH

with dE. The new codes will be referred as (τi, τd)E-CCCs.
As a result of this definition, we define also AE

M,L(τi, τd)
to be the size of the largest (τi, τd)E-CCC and rE

M,L(τi, τd)
to be the optimal redundancy of the code. Throughout this
section, we say that a theorem, lemma, or corollary is
also valid for the edit distance if by replacing all occur-
rences of dH, BH

r (n), AM,L(τi, τd), rM,L(τi, τd) with dE,
BE

r (n), AE
M,L(τi, τd), rE

M,L(τi, τd), the definitions, claims and
proofs remain valid, respectively.

In Section III we have defined CCCs and the clustering con-
straint. We also proved the capabilities of CCCs in Theorem 7.
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As the only property of the distance function used in this
section is the triangular inequality, which applies also for the
edit distance, the proof of Theorem 7 applies together with
Algorithms 1 and 2 that are derived from it. Note that this is
true because of the way we altered the definition of a DNA
system such that comparing the index sized prefixes of the
strands still obey the constraint of at most ti substitutions.

Next, in Section IV we have derived lower and upper
bounds on AM,L(τi, τd), which is the size of the largest
CCC, in Theorems 12, 14 respectively. Also an asymptotic
improvement of Theorem 14 for τi = 1 was presented in
Theorem 17. The three theorems do not rely on any property
of the Hamming metric and therefore are true for the edit
metric as well. In addition, for all x ∈ [q]n and r, it holds that
BH

r (n) � BE
r (n), and therefore Corollary 15, that relies on

a lower bound of BH
r (n), is also valid for the edit distance.

Corollary 13, on the other hand, has to be revisited and will
be addressed in the next corollary.

Throughout the rest of the section the following upper
bound is used. Its proof can be found in Appendix A

Lemma 27: For any r and x ∈ [q]n it holds that

BE
r (x) � 6r ·BH

r (n + r).

Next, we adopt Corollary 13 to the edit distance using the
upper bound from Lemma 27. For the next corollary, B1, B2

get its own version for the edit distance denoted by BE
1 =

BE
τi

(logq(M))− 1, BE
2 = BE

τd−1(LM ), respectively.
Corollary 28: Denote by x � (1 + leq · (M − E))·BE

1 . For
M = qβL and all τd such that

τd � 5
8
L− βL− 3

8
logq(leq)− 3

8
τi logq(βL)− 15

8
τi

and L � logq(x), it holds that rE
M,L(τi, τd) < 1.

Proof: Let τd � 5
8L − βL −

3
8

(
logq(leq)− τi logq(βL)− 5τi

)
. It holds that

τd � 5

8
L − βL − 3

8
logq(leq) − 3

8
τi logq(βL) − 15

8
τi

� 5

8
LM − 3

8
logq(M) − 3

8
logq(leq) − 3

8
τi logq (2βL(6q − 6))

� 5

8
LM − 3

8
logq(M · leq)− 3

8
logq

�
((logq(M)+τi)(6q−6))τi

�
.

From Lemma 27 we have

BE
1 �6e · BH

τi
(logq(M)+τi)�

(
(6q−6) · (logq(M)+τi)

)τi
,

and hence

τd � 5

8
LM − 3

8
logq

�
(1 + leq · (M − E)) · BE

1

�

=
5

8
LM − 3

8
logq(x)

=
3

8
LM − 1

4
logq(x) +

1

8
·
��

2LM − logq(x)
�2

� 3

8
LM − 1

4
logq(x) +

1

8
·
�

5LM
2 − 4LM · logq(x).

From Theorem 12 it holds that

rE
M,L(τi, τd) <

leq · (M − E)BE
1 BE

2

qLM −BE
1 BE

2

.

Thus, it is enough to prove that t satisfies
leq·(M−E)BE

1 BE
2

qLM −BE
1 BE

2
< 1.

For v = τd − 1 we seek to show the following inequality

16v2 − (12LM − 8 logq(x)
) · v +

(
LM − logq(x)

)2 � 0.

In order to verify this inequality, we simply solve this
quadratic equation. Its two solutions are

v1,2 =
1
32
·
(
12LM − 8 logq(x) ±

√
Δ
)

,

where

Δ =
(
12LM − 8 logq(x)

)2 − 64 · (LM − logq(x)
)2

= 144LM
2−192LM · logq(x)−64LM

2+128LM ·logq(x)

= 80LM
2−64LM · logq(x)=16

(
5LM

2−4LM ·logq(x)
)
.

Therefore v � 3
8LM − 1

4 logq(x) + 1
8 ·√

5LM
2 − 4LM · logq(x). Rearranging this inequality

we get that

16 v2−8v · (LM − logq(x)
)
+
(
LM − logq(x)

)2 � 4 · v · LM .

Observe that the left hand side is actually(
LM − logq(x) − 4v

)2
, and that LM − logq(x) − 4v is

negative. Therefore

LM − logq(x) − 3v � 2
√

v · LM + v.

Recall that according to Lemma 23

2
√

v · LM + v

� (LM +v) ·
(
2 ·
√

v

LM + v
·
(

1− v

LM + v

)
+

v

LM + v

)

� (LM + v) · Hq

(
v

LM + v

)
.

Hence, using

BE
r (n) � 6r · BH

r (n + r) � 6r · q(n+r)·Hq( r
n+r ),

we get

LM − logq(x) � 2
√

v · LM + v + 3v

> 2
√

v · LM + v + logq(6) · v
> logq

(
BE

v (LM )
)

= logq(B
E
2 ),

and finally

BE
2 · x = (1 + leq · (M − E)) · BE

1 ·BE
2 < qLM .

After rearranging we get, leq·(M−E)BE
1 BE

2
qLM −BE

1 BE
2

< 1 as required.

In Section V, a construction of CCCs using a single symbol
of redundancy has been presented. The construction itself
is valid and applies also for the edit distance but requires
redefining properly the functions Δ1, Δ2, w�(S, t).

The function definitions are updated as follows.
• The function w�(S, t) is defined over a set of vectors

S and a positive integer t and outputs a vector w ∈
[q]� which satisfies the following condition. For all v ∈
S, dE(w, v[logq(M),�]) � t. The value of � for the edit
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Algorithm 4 Construction of w�(S, t) for Edit Distance

Input: A set S = {v0, . . . , vk}, vi ∈ [q]2t·(logq(|S|)+1)

Output: A vector w ← w�(S, t)
1: w ← 02t·(logq(|S|)+1), cursor← logq(M)
2: while S �= ∅ do
3: Q← {

(c, {vi|vi ∈ S, w#c((vi)[cursor,2t]) > t})|c ∈ [q]
}

4: cmin, S ← argmin
(c,Sc)∈Q

|Sc|
5: w[cursor,2t] ← (cmin)2t

6: cursor← cursor + 2t
7: end while

distance version of this function will be determined later
as a function of τi, τd, and M .

• The function Δ1(indi, indj) encodes the difference
between the two indices i and j of edit distance at most
τi using �log(BE

τi
(logq(M)))� symbols which encode the

index of indj in a lexicographic enumeration of BE
τi

(indi).
• The function Δ2(ui, uj) encodes the difference between

the two data fields ui, uj ∈ [q]LM of edit distance at
most τd − 1 using �log(BE

τd−1(LM ))�� symbols which
encode the index of uj in a lexicographic enumeration
of BE

τd−1(ui).

The edit distance version of w�(s, t) requires a new con-
struction and an analysis as Lemma 21 and Lemma 24 cannot
be used under the edit distance. Before getting into computing
and analyzing w�(S, t), the fact that embedding w�(S, t) into
a vector preserves the distance property has to be justified
for the correctness of the construction. This was trivial when
Theorem 19 was proved for substitutions only. Hence, we need
to prove the following property. The proof of this property is
deferred to Appendix A.

Lemma 29: Let x, y ∈ [q]n and let m, i, t ∈ [n] be such that
dE(x[i,m], y[i,m]) � t. Then, it also holds that dE(x, y) � t.

Now, we provide a new efficient construction for the vector
w�(S, t) for � = 2t · (logq(|S|) + 1

)
, which is roughly twice

from the result for w� in its version for the Hamming distance.
As before, this construction is not optimal in the output’s
length. However, it does improve the encoding complexity of
Algorithm 3 with respect to the one presented in Theorem 20.
The proposed algorithm is presented in Algorithm 4.

The next claim will be used in the theorem which verifies
the correctness of Algorithm 4.

Claim 1: Let x ∈ [q]n and s ∈ [q] such that w#s(x) �
n/2. Then, it holds that dE(x, sn) � n/2.

Proof: Assume on the contrary that dE(x, sn) < n/2.
That is, a sequence of less than n/2 editions can be found to
transform x to a vector of the same length containing only
the symbol s ∈ [q]. On the other hand, w#s(x) � n/2, and
therefore to reach n occurrences of the symbol s we have to
introduce at least n/2 new appearances. This is not possible
as each operation increases the amount of occurrences of the
symbol s by at most 1 and there are less than n/2 operations
in the sequence. This contradiction concludes the proof.

We are now ready to prove the correctness of Algorithm 4
and its complexity.

Theorem 30: The output of Algorithm 4 is a valid compu-
tation of w�(S, t) for � = 2t ·(logq(|S|) + 1

)
. The complexity

of the construction process is O(t · |S| · logq(|S|)) symbol
operations.

Proof: Denote w�(S, t) by w. The goal is to find effi-
ciently a vector w such that for all v ∈ S[logq(M),�] it holds
that dE(w, v) � t. In order to achieve this, the vector w is
built iteratively, with sequences of length 2t which consists of
a single symbol.

In Step 3 the algorithm computes for each c ∈ [q] the vectors
in S that have more than t appearances of c. Let vi ∈ S.
Observe that if w#c

(
(vi)[cursor,2t]

)
> t, then for any c �=

c′ ∈ [q] it holds that w#c

(
(vi)[cursor,2t]

)
< t, and thus it is

concluded that Sc′ ∩ Sc = ∅.
Also, if c = cmin by Claim 1 it holds that

dE((vi)[cursor,2t], c
2t) � t.

Hence, dE((vi)[cursor,2t], w[cursor,2t]) � t and by Lemma 29
it is also true that dE(w, (vi)[logq(M),�]) � t. Hence, in Step 4
the set S is updated in a way that any vector vi that was not
handled yet remains in S. That is, if the loop terminates, the
requirement dE(w, (vi)[logq(M),�]) � t holds for all vi ∈ S.

For the complexity, each iteration of the while loop in Step 2
consists of a single heavy operation. This is done to compute
the most dominant symbol in each vi ∈ S. This can be done
in linear time, and hence O(2t · |S|) symbol operations.

In Step 4 the algorithm picks the symbol to use for the next
sequence. This operation requires to compute a minimum over
a set and can be done with O(log2(q)) symbol operations. The
symbol is picked in a way that the number of members vi ∈ S
that remain in S is minimized, and therefore the size of S
decreases by a factor of 1/q. Otherwise for all Sc it holds that
|Sc| > |S|

q and thus

|S| �
∣∣∣∣∣∣
⋃

c∈[q]

Sc

∣∣∣∣∣∣ =
∑
c∈[q]

|Sc| > q · |S|
q

> |S|,

and that would be a contradiction. It also provides a justifica-
tion for � = 2t · (logq(|S|) + 1

)
. As the size of S decreases

by 1/q each iteration, after logq(|S|) + 1 the while loop in
Step 2 will terminate. We get an overall of

(2t · |S|) · (logq(|S|) + 1) = O(t · |S| · logq(|S|))
symbol operations.

The following lemma suggests an upper bound on the
optimal size of w�(S, t) for the edit distance. Similarly to the
Hamming distance case, this optimal length will be denoted
by �E(e, t, M).

Lemma 31: For all τi, τd, M it holds that

�E(τi, τd, M) � 12τd + 2τi · logq(logq(M) + τi) + 2τi · logq(6q − 6).

Proof: We start by denoting the size of S[logq(M),�] by N .
We show that for � � 12τd + 2 logq(N) − 12 the following
inequality is satisfied

q� > N ·BE
τd−1(�),

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:36:05 UTC from IEEE Xplore.  Restrictions apply. 



1578 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 3, MARCH 2022

and therefore for N = BE
τi

(logq(M)) − 1, using Lemma 27
we have

BE
τi

(logq(M)) � 6τi ·BH
logq(M)+τi

(τi)

� 6τi
(
(logq(M) + τi) · (q − 1)

)τi
,

and hence

logq(N) = logq(B
E
τi

(logq(M)))

� τi · logq(6) + τi · logq

(
(logq(M) + τi) · (q − 1)

)
.

This provides the desired result in which

�E(τi, τd, M) � 12τd + 2 logq(N)− 12
�12t+2τi·logq(logq(M) +τi)+2τi ·logq(6q−6).

Let � � 12τd + 2 logq(N)− 12 and v = τd − 1.
Using the inequality of arithmetic and geometric means,

2
√

a · b � a + b (where equality holds if and only if a = b) it
holds that

��12v+2 logq(N)�6v+logq(N)+2
√

v · (5v+logq(N)
)

with a = v, b = v + 5 logq(N) and note that a �= b.
Rearranging this inequality and squaring both sides we get
that

(�− 6v − logq(N))2 > 20v2 + 4v logq(N)

and consequently, after squaring 2v out of the left binomial,

(�− 4v − logq(N))2 > 4v�.

we get,

�− logq(N) > 2
√

v · � + 4v

= (� + v) ·
(

2

√
v

� + v
·
(

1− v

� + v

)
+

v

� + v

)
+ 3v.

Now, from Lemma 23 the following inequality holds

Hq

(
v

� + v

)
� 2 logq(2)

√
v

� + v

(
1− v

� + v

)
+

v

� + v
,

and hence the following can be deduced

� > logq(N) + (� + τd − 1) · Hq

(
τd − 1

� + τd − 1

)
+ 3(τd − 1)

> logq

(
N · 6τd−1 · q(�+τd−1)·Hq

�
τd−1

�+τd−1

�)
.

Lastly with logq(6) < 3

q� > N ·BE
τd−1(�),

and by using the inequality from Lemma 27 we get that

BE
τd−1(�)�6(τd−1) · BH

�+τd−1(τd−1) � 6(τd−1) · q
(�+τd−1)·Hq



τd−1

�+τd−1

�
.

At last, we can derive an upper bound for the value of τd

that can be achieved using our construction in the edit distance
case.

Corollary 32: Let x = logq(M)+3τi logq logq(M)+15τi+
3. For all

τd � 5
64
· LM− 1

16
· (logq(M)+3τi logq logq(M)+15τi+3

)
=

5− 9β

64
· L− 3

16
· (logq(βL) + 5τi + 1

)
and L � x, there exists an explicit construction of an (τi, τd)-
CCC using Algorithm 3 which uses a single symbol of
redundancy.

Proof: Note that for

τd � 5
64
· LM− 1

16
· (logq(M)+3τi logq logq(M)+15τi+3

)
=

5
64

LM − 1
16

x

=
1

512
· (36LM − 32x + 4LM )

=
1

512
·
(

36LM − 32x + 4
√

LM
2

)

� 1
512
·
(

36LM − 32x + 4
√

17LM
2 − 16LM · x

)
,

it holds that

256τd
2 − (36LM − 32x) · τd + (LM − x)2 � 0.

In order to verify this inequality, we simply solve this
quadratic equation

τd1,2 =
1

512
·
(
36LM − 32x±

√
Δ
)

,

where

Δ = (36LM − 32 x)2 − 1024 · (LM − x)2

= 1296LM
2 − 2304LM · x− 1024LM

2 + 2048LM · x
= 272LM

2 − 256LM · x = 16(17LM
2 − 16LM · x).

Therefore τd � 9
128LM− 1

16x+ 1
128 ·

√
17LM

2 − 16LM · x.
Rearranging this inequality we get that

256τd
2 − 32τd · (LM − x) + (LM − x)2 � 4 · τd · LM .

Observe that

256τd
2−32τd · (LM−x)+(LM−x)2 = (LM−x−16τd)2,

and that LM−x− 16τd is negative. Therefore

LM−x− 15τd � 2
√

τd · LM + τd.

Recall that according to Lemma 23

2
√

τd · LM + τd

� (LM +τd) ·
(

2 ·
√

τd

LM +τd
·
(

1− τd

LM +τd

)
+

τd

LM +τd

)

� (LM + τd) · Hq

(
τd

LM + τd

)
.

Hence, using

BE
r (n) � 6r ·BH

r (n + r) � 6r · q(n+r)·Hq( r
n+r )

� ((n + r) · (q − 1))r
,
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we get

LM − logq(M) � 15τd + x − logq(M) + (LM + τd) · Hq(
τd

LM + τd
)

� 15t + 3τi logq logq(M) + 15τi + 3 + logq(BH
τd−1(LM + τd − 1))

� 12τd + 3τi · logq

�
logq(M) + τi

�
+ 12τi + logq(BE

τd−1(LM )) + 3

� 12τd + 3τi · logq

�
(logq(M) + τi)(6q − 6)

�
+ logq(BE

τd−1(LM )) + 3

� 12τd + 3 logq(BE
τi

(logq(M))) + logq(BE
τd−1(LM )) + 3.

From Theorem 19 the value of t should satisfy

� + logq(B
E
τi

(logq(M)) · BE
τd−1(LM )) + 3 � L− 2 logq(M).

Therefore using � = 12τd + 2 logq(B1) computed in
Lemma 31 concludes the proof.

VII. CONCLUSION

In this paper we have presented a new family of codes,
called clustering-correcting codes. These codes are beneficial
in DNA-based storage systems in order to cluster the strands
in the correct groups. We showed upper and lower bound on
these codes as well as an explicit construction which uses a
single symbol of redundancy. We then discussed extensions of
those results from the Hamming distance metric into the edit
distance metric.

APPENDIX A

Lemma 23.: Let x ∈ [0, 1] it holds that

4 logq(2) · x(1 − x) � Hq(x) � 2 logq(2)
√

x(1 − x) + x.

Proof: Let g(x) = −x logq(x) and also let f(x) = g(x)+
g(1− x). Note that f(x) = f(1− x). Also note that f ′(x) =
logq(1−x)− logq(x). We have the following two derivatives:

1)

d

dx

(
(f(x))2

x(1−x)

)
=

2x(1−x)f(x)f ′(x)−(1−2x) (f(x))2

x2(1−x)2

=f(x) · −x logq(x)+(1−x) logq(1−x)
x2(1−x)2

=
(g(x))2−(g(1−x))2

x2(1−x)2
.

2)

d

dx

(
f(x)

4x(1− x)

)
=

4x(1− x)f ′(x) − 4(1− 2x)f(x)
16x2(1− x)2

=
(1− x)2 logq(1− x) − x2 logq(x)

4x2(1− x)2

=
x · g(x)− (1− x) · g(1− x)

x2(1 − x)2
.

For all x ∈ (0, 1
2 ) it holds that g(x) > g(1 − x). We can

deduce that the first derivative is positive and therefore it has
its maximum at x = 1/2. Hence,

(f(x))2

x(1− x)
<

(
f
(

1
2

))2
1
2 (1− 1

2 )
=

(
logq(2)

)2
1/4

and therefore f(x) < 2 logq(2)
√

x(1 − x)

Also, for all x ∈ (0, 1
2 ) it holds that

x · g(x)− (1− x) · g(1− x) < 0.

That is, the second derivative is negative and reaches its
minimum for x = 1/2. Therefore,

f(x)
4x(1− x)

>
f
(

1
2

)
4 · 1

2 (1− 1
2 )

= logq(2),

and hence f(x) > 4 logq(2) · x(1 − x).
All together we have Hq(x) = f(x) + x · logq(q − 1) so,

Hq(x) = f(x) + x · logq(q − 1) < 2 logq(2)
√

x(1 − x) + x

Hq(x) = f(x) + x · logq(q − 1) > 4 logq(2) · x(1 − x)

which confirms the lemma.
Lemma 27.: For any r and x ∈ [q]n it holds that

BE
r (x) � 6r ·BH

r (n + r).

Proof: The upper bound is based on the proof of Lemma
2.6 in [6]. According to this result it holds that for all x ∈ [q]n

BE
r (x) � (2q + 2)r ·

(
n + r

r

)
.

According to this bound, it is possible to bound the size
of the edit distance ball with the Hamming distance ball as
follows. For q � 2 it holds that

BE
r (x) � (2q + 2)r ·

(
n + r

r

)

=
(

2q + 2
q − 1

)r

·
(

n + r

r

)
· (q − 1)r

�
(

2 +
4

q − 1

)r

· BH
r (n + r)

� 6r ·BH
r (n + r),

which concludes the proof.
Lemma 29.: Let x, y ∈ [q]n and let m, i, t ∈ [n] be

such that dE(x[i,m], y[i,m]) � t. Then, it also holds that
dE(x, y) � t.

Proof: Assume on the contrary that dE(x, y) < t then
there is a sequence of edit operations O = o0, . . . , ok that
alters x into y, such that k < t. It is possible to create
another sequence O[i,m] that transforms x[i,m] into y[i,m]

which also consists of less than t operations and that would
be a contradiction.

The sequence O is divided into 9 types of operations:
e1 insertions, d1 deletions, and s1 substitutions performed
on x[0,i]. e2 insertions, d2 deletions, and s2 substitutions
performed on x[i,m]. Lastly, e3 insertions, d3 deletions, and
s3 substitutions performed on x[i+m,n−i−m]. The sequence
O[i,m] of operations is obtained as follows.

First, the e2 insertions, d2 deletions and s2 substitutions
must be found in O[i,m]. Next, if e1 − d1 > 0 then there
are symbols that were shifted from x[0,i] to x[i,m], and hence
we should add to O[i,m] a total of e1 − d1 insertions. These
insertions should be the same symbols that shift into x[i,m]

when performing O. Otherwise e1 − d1 � 0 . In this case
some symbols (or none) are shifted in the opposite direction
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and therefore we add d1 − e1 deletions into O[i,m]. Symbols
can shift also from x[i+m,n−i−m] to x[i,m] or in the opposite
direction and therefore |e1 + e2 − d1 − d2| more insertions or
deletions are needed.

O[i,m] performs the same operations on x[i,m] that are done
by O and therefore at the end of the process we get y[i,m].
The sequence contains a total of

|e1 − d1|+ s2 + e2 + d2|e1 + e2 − d1 − d2|
operations. Observing that |x| = |y| is easy to deduce that
the amount of insertions and deletions in O must be the same.
Hence, e1 + e2 + e3 = d1 + d2 + d3, and therefore the total
amount of operations is |e1 − d1|+ s2 + e2 + d2 + |e3 − d3|
which is, of course, less than t. and this concluded the proof.
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