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Abstract— Private information retrieval (PIR) protocols ensure
that a user can download a file from a database without revealing
any information on the identity of the requested file to the servers
storing the database. While existing protocols strictly impose that
no information is leaked on the file’s identity, this work initiates
the study of the tradeoffs that can be achieved by relaxing
the perfect privacy requirement. We refer to such protocols as
weakly-private information retrieval (WPIR) protocols. In par-
ticular, for the case of multiple noncolluding replicated servers,
we study how the download rate, the upload cost, and the access
complexity can be improved when relaxing the perfect privacy
constraint. To quantify the information leakage on the requested
file’s identity we consider mutual information (MI), worst-case
information leakage, and maximal leakage (MaxL). We present
two WPIR schemes, denoted by Scheme A and Scheme B, based
on two recent PIR protocols and show that the download rate
of the former can be optimized by solving a convex optimization
problem. We also show that Scheme A achieves an improved
download rate compared to the recently proposed scheme by
Samy et al. under the so-called �-privacy metric. Additionally,
a family of schemes based on partitioning is presented. Moreover,
we provide an information-theoretic converse bound for the
maximum possible download rate for the MI and MaxL privacy
metrics under a practical restriction on the alphabet size of
queries and answers. For two servers and two files, the bound is
tight under the MaxL metric, which settles the WPIR capacity
in this particular case. Finally, we compare the performance of
the proposed schemes and their gap to the converse bound.

Index Terms— Capacity, information leakage, information-
theoretic privacy, multiple servers, private information
retrieval.

I. INTRODUCTION

PRIVATE information retrieval (PIR) was introduced in the
computer science literature by Chor et al. in [1] and [2].
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A PIR scheme allows a user to retrieve an arbitrary file from
a database that is stored on either a single or multiple servers
without revealing any information about the identity of the
requested file. The efficiency of a PIR scheme is measured
in terms of the total communication load, consisting of both
the upload and download cost for the retrieval of a single file.
It was already shown in the original work of Chor et al. [2] that
in the case that the database is stored on a single server, all files
need to be downloaded in order to achieve perfect privacy, i.e.,
no information leakage on the identity of the requested file.
It has been extensively studied how to reduce the communica-
tion cost using several copies of the database, see, e.g., [3]–[6].

From an information-theoretic perspective and for many
practical scenarios, the file size is typically much larger
than the size of the queries to all servers. Therefore, rather
than accounting for both the upload and the download cost,
as usually done in the computer science literature, in the
information theory literature efficiency is typically measured
in terms of the download cost, or equivalently, in terms of
the download rate. The download rate—or the PIR rate—is
defined as the ratio between the requested file size and the
average number of downloaded symbols for the retrieval of
a single file. The maximum possible PIR rate of all possible
schemes is called the PIR capacity. The PIR capacity for the
classical PIR model of replicated servers was characterized by
Sun and Jafar [7].

To achieve a lower storage overhead, PIR protocols have
also been considered jointly with coded distributed storage
systems (DSSs), where the data is encoded by a linear code
and then stored on several servers in a distributed manner
[8]–[10]. The case of maximum distance separable (MDS)
coded servers was considered in [11]–[16], while the case
of arbitrary linear coded servers was studied in [17]–[20].
The concept of PIR has also been extended to several other
relevant scenarios, which include colluding servers [11], [17],
[19], [21]–[24], robust PIR with Byzantine or unresponsive
servers [21], [25], [26], multi-round PIR [27], multi-file
PIR [28], optimal download cost of PIR for an arbitrary file
size [29], optimal upload cost of PIR, i.e., the minimum
required amount of query information [30], access complexity
of PIR, i.e., the number of symbols accessed across all servers
for the retrieval of a single file [31], tradeoff between the
storage and download cost of PIR [32], cache-aided PIR [33],
[34], PIR with side information [35]–[39], PIR on graph-based
replication systems [40], [41], PIR with secure storage
[42]–[44], functional PIR codes [45], and private proximity
retrieval codes [46].

All of the aforementioned extensions of PIR impose perfect
privacy, i.e., no information leakage. However, this assumption
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is quite restrictive and may be relaxed for several practical
applications, as leaking part of the information of the identity
of the requested file is legitimate as long as there is still enough
ambiguity on the file’s identity to meet the privacy requirement
specified by the user. For example, the user may be willing
to share with the servers that the file is a movie (and not
a book or other forms of files), or only the movie’s genre,
whereas keeping private the identity of the movie. Relaxing
the perfect privacy requirement of PIR has been considered
briefly in the computer science literature previously. As early
as in 2002, Asonov et al. [47] introduced the concept of
repudiation as a relaxation of PIR. Their main motivation
was to reduce the preprocessing complexity of queries, while
keeping optimal communication (upload and download) cost
and response time. However, the condition of repudiation can
be achieved even if the server can determine the identity of
the requested file almost surely. Hence, it does not provide
a good level of information-theoretic privacy. More than a
decade later, Toledo et al. [48] adopted a privacy metric based
on differential privacy [49], [50] and traded off privacy for
reduced communication cost. In [48], several schemes that
hide the query identity were proposed and studied. However,
different mechanisms and security assumptions from those of
information-theoretic PIR were considered. Interestingly, the
authors claim that the proposed approaches can be applied
to information-theoretic PIR, but they did not study any
fundamental information-theoretic tradeoffs between informa-
tion leakage and different costs under the considered privacy
metric.

This paper takes a first step away from the perfect privacy
requirement of the information-theoretic PIR framework. Our
goal is to study the tradeoffs between different parameters
of PIR, such as download rate, upload cost, and access
complexity, while relaxing the perfect privacy requirement on
the identity of the desired file. We refer to such a scenario as
weakly-private information retrieval (WPIR). How to properly
measure information leakage has been studied extensively in
the computer science literature, see, e.g., [51] and references
therein. Mutual information (MI) [52]–[54], that captures the
average information leakage between the private data and the
adversary’s observations, maximal leakage (MaxL) [55], [56],
and worst-case information leakage (WIL) [57], are among the
most popular information-theoretic privacy leakage metrics,
along with (local) differential privacy [49], [50], [58], [59].
To the best of our knowledge, using MI as a privacy metric
originates from the domain of genome privacy and was first
considered in [52]. Although, the MI privacy metric has a less
clear operational meaning than MaxL, the presented results for
the MI privacy metric provide fundamental insight into the
tradeoff between download cost and privacy leakage, which
is also valid and complements the presented results for the
other considered privacy metrics. In this work, we consider
the case of replicated noncolluding servers, mainly focusing
on the MI and MaxL privacy metrics. We propose a WPIR
scheme by building upon a PIR protocol recently introduced
in [30] and study its tradeoffs between download rate, upload
cost, and access complexity. In particular, we show that by

relaxing the perfect privacy requirement, the download rate
can be improved beyond PIR capacity.

The main contributions can be summarized as follows:

• We introduce the concept of an (M, n) information
retrieval (IR) scheme for a DSS with n servers storing
M files using a global random strategy vector and a cor-
responding scheme, referred to as Scheme A, by building
upon a PIR protocol introduced in [30]. By selecting
each entry of the global random strategy according to
a Bernoulli distribution, we provide for the special case
of n = 2 servers closed-form expressions for the achiev-
able download rate, upload cost, access complexity, and
privacy leakage (see Theorem 3).

• In addition, we adopt the privacy metric introduced in
the related works [60], [61], the so-called �-privacy, and
compare our proposed Scheme A to their leaky PIR
scheme. By using a global random strategy for which
each entry is independent and identically distributed
(i.i.d.) according to a Bernoulli distribution, we show that
Scheme A performs better in terms of download rate for
the case of n = 2 servers.

• By using a time-sharing argument (see Theorem 1 and
the discussion in Section VII), the download rate of
Scheme A can be improved. For both the MI and MaxL
privacy metrics we show that optimizing the download
rate for Scheme A with time-sharing over the global
random strategy can be framed as a convex optimization
problem (see Section VII).

• We provide an information-theoretic converse result for
the maximum possible download rate for an (M, n)
IR scheme for both the MI and MaxL privacy metrics
in Theorems 8 and 10, respectively, under a practical
restriction on the alphabet size of queries and answers.
The converse is derived using a known result between the
entropy difference and the total variation (TV) distance
of two probability distributions (see Lemma 5). For the
special case of (M, n) = (2, 2) the WPIR capacity is
provided in Theorems 9 (assuming that only one of the
two servers can leak) and 11 for the MI and MaxL
privacy metrics, respectively. Moreover, we show that
Scheme A with time-sharing and with each entry of the
global random strategy selected according to a Bernoulli
distribution achieves the WPIR capacity for both privacy
metrics under the above restrictions in this special case.

• Extensive numerical results showing the tradeoff between
download rate, upload cost, access complexity, and
privacy leakage are presented in Section X for
Scheme A (with and without time-sharing). As a com-
parison, we also compare with an alternative proposed
constant-rate IR scheme, referred to as Scheme B and
based on the PIR scheme in [17, Lem. 4].

A. Related Work

Independently, the download rate-leakage tradeoff has been
studied by Samy et al. [60] under the name of leaky PIR using
a privacy metric related to differential privacy. The leaky PIR
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framework was recently also extended to symmetric PIR [61]
and to the consideration of latent attributes in the single server
case [62]. Symmetric PIR is a variant of PIR where in addition
the user cannot learn anything about the remaining files in
the database when the user retrieves its desired file [63]–[65].
Moreover, Zhou et al. [66] have recently studied the same
problem under the MaxL privacy metric. Their scheme builds
upon the same PIR protocol as our proposed Scheme A.
Moreover, by allowing for a permutation of the query strategy
across the servers in addition to an arbitrary global random
strategy, improved performance can be achieved. It can be
shown that their scheme is equivalent to our Scheme A with
time-sharing.

Our companion paper [67] studies the corresponding prob-
lem for the single server setting under both the MI and MaxL
privacy metrics. In particular, by relating the WPIR problem
to rate-distortion theory, the capacity of single-server WPIR
is fully characterized. Lastly, the related work in [68] is also
worth mentioning. In contrast to WPIR, where information
leakage on the identity of the desired file to the servers is
considered, the information leakage of the nondesired files to
the user for classical PIR was studied in [68].

B. Organization of Paper

The remainder of this paper is organized as follows.
Section II presents the notation, basic definitions, preliminar-
ies, and the problem formulation. In Section III, we present
a partition scheme which first divides the database into
equally-sized partitions and then uses a given IR scheme to
retrieve a file from the corresponding partition. Section IV
presents an IR scheme built upon the PIR protocol introduced
in [30], referred to as Scheme A, while Section V presents
a constant-rate IR scheme based on the PIR scheme in
[17, Lem. 4], referred to as Scheme B. For both schemes
and for two servers we provide closed-form expressions for
the download rate, upload cost, access complexity, and infor-
mation leakage under a Bernoulli global random strategy.
In Section IV, using Scheme A to retrieve files from a partition
of the partition scheme is also analyzed. Based on Scheme A,
a WPIR scheme achieving a better download rate than the
leaky PIR scheme under the �-privacy metric [60], [61] is
proposed in Section VI. The minimization of the information
leakage for Scheme A with time-sharing is considered in
Section VII. In particular, we show that the minimization
problem is a convex optimization problem for both the MI
and MaxL privacy metrics. Then, in Sections VIII and IX
we present converse results on the minimum download cost
for both privacy metrics under a practical restriction on the
alphabet size of queries and answers. Numerical results com-
paring Schemes A (with and without time-sharing) and B in
terms of download rate, upload cost, access complexity, and
information leakage are presented in Section X. Finally, some
conclusions are drawn in Section XI.

II. PRELIMINARIES

A. Notations

We denote by N the set of all positive integers, [a] �
{1, 2, . . . , a}, and [a : b] � {a, a + 1, . . . , b} for

a, b ∈ {0} ∪ N, a ≤ b. Vectors are denoted by bold letters,
random variables (RVs) (either scalar or vector) by uppercase
letters, and sets by calligraphic uppercase letters, e.g., x, X ,
and X , respectively. Moreover, X c denotes the complement of
a set X in a universe set. The all-zero matrix of dimensions
a × b is represented by 0a×b, or simply by 0 when the
dimensions are not important. For a given index set S, we write
XS and YS to represent

�
X(m) : m ∈ S� and

�
Yl : l ∈ S�,

respectively. X ⊥⊥ Y means that the two RVs X and Y
are independent. EX [·] denotes the expectation over the RV
X . X ∼ Bernoulli (p) denotes a Bernoulli-distributed RV
with Pr [X = 1] = p = 1 − Pr [X = 0] and X ∼ U (S)
a uniformly-distributed RV over the set S. (·)T denotes the
transpose of its argument. The Hamming weight of a binary
vector x is denoted by wH (x), while its support is denoted by
χ (x). σ(·) denotes a left cyclic permutation, while a left cyclic
shifts are obtained through function composition and denoted
by σa(·). The inner product of x and y is denoted by �x, y�.
H (X), H (PX), or H

�
p1, . . . , p|X |

�
represents the entropy of

X , where PX(·) = (p1, . . . , p|X |) denotes the distribution of
the RV X , while I(X ;Y ) is the MI between X and Y (in bits).
Hb(p) � −p log2 p− (1−p) log2 (1 − p) is the binary entropy
function. With some abuse of notation, when the marginal
distribution of either X or Y is assumed fixed and known,
the MI between X and Y is sometimes simply written as
I(X ;Y ) ≡ I(PX|Y ) ≡ I(PY |X).

B. System Model

We consider a DSS with n noncolluding replicated servers,
each storing M independent files X(1), . . . , X(M), where
each file X(m) =

�
X

(m)
1 , . . . , X

(m)
β

�T
, m ∈ [M], has length

β, and can be seen as a β × 1 vector over an alphabet
X . Assume that each element of X(m) is chosen indepen-
dently and uniformly at random from X . Thus, we have
H
�
X(m)

�
= β log2 |X |, ∀m ∈ [M].

In information retrieval (IR), a user wishes to efficiently
retrieve one of the M files stored in the replicated DSS. Similar
to the detailed mathematical description in [30], we assume
that the requested file index M is a RV and M ∼ U ([M]).1

We give the following definition of an IR scheme.
Definition 1: An (M, n) IR scheme C for a DSS with n

servers storing M files consists of:
• A global random strategy S, whose alphabet is S.
• n query-encoding functions φl, l ∈ [n], that generate n

queries Ql = φl(M, S) with alphabet Ql, where query
Ql is sent to server l.

• n answer-length functions �l(Ql), with range {0} ∪ N,
that define the length of the answers. �l(Ql) is a function
of the query Ql, which is independent of the particular
realization of the files.

• n answer functions

ϕl : Ql ×X βM → A�l , l ∈ [n],

that return the answers Al = ϕl(Ql, X
[M]), where A is

the download symbol alphabet.

1Here, we assume for simplicity that the requested file index M is uniformly
distributed. However, this assumption can be lifted, which is referred to as
semantic PIR in the literature [69].
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• n access-number functions δl(Ql), with range {0} ∪ N,
that define the number of symbols accessed by Ql.

This scheme should satisfy the condition of perfect
retrievability,

H
�
X(M)

��A[n], Q[n], M
�

= 0. (1)

♦
Since a user should be able to generate the queries without

any prior knowledge of the realizations of the files, it is
reasonable to assume that the queries and the files are
independent, i.e.,

I(X [M] ;Q[n]) = 0. (2)

This particular assumption is used in the converse proofs of
Sections VIII and IX (see Appendix G).

Note that a PIR scheme is an (M, n) IR scheme that satisfies
perfect privacy for all servers, i.e., for every m, m� ∈ [M] with
m �= m�, the condition

Pr [Ql = ql |M = m] = Pr [Ql = ql |M = m�] (3)

holds for all ql ∈ Ql, l ∈ [n]. The privacy constraint (3) is
equivalent to the statement that M ⊥⊥ Ql. We denote by Q

(m)
l

the query sent to server l if file X(m) is requested, which
is a RV with probability mass function (PMF) P

Q
(m)
l

(ql) �
Pr [Ql = ql |M = m] = PQl|M (ql|m).

We refer to an (M, n) IR scheme that does not satisfy (3)
as a WPIR scheme, as opposed to a PIR scheme that leaks no
information.

C. Metrics of Information Leakage

In this paper, to measure the information leakage between
M and Ql for an IR scheme, we first consider MI, which mea-
sures the average amount of information about the requested
file index M from the queries Ql. Moreover, we also consider
WIL [57] and MaxL, which is considered a robust information
leakage quantity [56]. For the MI privacy metric, we use the
following theorem to motivate the definition of information
leakage for an (M, n) IR scheme.

Theorem 1 (Time-Sharing Principle for the MI Metric):
Consider an (M, n) IR scheme C , where the leakage of the
l-th server is defined as I(M ;Ql), l ∈ [n]. Then, there exists
an (M, n) IR scheme C with leakage ρ̄ � 1

n

�
l∈[n] I(M ;Ql)

for every server. ♦
Proof: The theorem is proven by a time-sharing argument.

Assume that the IR scheme C is given by the query-encoding
functions φl, answer functions ϕl, l ∈ [n], and a random
strategy S.

Next, define query-encoding functions φ̄l, answer functions
ϕ̄l, l ∈ [n], and a random strategy ST for an (M, n) IR scheme
C as follows. Given a requested file index M , the user chooses
a T ∼ U ([n]) and assigns the query Ql = φ̄l(M, ST ) �
φσT−1(l)(M, S) = QσT−1(l)(M, S) to the l-th server, l ∈ [n].

The answer functions for C are defined as ϕ̄l

�
Ql, X

[M]
�

�
ϕσT−1(l)

�
φσT−1(l)(M, S), X [M]

�
, l ∈ [n], and hence perfect

retrievability is achieved due to the perfect retrievability of the
IR scheme C .

The MI information leakage of the l-th server is

I(M ;Ql) = H
�
Ql

�− H
�
Ql

��M�
= H

�
QσT−1(l)

�− H
�
QσT−1(l)

��M�
(a)
=

n�
t=1

Pr [T = t] I(Qσt−1(l) ;M |T = t)

=
1
n

n�
l�=1

I(Ql� ;M), ∀ l ∈ [n],

where (a) follows from the definition of conditional mutual
information.

Theorem 1 indicates that we can always obtain an (M, n)
IR scheme with equal MI leakage at each server by cyclically
shifting the servers’ queries of an existing (M, n) IR scheme
C n times. Such a time-sharing scheme is denoted by C .

Hence, to characterize the overall leakage of a given (M, n)
IR scheme C in terms of MI, we consider the information
leakage metric

ρ(MI)(C ) � 1
n

�
l∈[n]

I(M ;Ql). (4)

The WIL of the l-th server is defined as
WIL (M ;Ql) � H(M) − minql∈Ql

H(M |Ql = ql).
The overall WIL of a given (M, n) IR scheme C is then
given as ρ(WIL)(C ) � maxl∈[n] WIL (M ;Ql).

Further, given a joint distribution PM,Q, the MaxL from M
to Q is defined as

MaxL (M ;Q) � log2

�
q∈Q

max
m∈[M]

PQ|M (q|m). (5)

Note that MaxL has a strong connection to the min-entropy
(MinE) privacy metric, which is commonly-used in the com-
puter science literature [55], [70]. MinE is a special case of
the widely known Rényi entropy [71]. The MinE information
leakage and the MaxL privacy metric can be shown to be
equivalent when M is uniformly distributed [56], [70].

We will use (5) as the MaxL privacy metric for the designed
query distribution PQl|M at the l-th server of a WPIR scheme,
which is denoted by

ρ(MaxL)(M, Ql) � MaxL (M ;Ql) .

The overall MaxL of a given (M, n) IR scheme C is then
defined to be the worst-case MaxL over all servers:

ρ(MaxL)(C ) � max
l∈[n]

MaxL (M ;Ql) .

The following lemma summarizes some useful properties
for both the MI and MaxL privacy metrics. ♦

Lemma 1 ([56, Lem. 1, Cor. 1]): For any joint distribution
PX,Y , we have the following.

1) (Data Processing Inequalities) If the RVs X, Y , and Z
form a Markov chain, then

I (X ;Z) ≤ min{I (X ;Y ) , I (Y ;Z)}, and

MaxL (X ;Z) ≤ min{MaxL (X ;Y ) , MaxL (Y ;Z)}.
2) Consider a fixed distribution PX . Then, both I (X ;Y ) and

2MaxL(X ;Y ) are convex functions in PY |X . ♦
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There are other privacy metrics that can be used to relax the
perfect privacy requirement of PIR. The authors of [60], [61]
introduced the �-privacy metric based on the notion of (local)
differential privacy. Under the setup discussed in this paper,
we define the �-privacy leakage at the l-th server of an IR
scheme C as

ρ(�-P)(M ; Ql) � ln
	

max
ql∈Ql

max
m,m�∈[M]

PQl|M (ql|m)
PQl|M (ql|m�)



.

Similar to the MaxL privacy metric, we also define

ρ(�-P)(C ) � max
l∈[n]

�
ρ(�-P)(M ; Ql)

�
as the �-privacy leakage of a given (M, n) IR scheme C .

Note that �-privacy normally gives a stronger privacy pro-
tection than the MI or MaxL metrics. Moreover, it is worth
mentioning that there is a close relation between MaxL and
differential privacy [49], [50], see, e.g., [70, Thm. 3]. In this
work, although we mainly focus on the MI and MaxL privacy
metrics, we will still use the �-privacy metric to show that our
proposed Scheme A outperforms the schemes from [60], [61]
(see Sections VI and X-B).

Throughout the paper, the information leakage metric of a
WPIR scheme C is denoted by ρ(·)(C ), where the superscript
indicates the leakage metric (MI, WIL, MaxL, or �-P) we
are considering. Moreover, since PM is fixed, we will also
simply write the leakage measure ρ(·)(·, ·) as a function of the
designed query distribution PQl|M of a WPIR scheme. For
example, ρ(MI)(M, Ql) ≡ I(PQl|M ) ≡ ρ(MI)(PQl|M ), l ∈ [n].

D. Download Cost, IR Rate, Upload Cost, and Access
Complexity of an (M, n) IR Scheme

For WPIR, in contrast to PIR, the download cost may be
different for the retrieval of different files. Thus, the download
cost can be defined as the expected download cost over all
possible requested files. The download cost of a WPIR scheme
C for the retrieval of the m-th file, denoted by D(m)(C ),
is defined as the expected length (in bits) of the returned
answers across all servers over all random queries,

D(m)(C ) � log2 |A|
n�

l=1

E
Q

(m)
l


�l(Q

(m)
l )

�
,

where Q
(m)
l is the RV with PMF P

Q
(m)
l

(ql) = PQl|M (ql|m).
The overall download cost of an IR scheme C , denoted by
D(C ), is defined as the expected download cost over all files,
i.e.,

D(C ) � log2 |A|EM

�
n�

l=1

E
Q(m)

l

[�l(Ql)]

�

= log2 |A|
n�

l=1

EQl
[�l(Ql)] .

Accordingly, the IR rate of an IR scheme C is defined as

R(C ) � β log2 |X |
D(C )

.

The upload cost U(C ) of an IR scheme C is defined as the
sum of the entropies of the queries Q[n],

U(C ) �
n�

l=1

H(Ql).

Moreover, the access complexity Δ(C ) of an IR scheme C
is defined as the expected number of accessed symbols across
all servers for the retrieval of a single file,

Δ(C ) �
n�

l=1

EQl
[δl(Ql)] =

1
M

M�
m=1

n�
l=1

E
Q(m)

l

[δl(Ql)] .

(6)

An achievable 4-tuple of an IR scheme is defined as follows.
Definition 2: Consider a DSS with n noncolluding servers

storing M files. A 4-tuple (R, U, Δ, ρ) is said to be achievable
with information leakage metric ρ(·) if there exists an (M, n)
IR scheme C such that R(C ) = R, U(C ) = U, Δ(C ) = Δ,
and ρ(·)(C ) = ρ. ♦

We remark that a PIR scheme corresponds to an (M, n)
IR scheme with ρ(·) = 0. It was shown in [7] that for n
noncolluding replicated servers and for a given number of
files M, the PIR capacity, denoted by CM,n, is CM,n =�
1 + 1

n + · · · + 1
nM−1

�−1
.

III. PARTITION WPIR SCHEME

A simple approach for the construction of WPIR schemes
is to first partition the database into η equally-sized parti-
tions, each consisting of M

η files where M
η ∈ N,2 and then

use a given
�

M
η , n

�
IR scheme to retrieve a file from the

corresponding partition. Obviously, the resulting scheme is
not a PIR scheme, since the servers gain the knowledge of
which partition the requested file belongs to. In this section,
we pursue this approach to construct an (M, n) IR scheme

building on a given
�

M
η , n

�
IR scheme as a subscheme.

The partition (M, n) WPIR scheme is formally described as
follows. Assume the requested file X(m) belongs to the j-th
partition, where j ∈ [η]. Then, the query Ql is constructed as

Ql =
� �Ql, j

� ∈ Q̃l × [η], l ∈ [n], (7)

where �Ql is the query of an existing
�

M
η , n

�
IR scheme C̃ .

The following theorem states the achievable 4-tuple of the
partition scheme.

Theorem 2: Consider a DSS with n noncolluding servers
storing M files, and let C̃ be an

�
M
η , n

�
IR scheme with

achievable 4-tuple
�
R̃, Ũ, Δ̃, ρ̃(·)�. Then, the 4-tuple�

R(C ), U(C ), Δ(C ), ρ(·)(C )
�

=
�
R̃, Ũ + n log2 η, �Δ, ρ̃(·) + log2 η

�
(8)

is achievable by the (M, n) partition scheme C constructed
from C̃ as described in (7). ♦

Proof: The proof is deferred to Appendix A.

2While it is not necessary that each partition has an equal number of files,
for simplicity in this paper we make this assumption.
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TABLE I

THE JOINT PMF OF Q1, Q2 FOR 0 ≤ p ≤ 1
2

, GIVEN M = 1, 2

Since a PIR scheme is also an IR scheme, this simple
approach for the construction of WPIR schemes can also be
adapted to use any of the existing

�
M
η , n

�
PIR schemes in the

literature as a subscheme. We refer to the partition scheme that
uses a PIR scheme as the underlying subscheme and the query
generation in (7) as a basic scheme and denote it by C basic

(it gives the 4-tuple as in (8) with ρ̃(·) = 0). In Section IV-B,
we will present another partition WPIR scheme based on our
proposed IR scheme.

IV. (M, n) SCHEME A

In [30, Sec. III-B], a PIR scheme that achieves both the min-
imum upload and download cost was proposed. The queries
Q[n] of the scheme in [30, Sec. III-B] are randomly generated
according to a random strategy S = (S1, . . . , SM−1) with
i.i.d. entries according to U ([0 : n − 1]).3 In this section,
we introduce an (M, n) WPIR scheme, referred to as
Scheme A and denoted by CA, based on the PIR scheme
in [30]. Scheme A can be seen as a generalization of the PIR
scheme in [30] where we lift the perfect privacy condition (3).

For the proposed scheme, assume that X = {0, 1} and the
file size to be β = n − 1. We represent a query by a length-
M vector ql = (ql,1, . . . , ql,M) ∈ Ql ⊆ [0 : n − 1]M. Also,
the realization of S is denoted by a length-(M − 1) vector
s = (s1, . . . , sM−1), sj ∈ [0 : n − 1], j ∈ [M − 1].

Before describing Scheme A in detail for the general case,
for simplicity we first present Scheme A for the case of
M = 2 files and n = 2 servers (i.e., both servers 1 and 2 store
X(1), X(2)) in the following example.

Example 1: We illustrate the (2, 2) Scheme A obtained by
adopting a nonuniformly-distributed random strategy S giving
a joint PMF PQ1,Q2

(q1, q2) as in Table I. Files X(1) and
X(2) are composed of one stripe each (β = n − 1 = 1).
The answers A1 and A2 are given by

�
A1(q1), A2(q2)

�
=

3The PIR scheme in [30, Sec. III-B] can be seen as a generalization of the
canonical (2, 2) PIR scheme that was first introduced in [27, Sec. III-B] and
further elaborated in [72], where the authors focused on the minimization of
the storage overhead.

Fig. 1. The IR rate R(CA) ∈ �
2
3
, 1
�

of the proposed (2, 2) Scheme A, as a
function of ρ(·). The triangle marks the 2-server PIR capacity for M = 2.

�
X

(1)
q1,1 + X

(2)
q1,2 , X

(1)
q2,1 + X

(2)
q2,2

�
, where X

(m)
0 = 0 for all

m ∈ [2].
One can easily verify that perfect retrievability is satisfied

for the above (2, 2) IR scheme. Its IR rate is a function of p
and is given by R(p) = (p + (1 − p) + p)−1 = (1 + p)−1.
Observe that M ⊥⊥ Q1, which implies that I(M ;Q1) =
WIL (M ;Q1) = MaxL (M ;Q1) = 0, i.e., it does not leak
any information on the identity of the retrieved file to the first
server.

The information leakage is ρ(MI) =
1−Hb(p)

2 , ρ(WIL) = 1 − Hb(p), and ρ(MaxL) = log2 [2(1 − p)]
for 0 ≤ p ≤ 1

2 . From this derivation, it follows that the (2, 2)
Scheme A achieves perfect privacy for p = 1

2 . The IR rate of
the (2, 2) Scheme A, R(CA), is depicted in Fig. 1 as a function
of the information leakage ρ(·). Interestingly, by sacrificing
perfect privacy, it is possible to achieve an IR rate larger than
the 2-server PIR capacity for 2 files. As expected, the IR rate
increases with increasing information leakage. ♦

Now, we describe Scheme A for the general case of M files
and n servers. We assume that the user wants to download
file X(m) and has a random strategy S that takes on values
s ∈ [0 : n − 1]M−1 with PMF PS(s).

1) Query Generation: The query ql ∈ Ql, l ∈ [n], sent to
the l-th server, resulting from the query-encoding function φl,
is defined as

ql =
�
s1, . . . , sm−1, ql,m, sm, . . . , sM−1

�
, (9)

where ql,m �
�
l − 1 −�j∈[M−1] sj

�
mod n. It follows that

Ql =

⎧⎨⎩ql :

� �
m�∈[M]

ql,m�

�
mod n = l − 1

⎫⎬⎭ . (10)

Note that the PMF of Ql conditioned on the file index M
satisfies P

Q
(m)
l

(ql) = PS(s).
2) Answer Construction: The answer function ϕl maps the

query ql into

Al = ϕl(ql, X
[M]) = X(1)

ql,1
+ · · · + X(M)

ql,M
, (11)
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where X
(m�)
0 = 0 for all m� ∈ [M]. Further, we see that the

answer-length functions satisfy

�l(Ql) =

�
0 if ql = 0,

1 otherwise.
(12)

This completes the construction of the (M, n) Scheme A.
Note that it follows from (11) that A = {0, 1} = X . Moreover,
using (12), the IR rate of the (M, n) Scheme A, CA, can be
shown to be

R(CA) =
n − 1

1 − PQ1
(0) + n − 1

. (13)

We also remark that if Scheme A uses a random strategy
S with {Sj}M−1

j=1 i.i.d. according to U ([0 : n − 1]), then it
satisfies (3) and is equivalent to the PIR capacity-achieving
scheme proposed in [30].

3) Perfect Retrievability: For completeness, in the following
we show that Scheme A satisfies the recovery condition in (1).

From the queries Ql and answers Al, l ∈ [n], designed as
in (9) and (11), respectively, given S = s = (s1, . . . , sM−1) ∈
[0 : n − 1]M−1 and M = m, the answer from the l-th server
can be re-written as

Al = X(m)
ql,m

+

�
m−1�
m�=1

X(m�)
sm� +

M�
m�=m+1

X(m�)
sm�−1

�

� X(m)
ql,m

+ Z, l ∈ [n].

Since by definition ql,m =
�
l − 1 −�M−1

j=1 sj

�
mod n, ql,m

must range thoroughly from 0 to n − 1, and for l� − 1 =��M−1
j=1 sj

�
mod n, we have Al� = X

(m)
ql�,m

+ Z = 0 + Z .

Thus, the user can obtain X
(m)
ql,m = Al −Z , and hence retrieve

{X(m)
1 , . . . , X

(m)
n−1}.

The following lemma follows immediately from the
construction of Scheme A.

Lemma 2: Let {Sj}M−1
j=1 be i.i.d. and Sj ∼ U ([0 : n − 1])

for Scheme A. Then, it satisfies (3) and is equivalent to the
PIR capacity-achieving scheme proposed in [30]. ♦

Proof: See Appendix B.

A. (M, 2) Scheme A With {Sj}M−1
j=1 i.i.d. According to

Bernoulli (p)
The following result gives an achievable 4-tuple for

Scheme A for the case of two servers and a random strat-
egy S = (S1, . . . , SM−1) with i.i.d. entries according to
Bernoulli (p).

Theorem 3: Consider 0 ≤ p ≤ 1
2 . Then, the 4-tuple

(RA, UA, ΔA, ρ
(·)
A

�
,

RA =
�
1 − (1 − p)M−1 + 1

�−1
,

UA = −
M�

w=0

	
M

w



f(w, p) log2 f(w, p),

ΔA =
M�

w=0

w

	
M

w



f(w, p),

ρ
(MI)
A =

UA

2
− (M − 1)Hb(p),

ρ
(WIL)
A = log2 M − minw∈[0:M] H(Mw), and

ρ
(MaxL)
A = log2

�
w∈[M]
w : odd

	
M

w



(1 − p)M−wpw−1

is achievable by the (M, 2) Scheme A with {Sj}M−1
j=1 i.i.d.

according to Bernoulli (p), where

f(w, p) � 1
M

�
(M−w)(1−p)M−w−1pw + w(1 − p)M−wpw−1

�
and Mw is a RV with PMF

PMw (m�) =

⎧⎨⎩
(1−p)M−w−1pw

Mf(w,p) if m� ∈ [M − w],

(1−p)M−wpw−1

Mf(w,p) if m� ∈ [M − w + 1 : M].

(14)

♦
Proof: See Appendix C.

B. Partition Scheme A: Using Scheme A as a Subscheme

In Section III, we introduced the concept of adopting an
existing

�
M
η , n

�
IR scheme to retrieve a file from a given

partition. In this subsection, unlike (7), where the user sends
different queries for different requested files among all parti-
tions, we use a slightly more sophisticated way to construct a
WPIR scheme by using Scheme A as a subscheme for every
partition. We refer to this scheme as partition Scheme A and
denote it by C part

A . In the following, we present the query
generation and the answer construction.

1) Query Generation: We consider the j-th partition, Pj ,
j ∈ [η], containing all files of indices (j − 1)M

η + 1, . . . , j M
η .

Given a requested file with index m = (j − 1)M
η + m� ∈ Pj ,

m� ∈


M
η

�
, we consider an

�
M
η , n

�
Scheme A as a subscheme

for partition Pj . The l-th query ql ∈ Ql, l ∈ [n], is defined as

ql =
	
01×(j−1) M

η
, s1, . . . , sm�−1, ql,(j−1) M

η +m� ,

sm� , . . . , sM
η −1,01×(η−j) M

η



,

where ql,(j−1) M
η +m� =

�
l − 1 − �

j∈
�

M
η −1

� sj

�
mod n.

We remark that it is possible that the user sends the all-zero
query ql = 0 to request different files among all partitions.
In this way, since the uncertainty on the requested file is
increased, it follows that the leakage of C part

A is slightly
smaller than the leakage of the basic scheme. Moreover, the
query alphabet size is not exactly the same for all servers.
In particular, since for every partition, an

�
M
η , n

�
Scheme A

consists of n
M
η −1 queries at each server, and only for the

first server the all-zero query 01×M is sent to retrieve any
one of the M files, we have |Q1| = 1 + η

�
n

M
η −1 − 1

�
and

|Ql| = η · nM
η −1 for l ∈ [2 : n].

2) Answer Construction: Similar to Scheme A, the answer
function ϕl maps query ql into Al = ϕl(ql, X

[M]) = X
(1)
ql,1 +

· · · + X
(M)
ql,M , where X

(m�)
0 = 0 for all m� ∈ [M]. Further,

we see that �l(Ql) satisfies (12).
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3) (M, n) Partition Scheme A With {Sj}
M
η −1

j=1 i.i.d. Accord-
ing to U ([0 : n − 1]): We focus on a particular (M, n) parti-
tion Scheme A. Since the servers can learn some information
from which partition the requested file belongs to, in order to
have a relatively small leakage of partition Scheme A, it is

reasonable to use Scheme A with {Sj}
M
η −1

j=1 i.i.d. according
to U ([0 : n − 1]) as a subscheme (i.e., a PIR subscheme,
cf. Lemma 2). Thus, this scheme works for an arbitrary
number of servers n. We have the following result.

Theorem 4: Let M
η be a positive integer with η ∈ [M− 1].

Then, the 4-tuple
�
RA,P, UA,P, ΔA,P, ρ

(·)
A,P

�
,

RA,P =
	

1 +
1
n

+ · · · + 1

n
M
η −1


−1

,

UA,P = n

��
M

η
− 1

�
log2 n + log2 η

�
− log2 η

n
M
η −1

,

ΔA,P = (n − 1)
M

η
,

ρ
(MI)
A,P = log2 η − log2 η

n
M
η

, and

ρ
(WIL)
A,P = log2 η = ρ

(MaxL)
A,P

is achievable by the (M, n) partition Scheme A using

the
�

M
η , n

�
Scheme A with {Sj}

M
η −1

j=1 i.i.d. according to

U ([0 : n − 1]) as a subscheme. ♦
Proof: See Appendix D.

Let
�
R̃, Ũ, Δ̃, 0

�
be the achievable 4-tuple of the

�
M
η , 2

�
Scheme A with {Sj}

M
η −1

j=1 i.i.d. according to U ([0 : n − 1]).
It follows that UA,P = Ũ + 2 log2 η − log2 η

n
M
η

−1
< U(C basic)

and ρ
(MI)
A,P = log2 η− log2 η

n
M
η

< ρ(MI)(C basic), while RA,P, ΔA,P,

ρ
(WIL)
A,P , and ρ

(MaxL)
A,P are identical to those of the basic scheme

C basic in Section III (see the details in Appendix D). Hence,
in the numerical results section, the results of C basic are not
presented.

V. CONSTANT-RATE (M, n) SCHEME B

We propose an alternative WPIR scheme, referred to as
Scheme B and denoted by CB, based on the PIR scheme in
[17, Lem. 4]. Scheme B is constructed as follows. Assume that
β = n − 1 and that the user requests file X(m). The random
strategy S takes the form of a vector S = (S1, . . . , SβM) ∈
X βM of length βM. The query vector Ql ∈ Ql = X βM,
of length βM, is obtained as

Ql = φ(m, S) = S + v
(m)
l ,

where the vector v
(m)
l = (v(m)

l,1 , . . . , v
(m)
l,βM) is deterministic

and is completely determined by m ∈ [M]. We refer the reader
to [17, Sec. V] for details on the design of v

(m)
l . Briefly, v

(m)
l

is a binary vector, where v
(m)
l,i = 1 denotes that the i-th symbol

is being retrieved from the l-th server. The l-th vector has the
following structure,

v
(m)
l = (01×(m−1)β | Δl | 01×(M−m)β),

where Δl, l ∈ [n − 1], is the l-th β-dimensional unit vector,
and Δn = 01×β . The l-th server responds to its corresponding
query with the answer Al ∈ A = X obtained as Al =
ϕl(Ql, X

[M]) � �Ql, (X
(1)
1 , . . . , X

(1)
β , X

(2)
1 , . . . , X

(M)
β )�.

For the case where {Sj}βM
j=1 are i.i.d. according to U (X ),

Scheme B achieves perfect privacy, and the scheme reduces
to the PIR scheme in [17, Lem. 4]. Furthermore, similar
to [17, Thm. 2], it can be shown that the scheme achieves
perfect retrievability (see (1)), and since its answer-lengths
are constant for all possible queries of each server, the IR rate
RB of CB is equal to 1 − 1

n , irrespective of the information
leakage ρ(·).

We remark that for the case of multiple replicated non-
colluding servers (uncoded servers), the PIR scheme in
[17, Lem. 4] is equivalent to the original PIR protocol
proposed in [1], [2]. The designed queries and answers of
Scheme B result in a constant rate, while the rate of Scheme A
is dependent on the query distribution (see (13)).

In the following subsections, we consider the binary field
X = {0, 1}.

A. (M, 2) Scheme B With {Sj}M
j=1 i.i.d. According to

Bernoulli (p)
We have the following result.
Theorem 5: Consider 0 ≤ p ≤ 1

2 . Then, the 4-tuple�
1
2 , UB, ΔB, ρ

(·)
B

�
,

UB = −
M�

w=0

	
M

w



g(w, p) log2 g(w, p) + M Hb(p),

ΔB =
M�

w=0

w

	
M

w


�
g(w, p) + h(w, p)

�
,

ρ
(MI)
B =

UB

2
− MHb(p),

ρ
(WIL)
B = log2 M − min

w∈[0:M]
H(M �

w), and

ρ
(MaxL)
B = log2

	
(1 − p)M−1p

+
�

w∈[1:M]

	
M

w



(1 − p)M−(w−1)pw−1



is achievable by the (M, 2) Scheme B with
{Sj}M

j=1 i.i.d. according to Bernoulli (p), where

g(w, p) � (M−w)(1−p)M−w−1pw+1+w(1−p)M−w+1pw−1

M ,
h(w, p) � (1 − p)M−wpw, and M �

w is a RV with PMF

PM �
w
(m�) =

⎧⎨⎩
(1−p)M−w−1pw+1

Mg(w,p) if m� ∈ [M − w],
(1−p)M−w+1pw−1

Mg(w,p) if m� ∈ [M − w + 1 : M].

♦
Proof: The proof is similar to the proof of Theorem 3,

and is omitted for brevity.
In the following subsection, we analyze the (M, 2)

Scheme B with a uniformly-distributed random strategy S.
Note that similarly to partition Scheme A in Section IV-B.3,
we can also construct a partition scheme by using Scheme B as
a subscheme for every partition. We omit the analysis since it
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is almost the same as for partition Scheme A, and the result for

the (M, n) partition Scheme B with {Sj}
M
η

j=1 i.i.d. according
to U (X ) is very close to the result in Theorem 4.

B. (M, 2) Scheme B With S Uniformly Distributed

We consider the (M, 2) Scheme B with S uniformly
distributed over all length-M binary vectors of weight
w. In other words, S ∼ U (Bw,M), where Bw,M ��
s ∈ {0, 1}M : wH (s) = w

�
.

Theorem 6: Given any w ∈ [0 : M]. Then, the 4-tuple�
1
2 , UB,U, ΔB,U, ρ

(·)
B,U

�
,

UB,U = log2

	
M

w



+ y(w, M),

ΔB,U = 1 + 2w

�
1 − 1

M

�
,

ρ
(MI)
B,U =

y(w, M) − log2

�
M
w

�
2

,

ρ
(WIL)
B,U = log2 M

− min{log2 (w + 1), log2 (M − w + 1)}, and

ρ
(MaxL)
B,U = log2

	
M − w

w + 1
+

w

M − w + 1



is achievable by the (M, 2) Scheme B with S ∼ U (Bw,M),
where y(w, M) � log2

�
M
w

�
+ log2 M − (M−w) log2 (w+1)

M −
w log2 (M−w+1)

M . ♦
Proof: See Appendix E.

We remark that the analysis of the (M, 2) Scheme A with
S ∼ U (Bw,M−1) can also be done by following the same
approach as for Theorem 6.4 However, since the resulting
performance is much worse than those of the aforementioned
WPIR schemes for the case of n = 2 servers, we omit the
detailed analysis in this paper.

In the rest of the paper, except for the next Section VI
and the numerical results in Section X, we consider only
the MI and MaxL privacy metrics as these are more
commonly used [56].

VI. �-PRIVACY FOR SCHEME A

In this section, we focus on the leakage analysis of the
(M, n) Scheme A under the �-privacy metric. Since the WPIR
rate of the (M, n) Scheme A is equal to (13), irrespective of
the used privacy metric, we only need to focus on the design
of the conditional query distribution P

Q
(m)
l

(ql) at each server.
To compare our results with the works in [60] and [61],

we first summarize the achievable rate for a given leakage
constraint ρ ≥ 0 as follows.

Lemma 3 ([61, Eq. (26)]): Consider a DSS with n non-
colluding servers storing M files. Then, given an �-privacy
leakage constraint ρ(�-P) ≤ ρ with ρ ≥ 0, the rate

R
(�-P)
LPIR =

	
1 +

nM−1 − 1
(n − 1)(eρ + nM−1 − 1)


−1

(15)

4The scheme is not equal to that of [30] because of the difference in the
vector space of the random strategy. The former involves all length-(M− 1)
vectors of weight w, while the latter consists of all vectors of length M− 1.

is achievable. Moreover, the WPIR rate under the �-privacy
metric is bounded from above by

R(�-P)(C ) ≤ 1 − 1
neρ

1 − 1
(neρ)M

� R
(�-P)
UB . (16)

♦
In [60] and [61], the authors proposed the path-based

approach across databases to obtain the achievable download
rate R

(�-P)
LPIR in (15). In the following subsection, we show that

it is possible to achieve a better tradeoff between the �-privacy
leakage and the download rate by using Scheme A.

A. (M, 2) Scheme A With {Sj}M−1
j=1 i.i.d. According to a

Bernoulli-Distributed RV

Theorem 7: Consider 0 < pρ � (1 + eρ)−1 ≤ 1
2 for ρ ≥ 0.

Then, given an �-privacy leakage constraint ρ(�-P) ≤ ρ, the
rate

R
(�-P)
A =

�
1 − (1 − pρ)M−1 + 1

�−1
(17)

is achievable by the (M, 2) Scheme A with {Sj}M−1
j=1 i.i.d.

according to Bernoulli (pρ). ♦
Proof: See Appendix F.

VII. MINIMIZATION OF THE INFORMATION LEAKAGE

FOR SCHEME A WITH TIME-SHARING

A main objective of this work is to determine the optimal
WPIR scheme that leaks the smallest amount of information,
subject to a given IR download cost, upload cost, or access
complexity. Since both the information leakage and the IR
rate can be improved based on the query generation of
Scheme A, our aim is to study the optimal tradeoff between
the information leakage and the download cost for Scheme A.
In the rest of paper, we will mainly focus on the MI and MaxL
privacy metrics.

Following the notion of Theorem 1 for the MI met-
ric, we can use the time-sharing principle to construct a
time-sharing scheme from Scheme A. In particular, con-
sider the Scheme A CA with query-encoding functions φl,
answer functions ϕl, and a random strategy S presented
in Section IV. We design the query-encoding functions
φ̄l = φσT−1(l)(M, S) and the answer functions ϕ̄l =
ϕσT−1(l)

�
φσT−1(l)(M, S), X [M]

�
of a given requested file

index M to construct the time-sharing scheme of Scheme A,
where T ∼ U ([n]). Such a scheme is referred to as
time-sharing Scheme A and denoted by C A.5 Recall that
in Scheme A the query realization ql of the l-th server,
l ∈ [n], belongs to Ql, defined in (10), from which it
follows that all of the query sets Ql are distinct. The con-
ditional query PMF P

Q
(m)
l

(ql) = PS(s) is independent of
M = m, and the download cost of the (M, n) Scheme A
is 1 − PS(0) + (n − 1) (cf. Section IV). Denote by zs �
PS(s) the PMF of the random strategy S, and ql \ {m} �
(ql,1, . . . , ql,m−1, ql,m+1, . . . , ql,M), m ∈ [M]. By applying
the time-sharing approach, the resulting query set at the l-th

5The time-sharing principle can be applied to any WPIR scheme. However,
here we concentrate only on the time-sharing Scheme A.
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server is Ql = [0 : n − 1]M, and the conditional PMF of Ql

given M = m is

P
Q

(m)
l

(q̄l) =
n�

t=1

Pr [T = t] Pr

Q

(m)
σt−1(l) = q̄l

���T = t
�

=
1
n

zs, for s = q̄l \ {m}, q̄l ∈ Ql, (18)

where (18) follows since all query sets in Scheme A are
different. In other words, by using the time-sharing approach,
we obtain a new scheme with a conditional query distribution
at each server equal to�P

Q
(m)
σ0(l)

(·)
n

, · · · ,

P
Q

(m)
σn−1(l)

(·)
n

�
, (19)

where P
Q

(m)
l

(·) = (p1, . . . , p|Ql|) represents the conditional
query distribution corresponding to PQl|M=m for Scheme A.
Therefore, from (18) or (19) it follows that every server has
identical information leakage for the time-sharing Scheme A
under both the MI and MaxL privacy metrics. Note that the
download cost stays the same as for Scheme A.

For the time-sharing Scheme A, the minimization of the
information leakage ρ(·)(C A) under a download cost con-
straint D can be cast as the optimization problem

minimize ρ(·)(C A) (20a)

subject to 1 − z0 + (n − 1) ≤ D, (20b)�
s∈[0:n−1]M−1

zs = 1. (20c)

A. Optimizing the MI Leakage

In terms of the MI privacy metric, we know from Theorem 1
that the leakage of C A is equal to6

ρ(MI)(C A) = I(M ;Ql)

=
1
n

�
l�∈[n]

�
H (Ql�) − H(Ql� |M)

�
=

1
n

�
l�∈[n]

H(PQl� ) − H
�
(z)s∈[0:n−1]M−1

�
(a)
=

1
n

�
q̄l∈[0:n−1]M

��
−
�M

m=1 PS(q̄l \ {m})
M

�

· log2

��M
m=1 PS(q̄l \ {m})

M

��
− H

�
(z)s∈[0:n−1]M−1

�

=
1
n

�
q̄1∈[0:n−1]M

�
−

M�
m=1

zq̄1\{m}

M

�
log2

� M�
m=1

zq̄1\{m}

M

�
− H

�
(z)s∈[0:n−1]M−1

�
, (21)

where (a) holds by the definition of entropy and the fact that�n
l=1 Ql = Q1 = [0 : n − 1]M. Hence, (20a) becomes (21).

6Note that the MI leakage of Scheme A and that of the corresponding
time-sharing Scheme A is always the same due to the definition of MI
leakage in (4).

We remark that the MI objective function I
�
M ;Q1

�
is

convex in PQ1|M , and PQ1|M is subject to the following linear
constraints

PQ1|M (q̄1|m) = PQ1|M (q̄�
1|m), ∀ q̄1 \ {m} = q̄�

1 \ {m}.
Thus, the optimization problem (20) under MI leakage is

convex. However, it is difficult to have closed-form opti-
mal solutions for (M, n) �= (2, 2), and hence instead we
present numerical results of the optimized time-sharing (M, 2)
Scheme A for several values of the number of files M in
Section X. Lastly, we would like to emphasize that for any
information leakage metric ρ(·) that is convex in PQ1|M we
end up with a convex optimization problem for the maximiza-
tion of the download rate of the time-sharing Scheme A.

B. Optimizing the MaxL

In this subsection, we turn our attention to the minimization
of the MaxL for the proposed (M, n) Scheme A with time-
sharing. Similar to the derivation for the MI metric, by defin-
ition (20a) becomes

ρ(MaxL)(C A) = log2

�
q̄l∈Ql

max
m∈[M]

zq̄l\{m}
n

.

We remark that as for MI leakage, the time-sharing
Scheme A C A also has identical MaxL at each server. Using
again the fact that the sets Ql are distinct and

�n
l=1 Ql = Ql,

we have

ρ(MaxL)(CA) = max
l∈[n]

�
log2

�
ql∈Ql

max
m∈[M]

PQl|M (ql|m)
�

= log2

 
max
l∈[n]

�
ql∈Ql

max
m∈[M]

PQl|M (ql|m)
!

≥ log2

 
1
n

�
l∈[n]

�
ql∈Ql

max
m∈[M]

PQl|M (ql|m)
!

= ρ(MaxL)(C A).

From Lemma 1 and using a similar argument as
in Section VII-A, replacing the objective function with
2ρ(MaxL)(C A) in (20) gives a convex minimization problem.
In Section X below, we give numerical optimal values for (20)
under MaxL and compare them with the converse results
presented next.

We remark here that the minimization of the information
leakage for Scheme A with time-sharing under a download
cost constraint D can also be done for the �-privacy metric.
However, as this work mainly focuses on the MI and MaxL
privacy metrics, we leave the analysis of this minimization of
the �-privacy metric as future work.

VIII. CONVERSE RESULTS FOR MI LEAKAGE

In order to present the converse results of WPIR for the MI
metric, we first introduce the following measure between two
PMFs.

Definition 3: The TV distance between two PMFs PY1 and
PY2 on the same finite alphabet Y is defined as

�PY1 − PY2�TV � max
Z⊆Y

|PY1(Z) − PY2(Z)| ,
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where PY (Z) �
�

z∈Z PY (z) is the probability of all
realizations in the set Z . ♦

Next, we review a useful lemma related to the TV distance,
which was presented in [54, Lem. 2].

Lemma 4: If I (X ;Y ) ≤ ρ, then for any x, x� ∈ X , we have""PY |X=x − PY |X=x�
""

TV
≤ 1 − 2 H−1

b (1 − ρ) � δMI. ♦

Here, since we require that δMI ≥ 0, it is easy to see that
we can specify H−1

b (1 − ρ) ∈ �0, 1
2

�
.

Lastly, we consider a known result between the entropy
difference and the TV distance, which can be derived by using
a probabilistic coupling technique.

Lemma 5 ([73, Eq. (4)]): If
""PY |X=x − PY |X=x�

""
TV

≤
δMI, then��H �PY |X=x

�− H
�
PY |X=x�

���
≤ δMI log2(|Y| − 1) + Hb(δMI) (22)

≤ δMI log2(|Y| − 1) + 1. ♦

Note that in the inequality (23), the upper bound becomes
tight for 0 ≤ δMI ≤ 1 − 1

|Y| [74, Thm. 6].7

We remark that under the MI metric, we measure the
overall leakage of a WPIR scheme in an average manner, i.e.,
ρ(MI) = 1

n

�
l∈[n] I(M ;Ql). Here, given a leakage constraint

ρ(MI) ≤ ρ, we assume that I(M ;Ql) = ρl, ∀ l ∈ [n].
Let us define

�MI(Ql,Al) � δMI
l log2(|Ql ×Al| − 1) + 1,

�MI(Ql) � δMI
l log2(|Ql| − 1) + 1,

where δMI
l = 1 − 2 H−1

b (1− ρl) and Al is the alphabet of the
answer Al, l ∈ [n]. We give the following useful lemma.

Lemma 6: Given m �= m�, where m, m� /∈ M � [M − 1],
we have

H(A(m)
[n] |Q(m)

[n] , XM)

≥ β log2 |X | +
H
�
A

(m�)
[n]

��Q(m�)
[n] , XM, X(m)

�
n

−
�n

l=1

�
�MI(Ql,Al) + �MI(Ql)

�
n

. (23)

Moreover,

H(A(M)
[n] |Q(M)

[n] , X [M−1]) ≥ β log2 |X |. (24)

♦
Proof: The proof is deferred to Appendix G.

Now, we are ready to derive a general lower bound on
D. Since H(A(m)

l |Q(m)
l = ql) ≤ log2

��A���l(ql) for a given

7The results shown in [73] and [74] assume the variational distance as the
measure between two PMFs. It can be easily shown that the TV distance
is equal to the variational distance divided by 2, i.e.,

�
�PY1 − PY2

�
�

TV
=

1
2

�
y∈Y

�
�PY1 (y) − PY2(y)

�
�, see, e.g., [75, Lem. 3.12].

ql ∈ Ql, we have

D(m) = log2 |A|
n�

l=1

�
ql∈Ql

P
Q

(m)
l

(ql)�l(ql)

≥
n�

l=1

�
ql∈Ql

P
Q

(m)
l

(ql)H
�
A

(m)
l

��Q(m)
l = ql

�
=

n�
l=1

H(A(m)
l |Q(m)

l ).

Note that without loss of generality, we can assume that
the conditional entropies H(A(m)

[n] |Q(m)
[n] ), m ∈ [M], satisfy

H(A(1)
[n] |Q(1)

[n] ) ≤ · · · ≤ H(A(M)
[n] |Q(M)

[n] ).
Hence, similar to the recursive procedure used

in [7, Sec. V-A], [12, Sec. VI], the total download cost
can be bounded from below by

D(C )

=
1
M

M�
m=1

D(m) ≥ 1
M

M�
m=1

n�
l=1

H
�
A

(m)
l

��Q(m)
l

�
(a)

≥ 1
M

M�
m=1

H(A(m)
[n] |Q(m)

[n] )

≥ 1
M

M�
m=1

H(A(1)
[n] |Q(1)

[n] ) = H(A(1)
[n] |Q(1)

[n] )

(b)

≥ β log2 |X | +
H
�
A

(2)
[n]

��Q(2)
[n] , X

(1)
�

n

−
�n

l=1

�
�MI(Ql,Al) + �MI(Ql)

�
n

...

(c)

≥ β log2 |X | +
M−1�
m=1

�
β log2 |X |

nm

−
�n

l=1

�
�MI(Ql,Al) + �MI(Ql)

�
nm

�
,

(25)

where (a) holds because conditioning reduces entropy, and
(b)–(c) follow by recursively applying Lemma 6 M times with
M = ∅, {1}, . . . , [M−1], respectively. It is worth mentioning
that under the assumption of perfect privacy, i.e., δMI

l = 0,
∀ l ∈ [n], H(A(m)

[n] |Q(m)
[n] , XM) in (23) can be bounded from

below by

H(A(m)
[n] |Q(m)

[n] , XM)

≥ β log2 |X | +
H
�
A

(m�)
[n]

��Q(m�)
[n] , XM, X(m)

�
n

by bounding (38) using (23) directly in the proof of Lemma 6
(see Appendix G). Following the above recursive steps, it can
then be shown that the same converse results of the PIR
capacity proof in [7, Sec. V-A] can be obtained.

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:35:20 UTC from IEEE Xplore.  Restrictions apply. 



1208 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 2, FEBRUARY 2022

A. A Converse Bound With Restricted Alphabets of
Queries and Answers

The expression in (25) indicates that a general lower bound
on D can be arbitrarily dependent on the choice of the alpha-
bets of the queries and answers. In this subsection, a converse
bound for WPIR schemes is derived from a practical design
perspective. Note that in the information-theoretic PIR setup,
the upload cost can be ignored as it does not scale with the
file size. Moreover, to have an efficient WPIR scheme, the
downloaded answer size per server should be smaller than or
equal to the entire retrieved file size. Hence, we assume that

|Ql| ≤ α < ∞, (26a)

|Al| ≤ |X |β , (26b)

∀ l ∈ [n], for some positive α ∈ N, i.e., the query sizes are
finite and each answer takes value on a smaller alphabet than
that of the retrieved file.

We first state the following theorem, which gives an upper
bound on the maximum possible WPIR rate for the MI metric.

Theorem 8: Consider an (M, n) WPIR scheme that satis-
fies (26) and with MI leakage ρ(MI) ≤ ρ. Then, the maximum
possible WPIR rate, denoted by R(MI)

max , is bounded from above
by

R(MI)
max ≤

�
1

nM−1
+ 2

M−1�
m=1

1
nm−1

H−1
b (1 − ρ)

�−1

� R
(MI)
UB . ♦

Proof: Under these assumptions, (25) becomes

D(C )

≥ β log2 |X | +
M−1�
m=1

�
β log2 |X |

nm
−

n�
l=1

	
δMI
l log2 (α |X |β)

nm

+
δMI
l log2 α

nm
+

2
nm


�
. (27)

Dividing (27) by β log2 |X | gives

D(C )
β log2 |X |

≥ 1 +
M−1�
m=1

�
1

nm
−

n�
l=1

	
δMI
l log2 α

nmβ log2 |X | +
δMI
l

nm

+
δMI
l log2 α

nmβ log2 |X | +
2

nmβ log2 |X |

�

(28)

β→∞−−−−→ 1 +
M−1�
m=1

1
nm

−
M−1�
m=1

�n
l=1 δMI

l

nm
(29)

= 1 +
M−1�
m=1

1
nm

−
M−1�
m=1

�n
l=1

�
1 − 2 H−1

b (1 − ρl)
�

nm

= 1 +
M−1�
m=1

1
nm

−
M−1�
m=1

n

nm
+ 2

M−1�
m=1

n�
l=1

H−1
b (1 − ρl)

nm

(a)

≥ 1
nM−1

+ 2
M−1�
m=1

n

nm
H−1

b

�
1 − 1

n

n�
l=1

ρl

�

(b)

≥ 1
nM−1

+ 2
M−1�
m=1

n

nm
H−1

b (1 − ρ)

=
1

nM−1
+ 2

M−1�
m=1

1
nm−1

H−1
b (1 − ρ),

where (a) and (b) hold because the inverse binary
entropy function is convex and increasing in [0, 1],
respectively.

We remark that in the proof of Theorem 8 (as well as in
the following converse results), the subtlety is to allow the
file size β to go to infinity, such that we can have nontrivial
converse bounds, i.e., R

(·)
UB ≤ 1, for certain cases of (M, n).

We will also discuss the tightness of our proposed converse
results in Section X-C. Note that the converse bound in (28)
is in general trivial when β decreases.

In the following, we prove the largest possible achievable
WPIR rate for the special case of (M, n) = (2, 2) under
the additional constraint that only one of the two servers
can leak. ♦

Theorem 9: Consider an (M, n) = (2, 2) WPIR scheme
that satisfies (26) and with MI leakage ρ(MI) ≤ ρ ≤ 1. Then,
the maximum possible WPIR rate is

R(MI)
max (ρ) =

�
1 + H−1

b (1 − 2ρ)
�−1

under the assumption that only one of the two servers
can leak. ♦

Proof: The achievable scheme is the Scheme A presented
in Example 1. Thus, we only need to prove the converse.
Assume without loss of generality that I (M ;Q1) = ρ1 = 0
and I (M ;Q2) = ρ2 = 2ρ. By definition, δMI

1 = 1−2 H−1
b (1−

ρ1) = 0 and we can use the exact same derivation as in
Section VIII-A to obtain from (30)

D(C )
β log2 |X | ≥ 1 +

1
2
− δMI

2

2

=
3
2
− 1 − 2 H−1

b (1 − 2ρ)
2

= 1 + H−1
b (1 − 2ρ),

as β → ∞, which completes the proof.

IX. CONVERSE RESULTS FOR MAXL

In this section, we present the converse results for the MaxL
metric. Similar to the case of the MI privacy metric, see
Theorem 10 presented here.

Theorem 10: Consider an (M, n) WPIR scheme that satis-
fies (26) and with MaxL ρ(MaxL) ≤ ρ. Then, the maximum
possible WPIR rate, denoted by R(MaxL)

max , is bounded from
above by

R(MaxL)
max ≤

�
1 +

M−1�
m=1

1
nm

−
M−1�
m=1

2ρ − 1
nm−1

�−1

� R
(MaxL)
UB . ♦

Proof: Similar to the case with the MI privacy metric,
we first make use of the following lemma.

Lemma 7: If MaxL (X ;Y ) ≤ ρ, then for any x, x� ∈ X ,
we have""PY |X=x − PY |X=x�

""
TV

≤ 2ρ − 1 � δMaxL. ♦
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Lemma 7 can be proven by a similar argument as in
[54, App. C]. The proof is provided in Appendix H for
completeness.

Note that for the MaxL metric, we consider the worst-case
MaxL over all servers, i.e., ρ(MaxL) = maxl∈[n] MaxL(M ;Ql).
If the leakage at the l-th server is MaxL(M ;Ql) ≤ ρl, then
we have ρ(MaxL) ≤ maxl∈[n] ρl � ρ. A lower bound on the
download cost can be proven by following the same steps as in
Section VIII. Under the assumptions in (26), and as β → ∞,
(30) becomes

D(C )
β log2 |X | ≥ 1 +

M−1�
m=1

1
nm

−
M−1�
m=1

�n
l=1 δMaxL

l

nm

≥ 1 +
M−1�
m=1

1
nm

−
M−1�
m=1

n maxl∈[n] δ
MaxL
l

nm

= 1 +
M−1�
m=1

1
nm

−
M−1�
m=1

maxl∈[n] δ
MaxL
l

nm−1

= 1 +
M−1�
m=1

1
nm

−
M−1�
m=1

2ρ − 1
nm−1

, (30)

where (30) follows from Lemma 7 and maxl∈[n] δ
MaxL
l =

2maxl∈[n] ρl − 1 = 2ρ − 1.
In the following theorem we give the maximum achievable

WPIR rate under the MaxL metric for the special case of
(M, n) = (2, 2).

Theorem 11: Consider an (M, n) = (2, 2) WPIR scheme
that satisfies (26) and with MaxL ρ(MaxL) ≤ ρ ≤ 1. Then, the
maximum possible WPIR rate is

R(MaxL)
max (ρ) =

#
5
2
− 2ρ

$−1

.

Moreover, assuming that only one of the two servers can leak
information, then the maximum possible WPIR rate is

R(MaxL)
max (ρ) =

�
2 − 2ρ−1

�−1
. ♦

Proof: The achievable scheme for the first assertion is
Scheme A with time-sharing. In particular, by applying the
time-sharing principle to Example 1, we get the following
conditional PMF of Q1 given M = m,

Thus, by definitions we get 2ρ(MaxL)
= 1

2 + (1 − p),
for 0 ≤ p ≤ 1

2 , and hence it can be seen that
D = 1 + p = 1 + 3

2 − 2ρ(MaxL)
= 5

2 − 2ρ(MaxL)
. Note that

Fig. 2. R, U, and Δ of different WPIR schemes for M = 32, as a function
of ρ(MI). For M = 32, CM,2 is almost equal to 1

2
.

this is also the optimized time-sharing Scheme A under the
MaxL metric for (M, n) = (2, 2), where the optimal solution
for (20) is (z∗0 , z∗1) = (2 − D, D − 1). The converse part is
proven by (30), which gives

D(C )
β log2 |X | ≥ 1 +

1
2
− 2ρ − 1

1
=

5
2
− 2ρ

for (M, n) = (2, 2).
Further, the second assertion can be proven by following

the same lines as in the poof of Theorem 9.

X. NUMERICAL RESULTS

This section consists of three subsections. Section X-A
considers the case of two servers and compares the achievable
4-tuples

�
R, U, Δ, ρ(·)� for the (M, 2) WPIR schemes pro-

posed in Sections IV-A, IV-B.3, V-A, and V-B. Note that as the
performance of C basic in Section III is inferior to the scheme
in Section IV-B.3, the results of C basic are not presented.
Section X-B also focuses on the case of two servers and
compares our (M, 2) WPIR scheme proposed in Section VI-A
with the scheme proposed in [60] and [61] under the
�-privacy metric. Section X-C presents optimized values for
the download rate for the time-sharing Scheme A by numeri-
cally solving the convex optimization problem in (20) for both
the MI and MaxL privacy metrics and comparisons with the
converse bounds from Theorems 8 and 10.
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Fig. 3. R, U, and Δ of different WPIR schemes for M = 32, as a function
of ρ(WIL). Here, RB = 1

2
is not plotted.

A. (M, 2) WPIR Schemes

Four (M, 2) WPIR schemes presented in Sections IV-
A, IV-B.3, V-A, and V-B are illustrated. More specifically,
the 4-tuples

�
RA, UA, ΔA, ρ

(·)
A

�
achieved by the (M, 2)

Scheme A with {Sj}M−1
j=1 i.i.d. according to Bernoulli (p),�

RA,P, UA,P, ΔA,P, ρ
(·)
A,P

�
achieved by the (M, n) partition

Scheme A using the
�

M
η , n

�
Scheme A with {Sj}

M
η −1

j=1

i.i.d. according to U ([0 : n − 1]) as a subscheme,�
1
2 , UB, ΔB, ρ

(·)
B

�
achieved by the (M, 2) Scheme B

with {Sj}M
j=1 i.i.d. according to Bernoulli (p), and�

1
2 , UB,U, ΔB,U, ρ

(·)
B,U

�
achieved by the (M, 2) Scheme B with

S ∼ U (Bw,M), are presented for comparison. For the sake
of illustration, the information leakage ρ(MI) is normalized
by log2 M bits, while the upload cost and access complexity
are normalized by 2(M − 1) and M, respectively. 2(M − 1)
and M are the upload cost and access complexity of the
PIR capacity-achieving scheme presented in [30] for the
case of two servers. The upload cost 2(M − 1) is optimal
among all so-called decomposable PIR capacity-achieving
schemes [30].8

Fig. 2 presents the results of the four WPIR schemes for
the case of M = 32 files and leakage metric ρ(MI). We can

8Based on [30, Def. 2], all existing PIR schemes in the literature are
decomposable.

Fig. 4. R, U, and Δ of different WPIR schemes for M = 32, as a function
of ρ(MaxL). Here, RB = 1

2
is not plotted.

Fig. 5. The rates R
(�-P)
LPIR , R

(�-P)
A , and R

(�-P)
UB for (M, n) = (3, 2), as a

function of ρ(�-P).

see that Scheme A yields the best performance in terms of
download rate, upload cost, and access complexity for all
values of the information leakage. Note that the IR rate of
Scheme B with different S is always equal to 1

2 . The results
of the four WPIR schemes for WIL and MaxL are provided
in Figs. 3 and 4, respectively. For WIL, Scheme A performs
best among the four schemes for all values of the information
leakage in terms of download rate, upload cost, and access
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Fig. 6. The rates R
(�-P)
LPIR , R

(�-P)
A , and R

(�-P)
UB for (M, n) = (10, 2), as a

function of ρ(�-P).

Fig. 7. The optimized rate R̄
(MI)
opt for the time-sharing Scheme A and R

(MI)
UB

for (M, n) = (2, 2), as a function of ρ(MI).

complexity. However, for MaxL the partition Scheme A (from
Theorem 4) has a comparable performance to Scheme A with
{Sj}M−1

j=1 i.i.d. according to Bernoulli (p) (from Theorem 3)
for both download rate and access complexity. In particular,
for ρ(MaxL) = 0.8 it exhibits a slightly higher download rate,
whereas for 0.2 ≤ ρ(MaxL) ≤ 0.8 it achieves a lower access
complexity. On the other hand, it yields a significantly lower
upload cost for all values of the information leakage.

B. �-Privacy for (M, 2) WPIR Schemes

In this subsection, the achievable rates and the upper bound
under the �-privacy metric presented in Section VI are demon-
strated. We evaluate the rate R

(�-P)
LPIR , the upper bound R

(�-P)
UB ,

and the rate R
(�-P)
A in (15), (16), and (17), respectively. Fig. 5

presents the results for the case of M = 3 files. In Fig. 6, the
corresponding curves for (M, n) = (10, 2) are provided. It can
be seen that our proposed (M, 2) Scheme A outperforms the
leaky PIR scheme presented in [60], [61], in terms of download
rate. Note that for the special case of M = 2 files, we have
R

(�-P)
LPIR = R

(�-P)
A . Moreover, the converse bound R

(�-P)
UB is in

general not tight.

Fig. 8. The optimized rate R̄
(MI)
opt , RA, and RA,P for (M, n) = (6, 2), as a

function of ρ(MI).

Fig. 9. The optimized rate R̄
(MI)
opt and RA,P for (M, n) = (6, 3), as a

function of ρ(MI).

C. Optimized Rates for the Time-Sharing Scheme A

In this subsection, we give the maximum download rate
under a leakage constraint for the time-sharing Scheme A
described in Section VII with both the MI and MaxL privacy
metrics. Since for both metrics optimizing the download rate
is a convex problem (see (20)), the optimal solutions can be
obtained by using the CVXPY Python-embedded modeling
language for convex optimization problems [76], [77]. The
optimal corresponding rate obtained from (20) is denoted by
R̄

(·)
opt. Unless specified otherwise, all solutions are numeri-

cally computed. Moreover, if the converse bound R
(·)
UB (see

Theorems 8 and 10) is trivial for all leakage constraints,
i.e., R

(·)
UB ≥ 1, we do not include it in the figures.

Under the MI privacy metric, Fig. 7 compares the optimal
rate-leakage tradeoff curve for the canonical case of (M, n) =
(2, 2) to the converse bound R

(MI)
UB from Theorem 8, which

shows that in general it is not tight. We remark that the optimal
curve is equal to the curve presented in Example 1, and it
can also be shown that the analytical optimal solution can be
derived directly from (20). In Fig. 8, for (M, n) = (6, 2), the
download rate from Theorems 3 and 4 is plotted as a function
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Fig. 10. The optimized rate R̄
(MaxL)
opt for the time-sharing Scheme A and

R
(MaxL)
UB for (M, n) = (3, 2), as a function of ρ(MaxL).

Fig. 11. The optimized rate R̄
(MaxL)
opt , RA, and RA,P for (M, n) = (6, 2),

as a function of ρ(MaxL) .

of the information leakage, together with the optimal download
rate R̄

(MI)
opt for the time-sharing Scheme A obtained from

(20). The comparisons show that Scheme A with {Sj}M−1
j=1

i.i.d. according to Bernoulli (p) (from Theorem 3) exhibits a
download rate that is close to being optimal. On the other
hand, partition Scheme A (from Theorem 4) performs quite far
from the optimal tradeoff curve. In Fig. 9, the corresponding
curves for (M, n) = (6, 3) (excluding the curve from Theo-
rem 3, which assumes n = 2) are presented. Again, partition
Scheme A performs far from the optimal tradeoff curve. Note
that for both (M, n) = (6, 2) and (6, 3) the converse bound
from Theorem 8 is trivial.

In Figs. 10 to 12, the corresponding curves for the MaxL
privacy metric are depicted. In particular, the figures show
results for (M, n) = (3, 2), (6, 2), and (6, 3), respectively.
Note that with the MaxL privacy metric the converse bound
from Theorem 10 is tight for the canonical case of (M, n) =
(2, 2) (see Theorem 11). Hence, in contrast to Fig. 7, where
(M, n) = (2, 2), we use (M, n) = (3, 2) in Fig. 10. From
Fig. 11, for (M, n) = (6, 2), Scheme A with {Sj}M−1

j=1 i.i.d.
according to Bernoulli (p) (from Theorem 3) exhibits a lower

Fig. 12. The optimized rate R̄
(MaxL)
opt and RA,P for (M, n) = (6, 3), as a

function of ρ(MaxL).

download rate than partition Scheme A (from Theorem 4),
which is in contrast to the case of MI leakage where partition
Scheme A performs significantly worse (see Fig. 8). Moreover,
the gap to the optimized rate R̄

(MaxL)
opt is higher than with the

MI privacy metric. For (M, n) = (6, 3), Fig. 12 shows that
the gap in download rate between the optimized rate R̄

(MaxL)
opt

and the rate from partition Scheme A is smaller than with the
MI privacy metric, which indicates that partition Scheme A
performs better with the MaxL privacy metric than with the
MI privacy metric. For both (M, n) = (6, 2) and (6, 3) (as for
the MI privacy metric) the converse bound from Theorem 10
is trivial.

XI. CONCLUSION

We presented the first study of the tradeoffs that can be
achieved by relaxing the perfect privacy requirement of PIR,
referred to as WPIR, for the case of multiple replicated non-
colluding servers. Two WPIR schemes based on two different
PIR protocols, named Scheme A and Scheme B, and a family
of schemes based on partitioning were proposed. The proposed
model shows that by relaxing the perfect privacy requirement,
the download rate, the upload cost, and the access complexity
can be improved. In addition, we showed that Scheme A
achieves an improved download rate compared to the leaky
PIR scheme proposed by Samy et al. under the �-privacy
metric. Under the MI and MaxL privacy metrics and with
a practical restriction on the alphabet size of queries and
answers, we provided an information-theoretic converse bound
on the download rate. For the MaxL privacy metric and for
two servers and two files, the converse bound is tight, giving
the WPIR capacity in this special case. Numerous numerical
results were presented, comparing the performance of the
proposed schemes and their gap to the new converse bound.

Many interesting directions can be studied as future work.
First of all, the derivation of a better converse bound on the
download rate, as well as on the upload cost and the access
complexity, is worth further investigation for general cases
of (M, n). On the other hand, practical variants of WPIR
include colluding, Byzantine, and unresponsive servers, are
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all important topics for future research, as well as WPIR for
coded DSSs and WPIR with secure storage.

APPENDIX A
PROOF OF THEOREM 2

Without loss of generality, denote the requested file index
M by M ≡ (MJ , J), where MJ denotes the requested file
index in the J-th partition. The MI based leakage at the l-th
server, l ∈ [n], is given as

I(M ;Ql) = H(M) − H(M |Ql)

= H(MJ , J) − H(MJ , J | �Ql, J)

= H(J) + H(MJ |J) − H(MJ | �Ql, J)
(a)
= H(J) + H(MJ) − H(MJ | �Ql)

= log2 η + I(MJ ; �Ql), (31)

where (a) follows since MJ and J are assumed to be uniform
RVs, and hence knowing J does not reveal any information
about the requested file index MJ . Using (31) in (4) gives
ρ(MI)(C ). Using a similar argument as above, the expressions
for R(C ), U(C ), Δ(C ), ρ(WIL)(C ), and ρ(MaxL)(C ) can be
derived accordingly.

APPENDIX B
PROOF OF LEMMA 2

Observe that if {Sj}M−1
j=1 are i.i.d. according

to U ([0 : n − 1]), then for every m, m� ∈ [M] with
m �= m�, it holds that

Pr [Ql = ql |M = m] = Pr [Ql = ql |M = m�] =
� 1

n

�M−1

for all ql ∈ Ql, l ∈ [n]. Moreover, from the answer
construction of (11), the IR rate is

R =
β log2 2

log2 2
�n

l=1 EQl
[�l(Ql)]

=
n − 1�

1 − PQ1
(0)
�
+
�n

l=2 EQl
[�l(Ql)]

=
n − 1�

1 − 1
nM−1

�
+ (n − 1)

=
1 − 1

n

1 − 1
nM

,

which is equal to the n-server PIR capacity for M files.

APPENDIX C
PROOF OF THEOREM 3

From the theorem statement, the entries {Sj}M−1
j=1 of the

random strategy S are assumed to be i.i.d. according to
Bernoulli (p), 0 ≤ p ≤ 1

2 . Hence, PQ1
(0) = PS(0) =

(1 − p)M−1, and we have

R(CA) =
1�

1 − (1 − p)M−1
�
+ 1

from the general formula in (13).
For the upload cost, access complexity, and the information

leakage metrics, we first derive the PMF of Ql, l = 1, 2. Let

us consider a query ql to the l-th server that has wH (ql) = w.
Due to the query generation, we have

PQl|M (ql|m) =

�
(1 − p)M−w−1pw if m ∈ [M] \ χ (ql) ,

(1 − p)M−wpw−1 if m ∈ χ (ql) .

(32)

By using the law of total probability, we obtain

PQl
(ql) =

M�
m�=1

1
M

PQl|M (ql|m�)

=
1
M

�	
M − w

1



· (1 − p)M−w−1 · pw

+
	

w

1



· (1 − p)M−w · pw−1

�
= f(w, p).

From the query generation (see Section IV-.1), it follows
that wH (q1) must be even and wH (q2) must be odd for the
case of n = 2 servers, hence, the upload cost is equal to

U(CA) = H(Q1) + H(Q2)

= −
M�

w=0

	
M

w



f(w, p) log2

�
f(w, p)

�
.

Further, by the definition in (6), the access complexity
Δ(CA) = ΔA follows.

Moreover, we have

H(Ql |M) =
1
M

M�
m=1

H(S) = (M − 1)Hb(p), (33)

where (33) holds by the query generation, the fact that the
entropy of i.i.d. RVs is equal to the sum of the individual
entropies, and Sj ∼ Bernoulli (p). Hence, we obtain

ρ(MI) =
H(Q1) − H(Q1 |M) + H(Q2) − H(Q2 |M)

2

=
1
2
UA − (M − 1)Hb(p).

For the WIL metric, applying Bayes’ rule, given M = m
and a query ql with wH (ql) = w, we get

PM|Ql
(m|ql) =

PQl|M (ql|m)�M
m�=1 PQl|M (ql|m�)

, (34)

where (34) holds since the requested file index M is assumed
to be uniformly distributed. Finally, since the requested index
m ∈ [M] either belongs to [M] \χ (ql) or χ (ql), it is not too
difficult to see that

PM|Ql
(m|ql)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(1−p)M−w−1pw

(M−w)(1−p)M−w−1pw+w(1−p)M−wpw−1

if m ∈ [M] \ χ (ql) ,

(1−p)M−wpw−1

(M−w)(1−p)M−w−1pw+w(1−p)M−wpw−1

if m ∈ χ (ql) ,

(35)
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where (35) follows from (32). Note that to compute the
entropy H(M |Ql = ql), we only need to know the conditional
PMF of M given Ql = ql, hence, we can introduce a new
RV Mw ≡ Mql

with wH (ql) = w that has an equivalent PMF
defined as (14). This then gives ρ

(WIL)
A .

Finally, we derive the expression for ρ
(MaxL)
A . From (32),

it follows that
max

m∈[M]
PQl|M (ql|m)

=

�
(1 − p)M−1 if wH (ql) = 0,

(1 − p)M−wpw−1 otherwise.

Moreover,
p
�
2MaxL(M ;Q1) − 2MaxL(M ;Q2)

�
= p(1 − p)M−1 +

�
w∈[2:M]
w : even

	
M

w



(1 − p)M−wpw

−
�

w∈[M]
w : odd

	
M

w



(1 − p)M−wpw

=
�

w∈[0:M]

	
M

w



(1 − p)M−w(−p)w

− (1 − p)M + p(1 − p)M−1

=
�
(1 − p) − p

�M − (1 − p)M−1(1 − 2p) < 0, (36)

where (36) follows by binomial expansion. Since (36) is
nonpositive when 0 ≤ p ≤ 1

2 , the expression for ρ
(MaxL)
A

follows immediately.

APPENDIX D
PROOF OF THEOREM 4

Since the
�

M
η , n

�
Scheme A with {Sj}

M
η −1

j=1 i.i.d. according

to U ([0 : n − 1]) is used as a subscheme, from Section IV-B.1,
we have

PQl|M

�
ql|(j − 1)

M

η
+ m�

�
=
�
n

M
η −1

�−1

, (37)

j ∈ [η], m� ∈


M
η

�
, ∀ ql ∈ Ql, l ∈ [n]. Similar to Appendix C,

we obtain

PQl
(ql)

(a)
=

�
1
M

�M
m=1 PQl|M (ql|m) if ql = 0,

1
M

�
m∈Pj

PQl|M (ql|m) otherwise

=

⎧⎪⎨⎪⎩
M
M

�
n

M
η −1

�−1

if ql = 0,
M
η

M

�
n

M
η −1

�−1

otherwise

=

⎧⎪⎨⎪⎩
�
n

M
η −1

�−1

if l = 1 and ql = 0,�
η · nM

η −1
�−1

otherwise,

where (a) holds since in Scheme A the user can send the all-
zero query to the first server to request any file in any partition

group. Since PQ1
(0) =

�
n

M
η −1

�−1

, using (13) gives

R(C part
A ) =

n − 1
1 −

�
n

M
η −1

�−1�
+ (n − 1)

= RA,P.

For the upload cost, since there are η

n

M
η −1 − 1

�
equally-

likely nonzero queries in Q1, it can be shown that

H(Q1) =
1

n
M
η
−1

log2

�
n

M
η −1

�
+ η


n

M
η −1 − 1

�
· 1

η · nM
η −1

log2

�
η · nM

η −1
�

=

�
M

η
− 1

�
log2 n + log2 η − log2 η

n
M
η −1

.

Similarly, we have H(Ql) =
�

M
η − 1

�
log2 n + log2 η

for all l ∈ [2 : n]. This then gives the expression for
U(C part

A ) = UA,P.
For the access complexity, recall that Scheme A partitions

all M files into equally-sized M
η groups and Scheme A with

{Sj}
M
η −1

j=1 i.i.d. according to U ([0 : n − 1]) is treated as a
subscheme for each partition group. Thus, we have

Δ(C part
A ) =

n�
l=1

EQl
[δl(Ql)]

=
n�

l=1

�
ql∈Ql

wH (ql)PQl
(ql)

(a)
=

�
w∈
�
0: M

η

�
w>0

w · η
	M

η

w



(n − 1)w 1

η · nM
η −1

=
�

w∈
�
0: M

η

�
w>0

w

	M
η

w



(n − 1)w−1 n − 1

n
M
η −1

(b)
=

n − 1

n
M
η −1

·
�

M

η
· nM

η −1

�
= (n − 1)

M

η
,

where (a) follows since for each partition group, (10) indicates

that an
�

M
η , n

�
Scheme A consists of in total

�M
η
w

�
(n − 1)w

nonzero queries with Hamming weight w in
�n

l=1 Ql; (b)
is due to the fact that

�z
h=0 h

�
z
h

� · xh−1 = d
dx(1 + x)z =

d
dx

��z
h=0

�
z
h

�
xh
�

= z(1 + x)z−1 for some z ∈ N.
For the information leakage metric ρ(MI), similar to (33),

we have

H(Ql |M) =

�
M

η
− 1

�
H

�
1
n

, . . . ,
1
n

�
=

�
M

η
− 1

�
log2 n,

l ∈ [n], and hence ρ(MI)(C part
A ) = UA,P

n −
�

M
η − 1

�
log2 n =

ρ
(MI)
A,P is achievable.
Under the WIL metric ρ(WIL), if wH (ql) = 0, we obtain

PM|Ql
(m|ql) = 1

M , ∀m ∈ [M], while PM|Ql

�
(j − 1)M

η +

m�|ql

�
= 1

M
η

for wH (ql) > 0, j ∈ [η], m� ∈


M
η

�
. Therefore,

we obtain

H(M |Ql = ql) =

�
log2 M if ql = 0,

log2

�
M
η

�
otherwise.
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Because log2

�
M
η

� ≤ log2 M for η ∈ [M−1], the achievability

of ρ(WIL)(C part
A ) = ρ

(WIL)
A,P follows.

For the privacy metric ρ(MaxL), it follows from (37) that

2MaxL(M ;Ql)

=
�

ql∈Ql

max
m∈[M]

PQl|M (ql|m)

= |Ql| ·
�
n

M
η −1

�−1

=

⎧⎪⎨⎪⎩
�
1 + η

�
n

M
η −1 − 1

��
·
�
n

M
η −1

�−1

< η for l = 1,

η · nM
η −1 ·

�
n

M
η −1

�−1

= η for l ∈ [2 : n],

which implies that ρ(MaxL)(C part
A ) = log2 η = ρ

(MaxL)
A,P .

APPENDIX E
PROOF OF THEOREM 6

When the user requests the M -th file, the (M, 2) Scheme B
sends Q1 = S + vM and Q2 = S to the respective servers,
where vM is the M -th M-dimensional unit vector. As the
random strategy S ∼ U (Bw,M) is taken, it is not too hard to
see that

PQ1
(q1) =

⎧⎨⎩
w+1

(M
w )M

if q1 ∈ Bw+1,M,

M−(w−1)

(M
w )M

if q1 ∈ Bw−1,M,

Pr [Q2 = q2] = 1

(M
w) , q2 ∈ Bw,M, and M ⊥⊥ Q2.

Since H(Ql |M) = H(S) = log2

�
M
w

�
, the results of U(CB),

Δ(CB), and ρ(MI)(CB) with S ∼ U (Bw,M) can be determined
by a simple deduction.

Moreover, one can also show that

H(M |Q1 = q1) =

�
log2 (w + 1) if q1 ∈ Bw+1,M,

log2

�
M − (w − 1)

�
if q1 ∈ Bw−1,M.

On the other hand, it can be seen that for q1 ∈ Bw+1,M,

PQ1|M (q1|m) =

�
1

(M
w ) if m ∈ χ (q1) ,

0 otherwise,

and for q1 ∈ Bw−1,M,

PQ1|M (q1|m) =

�
1

(M
w) if m ∈ [M] \ χ (q1) ,

0 otherwise.

Therefore, from the above we obtain the expressions for ρ
(WIL)
B,U

and ρ
(MaxL)
B,U .

APPENDIX F
PROOF OF THEOREM 7

From (32) in Appendix C, we know that

max
m,m�∈[M]

PQl|M (ql|m)
PQl|M (ql|m�)

=

⎧⎪⎪⎨⎪⎪⎩
max

�
(1−p)M−w−1pw

(1−p)M−wpw−1 , (1−p)M−wpw−1

(1−p)M−w−1pw

�
if wH (ql) = w ∈ [M − 1],

1 if wH (ql) = 0 or M,

for a given query ql, for an (M, n) Scheme A CA with
{Sj}M−1

j=1 i.i.d. according to Bernoulli (p), 0 ≤ p ≤ 1
2 . Thus,

it can be easily seen that the �-privacy leakage is equal to

ρ(�-P)(CA) = ln
	

max
 

p

1 − p
,
1 − p

p
, 1
!


= ln
	

1 − p

p



.

Hence, to satisfy the leakage constraint ρ(�-P) ≤ ρ, we require

1 − p

p
≤ eρ,

which gives the inequality (1+eρ)−1 ≤ p ≤ 1
2 for any ρ ≥ 0.

Finally, to complete the proof, we simply pick pρ � (1+eρ)−1,
and substitute it into (13).

APPENDIX G
PROOF OF LEMMA 6

The lemma can be shown by combining Lemma 5 with
a similar approach to the one of the converse proofs
given in the information theory literature for PIR, see, e.g.,
[7], [60], [78]. To make the paper self-contained, we repeat
some basic steps here.

The first objective is to find an upper bound on
the absolute value of the entropy difference H

�
A

(m)
l

��
Q

(m)
l , XM, X(m)

�− H
�
A

(m�)
l

��Q(m�)
l , XM, X(m)

�
subject

to I(M ;Ql) ≤ ρl, ∀ l ∈ [n], where m, m� /∈ M � [M − 1].
Observe that���H�A(m)

l

��Q(m)
l , XM, X(m)

�
− H

�
A

(m�)
l

��Q(m�)
l , XM, X(m)

����
=
���H�A(m)

l , Q
(m)
l

��XM, X(m)
�− H

�
Q

(m)
l

��XM, X(m)
�

− H
�
A

(m�)
l , Q

(m�)
l

��XM, X(m)
�

+ H
�
Q

(m�)
l

��XM, X(m)
����

≤
���H�A(m)

l , Q
(m)
l

��XM, X(m)
�

− H
�
A

(m�)
l , Q

(m�)
l

��XM, X(m)
����

+
���H�Q(m)

l

��XM, X(m)
�− H

�
Q

(m�)
l

��XM, X(m)
����

=
���H�Al, Ql

��XM, X(m), M = m
�

− H
�
Al, Ql

��XM, X(m), M = m�����
+
���H�Ql

��XM, X(m), M = m
�

− H
�
Ql

��XM, X(m), M = m����� (38)

≤ �MI(Ql,Al) + �MI(Ql), (39)
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where the inequality (39) can be justified as follows. Using (2)
and the Markov chain M �−− Ql �−− Al, we have

I(M ;Ql, Al |XM, X(m))

= I(M ;Ql |XM, X(m)) + I(M ;Al |Ql, X
M, X(m))& '( )

=0

= I(M ;Ql) ≤ ρl.

Hence, (39) follows from Lemmas 4 and 5. In addition, (39)
implies that

H
�
A

(m)
l

��Q(m)
l , XM, X(m)

�
≥ H

�
A

(m�)
l

��Q(m�)
l , XM, X(m)

�
− �

�MI(Ql,Al) + �MI(Ql)
�
, (40)

for all l ∈ [n].
Now, due to (1) we know that

H
�
A

(m)
[n]

��Q(m)
[n] , XM�

= H
�
X(m), A

(m)
[n]

��Q(m)
[n] , XM�

− H
�
X(m)

��A(m)
[n] , Q

(m)
[n] , XM�& '( )

=0

= H
�
X(m)

��Q(m)
[n] , XM�+ H

�
A

(m)
[n]

��Q(m)
[n] , XM, X(m)

�
= β log2 |X | + H

�
A

(m)
[n]

��Q(m)
[n] , XM, X(m)

�
− H

�
A

(m)
[n]

��Q(m)
[n] , XM, X(m), XMc\{m}�& '( )

=0

= β log2 |X | + I
�
A

(m)
[n] ;XMc\{m} ��Q(m)

[n] , XM, X(m)
�

= β log2 |X |
+ I
�
A

(m)
[n] , Q

(m)
[n] ;XMc\{m} ��XM, X(m)

�
(41)

≥ β log2 |X |
+ I
�
A

(m)
l , Q

(m)
[n] ;XMc\{m} ��XM, X(m)

�
(42)

= β log2 |X | + H
�
A

(m)
l , Q

(m)
[n]

��XM, X(m)
�

− H
�
A

(m)
l , Q

(m)
[n]

��XM, X(m), XMc\{m}�
= β log2 |X | + H

�
Q

(m)
[n]

��XM, X(m)
�& '( )

= H
�
Q

(m)
[n]

�
+ H

�
A

(m)
l

��Q(m)
[n] , XM, X(m)

�
− H

�
Q

(m)
[n]

��XM, X(m), XMc\{m}�& '( )
= H
�
Q

(m)
[n]

�
− H

�
A

(m)
l

��Q(m)
[n] , XM, X(m), XMc\{m}�& '( )

=0

= β log2 |X | + H
�
A

(m)
l

��Q(m)
[n] , XM, X(m)

�
= β log2 |X | + H

�
A

(m)
l

��Q(m)
l , XM, X(m)

�
(43)

≥ β log2 |X | + H
�
A

(m�)
l

��Q(m�)
l , XM, X(m)

�
− �

�MI(Ql,Al) + �MI(Ql)
�

(44)

= β log2 |X | + H
�
A

(m�)
l

��Q(m�)
[n] , XM, X(m)

�
− �

�MI(Ql,Al) + �MI(Ql)
�
, (45)

for any l ∈ [n], where (41) follows from (2), (42) holds
by the chain rule for MI, and the final inequality (44) is
due to (40).

Thus, summing (45) over all possible l ∈ [n] we have

n H
�
A

(m)
[n]

��Q(m)
[n] , XM�

≥ nβ log2 |X | +
n�

l=1

H
�
A

(m�)
l

��Q(m�)
[n] , XM, X(m)

�
−

n�
l=1

�
�MI(Ql,Al) + �MI(Ql)

�
≥ nβ log2 |X | + H

�
A

(m�)
[n]

��Q(m�)
[n] , XM, X(m)

�
−

n�
l=1

�
�MI(Ql,Al) + �MI(Ql)

�
.

The result of (23) then follows by dividing both sides by n.
On the other hand, following a similar derivation as (43),

we can obtain

H
�
A

(M)
[n]

��Q(M)
[n] , X [M−1]

�
≥ β log2 |X | + H

�
A

(M)
l

��Q(M)
l , X(M), X [M−1]

�& '( )
=0

.

This completes the proof of (24).

APPENDIX H
PROOF OF LEMMA 7

We start the proof by defining a set Bx,x� � {x, x�} with two
arbitrary elements x �= x�, x, x� ∈ X , and a subset Zx,x� ⊆ Y
as {y ∈ Y : PY |X(y|x) ≥ PY |X(y|x�)}. Next, we introduce a
new RV Zx,x� as

Zx,x�(y) =

�
1 if y ∈ Zx,x� ,

0 otherwise.

By (5) we have�
z∈{0,1}

max
b∈Bx,x�

PZx,x� |X(z|b)

=
�

y∈Zx,x�

PY |X(y|x) +
�

y∈Zc
x,x�

PY |X(y|x�)

(a)
=
�
y∈Y

max
b∈Bx,x�

PY |X(y|b)

(b)

≤
�
y∈Y

max
x∈X

PY |X(y|x) ≤ 2ρ,

where (a) follows by the definition of the subset Zx,x� , and (b)
holds simply because maximizing over a subset leads to a
smaller value. Moreover, by using the relation between TV
distance and variational distance [75, Lem. 3.12], it follows
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that """PZx,x� |X=x − PZx,x� |X=x�

"""
TV

=
1
2

	���PZx,x� |X(1|x) − PZx,x� |X(1|x�)
���

+
���PZx,x� |X(0|x) − PZx,x� |X(0|x�)

���

=

1
2

� �
y∈Zx,x�

�
PY |X=x(y) − PY |X=x�(y)

�
+

�
y∈Zc

x,x�

�
PY |X=x�(y) − PY |X=x(y)

��

=
1
2

�
y∈Y

��PY |X=x(y) − PY |X=x�(y)
��

=
""PY |X=x − PY |X=x�

""
TV

.

Therefore, since x, x� are chosen arbitrarily, Lemma 7 holds
for any alphabets X and Y if we can show that the assertion
is true when X and Y are binary.

To complete the proof, we show that Lemma 7 holds for any
binary RVs X and Y . The proof is quite straightforward: Since
X = Y = {0, 1}, we can define PY |X by a � PY |X(1|0)
and b � PY |X(1|1) with 0 ≤ a, b ≤ 1. Thus, by definition
�PY |X=0 − PY |X=1�TV = |a − b| and MaxL (X ;Y ) =
log2

�
max{1−a, 1−b}+max{a, b}� = log2

�
1+|a − b|� ≤ ρ.

As log2(·) is a strictly increasing function, |a − b| ≤ 2ρ − 1.
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