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Abstract— In this paper, we study a model that mimics the
programming operation of memory cells. This model was first
introduced by Lastras-Montano et al. for continuous-alphabet
channels, and later by Bunte and Lapidoth for discrete memory-
less channels (DMC). Under this paradigm we assume that cells
are programmed sequentially and individually. The programming
process is modeled as transmission over a channel, such that
it is possible to read the cell state in order to determine
its programming success, and in case of programming failure,
to reprogram the cell again. Reprogramming a cell can reduce
the bit error rate, however this comes with the price of increasing
the overall programming time and thereby affecting the writing
speed of the memory. An iterative programming scheme is an
algorithm which specifies the number of attempts to program
each cell. Given the programming channel and constraints on the
average and maximum number of attempts to program a cell,
we study programming schemes which maximize the number of
bits that can be reliably stored in the memory. We extend the
results by Bunte and Lapidoth and study this problem when
the programming channel is either discrete-input memoryless
symmetric channel (including the BSC,BEC, BI-AWGN) or the Z
channel. For the BSC and the BEC our analysis is also extended
for the case where the error probabilities on consecutive writes
are not necessarily the same. Lastly, we also study a related model
which is motivated by the synthesis process of DNA molecules.

Index Terms— Non-volatile memories, iterative programming,
discrete-input memoryless symmetric channel, binary symmetric
channel (BSC), binary erasure channel (BEC), Z channel.

I. INTRODUCTION

MANY of the existing and the future volatile and
non-volatile memories consist of memory cells. This

includes for example STT-RAM, STT-MRAM, phase-change
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memories (PCM), flash memories, as well as strands of DNA
molecules. The information in these memories is stored in cells
that can store one or multiple bits. The state of each cell can be
changed in several ways depending on the memory technology,
such as changing its resistance or voltage level. The process
of changing the cell state, which we call here programming,
is crucial in the design of these memories as it determines the
memory’s characteristics such as speed, reliability, endurance,
and more. Hence, optimizing the programming process has
always been an important feature in the development of these
memories.

Two of the more important goals when programming mem-
ory cells are speed and reliability. In this work we aim to
understand the relation between these two figures of merits.
Namely, we consider a model in which the cells are pro-
grammed sequentially, one after the other [4], [5]. Assume n
binary cells are programmed. The cell programming process is
modeled as transmission over some memoryless channel, for
example the binary symmetric channel (BSC), the binary era-
sure channel (BEC), the binary-input additive white Gaussian
noise (BI-AWGN) channel, or the Z channel. It is assumed that
when a cell is programmed we can check the success of its
programming operation and in case of failure we may choose
to program it again. If there is no time restriction for program-
ming the cells, an optimal solution is to program each cell until
it reaches its correct value. For example, if the programming
operation is modeled as the BSC with crossover probability
p, then the expected number of programming attempts until
reaching success is 1/(1 − p). If p = 0.1, this increases the
programming operation time by roughly 11%. However, if the
system allows to increase the programming time by only 5%,
then a different strategy should be considered.

More formally, we assume that there are n cells, for n
sufficiently large, which are programmed according to some
iterative programming scheme PS. We define the average
delay of the programming scheme PS over a channel denoted
by W as the expected number of programming attempts per
cell, and the maximum delay is the maximum number of
attempts to program a cell. Given some constraints, D and T ,
on the average and the maximum delay, respectively, our goal
in this paper is to find a programming scheme that will maxi-
mize the number of information bits that can be reliably stored
into the cells. Intuitively, the question is whether to spend time
ensuring the cells are programmed correctly, or spend time
and space for programming more redundancy cells in order to
correct the errors. When programming a large number of cells
one after the other we find the average delay to be the figure
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of merit that indicates the expected time to program all the
cells.

We present this model as a way to solve the memory cell
programming problem, however this is also a valid model for
transmission processes, where there is noiseless feedback on
the transmission success. That is, we consider the problem of
transmitting bits, or more generally packets, over a channel
with noiseless feedback. Then, in case of transmission error,
the goal is to determine an optimal strategy which specifies
whether to retransmit the bit again.

We note that there are some models where feedback does
not increase capacity for DMC, but our model is different.
In the feedback channel discussed in [6, Page 216], the
receiver does not know if the sender is trying to send the
same symbol again, or whether it is trying to transmit a
new symbol, while in our model, when we want to write
a symbol again, we overwrite it on the same memory cell.
So there is a difference in the models, and that is why in our
model the capacity increases with feedback. Additionally our
model is different from the classical automatic repeat request
(ARQ) [1], [7], [17] [21, Chapter 22] [26], [29], [31]–[33].
In an ARQ system an error detecting code is used, and if
the receiver detects some errors then it requests the sender to
retransmit the same data. This process continues till no error
is detected. There exist also an hybrid-ARQ model, which
combines the ARQ and the error-correcting codes, called,
forward-error-control (FEC). For example, the ARQ protocol
for the Z channel is discussed in [7], [17], [26], [31]–[33],
where in [31], [32] the authors proposed capacity achieving
codes for the Z channel using this model. In our model,
a failure is detected without using a detecting error code, for
example, the medium system recognizes a failure during the
programming attempt. This is the main difference between
our model and the ARQ protocol. By this fact, we can readily
understand that the capacity of our model may exceed the
capacity achieved by applying an ARQ model.

Previous works considered programming schemes mostly
for flash memory cells. In [14], an optimal programming
algorithm was presented to maximize the number of bits that
can be stored in a single cell, which achieves the zero-error
storage capacity under a noisy model. In [15], an algorithm
was shown for optimizing the expected cell programming
precision, when the programming noise follows a random dis-
tribution. In [36], algorithms for parallel programming of flash
memory cells were studied which were then extended in [28]
as well as for the rank modulation scheme in [27]. Other
works studied the programming schemes with continuous-
alphabet channels, see [9], [18]–[20], [22], [24], [25], [34] and
references therein, where Mittelzholer et al. [25] introduced
the problem of optimizing capacity with max and average
iteration constraints.

Our point of departure in this paper is the programming
model which was presented in [4], [5] by Bunte and Lapidoth
for discrete alphabet memory channels (DMC). In particular,
in [4] the case of symmetric channels with focus on the BSC
was studied. We extend the results from [4] and study the
problem for the BEC and the Z channel, where the last is
applicable in particular for flash memories. We generalize

the solution for all discrete-input memoryless channels, which
includes continuous channels, e.g. BI-AWGN. Furthermore,
we also study the case when the error probabilities on consec-
utive programming operations are not the same. Even though
we follow the model from [4], we note that we propose a
slightly different formulation to the problem and model, which
we found to be more suitable to the cases solved in this paper.

Yet another model studied in this work is motivated
by DNA-based storage systems. Recently, DNA has been
explored as a possible near-future archival storage solution
thanks to its potential high capacity and endurance [2], [3], [8],
[12], [37]. DNA synthesis is the process of artificially creating
DNA molecules such that arbitrary single stranded DNA
sequences of length a few hundreds bases can be generated
chemically. When synthesizing DNA strands, the bases are
added one after the other to form the long sequence; for more
details see [16]. However, this process is prone to errors which
can be of the form of insertions, deletions, and substitutions.
Since the bases are added in a sequential manner it is possible
to check the success of each step and thereby to correct failures
or repeat the attachment of the bases. In particular, in case
the attachment of a specific base does not succeed on several
consecutive iterations, it is possible to add another different
base which indicates a synthesis failure in this location.

We briefly go over the applicability of the models proposed
in this paper by reviewing their relevance to various types
of memories. In STT-RAM and STT-MRAM, the information
is encoded via the orientation of a magnetic element, where
a bit flip is a common error. Thus, the BSC model, which
was investigated by Bunte and Lapidoth [4], [5] and will
be studied in Section III in this paper, is relevant for this
model. The Z channel captures the main problem of encoding
data into flash memories with single-level cells. This storage
medium consists of cells which represent the data according
to their charge level, and the main property is that charge
can only be incremented with the programming iterations.
Thus, the Z channel, which mimics such asymmetric errors,
is suitable for flash memories. Note that flash memories have
more properties which are not captured by the Z channel.
This includes the connection between the different cells in
the memory such as inter-cell interference and the need for
block resetting for erasures. The fact that the charge level is
incremented gradually is also not captured by the Z channel.
The Z channel can be discussed also for PCM. In PCM, the
data is encoded as a physical configuration of atoms, where
the level of a PCM cell can only be incremented. Unlike
flash, PCM does not have the constraint in which cells have
to be erased together as blocks, and therefore the Z channel is
somewhat more applicable for PCM. The combined BEC and
BSC models, which will be studied in Section VII, have some
elements which can model PCM and flash memories. These
mediums can potentially have an erasure state by programming
the memory cell to the highest level, which is relatively easier
to do than to attempt to write intermediate levels.

The rest of the paper is organized as follows. In Section II,
we formally present the definitions for the programming model
and the problem studied in the paper. In Section III, we solve
the programming model for the BSC and the BEC, and
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In Section IV we extend the results for all the discrete-
input memoryless symmetric channels, including continuous
channels for example, the binary-input additive white Gaussian
noise (BI-AWGN) channel. The Z channel is studied in
Section V. In Section VI, we generalize this problem for the
setup where consecutive programmings of a cell do not nec-
essarily behave the same with respect to the error probability.
A new model motivated by DNA, which combines the BSC
and the BEC is studied in Section VII. Finally, Section VIII
concludes the paper.

II. DEFINITIONS AND BASIC PROPERTIES

In this section we formally define the cell programming
model and state the main problems studied in the paper.
We also present some basic properties that will be useful in
the rest of the paper.

Let W be a memoryless channel. We model the process
of programming a cell as a transmission over a channel W ,
with the distinction that after every programming attempt, it is
possible to check the cell state and to decide, in the case of
an error, whether to leave the cell erroneous, or reprogram it
again. We assume that there are n cells which are programmed
individually. An iterative programming scheme, or in abbrevi-
ation programming scheme, is an algorithm which states the
rules to program the n cells. Its average delay over channel W
is defined to be the expected number of programming attempts
per cell, where n, the number of cells, tends to infinity, and
the maximum delay is the maximal number of attempts to
program a cell. Our primarily goal in this work is to reliably
store a large number of bits into the cells, while constraining
the average and the maximum delay.

We define a natural class of programming schemes which
are denoted by PSt, for t ≥ 0. The strategy of the pro-
gramming scheme PSt is to program each cell until its
programming succeeds or the number of attempts is t, that
is, after the t-th attempt the success is not verified and the
cell may be left programmed erroneously. Applying PS0

means that the cell is not programmed, while the programming
scheme PS∞ is the one where the cell is programmed until it
stores the correct value. For notational purposes in the paper,
we denote the programming scheme PS∞ by PS−1. Thus,
for example, when we say t ≥ −1, it includes the case of
t = ∞.

For asymmetric channels, the average delay of PSt may
depend also on the content of the programmed words. For
example in the Z channel the average delay depends on the
number of zeros in the programmed word. Thus, for the rest
of this section we refer only to symmetric channels,1 while
these concepts will be defined similarly in Section V for the
Z channel.

For t ≥ −1 and a symmetric channel W , we denote by
D(W, t) the average delay of the programming scheme PSt

1We refer to the definition of symmetric DMCs as defined in [10] which
are also called partitioned symmetric [11], where the set of the outputs can
be partitioned into subsets in such a way that for each subset the matrix of
transitions probabilities (using inputs as rows and outputs as columns) has the
property that within each partition the rows are permutations of each other
and the columns are permutations of each other. Additionally, we refer to
continuous symmetric channels.

when the programming process is modeled by the channel W .
For example (see Lemma 4), assume the channel is the binary
symmetric channel (BSC) with crossover probability p, or
the binary erasure channel (BEC) with erasure probability p,
which will be denoted by BSC(p) and BEC(p), respectively.
Then, D(W, t) = 1−pt

1−p for t ≥ 0 and D(W,−1) = 1
1−p (see

Lemma 4), where W is the BSC(p) or the BEC(p). Unless
stated otherwise, for the BEC we assume that 0 ≤ p < 1 and
for the BSC, 0 ≤ p ≤ 1/2.

When a cell is programmed according to a programming
scheme PSt, we can model this process as a parallel trans-
mission over t copies of the channel W and there is an error if
and only if there is an error in each of the t parallel channels.
We denote this as a new channel Wt. Note that a programming
scheme has no effect on the types of the errors, but it may
change the probability of the cell to be in error. For example,
if one cell is programmed using the programming scheme
PSt1 while another cell is programmed by the programming
scheme PSt2 , for t1 �= t2, then the probabilities of these
cells to be erroneous may be unequal. We denote the capacity
of the channel Wt by C(W, t). For example, for t ≥ 1 and
W = BSC(p), Wt = BSC(pt) and the capacity of the channel
Wt is C(W, t) = 1 − h(pt) where in this paper h(x) is the
binary entropy function in bits, where 0 ≤ x ≤ 1. Note that
for every channel W , it holds that C(W, 0) = D(W, 0) = 0
and C(W,−1) = 1.

In this paper we focus on programming schemes that consist
of combinations of several schemes from {PSt}t≥−1. Let
β1, . . . β� ∈ Q ∩ (0, 1] where Q is the set of the rational
numbers, and let PS ( (β1, t1), (β2, t2), . . . , (β�, t�) ) be a
programming scheme of n cells which works as follows. For
all 1 ≤ i ≤ �, βin of the cells are programmed according to
the programming scheme PSti .2 Formally, for T ≥ 0, where
T indicates the maximum number of attempts to program a
cell, we define the following set of programming schemes.

PT

=
{

PS ((β1, t1), (β2, t2), . . . , (β�, t�))

: β1, . . . , β� ∈ Q∩ (0, 1], 0 ≤ t1, . . . , t� ≤ T,

�∑
i=1

βi = 1
}

,

(1)

The set of programming schemes P−1 is defined similarly
where −1 ≤ t1, . . . , t�.

P−1=
{

PS ((β1, t1), (β2, t2), . . . , (β�, t�)) :

: β1, . . . , β� ∈ Q ∩ (0, 1],−1 ≤ t1, . . . , t�,

�∑
i=1

βi = 1
}

.

For T ≥ −1, it can be readily verified that for a pro-
gramming scheme PS = PS ((β1, t1), . . . , (β�, t�)) ∈ PT

over a symmetric channel W , the average delay, denoted by

2We assume here and in the rest of the paper that n is sufficiently large so
that βin is an integer number for all i.
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D(W, PS), is given by

D(W, PS) =
�∑

i=1

βiD(W, ti).

Similarly, the capacity3 of the programming scheme PS over
the channel W is denoted by C(W, PS), and is naturally
defined to be

C(W, PS) =
�∑

i=1

βiC(W, ti),

where, as defined above, C(W, ti) is the capacity of the chan-
nel Wti . Note that the definition of the capacity, C(W, PS),
corresponds to the set of all achievable rates for reliably storing
information in the cells. Specifically, when applying the pro-
gramming scheme PS to program cells over the channel W ,
the following properties hold:

• for every R < C(W, PS), there exists a sequence of
codes Cn = (2nR, p

(n)
e , n), such that p

(n)
e → 0 as

n → ∞,
• any sequence of codes Cn = (2nR, p

(n)
e , n) such that

p
(n)
e → 0 as n → ∞, must satisfy R < C(W, PS),

where Cn is a code of size 2nR, n is the length of the
codewords, and p

(n)
e is the decoding error probability when

using the code Cn.
The main problem we study in this paper is formulated

in Problem 1 for symmetric channels. The motivation of this
problem is to maximize the number of information bits that
can be reliably stored in n cells when n is sufficiently large,
where the average and maximum delays are bounded by D
and T , respectively. The case of T = −1 corresponds to an
unbounded maximum delay.

Problem 1: Given a symmetric channel W , an average
delay D, and a maximum delay T , find a programming scheme,
PS ∈ PT , which maximizes the capacity C(W, PS), under the
constraint that D(W, PS) ≤ D. In particular, given W , D,
and T , find the value of

F1(W, D, T ) � sup
PS∈PT :D(W,PS)≤D

{C(W, PS)}.
Assume we are given a symmetric channel W , an

average delay D, and a programming scheme PS =
PS ((β1, t1), . . . , (β�, t�)) ∈ PT , such that D(W, PS) > D.
In order to meet the constraint of the average delay D by using
the programming scheme PS, we program only, β = D

D(W,PS)
fraction of the cells with the programming scheme PS, and
the remaining (1 − β)n cells are not programmed. Hence,
we define the programming scheme PS(W, D) as (2), shown
at the bottom of the page. It can be readily verified that the
properties in the next proposition hold.

3The use of the terminology “capacity” here is abuse of terminology since
it depends on both the channel and the programming scheme. However, this
term is used to indicate the achievable maximum information rate when the
programming scheme PS is used over the channel W .

Proposition 2: Given a symmetric channel W , an average
delay D, and a programming scheme PS ∈ PT , the following
properties hold

1) D(W, PS(W, D)) = min{D(W, PS), D}, and

2) C(W, PS(W, D)) = min
{
1, D

D(W,PS)

}
· C(W, PS).

Note that D(W, PS) = 0 if and only if PS = PS ((1, 0)).
In this case, C(W, PS(W, D)) = C(W, PS) = 0 by the
definition of PS0.

We next state another concept which will be helpful in
solving Problem 1. The normalized capacity of a symmetric
channel W using a programming scheme PS is defined to be

C(W, PS) =

{ C(W,PS)
D(W,PS) , if D(W, PS) > 0,

C(W, PS), otherwise.
(3)

The normalized capacity is the ratio between the maximum
number of information bits that can be reliably stored and the
average number of programming attempts. For abbreviation
of notation we use C(W, t) to denote the normalized capacity
C(W, PSt).

Proposition 3 presents a strong connection between the
normalized capacity of a channel W using programming
scheme PS and its capacity under a constraint D.

Proposition 3: For a symmetric channel W , an average
delay D, and a programming scheme PS, the following holds

C(W, PS(W, D)) = min{D,D(W, PS)} · C(W, PS).
Proof: By Proposition 2, if D(W, PS) ≥ D then

C(W, PS(W, D)) =
D

D(W, PS)
· C(W, PS)

= D · C(W, PS)
D(W, PS)

= D · C(W, PS).

Otherwise, D(W, PS) < D and C(W, PS(W, D)) =
C(W, PS) by the definition of PS(W, D), and C(W, PS) =
D(W, PS) · C(W, PS), by the definition of the normalized
capacity. �

In this paper we study the BSC, the BEC, and the Z channel.
In these channels the cells store binary information, where in
the BSC a programming failure changes the bit value in the
cell, in the BEC a failure causes an erasure of an information
bit, and lastly in the Z channel only the programming of cells
which are programmed with value zero can fail.

For the Z channel, which is not a symmetric channel, the
average delay depends also on the code, in particular, on the
number of zeros in the codewords. Thus, the Z channel is
discussed in a different section, Section V, in which we state
similar definitions to Problem 1 and to the related concepts,
D(W, t), PS(W, D), and the normalized capacity.

Table I summarizes most of the notations used in this
paper.

PS(W, D) =

{
PS, if D(W, PS) ≤ D

PS ((1 − β, 0), (ββ1, t1), . . . , (ββ�, t�)) , otherwise.
(2)
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TABLE I

SUMMARY OF NOTATIONS

III. THE BSC AND THE BEC

In this section we study Problem 1 for the BSC and the
BEC. Note that the results for the BSC have already been stud-
ied in [4]. However, we present them here in order to compare
with the BEC and since these results will be used in Section VI
for the case of programming with different error probabilities,
and in Section VII for a new model which combines between
the BSC and the BEC. Additionally, the translation between
the notations by Bunte and Lapidoth [4] and our formulation is
not immediate, and hence we found this repetition to be impor-
tant for the readability and completeness of the results in the
paper. For the same reasons, we provide proofs for the results
on the BSC in this section. We note also that a general case,
the discrete-input memoryless symmetric channels, is proved
later in Section IV. However, for clarification and readability
we discuss first the easier specific cases (the BSC and the
BEC) in this section. Then, in Section IV the results are
generalized for all the discrete-input memoryless symmetric
channels by enhancing the methods and the techniques which
are presented here.

According to well known results on the capacity of the BSC
and the BEC we first establish the following lemma.

Lemma 4: For the programming scheme PSt, t ≥ −1, and
for the BSC(p) and the BEC(p), the following properties
hold:

1) For all t ≥ 1, C (BSC(p), t) = 1 − h(pt),
2) For all t ≥ 1, C (BEC(p), t) = 1 − pt,
3) For all t ≥ 0,

D(p, t) � D (BSC(p), t) = D (BEC(p), t) =
1 − pt

1 − p
,

4) D(p,−1) � D (BSC(p),−1) = D (BEC(p),−1) =
1

1−p .

Proof:
For the programming scheme PSt, t ≥ 1, a cell will be

erroneous if all its t programmings have failed, which happens
with probability pt. According to the known results on the
capacity of the BSC and the BEC, we conclude claims 1 and
2 in the lemma regarding the capacity of the channels BSC(p)
and BEC(p) using PSt.

The average delay of PSt for t ≥ 1 is computed as follows.
The average number of programmings a cell equals to

∑t
j=1 j·

pj where pj is the probability that a cell is programmed exactly
j times. Let qi be the probability that a cell is programmed
at least i times, that is, qi =

∑t
j=i pj . Therefore,

∑t
i=1 qi =∑t

i=1

(∑t
j=i pj

)
=
∑t

j=1 j ·pj . Then, the average number of

attempts to program a cell is equal to
∑t

i=1 qi. Additionally,
we note that qi = pi−1. Thus, we conclude that

D(p, t) =
t∑

i=1

qi =
t−1∑
i=0

pi =
1 − pt

1 − p
.

For t = 0 the average delay is zero, and for t = −1 the
average delay is

D(p,−1) =
∑
i≥1

qi =
∑
i≥0

pi =
1

1 − p
.

Note that D(p, t) is the average delay for any memoryless
symmetric channel with error probability p. �

The next theorem compares between the normalized capac-
ity when using PSt and PSt+1, for each t ≥ 1. This result
is used next in Corollary 6 which establishes the solution for
Problem 1 for these two channels.

Theorem 5: For all t ≥ 1 the following properties hold:
1) C (BSC(p), t) ≤ C (BSC(p), t + 1),
2) C (BEC(p), t) = 1 − p.

Proof: It is possible to verify that the function

f(x) =
1 − h(x)

1 − x

is decreasing in the range 0 ≤ x ≤ 1/2, and by Lemma 4 we
get

C (BSC(p), t) =
C (BSC(p), t)
D (BSC(p), t)

= (1 − p) · f(pt).

Thus,

C (BSC(p), t) = (1 − p) · f(pt)
≤ (1 − p) · f(pt+1) = C (BSC(p), t + 1) .
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For the BEC, by Lemma 4 we have

C (BEC(p), t) =
C (BEC(p), t)
D (BEC(p), t)

= 1 − p.

�
The solutions to Problem 1 for the BSC(p) and the BEC(p)

are presented in Corollary 6, where the result for the BSC has
already been presented in [4]; see Proposition 5 therein. Note
that if D ≥ 1

1−p then the average delay is not constrained,
since the average delay of any PS does not exceed the average
delay of PS−1 which equals to 1

1−p (see also [4]).

Corollary 6: For T ≥ −1, denote D̂ = min{D(p, T ), D}.
The solution for Problem 1 for the BSC and the BEC is as
follows.

1) If T ≥ 0 then
a) F1 (BSC(p), D, T ) = D̂ · (1−p)(1−h(pT ))

1−pT and this
value is obtained by the programming scheme
PST (BSC(p), D),

b) F1 (BEC(p), D, T ) = D̂ · (1 − p) and
this value is obtained by the programming
scheme PS(BEC(p), D) such that
D(BEC(p), PS) ≥ D̂, that is, for any
PS = PS((β1, t1), (β2, t2), . . . (β�, t�)) such
that D(p, ti) ≥ D̂ for all ti.

2) F1 (BSC(p), D,−1) = F1 (BEC(p), D,−1) = D̂ ·
(1 − p) and this value is obtained for the BSC by the
programming scheme PS−1(BSC(p), D), and for the
BEC by the programming scheme PS(BEC(p), D) such
that D(BEC(p), PS) ≥ D̂, that is, for any PS =
PS((β1, t1), (β2, t2), . . . (β�, t�)) such that D(p, ti) ≥
D̂ for all ti.

Proof: In order to find the value of F1(W, D, T ) where
W is either the BSC(p) or the BEC(p), we let PS =
PS ((β1, t1) , . . . , (β�, t�)) ∈ PT be a programming scheme
which meets the constraint D, that is,

D(W, PS) =
�∑

i=1

βi · D(W, ti) ≤ min{D,D(W, T )}.

Then, for W = BSC(p) the capacity of the programming
scheme PS over W satisfies

C(W, PS) =
�∑

i=1

βi · C(W, ti)

(1)
=

�∑
i=1

βi · D(W, ti) · C(W, ti)

(2)

≤
�∑

i=1

βi · D(W, ti) · C(W, T )

= C(W, T )
�∑

i=1

βi · D(W, ti)

(3)

≤ C(W, T ) · min{D,D(W, T )}
(4)
= C (W, PST (W, D)) ,

where (1) is by the definition of the normalized capac-
ity, (2) is by Theorem 5, (3) is by D(W, PS) =

∑�
i=1

βi · D(W, ti) ≤ min{D,D(W, T )}, and (4) is by Propo-
sition 3. To complete the proof for the BSC channel,
we note that C (W, PST (W, D)) = D̂ · (1−p)(1−h(pT ))

1−pT by
Proposition 2 and Lemma 4. A similar proof holds for
F1 (BEC(p), D, T ). �

Remark 7: The claims in Lemma 4 regarding the BSC were
presented in Proposition 3 in [4], and the result in Corollary 6
for the BSC was presented in Proposition 5 in [4]. We note that
in Proposition 3 in [4], �, ζ is equivalent to p, D − 1 in our
notations, respectively. Furthermore, the gap in the solution
from [4] and our result stems from the fact that we let cells
to be not programmed at all, while in [4] a cell has to be
programmed at least once. Thus, the translation between these
two approaches can be done by substituting the average delay
constraint D with ζ + 1.

IV. DISCRETE-INPUT SYMMETRIC CHANNEL

In this section we solve Problem 1 for all the discrete-
input memoryless symmetric channels. Note that the BSC,
the BEC, and the binary-input additive white Gaussian noise
(BI-AWGN) channel are all discrete-input memoryless sym-
metric channels.

We will prove that the normalized capacity is non-
decreasing. This is a generalization of Theorem 5 which
proves this property for the BSC and the BEC. An immediate
conclusion is that given W , a discrete-input memoryless
symmetric channel, the solution for Problem 1 is obtained by
the programming scheme PST (W, D). We assume here that
the channel output is continuous. However, the proof argument
also applies to channels with discrete output by replacing the
integral with summation.

Assume that X is discrete and Y is possibly continuous.
Let f(y|x) be the channel density. The set of successful
channel outputs for input x is denoted by Yx = {y|p(X =
x|y) > p(X = x′|y), ∀x′ �= x}. Note that the strict inequality
is significant for channels with erasure. The complement of
Yx is denoted by Ȳx = Y \ Yx. So for any x ∈ X , the
probability of writing failure is px =

∫
Ȳx

f(y|x)dy. Since the
channel is symmetric, px is equal for all x, and is denoted
by p = px.

Denote the channel by W (p), and let g(y|x) be the channel
density after at most t writing attempts. Let n = |X |. The mar-
ginal output density for uniform input is g(y) =

∑
x

g(y|x)
n .

The channel capacity using PSt is given by

C(W (p), t) = max
prob(x)

I(X ; Y ) =
∑

x

∫
Y

g(y|x)
n

log
g(y|x)
g(y)

dy.

Theorem 8: Let W (p) be a discrete-input memoryless sym-
metric channel with input set X , output set Y , channel density
f(y|x), and error probability p =

∫
Ȳx

f(y|x)dy for x ∈ X .
Then, for all t ≥ 0, C (W (p), t) ≤ C (W (p), t + 1).

Proof: Let z = pt. Since p < 1, z is decreasing on t,
and it is enough to show that C′

= ∂C
∂z ≤ 0, where for

abbreviation we denote C(W (p), t) and C = C(W (p), t) by
C and C, respectively.

As proved in Lemma 4, for all t ≥ 0, D(W (p), t) =
1−z
1−p . Then, C(W (p), t) = C(W (p),t)

D(W (p),t) = (1−p)C(W (p),t)
1−z , and
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C′
= (1 − p) ∂

∂z

(
C

1−z

)
= (1 − p)(C′(1 − z) + C), where

C′ = ∂C
∂z . Thus, we should only prove that C′(1− z) + C ≤ 0.

The derivative of the output density according to z satisfies
g′(y) =

∑
x

g′(y|x)
n , and therefore

C′

=
∑

x

∫
Y

(
g′(y|x)

n
log

g(y|x)
g(y)

+
g′(y|x)g(y)−g′(y)g(y|x)

ng(y)ln2

)
dy

=

(∑
x

∫
Y

g′(y|x)
n

log
g(y|x)
g(y)

dy

)

+
∫
Y

g′(y)g(y) − g′(y)g(y)
g(y)ln2

dy

=
∑

x

∫
Y

g′(y|x)
n

log
g(y|x)
g(y)

dy.

That is,

C + C′(1 − z)

=
1
n

∑
x

∫
Y
(g(y|x) + (1 − z)g′(y|x)) log

g(y|x)
g(y)

dy,

and we will prove that
∑

x

∫
Y(g(y|x) + (1 −

z)g′(y|x)) log g(y|x)
g(y) dy ≤ 0.

Let us compute g(y|x) for y ∈ Ȳx. Note that p(X = x|y) ≤
p(X = x′|y) for some x′ �= x only if the writing fails in
the first t− 1 attempts, which happens with probability pt−1.

Thus, g(y|x) = f(y|x)pt−1 = f(y|x)z
p for y ∈ Ȳx. A similar

argument shows that for y ∈ Yx, g(y|x) = f(y|x)1−pt

1−p =
f(y|x)1−z

1−p . Note that for y ∈ Yx, g(y|x) = −(1 − z)g′(y|x)
and therefore g(y|x) + (1 − z)g′(y|x) = 0. Additionally, for
y ∈ Ȳx, g(y|x) = zg′(y|x), and then g(y|x)+(1−z)g′(y|x) =
g′(y|x).

So it suffices to show that
∑

x

∫
Ȳx

g′(y|x) log g(y|x)
g(y) dy ≤

0. Since g′(y|x) = f(y|x)/p ≥ 0 for y ∈ Ȳx,
and g(y) = 1

n

∑
x g(y|x), we should only prove that∫

Ȳx
log ng(y|x)�

x′ g(y|x′)dy ≤ 0 for all x. Since Ȳx = Y \ Yx,
we have∫
Ȳx

log
ng(y|x)∑
x′ g(y|x′)

dy

=
∫
Y

log
ng(y|x)∑
x′ g(y|x′)

dy −
∫
Yx

log
ng(y|x)∑
x′ g(y|x′)

dy.

Applying Bayes’ Theorem to the definition of Yx and noting
that p(x) = 1/n, we have f(y|x) > f(y|x′) for all x′ �= x.
Therefore, for y ∈ Yx,

g(y|x) = f(y|x)
1 − pt

1 − p
≥ f(y|x)

> f(y|x′) ≥ f(y|x′)pt−1 = g(y|x′),

implying that∫
Y

log
ng(y|x)∑
x′ g(y|x′)

dy −
∫
Yx

log
ng(y|x)∑
x′ g(y|x′)

dy

<

∫
Y

log
ng(y|x)∑
x′ g(y|x′)

dy −
∫
Yx

log
ng(y|x)
ng(y|x)

dy

=
∫
Y

log
ng(y|x)∑
x′ g(y|x′)

dy

=
∫
Y

log g(y|x)dy −
∫
Y

log
∑

x′ g(y|x′)
n

dy.

Now using Jensen’s inequality we have∫
Y

log g(y|x)dy −
∫
Y

log
∑

x′ g(y|x′)
n

dy

≤
∫
Y

log g(y|x)dy −
∫
Y

∑
x′ log g(y|x′)

n
dy

=
∫
Y

log g(y|x)dy −
∑
x′

∫
Y

log g(y|x′)
n

dy.

Finally, the channel symmetry implies that
∫
Y log g(y|x)dy is

equal for all x, implying that∫
Y

log g(y|x)dy −
∑
x′

∫
Y

log g(y|x′)
n

dy

=
∫
Y

log g(y|x)dy −
∫
Y

log g(y|x)dy = 0,

completing the proof.
�

Now we conclude the solution for any discrete-input mem-
oryless symmetric channel.

Corollary 9: Let W (p) be a discrete-input memoryless sym-
metric channel with input set X , output set Y , channel density
f(y|x), and error probability p =

∫
Ȳx

f(y|x)dy for any x. The
solution for Problem 1 for W (p) is

1) for T ≥ 0, F1 (W (p), D, T ) = D̂ · 1−p
1−pT · C(W (p), T ),

and this value is obtained by the programming scheme
PST (W (p), D),

2) F1 (W (p), D,−1) = F1 (W (p), D,−1) = D̂ · (1 − p),
and this value is obtained by the programming scheme
PS−1(W (p), D),

where D̂ = min
{

1−pT

1−p , D
}

and C(W (p), t) =∑
x

∫
Y

g(y|x)
n log g(y|x)

g(y) dy.

V. THE Z CHANNEL

In this section we study programming schemes for the Z
channel with error probability p, i.e., 0 is flipped to 1 with
probability p, 0 ≤ p < 1, but programming 1 always succeeds.
This channel is denoted by Z(p).

The capacity of the channel Z(p) was well studied in the
literature; see e.g. [31], [32], [35]. We denote by Z(p, α) the
Z channel where α is the probability for occurrence of 1 in
a codeword, and p is the crossover 0 → 1 probability. The
capacity of Z(p, α) was shown to be [31], [32], [35]

C(Z(p, α)) � h((1 − α)(1 − p)) − (1 − α)h(p).

where the capacity of the Z(p, α) channel denotes the mutual
information I(Y ; X) = H(Y ) − H(Y |X) between the input
random variable X with distribution Pr(X = 1) = α and
Pr(X = 0) = 1 − α, and the output random variable Y with
distribution Pr(Y = 1|X = 0) = p, Pr(Y = 0|X = 0) =
1 − p and Pr(Y = 1|X = 1) = 1.

In the Z channel, the average delay of programming a zero
cell is exactly as in the BSC and the BEC cases, but a cell with
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value one is programmed only once. Therefore, the average
delay depends on the number of cells which are programmed
with value zero, and hence we define D (Z(p, α), t) as the
average delay of the programming scheme PSt when the
programming process is modeled by the channel Z(p) and
α is the fraction of ones in the codewords. The capacity
C (Z(p, α), t) is defined to be the capacity of the channel
Z(p) when α is the probability for occurrence of one in the
codewords and the programming scheme PSt is applied. The
following lemma is readily proved.

Lemma 10: For the programming scheme PSt and the
channel Z(p, α), the following properties hold:

1) For all t ≥ 0,

C (Z(p, α), t) = C(Z(pt, α))
= h((1 − α)(1 − pt)) − (1 − α)h(pt),

2) C (Z(p, α),−1) = h(α),
3) For all t ≥ 1, D (Z(p, α), t) = (1−α)(1−pt)

1−p + α,
4) D (Z(p, α),−1) = 1−α

1−p + α, D (Z(p, α), 0) = 0.
Let PS ((β1, t1), (β2, t2), . . . , (β�, t�)) be a programming

scheme, and α = (α1, α2, . . . , α�) where 0 ≤ αi ≤ 1, for all
1 ≤ i ≤ �. Then, we define

C (Z(p, α), PS) =
�∑

i=1

βi · C (Z(p, αi), ti) ,

that is, C (Z(p, α), PS) is the capacity of Z(p) while using
the programming scheme PS and the parameter α. Similarly,
we define the average delay of the programming scheme PS
for Z(p) using the parameter α as

D (Z(p, α), PS) =
�∑

i=1

βi · D (Z(p, αi), ti) .

Thus, we formulate Problem 1 for the Z channel as follows.
Problem 11: 1 - the Z channel. Given the channel Z(p),

an average delay D, and a maximum delay T , find a
programming scheme, PS ∈ PT , and a vector α which
maximize the capacity C (Z(p, α), PS), under the constraint
that D (Z(p, α), PS)) ≤ D. In particular, given Z(p), D, and
T , find the value of

F1(Z(p), D, T )
= sup
PS∈PT ,α D(Z(p,α),PS)≤D,α∈[0,1]�,0≤�

{C (Z(p, α), PS)}.
In order to solve Problem 1 for the Z channel, we use

the normalized capacity of a programming scheme PSt over
Z(p, α) which is defined as in Equation (3) for t �= 0 by

C (Z(p, α), t) =
C (Z(p, α), t)
D (Z(p, α), t)

,

and C (Z(p, α), 0) = 0. For t ≥ 1 we have

C (Z (p, α) , t)

=
(1 − p) [h ((1 − α) (1 − pt)) − (1 − α)h(pt)]

(1 − α)(1 − pt) + α(1 − p)
,

and for t = −1 it holds that

C (Z(p, α),−1) =
(1 − p)h(α)

(1 − pα)
.

Given p, t, the maximum normalized capacity of PSt is
C (Z(p), t) = max0≤α≤1

{C (Z(p, α), t)
}

, and we denote by
α∗(p, t) the value of α which achieves this capacity. That is,

C (Z(p), t) = C (Z (p, α∗(p, t)) , t) = max
0≤α≤1

{C (Z(p, α), t)
}

,

and the average delay D (Z(p), t) is defined by

D (Z(p), t) = D (Z (p, α∗(p, t)) , t) .

Next, we define the programming scheme PSt (Z(p), D)
similarly to the definition in Equation (2). PSt (Z(p), D) is
a scheme in which the cells are programmed by PSt until
the average delay is D, and then the rest of the cells are not
programmed. That is, denote by β = D

D(Z(p),t) , and

PSt (Z(p), D)

=

{
PSt, if D (Z(p), t) ≤ D

PS ((1 − β, 0), (β, t)) , otherwise.

Given a constraint on the maximum delay, T ,we define
t∗(T ) = arg max0≤t≤T {C (Z(p), t)} for T ≥ 0 and t∗(−1) =
argmax−1≤t{C (Z(p), t)}.

Thus, we can conclude the following corollary which is
proved in a similar technique as Corollary 6. The proof is
presented in Appendix A.

Corollary 12: F1 (Z(p), D, T ) = min{D (Z(p), T ) , D} ·
C (Z(p), t∗(T )) = C (Z(p), PSt∗(T )(Z(p), D)

)
and this

value is obtained by PSt∗(T ) (Z(p), D) with parameter
α∗ (p, t∗(T )).

The solution for the Z channel can be obtained by finding
the value of t∗(T ) and α∗(p, t∗(T )). We could not solve this
explicitly, however we present some computational results.
By the partial derivative of C (Z(p, α), t) with respect to α,
we get that given p and t, α∗(p, t) is a root of the following
function4

f(p, t) = (1 − p)(1 − pt) log((1 − α)(1 − pt))
+(2pt − 1 − pt+1) log(1 − (1 − α)(1 − pt))
+(1 − p)h(pt).

In Fig. 1 we present plots of the normalized capacity
C(Z(p), t) for t ∈ {−1, 1, 2, 3, 4}. The x-axis is p, and
each plot represents the value of C(Z(p), t) for a specific t.
We also add the plot of the function 1−p to compare between
C(Z(p), t) and 1 − p which is the maximum normalized
capacity for the BSC(p) and the BEC(p). We note that 1− p
is smaller than C(Z(p), t) for almost all values of t. Following
these computational results, we conjecture that C (Z(p), t) ≤
C (Z(p), t + 1) for all t ≥ 0, and thus t∗(T ) = T and
F1 (Z(p), D, T ) = min{D,D (Z(p), T )} · C (Z(p), T ) .

VI. DIFFERENT ERROR PROBABILITIES

In this section we generalize the programming model we
have studied so far. We no longer assume that there is only a
single channel which mimics the cell programming attempts,
but each programming attempt has its own channel. We study
and formulate this generalization only for the BSC and the

4All logarithms in this paper are taken according to base 2.
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Fig. 1. The normalized capacity of Z(p) using PSt for some values of t,
comparing to 1 − p, the maximum normalized capacity of the BSC(p) and
the BEC(p).

BEC, however modifications for other channels can be handled
similarly.

For the rest of this section, we refer to the channel W
as either BSC(p) or BEC(p). We assume that it is possible
to reprogram the cells, however the error probabilities on
different programming attempts may be different. For example,
for hard cells in flash memories [23], [30], i.e., cells that
their programming is more difficult, if the first attempt of a
cell programming has failed, then the probability for failure
on the second trial may be larger since the cell is hard to
be programmed. In other cases, the error probability in the
next attempt may be smaller since the previous trials might
increase the success probability of the subsequent program-
ming attempts. The phenomenon of hard cells can be modeled
by the idea of uncertainty in the parameters of the cells [34].
However, there are some cases, e.g., when the hardness of the
cells is known, that are captured by the model of different
error probabilities.

Let P = (p1, p2, . . . ) = (pi)∞i=1 be a sequence of probabili-
ties, where pt is the error probability on the t-th programming
attempt. We model the programming process as a transmission
over the channel sequence, W (P) = W (pi)∞i=1, where on the
t-th trial, the programming is modeled as transmission over
the channel W (pt). That is, all the channels in W (P) have the
same type of errors, but may have different error probabilities.
Recall that for the BSC we assume that 0 ≤ pi ≤ 1/2 for all
i ≥ 1, while for the BEC, 0 ≤ pi < 1.

For t ≥ −1 and a channel sequence W (P), we denote by
D(W (P), t) the average delay of the programming scheme
PSt, which is the expected number of times to program a
cell when the programming process is modeled by W (P).
For example, for the BSC (see Lemma 14),

D(BSC(P), t) =
t−1∑
i=0

⎛⎝ i∏
j=1

pj

⎞⎠ .

When a cell is programmed according to a programming
scheme PSt, we can model this process as transmission over

the channels sequence W (pi)t
i=1, and an error occurs if and

only if there is an error in each one of the t channels. Define
Qi = Πi

j=1pj for i ≥ 1. Then, for t ≥ 1, Qt is the probability
of a programming failure when using PSt, and hence the
capacity C(W (P), t) is defined to be C(W (Qt)). For example,
for W = BSC and t ≥ 1, C(BSC(P), t) = C(BSC(Qt)) =
1 − h(Qt).

We focus on the set PT of the programming schemes
that was defined in (1). It can be readily verified that the
average delay of a programming scheme PS ∈ PT , PS =
PS ((β1, t1), . . . , (β�, t�)), over the channel sequence W (P)
is given by

D(W (P), PS) =
�∑

i=1

βiD(W (P), ti),

and the definition of the capacity is extended as follows

C(W (P), PS) =
�∑

i=1

βiC(W (P), ti).

We are now ready to formally define the problem we study
in this section.

Problem 13 (- Different Probabilities): Given a sequence
of probabilities P with a channel W ∈ {BSC, BEC},
an average delay D, and a maximum delay T , find a pro-
gramming scheme PS ∈ PT , which maximizes the capacity
C(W (P), PS), under the constraint that D(W (P), PS) ≤ D.
In particular, find the value of

F2(W (P), D, T ) � sup
PS∈PT :D(W (P),PS)≤D

{C(W (P), PS)}.
We note that the results presented in Section III regarding

Problem 1 can be derived from the solutions for Problem 13
presented in this section by substituting pi = p for all i ≥ 1.

For P = (p1, p2, . . .) and Qi � Πi
j=1pj , define Yt �∑t−1

i=1 Qi for t ≥ 1 (Y1 = 0), and Y−1 �
∑∞

i=1 Qi. The next
lemma establishes the basic properties on the average delay
and the capacity of these channels.

Lemma 14: For the programming scheme PSt, and P =
(p1, p2, . . .), the following properties hold:

1) For t ≥ 1, C(BSC(P), t) = 1 − h(Qt),
2) For t ≥ 1, C(BEC(P), t) = 1 − Qt,
3) For t �=0, D(P, t) �D(BSC(P), t) =D(BEC(P), t) =

1+Yt,
Proof: Note that Qt is the probability of an error in the

first t attempts. Using the known capacities of the BSC and
the BEC, we get the values for the capacities in cases 1 and 2.

The average delay of the programming scheme PSt over the
channel sequence BSC(P) or BEC(P), which we denoted by
D(W (P), t), is calculated as follows. Let qi be the probability
that a cell is programmed at least i times. Note that for 1 < i <
t, qi = Qi−1 and q1 = 1 for both cases. Then, we conclude
that for t ≥ 1,

D(W (P), t) =
t∑

i=1

qi = 1 +
t−1∑
i=1

Qi = 1 + Yt,

and D(W (P),−1) =
∑∞

i=1 qi = 1 +
∑∞

i=1 Qi = 1 + Y−1.
�
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For this generalization of the problem, given a programming
scheme PS ∈ PT , the programming scheme PS(W, D) and
the normalized capacity are defined in a similar way as in the
original definitions in Equations (2) and (3), respectively. The
following proposition is a generalization of Proposition 3.

Proposition 15: Given a channel sequence W (P) denoted
in short by W , an average delay D, and a programming
scheme PS, the following holds,

C (W, PS(W, D)) = min{D,D(W (, PS)} · C(W, PS).
Next we study the relation between C (W (P), t) and

C (W (P), t + 1) both for the BSC and the BEC and for
arbitrary sequence of probabilities P.

Theorem 16: For t ≥ 1, and P = (p1, p2, . . .) such that for
all i, 0 ≤ pi ≤ 1/2, it holds that

C (BSC(P), t) ≤ C (BSC(P), t + 1) .
Proof: First we state that for all 0 ≤ x, p ≤ 1/2 it holds

that

(1 − h(x))(1 + x) ≤ 1 − h(x/2) ≤ 1 − h(xp). (4)

Now, we want to prove that

1 − h(Qt)
1 + Yt

= C (BSC(P), t)

≤ C (BSC(P), t + 1) =
1 − h(Qt+1)

1 + Yt+1
.

This is equivalent to proving that

1 − h(Qt) · 1 + Yt+1

1 + Yt
≤ 1 − h(Qt+1),

or

1 − h(Qt) · 1 + Yt + Qt

1 + Yt
≤ 1 − h(pt+1Qt),

which holds if and only if

1 − h(Qt) ·
(

1 +
Qt

1 + Yt

)
≤ 1 − h(pt+1Qt).

But,

Qt

1 + Yt
≤ Qt

and by substituting x = Qt and p = pt+1 in Inequality (4) we
conclude that

(1 − h(Qt)) ·
(

1 +
Qt

1 + Yt

)
≤ (1 − h(Qt)) · (1 + Qt)

≤ (1 − h(pt+1Qt)),

and therefore

C (BSC(P), t) ≤ C (BSC(P), t + 1) ,

as required. �
By Theorem 16 we conclude the following corollary,

whose proof is similar to the proof of Corollary 6, using
Proposition 15.

Corollary 17: For a channel sequence W = BSC(P) the
solution for Problem 13 is F2(W, D, T ) = C (W, PST (W, D))
and it is obtained by the programming scheme PST (W, D).

In the rest of this section, we solve a special case for
BEC(P).

Theorem 18: For a sequence of probabilities P =
(p1, p2, . . .), for all t ≥ 1,

C (BEC(P), t) ≤ C (BEC(P), t + 1) ,

if and only if

pt+1 ≤ Yt+1

Yt + 1
.

Proof: According to Lemma 14, the following relation
holds

1 − Qt

1 + Yt
= C (BEC(P), t)

≤ C (BEC(P), t + 1) =
1 − Qt+1

1 + Yt+1
,

if and only if

(1 − Qt) · (1 + Yt+1) ≤ (1 − Qt+1) · (1 + Yt).

This holds if and only if

−Qt − QtYt+1 + Yt+1 ≤ −Qt+1 − Qt+1Yt + Yt

or

Yt+1 − Qt − Yt − QtYt+1 ≤ −Qt+1 − Qt+1Yt,

which translates to

−QtYt+1 + Qt+1 + Qt+1Yt ≤ 0,

and

Qtpt+1(1 + Yt) ≤ QtYt+1,

and finally

pt+1 ≤ Yt+1

(1 + Yt)
.

�
Theorem 19: Let P = (p1, p2, . . .) be a sequence of prob-

abilities such that 1 > p1 ≥ p2 ≥ p3 · · · . Then, for all t ≥ 1,

C (BEC(P), t) ≤ C (BEC(P), t + 1) .
Proof: According to Theorem 18

C (BEC(P), t) ≤ C (BEC(P), t + 1)

if and only if

pt+1 ≤ Yt+1

(1 + Yt)
or

pt+1 (1 + Yt) ≤ Yt+1

and by the definition of Yt

pt+1 + pt+1

(
t−1∑
i=1

Qi

)
≤

t∑
i=1

Qi

and thus

pt+1 + pt+1

(
t−1∑
i=1

Qi

)
−

t∑
i=1

Qi ≤ 0.
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By the definition of Qi and since p1 ≥ p2 ≥ p3 · · · we have
that

pt+1

(
t−1∑
i=1

Qi

)
≤ pt

(
t−1∑
i=1

Qi

)
≤

t∑
i=2

Qi,

and by pt+1 ≤ p1 = Q1 we conclude that

pt+1 + pt+1

(
t−1∑
i=1

Qi

)
−

t∑
i=1

Qi ≤ 0,

as required. �
By Theorem 19 we can finally conclude with the following

corollary.
Corollary 20: For a channel sequence W = BEC(P)

where P = (p1, p2, . . .) such that 1 > p1 ≥ p2 ≥ p3 · · · , the
solution for Problem 13 is F2(W, D, T ) = C (W, PST (W, D))
and it is obtained by the programming scheme
PST (W, D).

VII. COMBINED PROGRAMMING SCHEMES FOR

THE BSC AND THE BEC

In this section, we study programming schemes for the BSC,
in which on the last programming attempt it is possible to
either try to reprogram the failed cell again with its value or
instead program it with a special question mark to indicate
a programming failure. This model is motivated by several
applications. For example, when synthesizing DNA strands,
if the attachment of the next base to the strand fails on multiple
attempts, it is possible to attach instead a different molecule to
indicate this base attachment failure [16]. In flash memories
we assume that if some cell cannot reach its correct value,
then it will be possible to program it to a different level (for
example a high voltage level that is usually not used) in order
to indicate a programming failure of the cell.

We denote by PSt,q the programming scheme in which on
the t-th programming attempt, which is the last one, the cell is
programmed without verification with probability q, and with
probability 1 − q it is programmed with the question mark
symbol ′?′.

Let p be the programming error probability, where pro-
gramming ′?′ is always successful. The average delay of
programming a cell with PSt,q over the BSC(p), denoted by
D(BSC(p), ti, qi), does not depend on q, and hence equals
to D(p, t). However the capacity is clearly influenced by the
parameter q.

The probability that a cell will be erroneous after t − 1
programming attempts is pt−1. Therefore, programming with
PSt,q over the BSC(p) can be represented by a channel with
the following transitions probabilities

p(y|x) =

⎧⎪⎨⎪⎩
pt−1(1 − q) if y =?
pt−1q(1 − p) + (1 − pt−1) if x = y

pt−1qp otherwise,

where x, y is the input, output bit of the channel,
respectively. Denote b = pt−1. The capacity of this

channel is [6, Porblem 7.13]

C(BSC(p), t, q) = (1 − b + bq)
(

1 − h

(
bpq

1 − b + bq

))
= 1 − b + bq

−(1 − b + bq) log(1 − b+bq)
+(1 − b + bq − bqp) log(1 − b+bq−bqp)

+bpq log(bpq),

where C(W, t, q) represents the capacity of channel W
using PSt,q.

Note that, C (BSC(p), t, 0) = 1 − pt−1, and
C (BSC(p), t, 1) = 1 − h(pt). For example, for t = 1,

C(BSC(p), 1, q) = q− q log(q)+ q(1 − p)log(q(1 − p))
+qp log(qp).

Let PS = PS ((β1, t1), (β2, t2), . . . , (β�, t�)) ∈ PT be a
programming scheme, and q = (q1, q2, . . . , q�) where 0 ≤
qi ≤ 1, for all 1 ≤ i ≤ �. Then, we define

C (BSC(p), PS, q) =
�∑

i=1

βi · C(BSC(p), ti, qi).

That is, C (BSC(p), PS, q) is the capacity of the BSC(p) when
using the programming scheme PS with the parameter q.
Similarly, we define the average delay of the programming
scheme PS for BSC(p) using the parameter q as

D (BSC(p), PS, q) =
�∑

i=1

βi · D(BSC(p), ti, qi).

Note that D (BSC(p), PS, q) = D (BSC(p), PS) .
For this model, Problem 1 will be formulated as follows.
Problem 21 (- The Combined Channel): Given the

BSC(p), an average delay D, and a maximum delay T , find
a programming scheme, PS ∈ PT , and q which maximize
the capacity C (BSC(p), PS, q), under the constraint that
D (BSC(p), PS, q) ≤ D. In particular, given BSC(p), D,
and T , find the value of

F3 (BSC(p), D, T )� sup
D(BSC(p),PS,q)}≤D

{C (BSC(p), PS, q)}.
For this generalization of the model, the programming

scheme PS(W, D) and the normalized capacity are defined
in a similar way as in the original definitions in Equations (2)
and (3), respectively.

Given p, t we define

Cm(BSC(p), t) = max
q∈[0,1]

{C(BSC(p), t, q)},

and the normalized capacity Cm(BSC(p), t) = Cm(BSC(p),t)
D(p,t) .

In the rest of this section we prove that the best scheme is
PST,1(W, D) or PST,0(W, D), i.e., the standard PST or the
new PST in which in the last attempt all the erroneous cells
are programmed with a question mark.

Lemma 22: Given p and t,

Cm(BSC(p), t) = max{C (BSC(p), t, 0) , C (BSC(p), t, 1)}.
Proof: If p = 0 then there are no errors, and the maximum

capacity is obtained for all q. Given 0 < p ≤ 1/2, if t = 1
then C(BSC(p), t, q) = q(1−h(p)) and the maximum value is

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:30:58 UTC from IEEE Xplore.  Restrictions apply. 



780 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 2, FEBRUARY 2022

obtained for q = 1. Otherwise, given p, t, such that 0 < p ≤
1/2 and 1 < t, we prove that the function C(BSC(p), t, q)
has no local maximum in the range of 0 < q < 1. We define
ft,p(q) = C(BSC(p), t, q) to be a function of q, and prove
that ft,p(q) has no local maximum in the range of 0 < q < 1.
This is accomplished by showing that the second derivative of
ft,p(q) = C(BSC(p), t, q) is positive in this range.

The first derivative is

∂ft,p(q)
∂q

= b(1 − p) log(1 − b + bq − bqp)

+bp log(bpq) − b log(1 − b + bq) + b,

and then the second derivative is

∂2ft,p(q)
∂q2

=
b2(1 − p)2

(1 − b + bq − bpq) ln 2

+
(bp)2

bpq ln 2
− b2

(1 − b + bq) ln 2
.

To show that ∂2ft,p(q)
∂q2 > 0, it is sufficient to prove that

(1 − p)2

1 − b + bq − bpq
+

p2

bpq
− 1

1 − b + bq
> 0.

We denote x1 = (1 − b + bq − bpq) and x2 = bpq Thus,
we want to prove that

(1 − p)2

x1
+

p2

x2
− 1

x1 + x2
> 0.

Note that x1 = 1 − b(1 − q(1 − p)) > 0 and x2 = bpq > 0
since 0 < b, p ≤ 1/2 and 0 < q < 1. Thus, it is sufficient to
prove that

(1 − p)2x2(x1 + x2) + p2x1(x1 + x2) − x1x2 > 0,

which holds if and only if

((1 − p)x2 − px1)2 > 0.

Lastly, the last equation holds since (1 − p)x2 = px1 implies
0 = p(1 − b) which is impossible since 0 < p ≤ 1/2, 1 < t,
and b = pt−1. �

The last lemma proved that for all p, t, the capacity
C(BSC(p), t, q) is achieved for q = 0 or for q = 1,
by comparing between C (BSC(p), t, 0) = 1 − pt−1 which is
obtained for PSt,0 (q = 0) and C (BSC(p), t, 1) = 1 − h(pt)
which is attained for PSt,1 (q = 1). Note that for q = 0,
the last programming actually provides a complete verification
for all the successful cells by substituting a question mark in
all the erroneous cells. On the other hand, for q = 1 in the
last programming all the failed cells are reprogrammed again.
The decision to use q = 0 or q = 1 is determined by some
threshold that depends on p and t, as will be described later
in this section.

Theorem 23: For all t ≥ 0,

Cm(BSC(p), t) ≤ Cm (BSC(p), t + 1)
Proof: By Lemma 22 Cn(BSC(p), t) =

max{C (BSC(p), t, 0) , C (BSC(p), t, 1)}. If Cm(BSC(p), t)
is obtained for q = 1, then the claim is implied by
Theorem 5. Otherwise, Cm(BSC(p), t) = (1−p)(1−pt−1)

1−pt and

Fig. 2. The tp graph.

Cm (BSC(p), t + 1) ≥ (1−p)(1−pt)
1−pt+1 . Then, the claim is true

since p ≤ 1/2 implies 1−pt

1−pt+1 ≥ 1−pt−1

1−pt . �
By applying the same technique as in the proof of Corol-

lary 6 with using Lemma 22 and Theorem 23 we solve
Problem 1 for the new model.

Corollary 24: Denote by D̂ = min{D(p, T ), D}. Then, the
solution for Problem 21 is F3(BSC(p), D, T ) = �D

D(p,T ) ·
max{1 − h(pt), 1 − pt−1}, which is obtained by PST,1(D)
or PST,0(D).

For each p we denote by tp the smallest value of t, such that
h(pt) ≥ pt−1 (tp may be a noninteger). Since h(px) ≥ ph(x)
for 0 ≤ x, p ≤ 1/2, we conclude that for each t ≥ tp it holds
that h(pt) ≥ pt−1. Thus, for a given p, t ≥ tp if and only if
C (BSC(p), t, 0) = 1 − pt−1 ≥ 1 − h(pt) = C (BSC(p), t, 1).
Let T be the last attempt to program. If T ≥ tp then in
the T -th attempt all the failed cells will be programmed with
question marks. Otherwise, they will be reprogrammed with
their value (without verification). In Fig. 2 the tp values are
presented in a graph, where the horizontal axis is p and the
vertical axis is t. The graph line is f(p) = tp.

VIII. CONCLUSION

In this paper we studied a model which describes the process
of cell programming in memories. We focused on the case
where the programming is modeled by a discrete-input mem-
oryless symmetric channel or by the Z channel, and accord-
ingly, we designed programming schemes that maximize the
number of information bits that can be reliably stored in the
memory, while the average and maximum numbers of times
to program a cell are constrained. While this work established
several interesting observations on the programming strategies
in memories and transmission schemes, there are still several
questions that remain open. In particular, the generalization of
this model to multilevel cells, and to a setup in which the cells
are programmed in parallel.
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In addition, the paper contains results regarding channels
which have monotonic non-decreasing normalized capacity,
which means that normalized capacity increases as the number
of iterations increases. An interesting study is to find neces-
sary conditions on channels for having the monotonic non-
increasing property. Additionally, generalizing the results in
Sections VI and VII for some types of channels by using the
technique that was proposed in Section IV is an interesting
direction for future work.

APPENDIX A

In this part we present the omitted proofs in the paper.
Corollary 25: 12 F1(Z(p), D, T ) = min{D(Z(p), T ), D}·

C(Z(p), t∗(T )) = C(Z(p), PSt∗(T )(Z(p), D)) obtained by
PSt∗(T )(Z(p), D) with parameter α∗(p, t∗(T )).

Proof: Let PS = PS ((β1, t1), . . . , (β�, t�)) ∈ PT be a
programming scheme which meets the constraint D with the
parameter α = (α1, . . . , αt). Thus, we have

C (Z(p, α), PS) =
�∑

i=1

βi · C (Z(p, αi), ti)

=
(1)

�∑
i=1

βi · D (Z(p, αi), ti) · C (Z(p, αi), ti)

≤
(2)

�∑
i=1

βi · D (Z(p, αi), ti) · C (Z(p), t∗(T ))

= C (Z(p), t∗(T ))
�∑

i=1

βi · D (Z(p, αi), ti)

≤
(3)

C (Z(p), t∗(T )) · D

where (1) is by the definition of the normalized capacity,
(2) is by t∗(T ) and C (Z(p), t∗(T )) definitions, and (3)
is since PS meets the average delay constraint D with
parameter α. �
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