
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 2, FEBRUARY 2022 839

Array Codes for Functional PIR and Batch Codes
Mohammad Nassar , Student Member, IEEE, and Eitan Yaakobi , Senior Member, IEEE

Abstract— A functional PIR array code is a coding scheme
which encodes some s information bits into a t × m array such
that every linear combination of the s information bits has k
mutually disjoint recovering sets. Every recovering set consists of
some of the array’s columns while it is allowed to read at most �
encoded bits from every column in order to receive the requested
linear combination of the information bits. Functional batch array
codes impose a stronger property where every multiset request
of k linear combinations has k mutually disjoint recovering sets.
Locality functional array codes demand that the size of every
recovering set is restrained to be at most r. Given the values of
s, k, t, �, r, the goal of this paper is to study the optimal value
of the number of columns m such that these codes exist. Several
lower bounds are presented as well as explicit constructions for
several of these parameters.

Index Terms— Private information retrieval (PIR) codes, batch
codes, codes with availability, covering codes.

I. INTRODUCTION

P RIVATE information retrieval (PIR) codes and batch
codes are families of codes which have several appli-

cations such as PIR protocols [3], [10], [15], [19], [26], [42],
[45], [48], erasure codes in distributed storage systems [30],
[31], [38], one-step majority-logic decoding [24], [28], load
balancing in storage, cryptographic protocols [22], switch
codes [6], [11], [43], and more. They have been recently
generalized to functional PIR and functional batch codes [51].
In this work we study these families of codes when they are
used as array codes.

The setup of storing information in array codes works as
follows. Assume s bits are encoded to be stored in a t × m
array, where each column corresponds to a server that stores
the encoded bits. The encoded bits should satisfy several
properties which depend upon whether the resulting code is a
PIR, batch, functional PIR, or functional batch codes. Given
a design parameter k of the code, it is required in PIR codes
that every information bit has k mutually disjoint recovering
sets. Here, a recovering set is a set of columns, i.e., servers,

Manuscript received September 8, 2020; revised August 17, 2021; accepted
October 20, 2021. Date of publication November 2, 2021; date of current ver-
sion January 20, 2022. This work was supported in part by the Israel Science
Foundation under Grant 1817/18, in part by the Technion Hiroshi Fujiwara
Cyber Security Research Center, and in part by the Israel National Cyber
Directorate. An earlier version of this paper was presented in part at
the 2020 IEEE International Symposium on Information Theory (ISIT)
(reference [29]) [DOI: 10.1109/ISITaaa84.2020.9174459]. (Corresponding
author: Eitan Yaakobi.)

The authors are with the Department of Computer Science,
Technion—Israel Institute of Technology, Haifa 3200003, Israel (e-mail:
mohamadtn@cs.technion.ac.il; yaakobi@cs.technion.ac.il).

Communicated by C. Hollanti, Associate Editor for Coding Theory.
Color versions of one or more figures in this article are available at

https://doi.org/10.1109/TIT.2021.3124925.
Digital Object Identifier 10.1109/TIT.2021.3124925

in which given the encoded bits in the columns of the recov-
ering set it is possible to recover the information bit. In case it
is possible to read only a portion of the encoded bits in every
column, we denote this parameter by �. An array code with
these parameters and properties is defined as an (s, k, m, t, �)
PIR array code. Furthermore, it will be called an (s, k, m, t, �)
batch array code if every multiset request of k information bits
has k mutually disjoint recovering sets. In case the requests
are not only of information bits but any linear combination of
them, we receive an (s, k, m, t, �) functional PIR array code,
if every linear combination has k mutually disjoint recovering
sets or (s, k, m, t, �) functional batch array code for a multiset
request of k linear combinations. Yet another family of codes
that will be studied in this paper will be referred by locality
functional array codes. Here we assume that � = t and an
(s, k, m, t, r) locality functional array code guarantees that
every linear combination v of the information bits has k
mutually disjoint recovering sets, where each is of size of at
most r.

The main figure of merit when studying these fam-
ilies of codes is to optimize the number of columns,
i.e., servers, given the values of s, k, t, �. Thus, the
smallest m such that an (s, k, m, t, �) PIR, batch, func-
tional PIR, functional batch code exists, is denoted
by Pt,�(s, k), Bt,�(s, k), FPt,�(s, k), FBt,�(s, k), respectively.
Studying the value of Pt,�(s, k) has been initiated in [19] and
since then several more results have appeared; see e.g. [4],
[5], [9], [50]. Note that the first work [22] which studied batch
codes defined them in their array codes setup and only later on
they were studied in their one-dimensional case, also known
as primitive batch codes; see e.g. [1], [27], [32], [41], [49].
Functional PIR and batch codes have been recently studied
in [51] but only for vectors, that is, t = � = 1. Thus, this
paper initiates the study of functional PIR and batch codes in
the array setup.

The motivation to study functional PIR and batch codes
originates from the observation that in many cases and proto-
cols, such as PIR, the user is not necessarily interested in one
of the information bits, but rather, some linear combination of
them. Furthermore, functional batch codes are closely related
to the family of random I/O (RIO) codes, introduced by
Sharon and Alrod [33], which are used to improve the random
input/output performance of flash memories. A variant of RIO
codes, called parallel RIO codes, was introduced in [46], and
linear codes of this family of codes have been studied in [47].
It was then shown in [51] that in fact linear parallel RIO codes
are equivalent to functional batch codes.

The rest of the paper is organized as follows. In Section II,
we formally define the codes studied in the paper, discuss

0018-9448 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:34:32 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3216-6147
https://orcid.org/0000-0002-9851-5234

840 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 2, FEBRUARY 2022

some of the previous related work, and list several basic
properties. In Section IV, we show lower bounds on the
number of servers for functional PIR and batch array codes.
Section V lists several code constructions which are based on
the Gadget Lemma, covering codes, and several more results
for k = 1, 2. Section VI presents three constructions of array
codes and in Section VII the rates of these codes are studied.
Section VIII studies locality functional array codes. Lastly,
Section IX concludes the paper.

II. DEFINITIONS AND PRELIMINARIES

This work is focused on five families of codes, namely
private information retrieval (PIR) codes that were defined
recently in [19], batch codes that were first studied by
Ishai et al. in [22], their extension to functional PIR codes
and functional batch codes that was investigated in [51], and
locality functional codes. In these five families of codes, s
information bits are encoded to m bits. While for PIR codes it
is required that every information bit has k mutually disjoint
recovering sets, batch codes impose this property for every
multiset request of k bits. Similarly, for functional PIR codes
it is required that every linear combination of the information
bits has k mutually disjoint recovering sets, and functional
batch codes impose this property for every multiset request of
k linear combination of the bits. Lastly, similar to functional
PIR codes, for locality functional codes it is required that the
size of every recovering set is limited to be at most r. While
this description of the codes corresponds to the case of one-
dimensional codewords, the goal of this work is to study their
extension as array codes, which is defined as follows. The set
[n] denotes the set of integers {1, 2, . . . , n} and Σ = F2.

We start with the formal definition of the first four families
of codes that will be studied in the paper, while we defer the
definition of locality functional array codes to Section VIII.

Definition 1:

a) An (s, k, m, t, �) PIR array code over Σ is defined
by an encoding map E : Σs → (Σt)m that encodes
s information bits x1, . . . , xs into a t × m array and a
decoding function D that satisfies the following property.
For any i ∈ [s] there is a partition of the columns into
k recovering sets S1, . . . , Sk ⊆ [m] such that xi can be
recovered by reading at most � bits from each column
in Sj , j ∈ [k].

b) An (s, k, m, t, �) batch array code over Σ is defined
by an encoding map E : Σs → (Σt)m that encodes
s information bits x1, . . . , xs into a t × m array and a
decoding function D that satisfies the following property.
For any multiset request of k bits i1, . . . , ik ∈ [s] there
is a partition of the columns into k recovering sets
S1, . . . , Sk ⊆ [m] such that xij , j ∈ [k] can be recovered
by reading at most � bits from each column in Sj .

c) An (s, k, m, t, �) functional PIR array code over Σ
is defined by an encoding map E : Σs → (Σt)m that
encodes s information bits x1, . . . , xs into a t×m array
and a decoding function D that satisfies the following
property. For any request of a linear combination v of
the information bits, there is a partition of the columns

into k recovering sets S1, . . . , Sk ⊆ [m] such that v can
be recovered by reading at most � bits from each column
in Sj , j ∈ [k].

d) An (s, k, m, t, �) functional batch array code over
Σ is defined by an encoding map E : Σs → (Σt)m

that encodes s information bits x1, . . . , xs into a
t × m array and a decoding function D that satisfies
the following property. For any multiset request of k
linear combinations v1, . . . , vk of the information bits,
there is a partition of the columns into k recovering sets
S1, . . . , Sk ⊆ [m] such that vj , j ∈ [k] can be recovered
by reading at most � bits from each column in Sj .

We refer to each column as a bucket and to each entry in
a bucket as a cell. Furthermore, it is said that a cell stores
a singleton if one of the information bits is stored in the
cell. In the rest of the paper we will refer to every linear
combination of the information bits as a binary vector of
length s, which indicates the information bits in this linear
combination. Our goal is to fix the values of s, k, t and � and
then seek to optimize the value of m. In particular, we will
have that t and � are fixed, where t � �, and then study the
growth of m as a function of s and k. Hence, we denote
by Pt,�(s, k), Bt,�(s, k), FPt,�(s, k), FBt,�(s, k) the smallest
m such that an (s, k, m, t, �) PIR, batch, functional PIR,
functional batch code exists, respectively. In case � = t = 1
we will simply remove them from these notations.

Remark 1: The family of PIR codes that is studied in
the paper is different than the line of works that studied
the PIR capacity and the PIR codes for this model. The
PIR codes that are referred to in the paper are motivated
by the family of codes that was first studied in [19] for
PIR protocols that optimize both the upload and down-
load complexity. Thus, these codes are targeted to solve a
completely different problem that the ones that address the
PIR capacity and optimize only the download complexity;
see [2], [8], [23], [25], [35]–[37], [39] and references therein.
Furthermore, PIR codes are similar in their definition to
locally repairable codes with availability [30], [31], [44], with
the important distinction that PIR codes do not impose any
constraint on the size of the recovering sets as done for LRCs.
Hence, it is not possible to compare between PIR codes and
the above families of codes.

III. PREVIOUS WORK AND BASIC RESULTS

The following upper and lower bounds on the number of
buckets for PIR array codes have been shown in [5], [9], [50]
and are stated in the following theorem.

Theorem 2:
a) Pt,t(s, k) � 2·k·s

s+t , [5, Th. 3].
b) For any integer t � 2 and any integer s > t, Pt,t(s, k) �

k·s·(2s−2t+1)
(2s−2t+1)t+(s−t)2 , [5, Th. 4].

c) For any integer t � 2 and any integer s > 2t,
Pt,t(s, k) � 2k·s·(s+1)

(s−t)2+3st−t2+2t , [50, Th. 16].
d) For any integer t � 2 and any integer t < s � 2t,

Pt,t(s, k) � k·s·(2s−2t+1)
(2s−2t+1)t+(s−t)2 , [5, Th. 6].

e) For any integers p, t with p � t + 1, Pt,t(pt, k) �
m, where k =

(
t

t−p+1

)(
s
t

)
and m =

(
t

t−p+1

)(
s
t

)
+(

s−p
t−p+1

)(
s−1
p−1

)
, [9, Th. 10].

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:34:32 UTC from IEEE Xplore. Restrictions apply.

NASSAR AND YAAKOBI: ARRAY CODES FOR FUNCTIONAL PIR AND BATCH CODES 841

TABLE I

SUMMARY OF PREVIOUS RESULTS

Note that for any two integers t � 2 and s > t, the bound
in Theorem 2(b) improves upon the bound in Theorem 2(a).
This is verified by showing that k·s·(2s−2t+1)

(2s−2t+1)t+(s−t)2 −
2·k·s
s+t � 0

by basic algebraic manipulations. However the lower bound
in Theorem 2(a) holds for all values of s, while the one in
Theorem 2(b) only for s > t. Also, in [50] it was shown
that for any two integers t � 2 and s > 2t, the bound in
Theorem 2(c) is stronger than the bound in Theorem 2(b).

The result in Theorem 2(d) is achieved by Construction 1
in [5]. The authors of [5] presented another construction which
is not reported here due to its length. For the exact details
please refer to [5, Construction 4 and Th.8]. This construction
was then improved in [50] and in [9]. Several more construc-
tions of PIR array codes have also been presented in [9], [50].
For the convenience of the reader we provide a summary of
previous results in Table I.

The following theorem summarizes some of the known
basic previous results, as well as several new ones. The proofs
are rather simple and are thus omitted.

Theorem 3: For every s, k, t, �, a positive integers:

a) Pt,�(s, 1) = Bt,�(s, 1) = �s/t�.
b) FPt,�(s, k1 + k2) � FPt,�(s, k1) + FPt,�(s, k2) (also

for P , B, and FB).
c) FPt,�(s, a · k) � a · FPt,�(s, k) (also for P , B, and

FB).
d) FPt,�(s1 + s2, k) � FPt,�(s1, k) + FPt,�(s2, k) (also

for P , B, and FB).
e) FPt,�(a · s, k) � a · FPt,�(s, k) (also for P , B, and

FB).
f) FPt,�(s, k) � a · FPa·t,�(s, k) (also for P , B, and

FB).

One of the simplest ways to construct array PIR and batch
codes uses the Gadget Lemma, which was first proved in [22].

Lemma 4 (The Gadget Lemma): Let C be an (s, k, m, 1, 1)
batch code, then for any positive integer t there exists an
(ts, k, m, t, 1) batch array code C′ (denoted also by t · C).

It is easily verified that the Gadget Lemma holds also for
PIR codes and therefore Pt,�(s, k) � Pt,1(s, k) � P (�s/t�, k)
and Bt,�(s, k) � Bt,1(s, k) � B(�s/t�, k). However, unfor-
tunately, the Gadget Lemma does not hold in general for
functional PIR and batch codes. Even a weaker variation
of the Gadget Lemma, where � = t, does not hold in
general for functional PIR and batch codes either. Assume
by contradiction that if there is an (s, k, m, 1, 1) functional
PIR code C, then for any positive integer t there exists a
(ts, k, m, t, t) functional PIR array code. Then, this will imply
that FPt,t(ts, k) � FP (s, k). However, it is known that
FP (2, 2) = 3 by the simple parity code. Thus, under this
assumption it would hold that FP2,2(4, 2) � FP (2, 2) = 3.
But, according to a lower bound on functional PIR array
codes, which will be shown in Theorem 9, it holds that
FP2,2(4, 2) � 2·2·15

15+3 > 3, which is a contradiction.

IV. LOWER BOUNDS ON ARRAY CODES

In this section we present several lower bounds on func-
tional PIR and batch array codes. Let

{
a
b

}
be the Stirling

number of the second kind, which calculates the number of
partitions of a set of a elements into b nonempty subsets. It is
well known that

{
a
b

}
= 1

b!

∑b
i=0(−1)b−i

(
b
i

)
ia.

Theorem 5: For all s, k, t and � positive integers
FBt,�(s, k) � m∗, where m∗ is the smallest positive integer
such that

m∗∑
i=k

(
m∗

i

)
·
{

i

k

}
·

⎛
⎝ �∑

j=1

(
t

j

)⎞⎠
i

�
(

2s + k − 2
k

)
.

Proof: Let C be an optimal (s, k, m∗, t, �) functional batch
array code. Since there are s information bits, there are (2s−1)
possible linear combination requests. Recall that by the def-
inition of functional batch array codes, each multiset request
has k mutually disjoint recovery sets of linear combinations.
The number of possibilities to choose k elements from a set of
2s − 1 elements if repetitions are allowed is

(
2s+k−2

k

)
. Thus,

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:34:32 UTC from IEEE Xplore. Restrictions apply.

842 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 2, FEBRUARY 2022

there are
(
2s+k−2

k

)
possible multiset requests of length k. For

each multiset request of k linear combinations v1, . . . , vk of
the information bits, there is a partition of the buckets of the
code C into k recovering sets S1, . . . , Sk ⊆ [m∗] such that
vj , j ∈ [k] can be recovered by reading at most � bits from
each column in Sj .

In each bucket there are t cells where at most � cells
from them can be read. Thus, there are

∑�
j=1

(
t
j

)
nonzero

linear combinations that can be obtained from one bucket. For
any positive integer n, there are (

∑�
j=1

(
t
j

)
)n nonzero linear

combinations that can be obtained from n buckets while using
all the n buckets.

In order to satisfy a multiset request, the buckets must be
divided into k disjoint recovering sets such that each set can
satisfy one requested linear combination. There are

m∗∑
i=k

(
m∗

i

)
·
{

i

k

}

possibilities to divide at most m∗ buckets into k nonempty
disjoint sets. Each subset of the buckets of size at least k
can be divided into k nonempty sets. Thus, we take the sum
over all the subsets of the buckets of size at least k, where
for each such subset we count the number of possibilities to
divide it into k nonempty subsets using Stirling number of the
second kind. From each subset of size p where k � p � m∗,
there exist (

∑�
j=1

(
t
j

)
)p linear combinations. Therefore, for

a given partition of i, k � i � m∗ buckets into k subsets
such that the sizes of the subsets are p1, p2, . . . , pk where∑k

j=1 pj = i, the number of different k-sets of linear com-
binations such that each linear combination taken from one
subset is

∏
p∈{p1,p2,··· ,pk}

⎛
⎝ �∑

j=1

(
t

j

)⎞⎠
p

=

⎛
⎝ �∑

j=1

(
t

j

)⎞⎠
i

.

In order to satisfy each multiset request by a set of k linear
combinations such that each linear combination satisfies one
requested linear combination. It must hold that the number of
different k-sets of linear combinations such that each linear
combination taken from one subset of the buckets, for all
partitions of the m∗ buckets into k nonempty disjoint subsets,
is larger than the number of multiset requests. Thus,

m∗∑
i=k

(
m∗

i

)
·
{

i

k

}
·

⎛
⎝ �∑

j=1

(
t

j

)⎞⎠
i

�
(

2s + k − 2
k

)
. (1)

A similar lower bound can be obtained for functional PIR
array codes. While in functional batch array codes there exist(
2s+k−2

k

)
possible multiset requests, in functional PIR array

codes there exist 2s − 1 possible requests.
Corollary 6: For all s, k, t and � positive integers

FPt,�(s, k) � m∗, where m∗ is the smallest positive integer
such that

m∗∑
i=k

(
m∗

i

)
·
{

i

k

}
·

⎛
⎝ �∑

j=1

(
t

j

)⎞⎠
i

� 2s − 1. (2)

Another combinatorial bound for functional PIR array codes
is shown in the following theorem.

Theorem 7: For all s, k, t and � positive integers
FPt,�(s, k) � m∗, where m∗ is the smallest positive integer
such that

m∗−k+1∑
i=1

(
m∗

i

)
·

⎛
⎝ �∑

j=1

(
t

j

)⎞⎠
i

� k · (2s − 1).

Proof: Let C be an optimal (s, k, m∗, t, �) functional PIR
array code. Since there are s information bits, there are (2s−1)
possible requests. The code C must satisfy each request k
times by k linear combinations from k disjoint recovering sets.
In other words, for each request there are k nonempty disjoint
recovering sets, such that each set has a linear combination
equal to the request. Each recovering set must be of size
at most m∗−k + 1, in order to have other k − 1 nonempty
recovering sets.

In each bucket there are t cells where at most � cells
from them can be read. Thus, there are

∑�
i=1

(
t
i

)
nonzero

linear combinations that can be obtained from one bucket and
(
∑�

j=1

(
t
j

)
)n from n buckets, for any positive integer n, while

using all the n buckets. We are interested in counting the
different linear combinations that can be obtained from at most
m∗ − k + 1 buckets. Thus, there are

m∗−k+1∑
i=1

(
m∗

i

)
·

⎛
⎝ �∑

j=1

(
t

j

)⎞⎠
i

such linear combinations. It must hold that the number of
different linear combinations that can be got from at most
m∗−k + 1 buckets is larger than k times the number of the
possible requests. Thus,

m∗−k+1∑
i=1

(
m∗

i

)
·

⎛
⎝ �∑

j=1

(
t

j

)⎞⎠
i

� k · (2s − 1). (3)

The following corollary is derived from Theorem 7.

Corollary 8: FPt,�(s, k) �
⌈

log2(k(2s−1)+1)

log2(
��

i=0 (t
i))

⌉
, for all s, k, t

and � positive integers.
Proof: The proof of Theorem 7 can be modified by using

a weaker constraint, that the size of each subset is at most m.

Thus, it must hold that
∑m

i=1

(
m
i

)
·
(∑�

j=1

(
t
j

))i

� k ·(2s−1).
From the equality

∑m
i=0

(
m
i

)
· xi = (x + 1)m, we get that,

m∑
i=1

(
m

i

)
·

⎛
⎝ �∑

j=1

(
t

j

)⎞⎠
i

=

⎛
⎝1 +

�∑
j=1

(
t

j

)⎞⎠
m

− 1

=

⎛
⎝ �∑

j=0

(
t

j

)⎞⎠
m

−1� k · (2s−1).

Therefore, a lower bound over the minimal number of

buckets, is FPt,�(s, k) �
⌈

log2(k(2s−1)+1)

log2(
�

�
j=0 (t

j))

⌉
.

Lastly in this section we show a different lower
bound for functional PIR array codes, which is motivated

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:34:32 UTC from IEEE Xplore. Restrictions apply.

NASSAR AND YAAKOBI: ARRAY CODES FOR FUNCTIONAL PIR AND BATCH CODES 843

Fig. 1. Lower Bounds of Corollary 8 and Theorem 9 for k = 5 and t = 2.

by the corresponding lower bound for PIR array codes
from [5, Th. 3].

Theorem 9: For any s, k, t and � positive integers,
FPt,�(s, k) � 2·k·(2s−1)

(2s−1)+
�

�
i=1 (t

i)
.

Proof: Suppose there exists an (s, k, m, t, �) functional
PIR array code. There are 2s − 1 possible linear combination
requests which are denoted by ui for 1 � i � 2s − 1. For
i ∈ [2s − 1], we define by αi to be the number of recovering
sets of size 1 of the i-th linear combination request ui.

Since it is possible to read at most � bits from each bucket,
every bucket can satisfy at most

∑�
i=1

(
t
i

)
linear combinations.

Thus, the number of recovering sets of size 1 is m ·
∑�

i=1

(
t
i

)
,

and
∑2s−1

j=1 αj � m·
∑�

i=1

(
t
i

)
. Hence, there exists q ∈ [2s−1]

such that αq � m·��
i=1 (t

i)
2s−1 , so out of its k disjoint recovering

sets of uq , at most αq of them are of size 1, and the size of
each of the remaining k − αq subsets is at least 2. Hence,

m � αq + 2(k − αq) = 2k − αq � 2k −
m ·

∑�
i=1

(
t
i

)
2s − 1

,

and therefore m(1 +
��

i=1 (t
i)

(2s−1)) � 2k, which implies that

FPt,�(s, k) � 2k(2s−1)

(2s−1)+
��

i=1 (t
i)

.

Figure 1 compares between the two lower bounds of Corol-
lary 8 and Theorem 9. In this comparison we specify the
parameters k = 5 and t = 2. We can see that for 0 � s < 18
the lower bound of Theorem 9 is stronger, but for s � 18 the
lower bound of Corollary 8 is stronger.

V. GENERAL CONSTRUCTIONS OF ARRAY CODES

In this section we present several constructions of array
codes for functional PIR and batch codes.

A. Basic Constructions

Even though the Gadget Lemma cannot be extended in
general for functional PIR and batch codes, here we show
a variation of it that will hold. For any positive integer i, 0i

denotes the zero vector of length i, and for any two vectors v

and u, the vector vu is defined to be the concatenation of u
after v.

Lemma 10: For any positive integer p, if there exists an
(s, p · k, m, t, �) functional batch array code, then there exists
an (p · s, k, m, p · t, �) functional batch array code. Therefore,

FPp·t,�(p · s, k) � FBp·t,�(p · s, k) � FBt,�(s, p · k),

and in particular, FPt,1(s, k) � FBt,1(s, k) � FB(� s
t �, t ·k).

Proof: Let C be an (s, p · k, m, t, �) functional batch
array code with encoding function E and decoding function D.
We construct an (p ·s, k, m, p ·t, �) functional batch array code
C′ by using the code C. Let S = {xi,j : 1 � i � p, 1 � j � s}
be the set of p · s information bits. The p · s information bits
can be partitioned into p parts, each of size s, such that part
i, i ∈ [p] is Si = {xi,j : 1 � j � s}. The code C′ will be
represented by a pt × m array A, that contains p subarrays
A1, A2, . . . , Ap each of dimension t × m. In the encoding
function of the code C′, the i-th subarray Ai stores the encoded
bits of the set Si by applying the encoding function E of the
code C over the information bits in the set Si.

Let R = {v1, v2, . . . , vk} be a multiset request of size k
of the p · s information bits, where vi, i ∈ [k] is a binary
vector of length p · s that represents the i-th request, which
is a linear combination of the p · s information bits. For each
i ∈ [k], denote vi = (v1

i , v
2
i , . . . , v

p
i) where vj

i , j ∈ [p] is a
vector of length s that represents the linear combination of
the bits in Sj . Let R∗ = {vj

i : 1 � i � k, 1 � j � p} be a
multiset request of size pk, that has pk vectors of length s
each. By using the decoding function D of the code C with
the request R∗ we get pk recovering sets. For each i ∈ [k] and
j ∈ [p], let Bj

i = {(hi,1, ui,1), (hi,2, ui,2), . . . , (hi,ai , ui,ai)}
be a recovering set for vj

i of size ai, where for each g ∈ [ai],
(hi,g, ui,g) is a pair of a bucket hi,g with a vector ui,g

of length t that indicates the cells which are read from
the bucket hi,g . For each Bj

i and f ∈ [p], let Bj
i,f =

{(hi,1,0t(f−1)ui,10t(p−f)), . . . , (hi,ai ,0
t(f−1)ui,ai0

t(p−f))}
be a recovering set for vj

i , that reads the cells of subarray
Af . For each i ∈ [k], to satisfy the request vi, the union
∪p

f=1B
f
i,f is taken, since for each f ∈ [p] the subset Bf

i,f can

satisfy the request vf
i .

For each f1, f2 ∈ [p], i1, i2 ∈ [k] and j1, j2 ∈ [p], Bj1
i1,f1

and Bj2
i2,f2

have disjoint subsets of buckets if i1 �= i2 or j1 �=
j2, because Bj1

i1
and Bj2

i2
have disjoint subsets of buckets if

i1 �= i2 or j1 �= j2. Thus, for any i �= j ∈ [k], ∪p
f=1B

f
i,f and

∪p
f=1B

f
j,f have disjoint subsets of buckets.

It remains to show that we read at most � cells from each
bucket. Recall that for any vi, i ∈ [k] the union ∪p

f=1B
f
i,f

satisfies the request vi. Thus, if the recovering set Bj
i,f1

was
used then f1 = j. Therefore, the recovering set Bj

i,f2
for each

f2 �= f1 was not used. From the previous paragraph we showed
that Bj1

i,f1
and Bj2

i,f2
have disjoint subsets of buckets if j1 �= j2.

Thus, the recovering sets that were used to satisfy vi have
disjoint subsets of buckets. Thus, each bucket can appear in at
most one of these recovering sets, and it is known that each
one of these subsets uses at most � cells from each bucket
from the properties of the code C.

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:34:32 UTC from IEEE Xplore. Restrictions apply.

844 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 2, FEBRUARY 2022

The last claim in the lemma holds by setting p = t and
t = 1.

Another general construction is stated in the next theorem.
Theorem 11: For any positive integers, s, k, t, t0, and �,

FBt,�(s, k) � m + m0, where m = FBt+t0,�(s, k) and
m0 = FBt,�(m · t0, k).

Proof: Let C1, C2 be an (s, k, m, t + t0, �), (m ·
t0, k, m0, t, �) functional batch array code, respectively.
We construct an (s, k, m+m0, t, �) functional batch array code
C by using the codes C1, C2. First, the s information bits are
encoded using the encoder function of the code C1 to get a
(t + t0)×m array A. Then, the t0 ·m bits in the last t0 rows
of A are encoded into a t × m0 array B using the encoder
function of the code C2. The code C will be represented by a
t× (m + m0) array, where the first m buckets (columns) will
be the first t rows of the array A and the last m0 buckets will
be the array B.

Let R = {v1, . . . , vk} be a multiset request of size k, where
vi, i ∈ [k] is a binary vector of length s that represents the i-th
request. Denote by {E1, . . . , Ek} the k recovering sets that are
obtained by using the decoding function of the code C1 with
the request R. For each i ∈ [k], assume that |Ei| = pi and
denote Ei = {(hi,1, ui,1), . . . , (hi,pi , ui,pi)} where for each
j ∈ [pi], (hi,j , ui,j) is a pair of a bucket hi,j with a vector
ui,j of length t + t0 that indicates the cells which are read
from the bucket hi,j . For each i ∈ [k] and j ∈ [pi], let u′

i,j be
the vector with the last t0 entries of ui,j and let R′

i,j be the
sum of the bits in the cells that indicated by u′

i,j .
Let R′ = {

∑p1
j=1 R′

1,j , . . . ,
∑pk

j=1 R′
k,j} be a multiset

request of size k. Denote by {F1, . . . , Fk} the k recovering
sets that are obtained by using the decoding function of the
code C2 with the multiset request R′. To satisfy vi, the
code C can use the recovering set Fi ∪ E′

i, where E′
i =

{(hi,1, u
′′
i,1), . . . , (hi,k, u′′

i,k)} where for each j ∈ [k], u′′
i,j

is the vector with the first t entries of ui,j .
It remains to show that at most � cells are read from each

bucket. Each vi, i ∈ [k] has a recovering set Fi ∪ E′
i, where

the recovering set Fi of C2 uses at most � cells from each
bucket from the property of the code C2. Also, the recovering
set Ei of C1 uses at most � cells from each bucket from the
property of the code C1. Thus, E′

i also uses at most � cells.
Note that a similar statement can hold for functional PIR

array code, where for any positive integers s, k, t, t0, and �,
FPt,�(s, k) � m + m0, where m = FPt+t0,�(s, k) and m0 =
FBt,�(m · t0, k).

Example 1: In this example we demonstrate the construction
of a (12, 1, 4, 4, 2) functional batch array code according to
Theorem 11 by using a (12, 1, 3, 5, 2) functional batch array
code as in Table II and a (3, 1, 1, 4, 2) functional batch array
code as in Table III. The construction is given in Table IV.
It can be verified that FB4,2(12, 1) = 4. Note that in this
example and in the rest of the paper the notation xi1xi2 · · ·xih

is a shorthand to the summation xi1 + xi2 + · · · + xih
.

B. Constructions Based Upon Covering Codes

In this section it is shown how covering codes are used
to construct array codes. Denote by dH(x, y) the Hamming
distance between two vectors x, y, and denote by wH(x) the

TABLE II

(12, 1, 3, 5, 2) FUNCTIONAL BATCH ARRAY CODE

TABLE III

(3, 1, 1, 4, 2) FUNCTIONAL BATCH ARRAY CODE

TABLE IV

(12, 1, 4, 4, 2) FUNCTIONAL PIR/BATCH ARRAY CODE

Hamming weight of x. Also define 	x, y
 as the inner product
of the two vectors x, y. Next we remind the definition of
covering codes [12].

Definition 12: Let n � 1, R � 0 be integers. A code
C ⊆ Fn

q is called an R-covering code if for every word y ∈ Fn
q

there is a codeword x ∈ C such that dH(x, y) � R. The
notation [n, k, R]q denotes a linear code over Fq of length
n, dimension k, and covering radius R. The value g[n, R]q
denotes the smallest dimension of a linear code over Fq with
length n and covering radius R. The value h[s, R]q is the
smallest length of a linear code over Fq with covering radius
R and redundancy s. In case q = 2 we will remove it from
these notations.

The following property is well known for linear covering
codes; see e.g. [12, Th. 2.1.9].

Property 13: For an [n, k, R] linear covering code with some
parity check matrix H , every syndrome vector s ∈ Σn−k can
be represented as the sum of at most R columns of H .

The connection between linear codes and functional batch
array codes is established in the next theorem.

Theorem 14: Let C be a [t, t − s, �] linear covering code.
Then, there exists an (s, 1, 1, t, �) functional batch array code.
In particular, FBt,�(t − g[t, �], 1) = 1.

Proof: Let x = (x1, . . . , xs) the vector of dimension
1× s with the s information bits, and let H be a parity check
matrix of the code C, with dimension s × t. We construct
an (s, 1, 1, t, �) functional batch array code C′ by taking each
entry of the vector c = (xH)ᵀ as a cell in the code. The
dimension of c is t×1, and thus, we get one bucket with t cells
where each cell has a linear combination of the s information
bits.

Let u ∈ Σs be a request which represents the linear com-
bination 	u, x
 of the s information bits. From Property 13,
we know that there exists a vector y ∈ Σt such that y·Hᵀ = u,
where w = wH(y) � �. Let A = {i : i ∈ [t], yi = 1},

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:34:32 UTC from IEEE Xplore. Restrictions apply.

NASSAR AND YAAKOBI: ARRAY CODES FOR FUNCTIONAL PIR AND BATCH CODES 845

where yi is the entry number i of y. Thus, 	u, x
 = u ·xᵀ =
y · Hᵀ · xᵀ = y · c =

∑
i∈A ci, where ci is the entry number

i of c. Therefore, to satisfy the request 	u, x
 we should read
|A| = w � � cells from the code C′.

Recall that g[t, �] is the smallest dimension of a linear
code with length t and covering radius �. Thus, there exists
a [t, g[t, �], �] linear covering code. We get that there exists a
(t−g[t, �], 1, 1, t, �) functional batch array code, which implies
that FBt,�(t − g[t, �], 1) = 1.

Theorem 14 holds also for functional PIR array code and
thus the following results are derived.

Corollary 15: Let s, k, t and � be positive integers. Then,

a) FPt,�(s, k) � FBt,�(s, k) � k ·
⌈

s
t−g[t,�]

⌉
.

b) FPt+t0,�(s, k) � FPt,t(s, k), where t0 = g[t + t0, �].
Also works for FB.

c) FPt,�(s, k) � FBt,�(s, k) � k ·
(⌈

s
α

⌉
+ 1

)
, where⌈

s
α

⌉
� t − g[t, �], and α = (t + 1) − g[(t + 1), �].

Proof:

a) From Theorem 3(c) we get that FBt,�(s, k) � k ·
FBt,�(s, 1) � k ·FBt,�(s

t−g[t,�] ·(t−g[t, �]), 1). In addi-
tion, from Theorem 3(e) we get that k · FBt,�(s

t−g[t,�] ·
(t − g[t, �]), 1) � k · s

t−g[t,�] · FBt,�(t − g[t, �], 1) and
from Theorem 14 it holds that FBt,�(t− g[t, �], 1) � 1.

Thus, FBt,�(s, k) � k ·
⌈

s
t−g[t,�]

⌉
.

b) Let the code C be an (s, k, m, t, t) functional PIR array
code. From each bucket, which has at most t cells,
we construct a new bucket with at most t + t0 cells to
get any possible linear combination of the t cells in the
appropriate bucket. This is possible by taking the linear
combinations in the cells as the information bits and
using Theorem 14 where it holds that FPt+t0(t, 1) =
FPt+t0(t + t0 − g[t + t0], 1) = 1. Given a request R
that the code must satisfy with k disjoint recovering sets
by reading at most � cells from each bucket. The same
recovering sets for R as in the code C can be taken
while reading at most � cells from each bucket in the
new code in order to get the needed linear combination.
Thus, we get an (s, k, m, t + t0, �) functional PIR array
code, and hence, FPt+t0,�(s, k) � FPt,t(s, k).

c) From Theorem 11 we can get that FBt,�(s, 1) �
m + FBt,�(m, 1), where m = FBt+1,�(s, k). From
the first claim in this corollary we know that m =
FBt+1,�(s, k) �

⌈
s

(t+1)−g[(t+1),�]

⌉
� t − g[t, �].

Thus, from Theorem 14 we get that FBt,�(m, 1) =
1. Therefore, FBt,�(s, 1) � m + FBt,�(m, 1) �⌈

s
(t+1)−g[(t+1),�]

⌉
+ 1. According to Theorem 3(e) we

get that FBt,�(s, k) � k · FBt,�(s, 1) � k · (
⌈

s
α

⌉
+ 1)

where α = (t + 1) − g[(t + 1), �].

C. The Cases of k = 1, 2

Even though the cases of k = 1, 2 are the most trivial ones
when the codewords are vectors, they are apparently not easily
solved for array codes. In this section we summarize some of
our findings on these important and interesting cases.

Theorem 16: For each s, t, � positive integers:
a) FPt,�(s, 1) �

⌈
s

log2(
��

i=0 (t
i))

⌉
.

b) FPt,t(s, 1) =
⌈

s
t

⌉
.

c) FPt,1(�log2(t + 1)�, 1) = 1 and
⌈

s
log2(t+1)

⌉
�

FPt,1(s, 1) �
⌈

s
�log2(t+1)�

⌉
.

d) FPt,α·t(s, 1) �
⌈

s
t−g[t,α·t]

⌉
, where 0 < α < 1.

e) FPt,t/2(s, 1) = s
t +1, where t is even, s

t is integer, and
s
t � t − 1.

Proof:
a) From corollary 8.
b) The lower bound over FPt,t(s, 1) is obtained by using

the lower bound from the first claim of this theorem,

FPt,t(s, 1) �
⌈

s

log2(
�t

i=0 (t
i))

⌉
=

⌈
s
t

⌉
. The upper

bound can be verified by showing that there exists an
(s, 1,

⌈
s
t

⌉
, t, t) functional PIR array code. There are t

cells in each buckets. Then, in order to write all the s
information bits there is a need to � s

t � buckets. Each
request is a linear combination of the s information
bits. Thus, each request can be satisfied by reading
the information bits which included in the request.
It was shown that FPt,t(s, 1) �

⌈
s
t

⌉
and there exists

an (s, 1, m, t, t) functional PIR array code. Therefore,
FPt,t(s, 1) =

⌈
s
t

⌉
.

c) A (�log2(t + 1)�, 1, 1, t, 1) functional PIR array code C
can be obtained by writing all the 2�log2(t+1)�−1 � t
linear combinations of the information bits in at most t
cells of one bucket. Each request is a linear combination
of the information bits, and hence, for each request there
exists a cell in the bucket that satisfies it. Thus, the
appropriate cell can satisfy the request. The minimum
number of buckets is 1. Thus, FPt,1(�log2(t+1)�, 1) =
1. The lower bound over FPt,1(s, 1) is derived from
the first claim of this theorem. Thus FPt,1(s, 1) �⌈

s

log2(
�1

i=0 (t
i))

⌉
=

⌈
s

log2(t+1)

⌉
. The upper bound is

shown by using Theorem 3(e),

FPt,1(s, 1) = FPt,1

(
s

�log2(t + 1)� · �log2(t + 1)�, 1
)

�FPt,1

(⌈
s

�log2(t+1)�

⌉
· �log2(t+1)�, 1

)

�
⌈

s

�log2(t+1)�

⌉
· FPt,1 (�log2(t + 1)�, 1)

�
⌈

s

�log2(t + 1)�

⌉
.

d) From Corollary 15(a).
e) The lower bound over FPt,t/2(s, 1) can be found using

the lower bound from the first claim of this theorem,

FPt,t/2(s, 1) �
⌈

s

log2(
∑t/2

i=0

(
t
i

)
)

⌉

�
⌈

s

log2(
∑t

i=0

(
t
i

)
)

⌉
+ 1

=
⌈s

t

⌉
+ 1.

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:34:32 UTC from IEEE Xplore. Restrictions apply.

846 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 2, FEBRUARY 2022

For the upper bound, from Corollary 15(c) we get
that FPt,t/2(s, 1) �

⌈
s

(t+1)−g[(t+1),t/2]

⌉
+ 1. Since

g[t + 1, t/2] = 1, then FPt,t/2(s, 1) � s/t + 1. Lastly

we need to show that
⌈

s
(t+1)−g[(t+1),t/2]

⌉
� t − g[t, �]

in order to use Corollary 15(c). Since s/t � t − 1,

it is derived that
⌈

s
(t+1)−g[(t+1),t/2]

⌉
= s

t � t − 1 =
t − g[t + 1, t/2] = g[t, t/2]. Thus, FPt,t/2 = s

t + 1.

Example 2: In this example we demonstrate the construction
of a (12, 1, 4, 4, 2) functional PIR array code according to
Theorem 16(e). The construction is given in Table IV. It can
be verified that FP4,2(12, 1) = 4.

An improvement for the case of � = 1 is proved in the
following theorem.

Theorem 17: For any positive integers s1, s2, and t,

FPt,1(s1 + s2, 1) �
⌈

s1

�log2(t + 1)�

⌉
+ 1,

where 2s2 − 1�
(⌈

s1
�log2(t+1)�

⌉
+ 1

)
(t − (2�log2(t+1)� − 1)).

Proof: A construction of an (s1+s2, 1, m, t, 1) functional

PIR array code for m =
⌈

s1
�log2(t+1)�

⌉
+ 1 is presented. The

first s1 information bits are divided into m − 1 parts, where
hi, i ∈ [m − 1] is the size of part i, and hi � �log2(t + 1)�.
Then, all the linear combinations of part i ∈ [m−1] are written
in the i-th bucket, so in each of the first m − 1 buckets there
are at least t−(2�log2(t+1)�−1) empty cells. In the last bucket,
the parity of each of the first 2�log2(t+1)� − 1 rows is stored.
Since 2s2 −1 � m ·(t−(2�log2(t+1)�−1)), each of the 2s2 −1
linear combinations of the s2 bits can be written in the empty
cells of the m buckets.

Let v = (v1, . . . , vm) be a request such that for any
i ∈ [m − 1] the length of vi is hi, the length of vm is
s2, and for simplicity assume that they are all nonzero. The
linear combination vm is satisfied by the cell where it is
stored and assume it is in the j-th bucket, where j < m.
Assume that the cell in the j-th bucket where the linear
combination vj is stored is in row r. We read from each
bucket b ∈ [m − 1], where b �= j the cell with the linear
combination represented by vb + ub, where ub is the vector
that represents the cell in bucket b in row r, but if vb+ub = 0
do not read from bucket b. Also, we read the cell in row r from
the last bucket. Then, the obtained linear combination is the
combination that is represented by (v1, . . . , vm−1), because∑

1�b�m,b�=j ub = vj and for each b ∈ [m − 1] where b �= j
we read the linear combination that is represented by vb +ub

from bucket b.
For any t, s1, s2 where s = s1 + s2 and s2 � �log2(t+1)�,

the upper bound in Theorem 17 improves upon the one in
Theorem 16(c) since

⌈
s

�log2(t+1)�
⌉

�
⌈

s1
�log2(t+1)�

⌉
+ 1.

Example 3: In this example the construction of a
(15, 1, 7, 4, 1) functional PIR array code is demonstrated
based on Theorem 17. It can be verified that the parameters
t = 4, s1 = 12 and s2 = 3 satisfy the constraints of
Theorem 17. The construction is given in Table V. The first
s1 = 12 information bits are partitioned into 6 parts, each part
of size 2. All the nonzero linear combinations of part i, i ∈ [6]

TABLE V

(15, 1, 7, 4, 1) FUNCTIONAL PIR ARRAY CODE

TABLE VI

(8, 2, 7, 2, 2) FUNCTIONAL PIR ARRAY CODE

are written in the i-th bucket with one cell remains empty. The
sum of each of the first 3 rows is written. Now, there are still
7 empty cells, which are used to store all the nonzero linear
combinations of the last s2 = 3 bits in the empty cells. It can
be concluded that FP4,1(15, 1) � 7, and from Theorem 16(c)
we get that FP4,1(15, 1) � 7. Thus, FP4,1(15, 1) = 7.

Lastly, we report on several results for k = 2.
Theorem 18: 6 � FB2,2(8, 2) � 7.

Proof: The lower bound is obtained from Theorem 5. The
upper bound is verified using the construction which appears in
Table VI, i.e., the construction gives an (8, 2, 7, 2, 2) functional
batch array code. There are 8 information bits, 7 buckets, each
one with 2 cells, and we show that this code can satisfy each
multiset request of size 2. Let S1 = {x1, x2, x3, x4} be a set
of the first 4 information bits and S2 = {x5, x6, x7, x8} be
a set of the last 4 information bits. Let R = {v1, v2} be a
multiset request of size 2, where v1 and v2 are vectors of
size 8. For each i ∈ [2], vi = (v1

i , v
2
i) where vj

i , j ∈ [2] is a
vector of length 4 that represents a linear combination of the
bits in Sj . The possible linear combinations of S1 are divided
into four different types in the following way.

a) The first type T1 includes the vectors that can be satisfied
by using only one bucket from the buckets 1 − 3.

b) The second type T2 includes any vector u that satisfies
the following constraint. The vectors u+(1, 1, 0, 0) and
u + (0, 0, 1, 1) can be satisfied by one bucket from
buckets 1−3. (The vector (1,1,0,0) represents the linear
combination x1 + x2.)

c) The third type T3 includes any vector u that satisfies
the following constraint. The vectors u+(1, 1, 1, 1) and
u + (1, 1, 0, 0) can be satisfied by one bucket from the
buckets 1 − 3.

d) The fourth type T4 includes any vector u that satisfies
the following constraint. The vectors u+(1, 1, 1, 1) and
u + (0, 0, 1, 1) can be satisfied by one bucket from the
buckets 1 − 3.

These four types are disjoint and their union covers all the
nonzero linear combinations of S1. From the symmetry of the
first four information bits and the last four bits, the linear
combinations of S2 are divided in the same way. It is possible
to see that every two buckets from buckets 1 − 3 can satisfy
each possible linear combination of the first four bits. In the
same way, every two buckets from buckets 4 − 6 can satisfy
each possible linear combination of the last four bits. Also,

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:34:32 UTC from IEEE Xplore. Restrictions apply.

NASSAR AND YAAKOBI: ARRAY CODES FOR FUNCTIONAL PIR AND BATCH CODES 847

the last bucket can satisfy each vector (u, u), where u ∈
{(1, 1, 0, 0), (0, 0, 1, 1), (1, 1, 1, 1)}.

If one of the vectors {v1
1, v

1
2} is included in T1 (assume it is

v1
1) and one of the vectors {v2

1, v
2
2} is included in T1 (assume

it is v2
1), then these two vectors can be satisfied by one bucket

from 1−3 and one bucket from 4−6. Then the remaining two
buckets of 1−3 can satisfy v1

2 and the remaining two buckets
of 4 − 6 can satisfy v2

2. Therefore, in this case the request R
is satisfied by disjoint sets.

If there exist 2 � q1, q2 � 4 where v1
1 ∈ Tq1 and v2

1 ∈ Tq2 .
Then, there exists a vector u′ where v1

1+u′ can be satisfied by
one bucket from buckets 1−3 and v2

1 +u′ can be satisfied by
one bucket from buckets 4− 6. Thus, the code can satisfy v1

1

and v2
1, that consist the request v1, by one bucket from 1−3,

one bucket from 4−6, and the last bucket, which satisfies the
request (u′, u′) for each possible u′. Then, the remaining two
buckets of 1−3 can satisfy v1

2 and the remaining two buckets
of 4−6 can satisfy v2

2. Similarly, if there exist 2 � q1, q2 � 4
where v1

2 ∈ Tq1 and v2
2 ∈ Tq2 , the code can satisfy the requests

v1 and v2 by disjoint sets.
The last case is when {v1

1, v
1
2} ⊆ T1 and {v2

1, v
2
2} ⊆ Tq,

where 2 � q � 4 (or {v1
1, v

1
2} ⊆ Tq and {v2

1, v
2
2} ⊆ Tq).

In the beginning we satisfy v1
1 by one bucket from 1 − 3.

Then, take a vector u′′, such that v2
2 + u′′ can be satisfied

by one bucket, denote it by b1. The vector v1
2 + u′′ can be

satisfied by the remaining two buckets from 1−3, denote them
by b2, b3. Then, the request R2 = {v1

2, v
2
2} can be satisfied by

{b1, b2, b3, 7} (where 7 is the last bucket). Lastly, the request
v2

1 can be satisfied by the remaining two buckets from 4− 6.
Thus, we can conclude that there exists 2 recovering sets for
each possible request, and hence, FB2,2(8, 2) � 7.

The result in Theorem 18 can be generalized to different
values of s.

Corollary 19: log7(2s−1 ·(2s−1)) � FB2,2(s, 2) � 7·
⌈

s
8

⌉
.

Proof: The upper bound is derived from Theorem 18, and
Theorem 3(e). The lower bound is obtained from Theorem 5,
where FB2,2(s, 2) � m where m is the smallest positive

integer such that
∑m

i=2

(
m
i

)
·
{

i
2

}
·
(∑2

j=1

(
2
j

))i

�
(
2s

2

)
. It is

known that
{

i
2

}
= 2i−1−1. Thus,

∑m
i=2

(
m
i

)
·(2i−1−1) ·3i �

2s−1 · (2s − 1). For each i � 2, (2i−1 − 1) · 3i � 6i.
Hence, it must hold that

∑m
i=0

(
m
i

)
· 6i �

∑m
i=2

(
m
i

)
· 6i �

2s−1 · (2s − 1). From the equality
∑m

i=0

(
m
i

)
· xi = (x + 1)m,

we get that
∑m

i=0

(
m
i

)
· 6i = 7m � 2s−1 · (2s − 1). Thus,

FB2,2(s, 2) � m � log7(2
s−1 · (2s − 1)).

According to Corollary 19, we get that for s large enough
log7(2

s−1 · (2s − 1)) = log7(2
s−1) + log7(2

s − 1) ≈
(s − 1) · log7(2) + s · log7(2) = (2s− 1) · log7(2) ≈ 0.71s �
FB2,2(s, 2) �

⌈
7s
8

⌉
.

In addition, the result in Theorem 18 can be modified to
different value of t.

Corollary 20: 6 � FB3,1(8, 2) � 7.
Proof: The lower bound is obtained from Theorem 5.

The upper bound is verified by Theorem 15(b), where
FB3,1(8, 2) � FB2,2(8, 2) � 7.

VI. SPECIFIC CONSTRUCTIONS OF ARRAY CODES

In this section we discuss three constructions of array codes.

A. Construction A

We start with a construction given in [19, Th.20], where it
was proved in [9, Th.10] that this construction gives a PIR
array code for any integer t � 2. We study how it can be used
also as batch and functional PIR array codes for t = 2. First,
the construction for the general case is presented.

Construction 21: Let t � 2 be a fixed integer. The number
of information bits is s = t(t + 1), the number of cells
in each bucket (the number of the rows) is t. The number
of buckets is m = m′ + m′′, where m′ =

(
t(t+1)

t

)
, and

m′′ =
(
t(t+1)
t+1

)
/t. In the first m′ buckets all the tuples of

t bits out of the t(t + 1) information bits are stored, which
needs

(
t(t+1)

t

)
buckets. In the last m′′ buckets we store all

possible summations of t + 1 bits, such that each one of the
t(t+1) bits appears in exactly one summation in every bucket
(in each summation there are t + 1 bits and there are t rows).
There are

(
t(t+1)
t+1

)
such summations and since there are t rows

then t summations can be stored in each bucket, so the number
of buckets of this part is m′′ =

(
t(t+1)

t+1

)
/t.

For any integer t � 2 denote the code that is obtained from
Construction 21 by CA

t . Construction 21 for the case of t = 2
is demonstrated in Table VII.

Now we want to show that the code CA
2 is a (6, 15, 25, 2, 2)

batch array code, by using several properties which are proved
in the following three lemmas. For each i ∈ [6], denote
by Fi ⊆ [15] the subset of buckets from the first 15
buckets, that have a cell with the singleton xi. It holds that
for any i ∈ [6], |Fi| = 5, and for any different i, j ∈ [6],
|Fi ∩ Fj| = 1. Assume that every multiset request R of
size k = 15 is represented by a vector (k1, . . . , k6), where
ki indicates the number of times xi appears in the multiset
request and k1 � · · · � k6.

Lemma 22: For any multiset request (k1, . . . , k6) of size
k = 15, the code CA

2 can satisfy all the requests of bits
x3, x4, x5, x6 by using only the first 15 buckets.

Proof: The proof is divided into the following cases
according to number of different information bits that appear
in the request.

Case 1: If k3 = 0, then none of the bits x3, x4, x5, x6 is
requested and the property clearly holds.

Case 2: If k4 = 0, then it necessarily holds that
k3 � 5. Assume by contradiction that k3 > 5. Then, it holds
that k1 � k2 > 5, and hence, k = k1 +k2 +k3 > 15, which is
a contradiction. Thus k3 � 5 and the code can use k3 buckets
from F3.

Case 3: If k5 = 0, then it necessarily holds that
k4 � k3 � 4. Assume by contradiction that k4 > 4.
Then, it holds that k1 � k2 � k3 > 4, and hence, k =
k1 + k2 + k3 + k4 > 15, which is a contradiction. Assume by
contradiction that k3 > 4, when k4 � 1. Then, it holds that
k1 � k2 > 4, and hence, k = k1 + k2 + k3 + k4 > 15, which
is a contradiction. Thus k3 � 4 and the code CA

2 can satisfy
the bit requests of x3 by taking k3 buckets from F3. Then the
code CA

2 can satisfy the bit requests of x4 by taking k4 � 4
buckets from F4 \ (F4 ∩ F3), where |F4 \ (F4 ∩ F3)| = 4.

Case 4: If k6 = 0, then it necessarily holds that k5 � k4 � 3
and k3 � 4. Assume by contradiction that k5 > 3. Then,

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:34:32 UTC from IEEE Xplore. Restrictions apply.

848 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 2, FEBRUARY 2022

TABLE VII

CONSTRUCTION 21 FOR t = 2

it holds that k1 � k2 � k3 � k4 � k5 > 3, and hence,
k = k1 + k2 + k3 + k4 + k5 > 15, which is a contradiction.
Assume by contradiction that k4 > 3, when k5 � 1. Then,
it holds that k1 � k2 � k3 � k4 > 3, and hence, k =
k1 +k2 +k3 +k4 +k5 > 15, which is a contradiction. Assume
by contradiction that k3 > 4, when k5+k4 � 2. Then, it holds
that k1 � k2 � k3 > 4, and hence, k = k1 + k2 + k3 + k4 +
k5 > 15, which is a contradiction. Thus, k3 � 4 and the code
CA
2 can satisfy the bit requests of x3 by taking k3 buckets

from F3. Also, k4 � 3, then the code CA
2 can satisfy the

bit requests of x4 by taking k4 buckets from F4 \ (F4 ∩F3).
Lastly, the code CA

2 can satisfy the bit requests of x5 by taking
k5 � 3 buckets from F5 \ ((F5 ∩ F4) ∪ (F5 ∩ F3)), where
|F5 \ ((F5 ∩ F4) ∪ (F5 ∩ F3))| = 3.

Case 5: If k6 > 0, then it necessarily holds that
k6 � k5 � 2, k4 � 3 and k3 � 4. Assume by contradiction
that k6 > 2. Then, it holds that k1 � k2 � k3 � k4 � k5 > 2,
and hence, k =

∑6
i=1 ki > 15, which is a contradiction.

Assume by contradiction that k5 > 2 when k6 � 1. Then,
it holds that k1 � k2 � k3 � k4 > 2, and hence,
k =

∑6
i=1 ki > 15, which is a contradiction. Assume by

contradiction that k4 > 3 when k6 + k5 � 2. Then, it holds
that k1 � k2 � k3 > 3, and hence, k =

∑6
i=1 ki > 15, which

is a contradiction. Assume by contradiction that k3 > 4 when
k6 + k5 + k4 � 3. Then, it holds that k1 � k2 > 4, and
hence, k =

∑6
i=1 ki > 15, which is a contradiction. Thus,

1 � k3 � 4 and the code CA
2 can satisfy the bit requests

of x3 by taking k3 buckets from F3. Then the code CA
2 can

satisfy the bit requests of x4 by taking k4 � 3 buckets from
F4\(F4∩F3). Then the code CA

2 can satisfy the bit requests of
x5 by taking k5 � 2 buckets from F5\((F5∩F4)∪(F5∩F3)).
Lastly, the code CA

2 can satisfy the bit requests of x6 by taking
k6 � 2 buckets from F6\((F6∩F5)∪(F6∩F4)∪(F6∩F3)),
where |F6 \ ((F6 ∩ F5) ∪ (F6 ∩ F4) ∪ (F6 ∩ F3))| = 2.

Lemma 23: In the code CA
2 , for any information bit xi

and for any bucket b1 ∈ [15] \ Fi, there exists a bucket
b2, 16 � b2 � 25 such that {b1, b2} is a recovering set of
xi. In addition, the | [15] \ Fi| recovering sets are mutually
disjoint.

Proof: For any information bit xi, the buckets of [15]\Fi,
are the buckets from the first m′ = 15 buckets that does not
include xi. Each bucket b1 ∈ [15] \ Fi has two singletons
xj1 , xj2 which are different than xi. From the construction of
the code CA

2 we know that there exists a bucket b2 from the
last 10 buckets that has the summation xi + xj1 + xj2 . Thus,
the subset {b1, b2} is a recovering set of xi.

We want to show that for any two different buckets
b′1, b′′1 ∈ [15] \ Fi, the recovering sets {b′1, b′2} and {b′′1 , b′′2}

of xi are disjoint. Assume that b′1 has the two bits xj′1 , xj′2
and b′′1 has the two bits xj′′1 , xj′′2 . Assume that xj′1 �= xj′′1 .
It holds that {b′1} ∩ {b′′1 , b′′2} = ∅ because it holds that
b′1 �= b′′1 and b′1 �= b′′2 because b′1 ∈ [15] but b′′2 /∈ [15].
In addition, {b′2} ∩ {b′′1 , b′′2} = ∅ because it holds that
b′2 /∈ [15] but b′′1 ∈ [15]. Also, b′2 �= b′′2 because b′2 has
the summation xi + xj′1 + xj′2 and b′′2 has the summation
xi + xj′′1 + xj′′2 . The two summations are different because
xj′1 �= xj′′1 . From the construction we know that each bucket in
the last 10 buckets has exactly one summation with xi. Thus,
b′2 �= b′′2 .

For any information bit xi, i ∈ [6] denote by Ri
b the

recovering set that uses bucket b ∈ [15] and can satisfy xi.
For example, R1

1 = {1} and R1
12 = {12, 22}.

Lemma 24: For the two information bits x1, x2, the buckets
{10, 11, . . . , 15} are divided into 3 pairs, P = {(10, 15),
(11, 14),(12, 13)}, such that for any pair (b1, b2) ∈ P , it holds
that

∣∣R1
b1

∩ R2
b2

∣∣ > 0 and
∣∣R2

b1
∩ R1

b2

∣∣ > 0.
Proof: For the first pair, (10, 15), it holds that R1

10 =
{10, 20}, R2

10 = {10, 25}, R1
15 = {15, 25}, and R2

15 =
{15, 20}. Then, it holds that

∣∣R1
10 ∩ R2

15

∣∣ = |{10, 20}∩
{15, 20}| > 0 and

∣∣R2
10 ∩ R1

b15

∣∣ = |{10, 25}∩ {15, 25}| > 0.
Similarly, the claim holds also for the pairs (11, 14) and
(12, 13).

Now, we are ready to show that the code CA
2 is a

(6, 15, 25, 2, 2) batch array code.
Theorem 25: The code CA

2 is a (6, 15, 25, 2, 2) batch array
code. In particular, B2,2(6, 15) = 25.

Proof: The lower bound is derived from Theorem 2(c),
B2,2(6, 15) � 30·6·7

(4)2+36−4+4 > 24. The upper bound is derived
from the code CA

2 . Let (k1, . . . , k6) be a multiset request
of size k = 15. The first step is to satisfy all the requests
of bits x3, x4, x5, x6 according to Lemma 22 by using only
the first m′ = 15 buckets. Then, the remaining requests
are of the bits x1, x2. Denote by α1, α2 the number of the
remaining buckets from the first m′ = 15 buckets that include
x1, x2 as singleton, but not both of them, respectively. Then,
take min{k2, α2} buckets as a recovering sets of x2 and
take min{k1, α1} buckets as recovering sets of x1. The first
bucket which contains the singletons x1, x2 is not used yet.
Denote by r the number of bit requests from the multiset
request that were satisfied so far. Furthermore, denote by k′

1, k
′
2

the number of remaining bit requests of x1, x2, respectively,
where k′

1 = k1 − min{k1, α1} and k′
2 = k2 − min{k2, α2}.

After this step we still have 15 − r buckets in the first
m′ = 15 buckets, including the first bucket and all the last
m′′ = 10 buckets. Therefore, for x1 and x2 there are 15 − r
possible recovering sets.

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:34:32 UTC from IEEE Xplore. Restrictions apply.

NASSAR AND YAAKOBI: ARRAY CODES FOR FUNCTIONAL PIR AND BATCH CODES 849

The second step is to satisfy the remaining 15 − r bit
requests from the multiset request. If k′

1 = 0 or k′
2 = 0,

then it is possible to satisfy them by using the remaining
k− r = 15− r recovering sets of x1 or x2. Otherwise, k′

1 > 0
and k′

2 > 0. So far we used all the buckets from the set
(F1 ∪ F2) \ {1} which is of size 8 and another p buckets
from the subset {10, 11, . . . , 15}. Thus, k′

1 + k′
2 = 7 − p.

Let G ⊆ {10, 11, . . . , 15} be the subset of buckets from
{10, 11, . . . , 15} that were not used in the first step and let
p = 6− |G|. According to Lemma 23, there are at least 7− p
remaining recovering sets for each bit of {x1, x2}, which are
the set {1} and the sets of Ri

b where b ∈ G and i ∈ [2].
According to Lemma 24, the buckets {10, 11, . . . , 15} are
divided into 3 pairs, where the b-th bucket is paired with
the (25 − b)-th bucket, for 10 � b � 15. The subset G is
partitioned into two subsets, U1 = {b ∈ G : (25− b) ∈ G} and
U2 = {b ∈ G : (25 − b) /∈ G}. Let β1 = |U1| and β2 = |U2|.
The following cases are considered.

Case 1: If p is even and k′
1 is even (or k′

2 is even). Since
p is even, it is deduced that β2 is even as well. Assume that
k′
1 is even, then also (k′

1 − β2) is even. In order to satisfy x1

we can take min{β2, k
′
1} recovering sets that use min{β2, k

′
1}

buckets from U2. We can see that β1 + β2 = 6 − p and k′
1 �

6 − p = β1 + β2 then k′
1 − β2 � β1. If k′

1 > β2, then we
can satisfy the remaining requests of x1 with (k′

1 − β2)/2
pairs of buckets from U1, where for each bucket b from the
(k′

1 − β2) buckets we can take R1
b as a recovering set for x1.

It is possible to show that each recovering set for x1 that uses
a bucket from U2 intersects with only one recovering set for
x2 that uses a bucket from G. Also, each pair of recovering
sets for x1 that uses a pair of bucket from U1 intersects with
only two recovering sets for x2 that use buckets from G. Thus,
from the 7 − p recovering sets of x2 it is not possible to use
only max{k′

1, β2+2· k′
1−β2
2 } = k′

1 of them. Thus it is possible
to use the remaining 7−p−k′

1 = k′
2 to satisfy the k′

2 requests
of x2. The case when k′

1 is odd but k′
2 is even can be solved

similarly while changing between x1 and x2.
Case 2: If p is odd and k′

1 is odd (or k′
2 is odd). Then β2 is

odd. Assume that k′
1 is odd, then also (k′

1 − β2) is even and
the rest is similar to Case 1.

Case 3: If p is even and k′
1, k

′
2 are odd. Then start with

satisfying x1 with a recovering set {1}. Then we still have an
even number of remaining requests of x1 that must be satisfied,
and the rest is similar to Case 1.

Case 4: If p is odd and k′
1, k

′
2 are even. Then start with

satisfying x1 with a recovering set {1}. Then we still have an
odd number of remaining requests of x1 that must be satisfied,
and the rest is similar to Case 2.

Thus, we can conclude that the code can satisfy
each multiset of 15 information bits, and hence,
B2,2(6, 15) = 25.

In addition it is possible to show that the code CA
2 is a

(6, 11, 25, 2, 2) functional PIR array code.
Theorem 26: The code CA

2 is a (6, 11, 25, 2, 2) functional
PIR array code. In particular, 21 � FP2,2(6, 11) � 25.

Proof: The lower bound is obtained from Theorem 9,
where FP2,2(6, 11) � 2·11·63

3+63 = 21. The upper bound can

be obtained from the code CA
2 . Given a request R, a linear

combination of the information bits, that the code CA
2 must

satisfy k = 11 times by disjoint recovering sets. Because of
the symmetry of xi, i ∈ [6], it is sufficient to check requests
according to their length (number of information bits). Thus,
the proof is divided into the following cases according to
number of information bits that appear in the request.

Case 1: If the request contains one information bit then it
is the case of PIR.

Case 2: If the request contains two information bits, then
assume that it is x1 + x2. Then the recovering sets are
the following {{1}, {2, 6}, {3, 7}, {4, 8}, {5, 9}, {16, 11},
{17, 10}, {18, 13}, {19, 12}, {20, 25}, {21, 24}, {22, 23}}.

Case 3: If the request contains three information bits, then
assume that it is x1+x2 +x3. Then the recovering sets are the
following {{16}, {1, 2}, {17, 10}, {18, 11}, {19, 12}, {20, 7},
{21, 8}, {22, 9}, {23, 5}, {24, 4}, {25, 3}}.

Case 4: If the request contains four information bits, then
assume that it is x3 + x4 + x5 + x6. Then the recovering sets
are the following {{16, 2}, {17, 3}, {18, 4}, {19, 5}, {20, 25},
{21, 24}, {22, 23}, {10, 15}, {11, 14}, {12, 13}, {6, 7, 8, 9}}.

Case 5: If the request contains five information bits, then
assume that it is x2+x3+x4+x5+x6. Then the recovering sets
are the following {{16, 1}, {17, 2}, {18, 3}, {19, 4}, {20, 5},
{21, 11}, {22, 12}, {23, 13}, {24, 14}, {25, 15}, {6, 7, 8, 9}}.

Case 6: If the request contains all the information bits, that
it is x1 + x2 + x3 + x4 + x5 + x6. Then the recovering sets
are the following {{16}, {17}, {18}, {19}, {20}, {21}, {22},
{23}, {24}, {25}, {1, 10, 15}, {2, 8, 14}, {3, 9, 11}, {4, 7, 12},
{5, 6, 13}}.

B. Construction B

Next we generalize an example given in [19] of a PIR code
for any integer r � 3 and study how it can be used also as
batch array codes. We first present the construction for the
general case.

Construction 27: Let r � 3 be a fixed integer, the number
of information bits is s = r(r +1), the number of the buckets
is m = r + 1, and the number of the cells in each bucket is
t = (r − 1)r + 1. The information bits are partitioned into
r + 1 parts each of size r, denote by Si the part i of the bits.
For each i ∈ [r+1], write the linear combination

∑
j∈Si

xj to
bucket i. For each i, i ∈ [r + 1] write each one of the subsets
of size r − 1 of Si as singletons in a different bucket other
than bucket i.

For any integer r � 3 denote the code that is obtained from
Construction 27 by CB

r . Construction 27 for the case of r = 3
is demonstrated in Table VIII. It is possible to show that for
any r � 3 the code CB

r is an (r2 + r, r, r+1, r2− r+1, r−1)
PIR array code.

Theorem 28: For any integer r � 3 the code CB
r from

Construction 27 is an (r2 + r, r, r + 1, r2 − r + 1, r − 1) PIR
array code. In particular,

r · (4r2 + 3r − 1)
4r2−r + 1

� Pr2−r+1,r−1(r2 + r, r) � r + 1.

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:34:32 UTC from IEEE Xplore. Restrictions apply.

850 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 2, FEBRUARY 2022

TABLE VIII

CONSTRUCTION 27 FOR r = 3

Proof: The lower bound can be obtained by using
Theorem 2(b),

Pr2−r+1,r−1(r2 + r, r) � Pr2−r+1,r2−r+1(r2 + r, r)

� r · (r2 + r)(4r − 1)
(4r − 1)(r2−r + 1) + (2r − 1)2

=
r(4r3−r2+4r2−r)

4r3−4r2+4r−r2+r−1+4r2−4r+1

=
r2(4r2 + 3r − 1)

4r3 − r2 + r
=

r · (4r2 + 3r − 1)
4r2−r + 1

.

The upper bound is verified by using the code CB
r . There

are s = r(r+1) information bits, and the number of buckets is
m = r+1. For each i ∈ [m], there exists a cell with the linear
combination

∑
q∈Si

xq and another r(r−1) cells to store one
(r − 1)-subset from each Sj , j ∈ [r + 1], where j �= i. Thus,
the number of the rows is r2 − r + 1.

Let xj be a request that the code CB
r must satisfy by r

disjoint recovering sets. Assume that xj ∈ Si, i ∈ [r+1]. There
are r− 1 buckets which include xj as a singleton, because xj

appears in r − 1 subsets of length r − 1 of part Si. Thus,
each bucket of the r − 1 buckets is taken as a recovering set,
while reading only one cell from it. In addition, in the i-th
bucket there exists a cell with

∑
q∈Si

xq , which includes xj .
The (r − 1)-subset, Si \ {xj}, is written in a bucket p, which
is different from bucket i, and is different from the buckets
that were taken so far (because xj /∈ Si \ {xj}). Thus, the set
{i, p} is a recovering set of xj , and it is sufficient to read from
bucket i one cell, which is

∑
q∈Si

xq and to read r − 1 cells
with the r − 1 bits of Si \ {xj} from bucket p. Thus, there
exist r disjoint recovering sets for xj , where at most r − 1
cells are read from each bucket.

Next we want to show that for any integer r � 3 the code
CB

r is an (r2 + r, r, r + 1, r2 − r + 1, r − 1) batch array code,
by using a property stated in the following lemma.

Lemma 29: For any integer r � 3 it holds that every two
buckets of the code CB

r can form a recovering set of every bit
xi by reading at most r − 1 cells from each bucket.

Proof: Given a pair of buckets from CB
r , for simplicity we

assume that they are the first two buckets. The first bucket has
a cell with

∑
i∈S1

xi, and has exactly r − 1 bits as singletons
from each Sj , 2 � j � r + 1. Hence, the first bucket does
not include exactly one of the information bits from each
Sj , 2 � j � r + 1. Thus, the number of bits that do not
appear as singletons in the first bucket is 2r. Hence, the first
bucket can satisfy each information bit except to these 2r bits,
by reading exactly one cell.

The second bucket contains r − 1 bits out of the r bits of
S1 as singletons. Thus, each one of these (r−1) bits from S1

can be satisfied by reading each one of them as a singleton
from the second bucket. Also, the remaining bit of S1 can be
satisfied by reading the r−1 singletons of S1 from the second
bucket with the cell

∑
i∈S1

xi in the first bucket.
The first two buckets include different (r − 1)-subsets of

each part other than S1,S2. Then, the information bit that does
not appear as a singleton cell or as part of the cell

∑
i∈S1

xi in
the first bucket, definitely appears as a singleton cell or in the
cell

∑
i∈S2

xi in the second bucket. Then, each bit xq ∈ Sj

where 3 � j � r + 1 can be satisfied by reading it as a
singleton from the second bucket. There are r − 1 such bits,
and thus, it remains to show that the code can satisfy the bit
xq1 ∈ S2 that is not part of the (r − 1)-subset of singletons
which are stored in the first bucket. We can satisfy xq1 by
reading the r − 1 singletons of S2 from the first bucket with
the cell

∑
i∈S2

xi in the second bucket. Thus, the first two
buckets of the code CB

r can form a recovering set of every bit
xi. Similarly, it holds for any two buckets of the code CB

r .
Now, we are ready to show that for any integer r � 3 the

code CB
r is (r2 +r, r, r+1, r2−r+1, r−1) batch array code.

Theorem 30: For any integer r � 3 the code CB
r from

Construction 27 is an (r2 + r, r, r +1, r2 − r +1, r− 1) batch
array code. In particular,

r · (4r2 + 3r − 1)
4r2−r + 1

� Br2−r+1,r−1(r2 + r, r) � r + 1.

Proof: The lower bound is follows from the lower bound
of Pr2−r+1,r−1(r2 + r, r). The upper bound is achieved by
using Contruction 27. Let R = {xi1 , xi2 , . . . , xir} be a
multiset request of r information bits. First, we want to show
that the code CB

r can satisfy the first r−1 bits of the request by
using only r−1 buckets. From Construction 27 it is known that
each information bit xi appears as a singleton in r−1 buckets
out of the r + 1 buckets. Thus, in each subset of buckets of
size at least 3, there is at least one bucket that contains a cell
with xi. Therefore, the first r − 1 bits of the request can be
read by singletons from r − 1 different buckets.

After the first step, we still have 2 buckets and from
Lemma 29 it is known that these two buckets can satisfy each
xi, in particular xir .

According to Theorem 28 and Theorem 30 it can be verified
that for any r � 3, r < r·(4r2+3r−1)

4r2−r+1 � Pr2−r+1,r−1

(r2 + r, r) � Br2−r+1,r−1(r2 + r, r) � r + 1. Thus,
we conclude that Construction 27 gives optimal PIR and batch
array codes.

C. Construction C

We now present our third construction, and study how it
can be used as PIR and functional PIR array codes for specific
parameters.

Construction 31: Let s � 2 be a fixed integer. The number
of information bits is s and the number of the cells in each
bucket (the number of the rows) is 2. Let G be the set of all
linear combinations of the s information bits. All the different
disjoint pairs from the set G are stored where each disjoint

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:34:32 UTC from IEEE Xplore. Restrictions apply.

NASSAR AND YAAKOBI: ARRAY CODES FOR FUNCTIONAL PIR AND BATCH CODES 851

TABLE IX

CONSTRUCTION 31 FOR s = 4

pair is stored in one bucket. Each disjoint pair has at most s
information bits. Thus, we need m =

∑s
i=2(

(
s
i

)
·
{

i
2

}
) buckets.

Then,

m =
s∑

i=2

((
s

i

){
i

2

})
=

s∑
i=2

(
s

i

)
(2i−1 − 1)=

3s + 1
2

− 2s.

For any integer s � 2 denote the code that is obtained from
Construction 31 by CC

s . Construction 31 for the case of s = 4
is demonstrated in Table IX and provides the following results.
First, we show that the code CC

4 is a (4, 16, 25, 2, 1) PIR array
code.

Theorem 32: The code CC
4 from Construction 31 is a

(4, 16, 25, 2, 1) PIR array code. In particular, 23 � P2,1(4, 16)
� 25.

Proof: The lower bound is obtained using Theorem 2(b),
P2,1(4, 16) � P2,2(4, 16) � 16·4·5

5·2+4 > 22. The upper bound is
verified using the code CC

4 . Let xi, i ∈ [4] be a request, that
the code CC

4 must satisfy 16 times. From the symmetry of the
code, assume that xi = x1. The following are the recovering
sets of x1, where from each bucket only one cell is read.
{{1},{2}, {3}, {7}, {8}, {9}, {19}, {10, 6}, {11, 5}, {13, 4},
{14, 18}, {15, 17}, {16, 12}, {20, 23}, {21, 24}, {22, 25}}.

Next, we show that the code CC
4 is a (4, 14, 25, 2, 2)

functional PIR array code.
Theorem 33: The code CC

4 from Construction 31 is a
(4, 14, 25, 2, 2) functional PIR array code. In particular,
24 � FP2,2(4, 14) � 25.

Proof: The lower bound is obtained using Theorem 9,
FP2,2(4, 14) � 2·14·15

15+3 > 23. The upper bound is verified
using the code CC

4 . Let R be a linear combination request, that
the code CC

4 must satisfy 14 times. From the symmetry of the
code, the proof is divided into the following cases according to
the number of information bits that appear in R. If the number
of information bits that appear in R is p then we assume that
the request is x1 + x2 + · · · + xp.

Case 1: The recovering sets are the following {{1}, {2},
{3}, {7}, {8}, {9}, {19}, {10, 6}, {11, 5}, {13, 4}, {14, 18},
{15, 17}, {16, 12}, {20, 23}, {21, 24}, {22, 25}}.

Case 2: The recovering sets are the following {{1}, {13},
{16}, {23}, {2, 4}, {3, 5}, {7, 10}, {8, 11}, {9, 12}, {14, 15},
{17, 18}, {19, 20}, {21, 22}, {24, 25}}.

Case 3: The recovering sets are the following. {{7},
{10}, {13}, {22}, {1, 24}, {2, 23}, {3, 25}, {4, 17}, {5, 14},
{6, 16}, {8, 20}, {9, 21}, {11, 12}, {18, 19}}.

Case 4: The recovering sets are the following. {{19}, {20},
{21}, {22}, {23}, {24}, {25}, {1, 6}, {2, 5}, {3, 4}, {7, 11},
{8, 10}, {9, 13}, {12, 16}, {14, 18}, {15, 17}}.

Construction 31 for the case of s = 5 is demonstrated in
Table X and provides the following result.

Theorem 34: The code CC
5 from Construction 31 is a

(5, 48, 90, 2, 2) functional PIR array code. In particular,
88 � FP2,2(5, 48) � 90.

Proof: The lower bound is obtained using Theorem 9,
FP2,2(5, 48) � 2·48·31

31+3 > 87. The upper bound is verified
using the code CC

5 . Let R be a linear combination request that
the code CC

5 must satisfy 48 times. From the symmetry of the
code, the proof is divided into the following cases according to
the number of information bits that appear in R. If the number
of information bits that appear in R is p then we assume that
the request is x1 + x2 + · · · + xp.

Case 1: The recovering sets are the following {{1}, {2},
{3}, {4}, {11}, {12}, {13}, {14}, {15}, {16}, {41}, {42},
{43}, {44}, {61}, {17, 26}, {18, 32}, {19, 38}, {20, 23},
{21, 29}, {22, 35}, {24, 33}, {25, 39}, {27, 30}, {28, 36},
{31, 40}, {34, 37}, {45, 8}, {46, 9}, {47, 10}, {49, 6},
{50, 7}, {48, 51}, {53, 5}, {52, 54}, {55, 67}, {57, 72},
{58, 69}, {59, 66}, {64, 56}, {65, 60}, {62, 78}, {63, 79},
{71, 81}, {73, 82}, {83, 80}, {68, 85}, {70, 88}, {74, 86},
{75, 90}, {76, 89}, {77, 87}}.

Case 2: The recovering sets are the following {{1},
{23},{29}, {35}, {66}, {67}, {68}, {81}, {2, 5}, {3, 6},
{4, 7}, {9, 53}, {8, 49}, {10, 88}, {11, 20}, {12, 21},
{13, 22}, {14, 17}, {15, 18}, {16, 19}, {24, 26}, {25, 27},
{30, 32}, {31, 33}, {36, 38}, {37, 39}, {41, 45}, {42, 46},
{43, 47}, {44, 85}, {51, 52}, {54, 57}, {55, 56}, {59, 60},
{61, 28}, {62, 34}, {63, 40}, {64, 74}, {65, 77}, {69, 80},
{70, 79}, {71, 72}, {73, 78}, {75, 82}, {84, 87}, {86, 48},
{50, 58}, {76, 83}}.

Case 3: The recovering sets are the following {{11},
{17}, {23}, {53}, {57}, {90}, {1, 8}, {2, 6}, {3, 32}, {4, 38},
{5, 16}, {7, 36}, {9, 29}, {10, 89}, {30, 66}, {12, 40},
{13, 34}, {14, 39}, {15, 33}, {18, 80}, {19, 79}, {20, 37},
{21, 31}, {22, 88}, {24, 76}, {73, 86}, {26, 74}, {27, 68},
{28, 87}, {35, 63}, {41, 64}, {42, 65}, {43, 81}, {44, 47},
{45, 69}, {46, 60}, {48, 82}, {49, 56}, {50, 59}, {51, 78},
{52, 85}, {54, 67}, {55, 70}, {58, 77}, {61, 75}, {62, 71},
{72, 84}, {25, 83}}.

Case 4: The recovering sets are the following {{41},
{45}, {49}, {53}, {65}, {66}, {69}, {72}, {1, 8}, {2, 6},
{3, 5}, {10, 11}, {9, 12}, {7, 14}, {4, 20}, {13, 28}, {15, 22},
{16, 21}, {17, 34}, {18, 27}, {19, 40}, {23, 64}, {24, 62},
{25, 33}, {26, 61}, {29, 63}, {30, 48}, {31, 38}, {32, 44},
{35, 88}, {36, 39}, {37, 85}, {42, 90}, {43, 89}, {46, 68},
{47, 67}, {50, 71}, {51, 87}, {52, 84}, {54, 74}, {55, 70},
{56, 75}, {57, 78}, {58, 79}, {59, 73}, {60, 76}, {77, 81},
{82, 86}}.

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:34:32 UTC from IEEE Xplore. Restrictions apply.

852 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 2, FEBRUARY 2022

TABLE X

CONSTRUCTION 31 FOR s = 5

Case 5: The recovering sets are the following {{61},
{62}, {63}, {64}, {65}, {81}, {82}, {83}, {84}, {85}, {86},
{87}, {88}, {89}, {90}, {66, 4}, {67, 3}, {68, 2}, {69, 7},
{70, 6}, {71, 1}, {72, 9}, {73, 5}, {74, 17}, {75, 10}, {76, 8},
{77, 18}, {78, 11}, {79, 12}, {80, 13}, {41, 40}, {42, 34},
{43, 28}, {44, 19}, {45, 39}, {46, 33}, {47, 27}, {48, 14},
{49, 38}, {50, 32}, {51, 20}, {52, 15}, {53, 37}, {54, 26},
{55, 21}, {56, 16}, {57, 31}, {58, 25}, {59, 22}}.

VII. ASYMPTOTIC ANALYSIS OF ARRAY CODES

The goal of this section is to provide a figure of merit in
order to compare between the different constructions of array
codes. For simplicity we consider the case where � = t, that
is, it is possible to read all the bits in every bucket. Under this
setup, it holds that FPt,t(s, k) � sk/t for all s, k, and t. This
motivates us to define the following values

RX(t, k) = lim sup
s→∞

Xt,t(s, k)
sk/t

, (4)

where X ∈ {P, B, FP, FB}. Since array codes have different
parameters, the goal of this figure of merit is to have a
measure that will allow for a fair comparison between different
code constructions. This is accomplished by removing the
dependency on the number of bits s while fixing the values
of k and t as done in Equation (4). In many of the existing
constructions the value of s is fixed and constructions for a
larger number of bits are achieved by concatenation of the
smaller blocks of a smaller number of bits. Thus, for fixed
values of k and t it is possible to compare between two
code constructions even if they have a different number of
information bits.

The case where t = 1 has been studied in several previous
works. For example, for functional PIR array codes we have
RFP (1, k) � 1

k·H(1/k) for any even integer k � 4 [51, Th. 14].
Also, for functional batch array codes it holds from [51, Th.
22] that RFB(1, k) � 1

k·H(ck) , where c1 = 1
2 and ck+1 is the

root of the polynomial H(z) = H(ck)−zH(ck). The function
H(·) denotes the binary entropy function defined by H(p) =
−p log p − (1 − p) log (1 − p). For the case k = 1 we have
RFB(t, 1) = RFP (t, 1) = 1 from Theorem 16(b). According
to the bounds and constructions studied in the paper, we can
already summarize several results in the following theorems
for t = 2 and general values.

Theorem 35:

a) RFP (2, 2) � RFB(2, 2) � 7
8 = 0.875, and

RFB(2, 2) � 0.71.
b) RFP (2, 11) � 25

33 = 0.758.
c) RFP (2, 14) � 25

28 = 0.893.
d) RFP (2, 48) � 3

4 = 0.75.
e) RP (2, 16) � 25

32 = 0.78125.
f) RB(2, 15) � 5

9 = 0.556.

Proof:

a) From Theorem 18 we have FB2,2(s, 2) � 7 ·⌈
s
8

⌉
. Thus, RFB(2, 2) = lim sups→∞

FB2,2(s,2)
2s/2 �

lim sups→∞
7
s/8�

s � lim sups→∞
(7s/8)+7

s = 7
8 .

From Corollary 19 we have FB2,2(s, 2) � 0.71s. Thus,
RFB(2, 2) = lim sups→∞

FB2,2(s,2)
2s/2 � lim sups→∞

0.71s
s = 0.71.

b) From Theorem 26 we have FP2,2(6, 11) � 25.
Then, it is possible to use Theorem 3(e) to get that
FP2,2(s, 11) � 25 ·

⌈
s
6

⌉
. Thus, RFP (2, 11) =

lim sups→∞
FP2,2(s,11)

11s/2 � lim sups→∞
25
s/6�
11s/2 �

lim sups→∞
(25s/6)+25

11s/2 = 50
66 = 0.758.

c) From Theorem 33 we have FP2,2(4, 14) � 25.
Then, it is possible to use Theorem 3(e) to get that
FP2,2(s, 14) � 25 ·

⌈
s
4

⌉
. Thus, RFP (2, 14) =

lim sups→∞
FP2,2(s,14)

14s/2 � lim sups→∞
25
s/4�

7s �
lim sups→∞

(25s/4)+25
7s = 25

28 = 0.893.
d) From Theorem 34 we have FP2,2(5, 48) � 90.

Then, it is possible to use Theorem 3(e) to get that

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:34:32 UTC from IEEE Xplore. Restrictions apply.

NASSAR AND YAAKOBI: ARRAY CODES FOR FUNCTIONAL PIR AND BATCH CODES 853

FP2,2(s, 48) � 90 ·
⌈

s
5

⌉
. Thus, RFP (2, 48) =

lim sups→∞
FP2,2(s,48)

48s/2 � lim sups→∞
90
s/5�

24s �
lim sups→∞

(90s/5)+90
24s = 90

120 = 3
4 = 0.75.

e) From Theorem 32 we have P2,1(4, 16) � 25. Then, it is
possible to use Theorem 3(e) and get that P2,1(s, 16) �
25 ·

⌈
s
4

⌉
. Thus, RP (2, 16) = lim sups→∞

P2,2(s,16)
16s/2 �

lim sups→∞
25
s/4�

8s � lim sups→∞
(25s/4)+25

8s = 25
32 =

0.78125.
f) From Theorem 25 we have B2,2(6, 15) = 25. Then, it is

possible to use Theorem 3(e) and get that B2,2(s, 15) �
25 ·

⌈
s
6

⌉
. Thus, RB(2, 15) = lim sups→∞

B2,2(s,15)
15s/2 �

lim sups→∞
25
s/6�
15s/2 � lim sups→∞

(25s/6)+25
15s/2 = 25

45 =
0.556.

Theorem 36:

a) For any r � 3, RP (r2 − r+1, r) � (r+1)(r2−r+1)
r(r2+r) (also

for B).
b) For any t � 2, RP (t, k) � m

k(t+1) , where k =
(
t(t+1)

t

)
and m = k + (t(t+1)

t+1)
t .

c) For any two integers t and k, RFB(t, k) � 1
k·H(ctk) ,

where c1 = 1
2 and ck+1 is the root of the polynomial

H(z) = H(ck) − zH(ck).
d) For any positive integers t, k and a, RX(t, a · k) �

RX(t, k), where X ∈ {P, B, FP, FP}.
e) For any positive integers t, k and a, RX(t, k) � RX(a ·

t, k), where X ∈ {P, B, FP, FP}.

Proof:

a) From Theorem 28 we have for any r � 3,
Pr2−r+1,r−1(r2 + r, r) � r + 1. Then, it is possible
to use Theorem 3(e) to get that Pr2−r+1,r−1(s, r) �
(r + 1) ·

⌈
s

r2+r

⌉
. Thus, for a given r, it holds that

RP (r2 − r + 1, r) = lim sup
s→∞

Pr2−r+1,r2−r+1(s, r)
rs/(r2 − r + 1)

� lim sup
s→∞

Pr2−r+1,r−1(s, r)
rs/(r2 − r + 1)

� lim sup
s→∞

(r + 1) ·
⌈

s
r2+r

⌉
rs/(r2 − r + 1)

� lim sup
s→∞

(r+1)s
r2+r + (r + 1)
rs/(r2 − r + 1)

=
(r+1)(r2−r+1)

r(r2+r)
.

b) From Theorem 2(e) we have for any t � 2 and p = t+1,
Pt,t(t(t + 1), k) � m, where k =

(
t(t+1)

t

)
and m =

k + (t(t+1)
t+1)
t . Then, it is possible to use Theorem 3(e) to

get that Pt,t(s, k) � m ·
⌈

s
t(t+1)

⌉
. Thus, for a given

t, it holds that RP (t, k) = lim sups→∞
Pt,t(s,k)

sk/t �

lim sups→∞
m·� s

t(t+1) �
sk/t � lim sups→∞

m·s
t(t+1) +m

sk/t =
m

k(t+1) .
c) From Lemma 10, we have FBt,t(s, k) � FBt,1(s, k) �

FB(�s/t�, t·k). RFB(t, k) = lim sups→∞
FBt,t(s,k)

sk/t �
lim sups→∞

FB(
s/t�,t·k)
sk/t = lim sups→∞

FB(
s/t�,t·k)
s/t ·

1
k . Thus, according to [51, Th. 22], RFB(t, k) �

lim sups→∞
FB(
s/t�,t·k)

s/t · 1
k � 1

k·H(ctk) , where c1 = 1
2

and ck+1 is the root of the polynomial H(z) = H(ck)−
zH(ck).

d) From Theorem 3(c) we have that for any pos-
itive integer a and any X ∈ {P, B, FP, FP},
Xt,t(s, a · k) � a · Xt,t(s, k). Thus, RX(t, a · k) =
lim sups→∞

Xt,t(s,a·k)
ska/t � lim sups→∞

a·Xt,t(s,k)
ska/t =

lim sups→∞
Xt,t(s,k)

sk/t = RX(t, k).
e) From Theorem 3(f) we have that for any posi-

tive integer a and any X ∈ {P, B, FP, FP}, a ·
Xa·t,a·t(s, k) � Xt,a·t(s, k) = Xt,t(s, k). Thus,
RX(t, k) = lim sups→∞

Xt,t(s,k)
sk/t � lim sups→∞

a·Xa·t,a·t(s,k)
sk/t = lim sups→∞

Xa·t,a·t(s,k)
sk/(at) = RX(a·t, k).

We analyzed the results in this paper mostly for the case of
t = 2 in Theorem 35 to find the best constructions for several
values of k. In Theorem 36 several more results were derived.
We see this figure of merit as a comparison measure for more
future constructions.

We can think about RX(t, k) as the rate of the code. Due
to the fact that our aim is to find the minimum value of
Xt,t(s, k), then, a smaller value of RX(t, k) indicates a better
construction. For example, from Theorem 35 we can conclude
that the construction that leads to the result of Theorem 35(d)
is better than the constructions that lead to the results of
Theorem 35(a)(b)(c).

VIII. LOCALITY CODES

In this section we study a new family of array codes which
is a special case of functional PIR array codes in the sense
that each recovering set is of size at most r and all the cells of
each bucket can be read, i.e., � = t. This new family of array
codes will be called locality functional array codes. In order
to find lower bounds and constructions for locality functional
array codes we will use codes and designs in subspaces and
covering codes.

A. Definitions and Basic Constructions

This section is studying the following family of codes.
Definition 37: An (s, k, m, t, r) locality functional array

code over Σ is defined by an encoding map E : Σs → (Σt)m

that encodes s information bits x1, . . . , xs into a t × m array
and a decoding function D that satisfies the following property.
For any request of a linear combination v of the information
bits, there is a partition of the columns into k recovering sets
S1, . . . , Sk ⊆ [m] where |Sj | � r for any j ∈ [k].

We denote by D(s, k, t, r) the smallest number of buckets
m such that an (s, k, m, t, r) locality functional array code
exists. For the rest of the section, assume that the parameters
s, k, t and r are positive integers such that t � s. The following
theorem summarizes several results on D(s, k, t, r) based upon
basic bound and constructions.

Theorem 38:

a) D(s, k, t, r) � m∗, where m∗ is the smallest positive
integer such that

∑min{r,m∗−k+1}
i=1

(
m∗
i

)
(2t − 1)i �

k(2s − 1).

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:34:32 UTC from IEEE Xplore. Restrictions apply.

854 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 2, FEBRUARY 2022

b) For any integer a where 1 � a < t, D(s, k, t, r) �
D(s − a, k, t−a, r).

c) For every positive integers s1, s2, r1, r2 and p, D(s1 +
s2, k, t, r1 + r2) � D(s1, k, t, r1) + D(s2, k, t, r2).
In particular, D(ps, k, t, pr) � p · D(s, k, t, r).

Proof:
a) Similar to the proof of Theorem 7 but with minor

changes. Here, all cells from each bucket can be read.
Hence, for any positive integer n, there are (2t − 1)n

nonzero linear combinations that can be obtained from
n buckets while using all the n buckets. Also, each
recovering set must be of size at most min{r, m∗− k +
1}. Thus, we get that

∑min{r,m∗−k+1}
i=1

(
m∗
i

)
(2t −1)i �

k(2s − 1).
b) Let C be an (s−1, k, m, t−1, r) locality functional array

code with m buckets such that each bucket has t − 1
cells. For the s information bits x1, . . . , xs, we encode
the first s − 1 bits using the encoder of C to get m
buckets where each bucket has t − 1 cells. For each
bucket, a new cell that stores xs is added. Assume that
R is the request which is a linear combination of the s
information bits. Let R1 be the part of the request which
is a linear combination of the first s − 1 information
bits. From the properties of C, for the request R1, there
exist k disjoint recovering sets {S1,S2, . . . ,Sk} such
that |Sj | � r for any j ∈ [k]. If R = R1, then
the same {S1,S2, . . . ,Sk} are recovering sets for R.
If R = xs, we can take the first k buckets as k recovering
sets each of size 1. If R includes xs, then the same
{S1,S2, . . . ,Sk} are recovering sets for R, where we
can read xs from one of the buckets in each Sj . Thus,
D(s, k, t, r) � D(s− 1, k, t− 1, r) and we can get that
D(s, k, t, r) � D(s − a, k, t−a, r) by induction on a.

c) Let C1 be an (s1, k, m1, t, r1) locality functional array
code and C2 be an (s2, k, m2, t, r2) locality functional
array code. The codes C1 and C2 are used to construct an
(s1 +s2, k, m1 +m2, t, r1 +r2) locality functional array
code by encoding the first s1 bits using the encoder of C1

and the last s2 bits using the encoder of C2. Assume that
R is the request which is a linear combination of the s1+
s2 information bits. Let R1, R2 be the part of R which
is a linear combination of the first s1, last s2 information
bits, respectively. According to C1, C2, there exist k
recovering sets {S1

1 ,S1
2 , . . . ,S1

k}, {S2
1 ,S2

2 , . . . ,S2
k} for

R1, R2 such that each recovering set has size at most
r1, r2, respectively. Then, the set S1

j ∪S2
j for any j ∈ [k]

is a recovering set for R with size at most r1 + r2.
Therefore, the sets {S1

1 ∪ S2
1 ,S1

2 ∪ S2
2 , . . . ,S1

k ∪ S2
k}

are k recovering sets for R such that the size of
each recovering set is at most r1 + r2. Thus, D(s1 +
s2, k, t, r1 + r2) � D(s1, k, t, r1) + D(s2, k, t, r2) and
we can get that D(ps, k, t, pr) � p · D(s, k, t, r) by
induction on p.

B. Constructions Based on Subspaces

In this section we show connections between the problem of
finding the minimal number of buckets for locality functional

array codes and several problems in subspaces. Subspaces
were used in [34] to construct array codes and to examine
their locality and availability. The family of array codes that
was defined in [34] is a linear subspace of b×n matrices over
Fq such that each codeword is a b×n matrix where each entry
is called a symbol. The weight of each codeword was defined
to be the number of nonzero columns in the codeword and
the distance of the code is the minimal weight of a nonzero
codeword.

The problem that was presented in [34] was to examine
locality and availability of array codes where two types of
locality were defined. The first one is node locality. A code-
word column j ∈ [n] has node locality rnd if it can be recov-
ered by a linear combination of the symbols of the columns
in a recovering set of size rnd. If all codeword columns have
node locality rnd, then rnd is also called the node locality
of the array code. The second type is symbol locality rsb

which is similar to node locality but instead of recovering the
whole column, here only one symbol (entry of the codewords
matrices) is needed to be recovered. Similarly, there are two
types of availability. The node, symbol availability, denoted
by tnd, tsb is the number of pairwise disjoint recovering sets
of size at most rnd, rsb for any codeword column, symbol,
respectively.

To simplify the problem, they flattened each b×n codeword
into a vector of length bn by reading the symbols of the
codeword column by column from first to last entry. The
M × bn generator matrix G, where each row is a flattened
codeword, can represent the array code C, where the columns
(j − 1)b + 1, . . . , jb of G correspond to the symbols of the
j-th codeword column of C and these columns are called the
j-th thick column of G. By this way, the j-th thick column
of G which corresponds to the j-th codeword column of
C, can be represented by Vj which is a b-subspace of FM

q .
Thus, an equivalent constraints of node and symbol locality
can be formed using subspaces as stated in [34, Lemma 3],
where a subset S = {j1, . . . , jp} ⊆ [n] \ {j} is a recovering
set for the codeword column j ∈ [n], if and only if Vj ⊆
Vj1 + · · ·+Vjp . Similarly, S is a recovering set for the symbol
(i, j), i ∈ [b], j ∈ [n] if and only if g(j−1)b+i ∈ Vj1 +· · ·+Vjp ,
where g(j−1)b+i is the i-th column in the j-th thick column
of G that corresponds to the i-th entry in the j-th codeword
column of C.

In our work we are interested in the problem of recovering
the requests which are all possible linear combinations of
the information bits, which is different from the problem
in [34] where the nodes or symbols that are part of the
code are needed to be recovered. We can apply some of the
results and constructions from [34] in our case. Recall that
we defined Σ = F2. Let Σs be a vector space of dimension s
over Σ. We can consider each bucket which has t cells, as a
subspace of Σs with dimension t and denote a subspace of
dimension t as a t-subspace. The following claim is motivated
by [34, Lemma 3].

Claim 1: The value of D(s, k, t, r) is the smallest number
m of t-subspaces of Σs such that there exists a partition of
the subspaces into k subsets, S1, . . . ,Sk, that satisfies the
following property. The size of each subset Si is at most

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:34:32 UTC from IEEE Xplore. Restrictions apply.

NASSAR AND YAAKOBI: ARRAY CODES FOR FUNCTIONAL PIR AND BATCH CODES 855

r and for every request R, which can be represented by a
1-subspace W , it holds that for each Si, W ⊆ Σr′

j=0Sij where
Sij is the j-th subspace in Si and |Si| = r′ � r.

Let x = (x1, x2, . . . , xs) be the vector of dimension 1 × s
with the s information bits and let V be a t-subspace of Σs.
It is said that a bucket with t cells stores a t-subspace V if
for a given basis B = {v1, v2, . . . , vt}, the i-th cell i ∈ [t] of
the bucket stores the linear combination 	vi, x
. Note that the
choice of the basis B does not matter and we can choose any
basis of V . Each request R which is a linear combination of
the s information bits can be represented by a 1-subspace W
of Σs. It is said that a request is contained in a bucket b if the
set {b} is a recovering set for the request. Note that if W is
contained in a t-subspace V then the request R is contained
in the bucket that stores V .

Let Gq(s, t) denote the set of all t-dimensional subspaces
of the vector space Fs

q. The set Gq(s, t) is often called the
Grassmannian [18]. It is well known that

|Gq(s, t)| =
[
s
t

]
q

:=
(qs − 1)(qs−1 − 1) · · · (qs−t+1 − 1)

(qt − 1)(qt−1 − 1) · · · (q − 1)
,

where

[
s
t

]
q

is the q-ary Gaussian coefficient [40]. The follow-

ing is a definition of spreads from [21] which are partitions
of vector spaces.

Definition 39: Let s = at. Then a set S ⊆ Gq(s, t) is called
a t-spread if all elements of S intersect only trivially and they
cover the whole space Fs

q.
It is known that the size of a t-spread of Fs

q is qs−1
qt−1 when

s is a multiple of t [21]. It is also follows that spreads do not
exist when t does not divide s. In case s is not a multiple of t
there is a notion of partial spreads, where a partial t-spread
of Fs

q is a collection of mutually disjoint t-subspaces. For the
problem we are studying in this section, partial spreads cannot
be used due to the fact that they do not necessarily cover the
whole space. Thus, in order to deal with the cases when t
does not divide s we use covering designs which are defined
as follows [17].

Definition 40: A covering design Cq(s, t, a) is a subset
S ⊆ Gq(s, t) such that each element of Gq(s, a) is contained
in at least one subspace from S.

The covering number Cq(s, t, a) is the minimum size of a
covering design Cq(s, t, a). From [17, Th. 4.6] we get that for
any 1 � t � s,

Cq(s, t, 1) =
⌈

qs − 1
qt − 1

⌉
. (5)

Note that when t|s, an optimal covering design Cq(s, t, 1)
is exactly a t-spread of Fs

q. Now, we will define another family
of partitions and another family of codes that can be used to
construct locality functional array codes. The following is a
definition of λ-fold partitions from [16].

Definition 41: Let λ be a positive integer. A λ-fold partition
of the vector space V = Fs

q is a multiset S of subspaces of V
such that every nonzero vector in V is contained in exactly λ
subspaces in S.

Note that a 1-fold partition of Fs
q that does not contain a

subspace with dimension larger than t is also a covering design

Cq(s, t, 1). Denote by Aq(s, t, λ) the minimum size of a λ-fold
partition of Fs

q that does not contain a subspace with dimension
larger than t. In [16], it is also possible to find results on
λ-fold partitions. For example, there exists a construction of
a
(

2t−1
2p−1

)
-fold partition of Σs with 2s−1

2p−1 t-subspaces where

p =gcd(s, t). Therefore, A2(s, t, 2t−1
2p−1) � 2s−1

2p−1 .
Lastly, the following is a definition of covering Grass-

mannian codes from [18].
Definition 42: For every positive integers α and δ where

δ + t � s, an α-(s, t, δ)c
q covering Grassmannian code C is

a subset of Gq(s, t) such that each subset of α codewords of
C spans a subspace whose dimension is at least δ + t in F

s
q.

The value Bq(s, t, δ; α) will denote the maximum size
of an α-(s, t, δ)c

q covering Grassmannian code. The follow-
ing theorem summarizes some bounds on D(s, k, t, r) using
spreads, covering designs, λ-fold partitions, and covering
Grassmannian codes.

Theorem 43: For each s, t, k and r positive integers

a) D(s, 1, t, 1) = C2(s, t, 1) =
⌈

2s−1
2t−1

⌉
.

b) D(s, 1, t, r) � r ·
⌈

2s/r−1
2t−1

⌉
, where r|s.

c) D(s, k, t, 1) � A2(s, t, k).
d) D(s, �B2(s, t, s − t; r)/r�, t, r) � B2(s, t, s − t; r).

e) D(s,
[
s − 1
t − 1

]
2

, t, 1) �
[
s
t

]
2

, where t > 1.

f) D(s,
⌊

2s−2t

r·2t−r

⌋
+ 1, t, r) � 2s−1

2t−1 , where s = rt.

Proof:

a) To prove this part we use a construction motivated
by [34, Construction 2]. Let C be a C2(s, t, 1) cov-
ering design with C2(s, t, 1) t-subspaces. To construct
an (s, C2(s, t, 1), t, 1) locality functional array code,
we take C2(s, t, 1) buckets where each bucket stores
one of the t-subspace from C. From Definition 40, every
1-subspace of Σs is contained in at least one t-subspace
from C. Thus, each request R which can be represented
by a 1-subspace of Σs, is contained in at least one
bucket. Therefore, by using Equation (5) we get that
D(s, 1, t, 1) � C2(s, t, 1) =

⌈
2s−1
2t−1

⌉
.

For the other direction, assume that C is an (s, 1, m, t, 1)
locality functional array code with m buckets. We con-
struct a C2(s, t, 1) covering design with m t-subspaces
of Σs that are stored in the m buckets of C. Let
W be a 1-subspace of Σs that represents a request
R for the code C. From the property of the code C,
there exists one bucket that contains R. Therefore, there
exists one t-subspace in C that contains W . Thus,
C2(s, t, 1) � D(s, 1, t, 1).

b) This result holds from part (a) in this theorem and
Theorem 38(c).

c) Let S be a k-fold partition of Σs that does not contain
a subspace with dimension larger than t. Assume that
|S| = m. To construct a locality functional array code,
we take m buckets where each bucket stores one of
the subspaces from S. Assume that R is the request
which can be represented by a vector u of Σs. Then,
from the property of the multiset S, the vector u is

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:34:32 UTC from IEEE Xplore. Restrictions apply.

856 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 2, FEBRUARY 2022

contained in exactly k subspaces in S. Therefore, R
is contained in exactly k buckets. Thus, the m buckets
form an (s, k, m, t, 1) locality functional array code, and
hence, D(s, k, t, 1) � A2(s, t, k).

d) Let C be an r-(s, t, s− t)2 covering Grassmannian code
with m t-subspaces of Σs. We take m buckets where
each bucket stores one of the t-subspaces from C. Let
R be the request. From the property of the code C, every
subset of r t-subspaces of C spans the whole space Σs.
Hence, every subset of r buckets contains R. Therefore,
we can partition the m buckets into �m/r� parts, where
each part contains R, and hence, there exist �m/r�
recovering sets for R. Thus, the construction with the m
buckets forms an (s, �m/r�, m, t, r) locality functional
array code.

e) To prove this part we use a construction
motivated by [34, Construction 1]. We construct

an (s,
[
s − 1
t − 1

]
2

,

[
s
t

]
2

, t, 1) locality functional

array code by taking

[
s
t

]
2

buckets where each

bucket has t cells and stores one of the t-subspaces
of Σs. Every 1-subspace of Σs is contained in exactly[
s − 1
t − 1

]
2

t-subspaces. Therefore, every request R

which can be represented by a 1-subspace is contained

in exactly

[
s − 1
t − 1

]
2

buckets. Thus, we get that

D(s,
[
s − 1
t − 1

]
2

, t, 1) �
[
s
t

]
2

.

f) Let s = rt and S be a t-spread of Σs such that
|S| = 2s−1

2t−1 . To construct a locality functional array
code we store each t-subspace in S in a bucket with
t cells. Assume that R is the request which can be
represented by a 1-subspace W of Σs. From the property
of spreads, there exists a subspace in S that includes W .
Therefore, there exists a bucket that contains R which
can form a recovering set of size 1. Then, partition the
remaining 2s−1

2t−1 − 1 = 2s−2t

2t−1 buckets into
⌊

2s−2t

r·2t−r

⌋
parts where each part has size r. Each part Pi has r
mutually disjoint t-subspaces Ui1 , Ui2 , . . . , Uir . Hence,∑r

j=1 Uij = Σs. Thus, each part Pi is a recovering

set of R of size r. Then, there exist 1 +
⌊

2s−2t

r·2t−r

⌋
recovering sets each of size at most r and the code is
an (s,

⌊
2s−2t

r·2t−r

⌋
+ 1, 2s−1

2t−1 , t, r) locality functional array
code.

The following is an example of Theorem 43(c).
Example 4: In this example we will use an example of

a 2-fold partition from [16] in order to construct a locality
functional array code. Let s = 3. The following multiset S of
subspaces of Σ3 is a 2-fold partition that does not contain a
subspace with dimension larger than t = 2.
S = {{100, 011, 111}, {010, 001, 011}, {001, 110, 111},

{110, 010, 100}, {101}, {101}}.
We represent each element in Σ3 as a binary vector of

length 3 and every subspace in S by its elements except

the zero vector. It holds that any binary vector of length 3
is contained in exactly two subspaces in S, and hence,
A2(3, 2, 2) � 6. We construct a (3, 2, 6, 2, 1) locality func-
tional array code with the following buckets that are obtained
from S.

1 2 3 4 5 6

x3 x2 x1 x2x3 x1x3 x1x3

x1x2 x1 x2x3 x2

For example, if the request is x1 + x2, then the recovering
sets are {{1}, {2}}.

The following is an example of Theorem 43(f).
Example 5: For s = 4, t = 2 and r = 2, the following set

S is a 2-spread of Σ4 of size 24−1
22−1 = 5.

S = {{0001, 0010}, {0100, 1000}, {0101, 1010}, {1001,
0111}, {0110, 1011}}.

We represent each element in Σ4 as a binary vector of
length 4 and every 2-subspace as a basis with 2 vectors.
We construct a (4, 3, 5, 2, 2) locality functional array code with
the following buckets that are obtained from S.

1 2 3 4 5

x1 x3 x1x3 x1x4 x2x3

x2 x4 x2x4 x1x2x3 x1x2x4

For example, if the request is x1 + x2, then the recovering
sets are {{1}, {2, 3}, {4, 5}}.

C. Bounds and Constructions Based Upon Covering Codes

In this section we show how covering codes are used to
construct locality functional array codes and to get lower
bounds for D(s, k, t, r). For the rest of the section we assume
that x = (x1, x2, . . . , xs) is the vector of dimension 1×s with
the s information bits. For the case of t = 1 the following
result can be obtained. Remember that h[s, r]q is the smallest
length of a linear covering code over Fq with covering radius
r and redundancy s.

Theorem 44: D(s, 1, 1, r) = h[s, r].
Proof: There exists an [h[s, r], h[s, r] − s, r] linear cov-

ering code with some parity check matrix H . To construct
a locality functional array code we store in each bucket the
linear combination 	hi, x
 where hi is the i-th column of H .
Assume that R is the request which can be represented by a
binary vector u ∈ Σs. From Property 13, we know that the
vector u can be represented as the sum of at most r columns
of H . Therefore, there exists a recovering set of size at most
r for the request R. The number of buckets is the number of
columns of H which is h[s, r]. Thus, D(s, 1, 1, r) � h[s, r].
The lower bound can be obtained from Corollary 56 which
will appear later.

We can generalize the connection of covering codes and
locality functional array codes with general t. We start by
defining a partition of matrices.

Definition 45: A t-partition of a matrix H is a collection
P of subspaces of dimension t with the property that every
column vector of H is contained in at least one member of P .

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:34:32 UTC from IEEE Xplore. Restrictions apply.

NASSAR AND YAAKOBI: ARRAY CODES FOR FUNCTIONAL PIR AND BATCH CODES 857

A t-partition is called strict if every column vector of H is
contained in exactly one member of P .

The next theorem shows the connection between covering
codes and locality functional array codes with k = 1.

Theorem 46: Let H be a parity check matrix for an
[n, n− s, r] covering code, and let p be the smallest size of a
t-partition of H . Then, D(s, 1, t, r) � p.

Proof: Let H be a parity check matrix of a given
[n, n − s, r] covering code. Let P be a t-partition of H ,
that contains p subspaces of dimension t. We construct an
(s, 1, p, t, r) locality functional array code C by storing each
t-subspace from P in one bucket with t cells. Let u ∈ Σs

be a request which represents the linear combination 	u, x

of the s information bits. From Property 13, we know that
there exists a vector y ∈ Σn such that H · y = u, where
w = wH(y) � r. If wH(y) = r′ � r, then the request u
is equal to the sum of r′ columns of H and denote them by
hi1 , hi2 , . . . , hi′r . We know that each 1-subspace with a basis
{hij}, j ∈ [r′] is contained in one subspace from the partition
P , and hence, the vector hi is contained in one bucket of C.
Thus, we can get all the r′ columns from at most r′ � r
buckets.

Now, the method to get locality functional array codes from
covering codes over Fq is established. We follow an example
from [7] and for that we use the following definition in the
rest of this section.

Definition 47: Let B = {1, �, �2, . . . , �w−1} be a basis for
F2w over Σ where � is a primitive element of F2w . For each
i ∈ [0, 2w −2] let (�i)w be the binary column vector of length
w that represents the element �i of F2w with respect to the
basis B. Let U0 be the binary matrix of size (w × (2w − 1))
that has in column number i, i ∈ [0, 2w − 2] the vector (�i)w.
For each i ∈ [0, 2w−2], let Ui be the matrix which is obtained
from U0 by cyclically rotating its columns i places to the left.
Note that for each i ∈ [0, 2w − 2] the first column in matrix
Ui is the vector (�i)w.

For an element �i over F2w let T (�i) = Ui be a matrix over
Σ of size (w × (2w − 1)) and let T (0) be the (w × (2w − 1))
zeros matrix. We define the same transformation for vectors
and matrices, where for a matrix M1 of size (a× b) over F2w

let T (M1) = M2 be the matrix over Σ of size (aw×b(2w−1))
that is obtained from M1 by replacing each element α of
F2w in the matrix M1 by its appropriate (w × (2w − 1))
matrix T (α).

The following is an example to demonstrate Definition 47.
Example 6: Let B = {1, �1, �2} be a basis for F23 over Σ,

where � is a primitive element of F23 chosen to satisfy the
primitive polynomial x3 +x+1, and hence, �3 = �+1. Then,
the coordinates of the successive powers of � with respect to
B are the columns of the matrix U0

U0 =

⎡
⎣1 0 0 1 0 1 1

0 1 0 1 1 1 0
0 0 1 0 1 1 1

⎤
⎦ .

For example, the following matrix is T (�1)

T (�1) =

⎡
⎣0 0 1 0 1 1 1

1 0 1 1 1 0 0
0 1 0 1 1 1 0

⎤
⎦ .

We show that the transformation defined in Definition 47 is
a linear transformation.

Lemma 48: The transformation T : F2w → F
w×(2w−1)
2 is a

linear transformation.
Proof: We want to show that for any �i1 , �i2 ∈

F2w , T (�i1) + T (�i2) = T (�i1 + �i2). Assume that �i1 +
�i2 = �i3 . From Definition 47, we know that T (�i1) +
T (�i2) = Ui1 + Ui2 . From Definition 47, for every j ∈
[2w − 1], the j-th column of Ui1 ,Ui2 ,Ui3 ,Ui1 + Ui2 is
(�i1+j)w, (�i2+j)w, (�i3+j)w, (�i1+j + �i2+j)w, respectively.
Also, �i1+j + �i2+j = �j(�i1 + �i2) = �i3+j . Thus, the j-
th column of Ui3 is equal to the j-th column of Ui1 + Ui2 for
all j ∈ [2w − 1]. Thus, T (�i1) + T (�i2) = Ui1 + Ui2 = Ui3 =
T (�i1 + �i2).

The same transformation T that was defined for vectors
and matrices in Definition 47 is also a linear transformation
following similar proof as for Lemma 48. The following result
can be found in [7, Lemma 3.1], but we want to prove it in a
different way, by constructing a specific parity check matrix
in order to use it in other claims.

Lemma 49: Let H be a parity check matrix of an
[n, n − s, r]2w covering code. Then, the matrix T (H) is a
parity check matrix of a binary [(2w −1)n, (2w−1)n−ws, r]
covering code. In particular, h[ws, r] � (2w − 1) · h[s, r]2w .

Proof: Let C be an [n, n−s, r]2w covering code and let H
be a parity check matrix of the code C of size (s×n). We want
to show that the matrix H ′ = T (H) is a parity check matrix
of a binary [(2w −1)n, (2w −1)n−ws, r] covering code. The
size of H ′ is (ws× (2w −1)n). Given a binary column vector
u of length ws, we show that there are at most r columns of
H ′ that their sum is u.

The vector u can be partitioned into s vectors of length
w where u = (u1, u2, . . . , us)ᵀ. Each vector ui of length
w can represent an element of F2w according to the basis B
from Definition 47. Hence, u = ((�i1)ᵀ

w, (�i2)ᵀ
w, . . . , (�is)ᵀ

w)ᵀ

and from the s elements we can get a column vector v =
(�i1 , �i2 , . . . , �is)ᵀ of dimension s × 1 over F2w . The first
column in each Ui, i ∈ [0, 2w − 2] is the vector (�i)w. Then,
from the construction of T (v), the first column of the matrix
T (v) is the vector u.

From the property of the code C, it is known that there exists
a vector y ∈ Fn

2w such that H · y = v, where wH(y) � r.
Let A = {i : i ∈ [n], yi �= 0} and note that |A| � r. Let
hi be the i-th column of H . Then,

∑
i∈A yihi = v. For

each i ∈ A we define h′
i = yihi and from the linearity of

the transformation T we have T (v) = T (
∑

i∈A h′
i) =∑

i∈A T (h′
i). Thus, the vector (

∑
i∈A T (h′

i))1 =∑
i∈A T (h′

i)1 = u, where T (h′
i)1 is the first column of the

matrix T (h′
i).

For each i ∈ A, assume that yi = �ji . Then, the first column
of the matrix T (h′

i) is the ji-th column of the matrix T (hi).
Thus,

∑
i∈A T (hi)ji = u, where T (hi)ji is the ji-th column

of the matrix T (hi). For each i ∈ A, the matrix T (hi) has
size (ws× (2w −1)) and it is a sub matrix of H ′ that starts in
the column number (2w−1)(i−1)+1 of H ′. Hence, the ji-th
column of the matrix T (hi) is the column number (2w−1)(i−
1)+ ji of the matrix H ′. Therefore,

∑
i∈A h′

(2w−1)(i−1)+ji
=

u, where h′
i is the i-th column of H ′. Thus, the vector u

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:34:32 UTC from IEEE Xplore. Restrictions apply.

858 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 2, FEBRUARY 2022

is a sum of |A| � r columns of H ′ and the matrix H ′ is a
parity check matrix of a binary [(2w −1)n, (2w−1)n−ws, r]
covering code.

An upper bound on the value of D(s, 1, t, r) can be
obtained in the next theorem using non-binary covering
codes.

Theorem 50: For any positive integer w such that t|w,

D(ws, 1, t, r) � (2w − 1)h[s, r]2w

2t − 1
.

Proof: Let C be an [n, n−s, r]2w covering code over F2w ,
where n = h[s, r]2w . Let the matrix H be a parity check
matrix of C of size (s × n). From Lemma 49, we get that
there exists a binary [(2w − 1)n, (2w − 1)n−ws, r] covering
code with parity check matrix H ′ = T (H). We want to find
the smallest size of a t-partition of H ′.

Let j1, j2, j3 ∈ [0, 2w − 2] be such that �j1 + �j2 = �j3 .
Then, in the matrix U0 from Definition 47, it holds that the
sum of the j1-th and j2-th columns is the j3-th column. In the
matrix Ui, i ∈ [0, 2w − 2] the j1-th, j2-th, j3-th column is
(�i · �j1)w, (�i · �j2)w, (�i · �j3)w, respectively. It holds that
�i ·�j1 +�i·�j2 = �i ·(�j1 +�j2) = �i ·�j3 . Thus, we can conclude
that in the matrix Ui, i ∈ [0, 2w − 2] it also holds that the sum
of the j1-th and j2-th columns is the j3-th column. Let (Ui)j

be the j-th column of Ui. Assume that a basis that includes
the columns {(U0)j1 , (U0)j2 , . . . , (U0)jt} spans the columns
{(U0)j1 , (U0)j2 , . . . , (U0)j2t−1

} of the matrix U0. Then, the
basis that includes the columns {(Ui)j1 , (Ui)j2 , . . . , (Ui)jt}
spans the columns {(Ui)j1 , (Ui)j2 , . . . , (Ui)j2t−1

} of the
matrix Ui, i ∈ [0, 2w − 2].

The matrix U0 includes all the nonzero column vectors of
length w, which means that it includes the space Fw

2 \ {0}.
It is given that t|w. Hence, there exists a t-spread of
Fw

2 . Thus, there exists a strict t-partition P of U0 with
p = 2w−1

2t−1 t-subspaces. Each subspace of P is represented
by a basis of t column vectors of U0 and denote them by
{{(U0)j1

1
, (U0)j1

2
, . . . , (U0)j1

t
}, {(U0)j2

1
, (U0)j2

2
, . . . , (U0)j2

t
},

. . . , {(U0)jp
1
, (U0)jp

2
, . . . , (U0)jp

t
}}. The p t-subspaces

{{(Ui)j1
1
, (Ui)j1

2
, . . . , (Ui)j1

t
}, {(Ui)j2

1
, (Ui)j2

2
, . . . , (Ui)j2

t
}, . . .,

{(Ui)jp
1
, (Ui)jp

2
, . . . , (Ui)jp

t
}} form a strict t-partition

of Ui. For each i ∈ [n] let hi be the i-th column of
the matrix H . The matrix T (hi) includes s matrices
of size (w × (2w − 1)) that all have the same partition
regarding the column numbers. Hence, the partition
{{((Ui1)

ᵀ
j1
1
, (Ui2)

ᵀ
j1
1
, . . . , (Uis)

ᵀ
j1
1
)ᵀ, . . . , ((Ui1)

ᵀ
j1
t
, (Ui2)

ᵀ
j1
t
, . . .,

(Uis)
ᵀ
j1
t
)ᵀ},. . . , {((Ui1)

ᵀ
jp
1
, (Ui2)

ᵀ
jp
1
,. . . , (Uis)

ᵀ
jp
1
)ᵀ,. . . , ((Ui1)

ᵀ
jp
t

,
(Ui2)

ᵀ
jp
t
, . . . , (Uis)

ᵀ
jp
t
)ᵀ}} is a strict t-partition of T (hi) with

p = 2w−1
2t−1 t-subspaces. Therefore, there exits a strict

t-partition of the matrix H ′ with (2w−1)n
2t−1 t-subspaces.

Thus, By using Theorem 46 we get that D(ws, 1, t, r) �
(2w − 1)h[s, r]2w

2t − 1
.

We can use Theorem 50 to find upper bounds on the value
of D(s, 1, t, r) by using previous bounds on the size of non-
binary covering codes.

Example 7:
a) In [14] a [1097, 1097−8, 2]23 covering code is provided.

Thus, h[8, 2]23 � 1097. Then, from Theorem 50, D(3 ·
8, 1, 3, 2) = D(24, 1, 3, 2) � 23−1

23−1h[8, 2]23 = 1097.

For a lower bound, we can use Theorem 38(a) to get
D(24, 1, 3, 2) � 828.

b) For r = 3, the following result can be obtained from [13,
Theorem 4.3]. For q = 4 and p = 3, h[s = 3p+2, 3]q �
(9 · q2 + 2 q2−1

q−1) = 154. Hence, h[11, 3]22 � 154. From
Theorem 50, D(22, 1, 2, 3) � 154. For a lower bound,
we can use Theorem 38(a) to get D(22, 1, 2, 3) � 99.

The following is another use of Theorem 50 to find bounds
on the value of D(s, 1, t, r) using another general family of
non-binary covering codes.

Corollary 51: For any positive integers w and t, where t|w,

D(4w, 1, t, 2) � (2w − 1)(2w+1 + 1)
2t − 1

.

Proof: In [7, Theorem 3.2] there exists a construc-
tion of a (4 × (2w+1 + 1)) parity check matrix H of a
[2w+1 + 1, 2w+1 + 1 − 4, 2]2w covering code over F2w .
Therefore, h[4, 2]2w � 2w+1 + 1. From Theorem 50 we get

D(4w, 1, t, 2) � (2w − 1)(2w+1 + 1)
2t − 1

.

For any positive integers w and t, where t|w we have
D(4w, 1, t, 2) � 2 · 22w−1

2t−1 from Theorem 43(b), and from

Corollary 51 we get D(4w, 1, t, 2) � (2w−1)(2w+1+1)
2t−1 . Thus,

we can save 2 · 22w−1
2t−1 − (2w−1)(2w+1+1)

2t−1 = 2w−1
2t−1 buckets.

The following is an example of a locality functional array
code that is obtained from Corollary 51.

Example 8: For the case of w = 4 and t = 2, we have
s = 4w = 16. Let V be F4

2w = F4
16. To get a basis for V as a

vector space over Σ, we first choose a basis B = {1, �, �2, �3}
for F16 over Σ where � is a primitive element of F16 chosen
to satisfy the primitive polynomial x4 + x + 1. It holds that
�4 = � + 1. Then, the coordinates of the successive powers of
� with respect to the basis B are the columns of the matrix

U0 =

⎡
⎢⎢⎣
1 0 0 0 1 0 0 1 1 0 1 0 1 1 1
0 1 0 0 1 1 0 1 0 1 1 1 1 0 0
0 0 1 0 0 1 1 0 1 0 1 1 1 1 0
0 0 0 1 0 0 1 1 0 1 0 1 1 1 1

⎤
⎥⎥⎦ .

In [7, Theorem 3.2], there exists a construction of a parity
check matrix of a [33, 33 − 4, 2]2w covering code.

H =

⎡
⎢⎢⎣

1 1 1 · · · 1 1 0 0 0 0 · · · 0
1 �1 �2 · · · �14 0 1 0 0 0 · · · 0
1 �2 �4 · · · �13 0 0 0 1 1 · · · 1
1 0 0 · · · 0 0 0 1 1 �1 · · · �14

⎤
⎥⎥⎦ .

Let (Ui)j be the j-th column of Ui. The following is a
strict t-partition of Ui, Pi = {{(Ui)1, (Ui)6, (Ui)11}, {(Ui)2,
(Ui)7, (Ui)12}, {(Ui)3, (Ui)8, (Ui)13}, {(Ui)4, (Ui)9, (Ui)14},
{(Ui)5, (Ui)10, (Ui)15}}, where we represent every subspace
in P by its elements except the zero vector. In addition, each
subspace can be represented by a basis of two vectors.

From Lemma 49 we get that H ′ = T (H) is a parity check
matrix of a binary [495, 495 − 16, 2] covering code. Recall
that in the transformation T , each element of F16 is replaced
with an appropriate matrix Ui of size (4 × 15). Each column
in H has 4 elements of F16 and is replaced with 4 matrices
such that each matrix Ui of size (4 × 15) that has a strict
t-partition Pi with 5 subspaces. Each column in H is a
(16 × 15) matrix in H ′, which can be stored in 5 buckets

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:34:32 UTC from IEEE Xplore. Restrictions apply.

NASSAR AND YAAKOBI: ARRAY CODES FOR FUNCTIONAL PIR AND BATCH CODES 859

such that each bucket stores one subspace from the partition,
and hence, the 33 columns of H can be stored in 33∗5 = 165
buckets. Thus, we get that D(16, 1, 2, 2) � 165.

Next, another possible way to obtain locality functional
array codes from covering codes is presented. First, we define
a possible modification for matrices that we will use in order
to construct new parity check matrices for covering codes from
given parity check matrices.

Definition 52: Given a matrix H of size (n × s), its i-th
modified matrix denoted by H(i) of size (n + 1 × s) is the
matrix that has the same rows of H except of row i, where it
has the complement of row i of H , with an additional column
with only 1 in row i.

The next theorem shows that for a given parity check
matrix of a covering code, the modified matrix is also a
parity check matrix of another covering code. Even though
the following seems to be a basic property, we could not
find its proof, and hence, we add the following proof for
completeness.

Theorem 53: For a parity check matrix H for a binary
[n, n − s, 2] covering code and an integer i, the i-th mod-
ified matrix H(i) is also a parity check matrix of a binary
[n + 1, n + 1 − s, 2] covering code.

Proof: Let H be a parity check matrix of an
[n, n−s, 2] covering code. For a given i ∈ [s], let H(i) be the
i-th modified matrix of H . The size of H(i) is (s× (n + 1)).
From Property 13, for each vector v ∈ Σs there exists a vector
y ∈ Σn such that H · y = v where wH(y) � 2. Let hi, h

′
i

be the i-th column of H, H(i), respectively. If wH(y) = 2,
assume that v = hj1 +hj2 . The column vector h′

j is different
from the column vector hj only in row i, where h′

j has the
complement of the element in row i in hj . Thus, it holds that
v = h′

j1 + h′
j2 .

If wH(y) = 1, assume that v = hj . From the construction
of H(i), it holds that hj = h′

j + h′
n+1. Therefore, we can

get v as a sum of two columns of H(i). Thus, H(i) is a
parity check matrix of a binary [n + 1, n + 1 − s, 2] covering
code.

One possible way to use Theorem 53 to get locality
functional array codes is shown next.

Theorem 54: D(7, 1, 2, 2) = 7.
Proof: From [20, Theorem 1] and the example after it,

we can get a construction of a parity check matrix for a binary
[19, 19− 7, 2] covering code. The following is a parity check
matrix H of the code.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0
0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 0 0 1 1
0 0 0 0 1 1 0 0 0 1 1 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The following is the matrix H(1), the first modified matrix
of H where the first row is the complement of the first row of

H and a new column with only 1 in the first entry is added.⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0

0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 0 0 1 1 0

0 0 0 0 1 1 0 0 0 1 1 0 1 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0

0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

From Theorem 53, the matrix H(1) is a parity check matrix
of a binary [20, 20− 7, 2] covering code. Note that the fourth
column is all zero column which we can remove to get the
following matrix H(1)′ which is a parity check matrix of a
binary [19, 19− 7, 2] covering code.⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0

1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0

0 0 0 0 1 1 0 1 0 1 0 1 1 0 0 0 1 1 0

0 0 0 1 1 0 0 0 1 1 0 1 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0

0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Let h′
j be the j-th column of the matrix H(i)′ . We can find a

2-partition of the matrix H(1)′ . We will present the partition as
a set of 7 2-subspaces such that each subspace is presented by
a basis with two columns of H(i)′ . The following is a possible
2-partition of H(i)′ P = {{h′

7, h
′
11}, {h′

8, h
′
12}, {h′

9, h
′
13},

{h′
10, h

′
14}, {h′

4, h
′
5}, {h′

1, h
′
2}, {h′

3, h
′
19}}. We can see that

14 out of 19 columns form the bases. It can be verified that
h′

4 + h′
5 = h′

6, h′
7 + h′

11 = h′
15, h′

8 + h′
12 = h′

16, h′
10 +

h′
14 = h′

17 and h′
9 +h′

13 = h′
18. Therefore, P is a 2-partition

of H(i)′ with size 7. Thus, from Theorem 46 we get that
D(7, 1, 2, 2) � 7.

For the lower bound, assume by contradiction that there
exists a (7, 1, 6, 2, 2) locality functional array code. Then,
from Theorem 55 we get that h[7, 2] � 18. But from [12]
we have that h[7, 2] = 19, which is a contradiction. Thus,
D(7, 1, 2, 2) � 7.

Next, we show how to construct covering codes using
locality functional array codes.

Theorem 55: Let C be an (s, 1, m, t, r) locality functional
array code. Then, h[s, r] � m · (2t − 1).

Proof: Assume that C is an (s, 1, m, t, r) locality func-
tional array code which has m buckets such that in each bucket
stored at most t linear combinations of the s information bits.
From the t cells in each bucket we can get at most (2t − 1)
different linear combinations. We can represent each linear
combination as a binary vector of length s. Then, we construct
an (s × m · (2t − 1)) parity check matrix H where we have
all the vectors that we get from the linear combinations of all
the m buckets as columns of the matrix. Let u ∈ Σs be a
column vector of length s which can represent a request for
the code C. From the property of C, there exists a recovering
set S ⊆ [m] where |S| � r that satisfies the request. Assume
that S = {b1, b2, . . . , br′} where r′ � r. From each bucket
bi ∈ S we read a linear combination vi of the t cells which
is a linear combination of the s information bits. From the
construction of H , the column vector vi is a column in H .
Then, u =

∑r′

i=1 vi, and hence, the vector u is a sum of at

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:34:32 UTC from IEEE Xplore. Restrictions apply.

860 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 2, FEBRUARY 2022

TABLE XI

SUMMARY OF THE RESULTS

most r columns of H . Thus, the matrix H is a parity check
matrix of a binary [m · (2t − 1), m · (2t − 1) − s, r] covering
code, and hence, h[s, r] � m · (2t − 1).

Now we will use Theorem 55 to get a lower bound on the
value of D(s, 1, t, r).

Corollary 56: D(s, 1, t, r) �
⌈

h[s, r]
2t − 1

⌉
.

Proof: Assume by contradiction that D(s, 1, t, r) =

m <

⌈
h[s, r]
2t − 1

⌉
. The number of buckets m is an integer. Then,

m <
h[s, r]
2t − 1

. From Theorem 55 we have h[s, r] � m · (2t −

1) <
h[s, r]
2t − 1

· (2t − 1) = h[s, r] which is a contradiction.

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:34:32 UTC from IEEE Xplore. Restrictions apply.

NASSAR AND YAAKOBI: ARRAY CODES FOR FUNCTIONAL PIR AND BATCH CODES 861

We can get upper bounds on the value h[s, r] from [12].
For example, h[2s− 1, 2] � 2s − 1 for any s � 3 and we can

conclude that D(2s − 1, 1, t, 2) �
⌈

2s − 1
2t − 1

⌉
.

IX. CONCLUSION

In this work we studied constructions and bounds of sev-
eral families of codes. We defined and presented functional
PIR array codes, functional batch array codes, and locality
functional array codes. Lower bounds on the smallest num-
ber of buckets of these codes were given. Several upper
bounds on the smallest number of buckets were shown based
on general constructions, specific constructions, subspaces,
and covering codes. In Table XI, we provide a summary
of most of the results that appear in the work. The first
column specifies the family of codes that the result refers to.
Denote a PIR array code, batch array code, functional PIR
array code, functional batch array code, locality functional
array code by P, B, FP, FB, L, respectively. The next five
columns specify the values of the parameters of the codes.
The following two columns refer to lower and upper bounds
on the codes and the last column includes notes such as
constraints on the parameters and where the results appeared
in the work. Lastly, we note that there are plenty of problems
which remain for future research, such as generalizing the
specific constructions and finding new bounds for different
parameters.

REFERENCES

[1] H. Asi and E. Yaakobi, “Nearly optimal constructions of PIR and batch
codes,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Aachen, Germany,
Jun. 2017, pp. 151–155.

[2] K. Banawan and S. Ulukus, “The capacity of private information
retrieval from coded databases,” IEEE Trans. Inf. Theory, vol. 64, no. 3,
pp. 1945–1956, Mar. 2018.

[3] A. Beimel, Y. Ishai, E. Kushilevitz, and J.-F. Raymond, “Breaking
the O(n1/(2k−1)) barrier for information theoretic private information
retrieval,” in Proc. 43rd Symp. Found. Comput. Sci., Vancouver, BC,
Canada, 2002, pp. 261–270.

[4] S. R. Blackburn and T. Etzion, “PIR array codes with optimal PIR
rates,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Aachen, Germany,
Jun. 2017. pp. 2658–2662.

[5] S. R. Blackburn and T. Etzion, “PIR array codes with optimal virtual
server rate,” IEEE Trans. Inf. Theory, vol. 65, no. 10, pp. 6136–6145,
Oct. 2019.

[6] S. Buzaglo, Y. Cassuto, P. H. Siegel, and E. Yaakobi, “Consecutive
switch codes,” IEEE Trans. Inf. Theory, vol. 64, no. 4, pp. 2485–2498,
Apr. 2018.

[7] R. A. Brualdi, V. S. Pless, and R. M. Wilson, “Short codes with a given
covering radius,” IEEE Trans. Inf. Theory, vol. 35, no. 1, pp. 99–109,
Jan. 1989.

[8] T. H. Chan, S.-W. Ho, and H. Yamamoto, “Private information retrieval
for coded storage,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Hong Kong, Nov. 2015, pp. 2842–2846.

[9] Y. M. Chee, H. M. Kiah, E. Yaakobi, and H. Zhang, “A generalization
of Blackburn-Etzion construction for PIR array codes,” in Proc. IEEE
Int. Symp. Inf. Theory, Paris, France, Jul. 2019, pp. 1062–1066.

[10] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private informa-
tion retrieval,” J. ACM, vol. 45, no. 6, pp. 965–981, 1998.

[11] Y. M. Chee, F. Gao, S. T. H. Teo, and H. Zhang, “Combinatorial
systematic switch codes,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Hong Kong, Jun. 2015, pp. 241–245.

[12] G. Cohen, I. Honkala, S. Litsyn, and A. Lobstein, Covering Codes.
Amsterdam, The Netherlands: North-Holland, 1997.

[13] A. A. Davydov, M. Giulietti, S. Marcugini, and F. Pambianco, “Linear
covering codes of radius 2 and 3,” in Proc. Workshop Coding Theory
Days, St. Petersburg, Russia, Oct. 2008, pp. 12–17.

[14] A. A. Davydov and P. R. J. Ostergard, “Linear codes with covering
radius R = 2, 3 and codimension tR,” IEEE Trans. Inf. Theory, vol. 47,
no. 1, pp. 416–421, Jan. 2001.

[15] Z. Dvir and S. Gopi, “2-server PIR with subpolynomial communication,”
J. ACM, vol. 63, no. 4, pp. 1–15, 2016.

[16] S. El-Zanati, G. Seelinger, P. Sissokho, L. Spence, and C. V. Eynden,
“On λ-fold partitions of finite vector spaces and duality,” Discrete Math.,
vol. 311, no. 4, pp. 307–318, 2011.

[17] T. Etzion and A. Vardy, “On q-analogs of Steiner systems and cov-
ering designs,” Adv. Math. Commun., vol. 5, no. 2, pp. 161–176,
2011.

[18] T. Etzion and H. Zhang, “Grassmannian codes with new distance
measures for network coding,” IEEE Trans. Inf. Theory, vol. 65, no. 7,
pp. 4131–4142, Jul. 2019.

[19] A. Fazeli, A. Vardy, and E. Yaakobi, “PIR with low storage overhead:
Coding instead of replication,” 2015, arXiv:1505.06241.

[20] E. M. Gabidulin, A. A. Davydov, and L. M. Tombak, “Linear codes
with covering radius 2 and other new covering codes,” IEEE Trans. Inf.
Theory, vol. 37, no. 1, pp. 219–224, 1991.

[21] M. Greferath, M. Pavčević, N. Silberstein, and A. Vázquez-Castro, Eds.,
Network Coding and Subspace Designs. Springer, 2017.

[22] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai, “Batch codes and
their applications,” in Proc. 26th Annu. ACM Symp. Theory Comput.,
Chicago, IL, USA, 2004, pp. 262–271.

[23] S. Kumar, H.-Y. Lin, E. Rosnes, and A. G. T. Amat, “Achieving
maximum distance separable private information retrieval capacity with
linear codes,” IEEE Trans. Inf. Theory, vol. 65, no. 7, pp. 4243–4273,
Jul. 2019.

[24] S. Lin and D. J. Costello, Error Control Coding. Upper Saddle River,
NJ, USA: Prentice-Hall, 2004.

[25] H.-Y. Lin, S. Kumar, E. Rosnes, A. G. I. Amat, and E. Yaakobi, “Weak
private information retrieval,” in Proc. IEEE Int. Symp. Inf. Theory
(ISIT), Paris, France, Jul. 2019, pp. 1257–1261.

[26] H.-Y. Lin and E. Rosnes, “Lengthening and extending binary private
information retrieval codes,” 2017, arXiv:1707.03495.

[27] H. Lipmaa and V. Skachek, “Linear batch codes,” in Coding Theory
and Applications (CIM Series in Mathematical Sciences), vol. 3, 2015,
pp. 245–253.

[28] J. L. Massey, Threshold Decoding. Cambridge, MA, USA: MIT Press,
1963.

[29] M. Nassar and E. Yaakobi, “Array codes for functional PIR and batch
codes,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Los Angeles, CA,
USA, Jun. 2020, pp. 1024–1029.

[30] L. Pamies-Juarez, H. D. L. Hollmann, and F. Oggier, “Locally repairable
codes with multiple repair alternatives,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Istanbul, Turkey, Jul. 2013, pp. 892–896.

[31] A. S. Rawat, D. S. Papailiopoulos, A. G. Dimakis, and S. Vish-
wanath, “Locality and availability in distributed storage,” in Proc.
IEEE Int. Symp. Inf. Theory, Honolulu, HI, USA, Jun. 2014,
pp. 681–685.

[32] A. S. Rawat, Z. Song, A. G. Dimakis, and A. Gal, “Batch codes through
dense graphs without short cycles,” IEEE Trans. Inf. Theory, vol. 62,
no. 4, pp. 1592–1604, Apr. 2016.

[33] E. Sharon and I. Alrod, “Coding scheme for optimizing random I/O
performance,” in Proc. Non-Volatile Memories Workshop, San Diego,
CA, USA, Apr. 2013, pp. 1–5.

[34] N. Silberstein, T. Etzion, and M. Schwartz, “Locality and availability
of array codes constructed from subspaces,” IEEE Trans. Inf. Theory,
vol. 65, no. 5, pp. 2648–2660, May 2019.

[35] H. Sun and S. A. Jafar, “The capacity of private information
retrieval,” IEEE Trans. Inf. Theory, vol. 63, no. 7, pp. 4075–4088,
Jul. 2017.

[36] H. Sun and S. A. Jafar, “The capacity of robust private information
retrieval with colluding databases,” IEEE Trans. Inf. Theory, vol. 64,
no. 4, pp. 2361–2370, Apr. 2018.

[37] R. Tajeddine, O. W. Gnilke, and S. El Rouayheb, “Private infor-
mation retrieval from MDS coded data in distributed storage sys-
tems,” IEEE Trans. Inf. Theory, vol. 64, no. 11, pp. 7081–7093,
Nov. 2018.

[38] I. Tamo and A. Barg, “A family of optimal locally recoverable
codes,” IEEE Trans. Inf. Theory, vol. 60, no. 8, pp. 4661–4676,
Aug. 2014.

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:34:32 UTC from IEEE Xplore. Restrictions apply.

862 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 2, FEBRUARY 2022

[39] C. Tian, H. Sun, and J. Chen, “Capacity-achieving private infor-
mation retrieval codes with optimal message size and upload
cost,” IEEE Trans. Inf. Theory, vol. 65, no. 11, pp. 7613–7627,
Nov. 2019.

[40] J. H. Van Lint and R. M. Wilson, A Course Combinatorics. Cambridge,
U.K.: Cambridge Univ. Press, 1992.

[41] A. Vardy and E. Yaakobi, “Constructions of batch codes with near-
optimal redundancy,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Barcelona, Spain, Jul. 2016, pp. 1197–1201.

[42] M. Vajha, V. Ramkumar, and P. V. Kumar, “Binary, shortened projective
Reed Muller codes for coded private information retrieval,” in Proc.
IEEE Int. Symp. Inf. Theory (ISIT), Aachen, Germany, Jun. 2017,
pp. 1421–1425.

[43] Z. Wang, H. M. Kiah, Y. Cassuto, and J. Bruck, “Switch codes: Codes
for fully parallel reconstruction,” IEEE Trans. Inf. Theory, vol. 63, no. 4,
pp. 2061–2075, Apr. 2017.

[44] A. Wang, Z. Zhang, and M. Liu, “Achieving arbitrary locality and
availability in binary codes,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Hong Kong, Jun. 2015, pp. 1866–1870.

[45] G. William, “A survey on private information retrieval,” Bull. EATCS,
vol. 82, pp. 72–107, Jan. 2004.

[46] E. Yaakobi and R. Motwani, “Construction of random input-output codes
with moderate block lengths,” IEEE Trans. Commun., vol. 64, no. 5,
pp. 1819–1828, May 2016.

[47] A. Yamawaki, H. Kamabe, and S. Lu, “Construction of parallel RIO
codes using coset coding with Hamming codes,” in Proc. IEEE Inf.
Theory Workshop (ITW), Kaohsiung, Taiwan, Nov. 2017, pp. 239–243.

[48] S. Yekhanin, “Private information retrieval,” Commun. ACM, vol. 53,
no. 4, pp. 68–73, 2010.

[49] H. Zhang and V. Skachek, “Bounds for batch codes with restricted query
size,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Barcelona, Spain,
Jul. 2016, pp. 1192–1196.

[50] Y. Zhang, X. Wang, H. Wei, and G. Ge, “On private information retrieval
array codes,” IEEE Trans. Inf. Theory, vol. 65, no. 9, pp. 5565–5573,
Sep. 2019.

[51] Y. Zhang, T. Etzion, and E. Yaakobi, “Bounds on the length of
functional PIR and batch codes,” IEEE Trans. Inf. Theory, vol. 66, no. 8,
pp. 4917–4934, Aug. 2020.

Mohammad Nassar (Student Member, IEEE) received the B.Sc. and M.Sc.
degrees in computer science from the Technion—Israel Institute of Technol-
ogy, Haifa, Israel, in 2018 and 2020, respectively. He has recently joined IBM
as a Cloud Researcher. His research interests include information and coding
theory with applications to data storage and retrieval.

Eitan Yaakobi (Senior Member, IEEE) received the B.A. degree in computer
science and mathematics and the M.Sc. degree in computer science from
the Technion—Israel Institute of Technology, Haifa, Israel, in 2005 and
2007, respectively, and the Ph.D. degree in electrical engineering from the
University of California at San Diego, in 2011. From 2011 to 2013, he was
a Post-Doctoral Researcher with the Department of Electrical Engineering,
California Institute of Technology, and the Center for Memory and Record-
ing Research, University of California at San Diego. He is currently an
Associate Professor at the Computer Science Department, Technion—Israel
Institute of Technology. His research interests include information and coding
theory with applications to non-volatile memories, associative memories,
DNA storage, data storage and retrieval, and private information retrieval.
He received the Marconi Society Young Scholar in 2009 and the Intel Ph.D.
Fellowship (2010–2011).

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:34:32 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

