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Abstract—A private information retrieval (PIR) protocol guar-
antees that a user can privately retrieve files stored in a
database without revealing any information about the identity
of the requested file. Existing information-theoretic PIR proto-
cols ensure perfect privacy, i.e., zero information leakage to the
servers storing the database, but at the cost of high download.
In this work, we present weakly-private information retrieval
(WPIR) schemes that trade off perfect privacy to improve the
download cost when the database is stored on a single server. We
study the tradeoff between the download cost and information
leakage in terms of mutual information (MI) and maximal leak-
age (MaxL) privacy metrics. By relating the WPIR problem to
rate-distortion theory, the download-leakage function, which is
defined as the minimum required download cost of all single-
server WPIR schemes for a given level of information leakage and
a fixed file size, is introduced. By characterizing the download-
leakage function for the MI and MaxL metrics, the capacity of
single-server WPIR is fully described.

Index Terms—Private information retrieval, capacity,
information-theoretic privacy, information leakage, single server.

I. INTRODUCTION

USER privacy is becoming increasingly important both
socially and politically in today’s modern age of

information (as demonstrated, for instance, by the European
Union’s General Data Protection Regulation). In this con-
text, private information retrieval (PIR), introduced by
Chor et al. [1], has gained traction in the information theory
community. In PIR, a user can retrieve a file from a database
without revealing the identity of the file to the servers storing
it. From an information-theoretic perspective, the file size is
typically much larger than the size of the queries to all servers.
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Therefore rather than accounting for both the upload and the
download cost, as is usually done in the computer science
community, here efficiency is measured in terms of the down-
load cost. More precisely, efficiency is measured in terms of
PIR rate, which is the ratio between the requested file size and
the total number of symbols downloaded. The supremum of
the PIR rate over all possible schemes and over all file sizes
is called the PIR capacity.

PIR was first addressed in the information theory literature
by Shah et al. [2], while the tradeoff between storage overhead
and PIR rate was first considered in [3]. Shortly after, Sun and
Jafar [4] characterized the PIR capacity for the classical PIR
model of replicated servers. Since then the concept of PIR has
been extended to several relevant scenarios: maximum distance
separable (MDS) coded servers [5], [6], arbitrary linear coded
servers [7]–[9], colluding servers [5], [7], [9]–[13], robust
PIR [10], PIR with Byzantine servers [14], optimal upload
cost of PIR, i.e., the smallest query information required to be
sent to the servers [15], access complexity of PIR, i.e., the total
number of symbols needed to be accessed across all servers in
order to privately retrieve an arbitrary file [16], single-server
PIR with side information [17], [18], PIR on graph-based
replication systems [19], PIR with secure storage [20], [21],
functional PIR codes [22], and private proximity retrieval
codes [23].

Weakly-private information retrieval (WPIR) [24]–[26] is an
interesting extension of the original PIR problem as it allows
for improvements in the download cost at the expense of
some information leakage to the servers on the identity of the
requested file.1 In particular, [24] considers the multi-server
case with mutual information (MI) and worst-case information
leakage [30] as privacy metrics, while [26] includes results
for the maximum leakage (MaxL) privacy metric as well as
converse bounds. In [25], Samy et al., under the name of
leaky PIR, consider a privacy metric related to differential pri-
vacy [31], [32] for the multi-server case. The multi-server case
under the MaxL privacy metric has also been recently studied
by Zhou et al. [33].

1On a related note, relaxing the requirement of perfect secrecy has been
considered in the information theory literature in different contexts. For
instance, in network coding, the term weakly secure is used when perfect
security is only guaranteed for a subset of the messages multicasted from
a source node [27], [28]. On the other hand, weak security in the context
of secure communications refers to asymptotic per-symbol zero information
leakage [29].
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In the computer science literature, to the best of our knowl-
edge, there are only a few works that have considered relaxing
the perfect privacy requirement of PIR in order to improve
performance. In the first work [34], which appeared almost
two decades ago, the perfect privacy condition was relaxed
by introducing the concept of repudiation. A protocol assures
the repudiation property if the probability of all designed
queries to retrieve any file stored in the database is strictly
smaller than one. Hence, the user can deny any claim about
the identity of the desired file by the server. However, the
condition of repudiation can be achieved even if the server
can determine the identity of the requested file almost surely,
and thus, it does not provide a good level of information-
theoretic privacy. More recently, Toledo et al. [35] adopted
a privacy metric based on differential privacy in order to
enhance the efficiency of PIR by lowering the level of pri-
vacy. Moreover, both works did not study any fundamental
information-theoretic tradeoffs between information leakage
and different costs under the considered privacy metrics.
In contrast to WPIR, where the information leakage to the
servers is considered, recently, the authors of [36] studied
the information leakage of the nondesired files to the user in
PIR systems. Furthermore, along the same lines of research,
leaky PIR was extended to the symmetric PIR setting in [37].
Symmetric PIR is a variant of PIR where in addition to
the privacy request, the user cannot learn anything about
the remaining files in the database when the user retrieves
its desired file [38]. In [37], the symmetric PIR require-
ment of zero information leakage on the nondesired files as
well as the perfect privacy requirement on the identity of
the requested file are both relaxed in order to improve the
download rate.

In distributed storage systems (DSSs), for several appli-
cations, it is more realistic to assume that all servers can
collude. In the single server scenario, it can be shown that
all files stored in the database need to be downloaded to
guarantee perfect privacy [39]. This implies that the PIR rate
tends to zero as the number of stored files increases. In [17],
the authors introduce PIR schemes that improve the down-
load cost by leveraging on the assumption that the user has
some prior side information on the content of the database.
Two cases are considered, namely whether or not the pri-
vacy of the side information needs to be preserved. Lastly,
latent-variable PIR for the single server setting was intro-
duced in [40]. The goal of latent-variable PIR is to completely
hide the latent attributes induced by the requested file identity.
The latent-variable PIR framework can be seen as a vari-
ant of WPIR as no leakage on the latent attributes can be
achieved even if parts of the identity of the requested file are
leaked.

In this article, we relax the condition of perfect privacy
in the single server setting. In similar lines to [24], we show
that by relaxing the perfect privacy requirement, the download
cost can be improved. Like [26], we consider both the MI and
MaxL privacy metrics [41]–[43], where the latter is the most
robust information-theoretic metric for information leakage yet
known. In particular, we establish a connection between the
single-server WPIR problem and rate-distortion theory, which

provides fundamental insights to describe the optimal tradeoff
between the download cost and the allowed information leak-
age. The primary contribution of this work is to characterize
the capacity (defined as the inverse of the minimum download
cost over all possible schemes and over all file sizes) of single-
server WPIR when the information leakage to the server is
measured in terms of MI or MaxL. In this work, the minimum
achievable download cost for a given information leakage con-
straint and for an arbitrary fixed file size is determined, and
thus the WPIR capacity is derived. Especially, we propose
a simple novel single-server WPIR scheme that achieves the
WPIR capacity for both the MI and MaxL privacy metrics.
Finally, we remark here that also the notion of differential pri-
vacy can be adapted to our setting, e.g., the local differential
privacy metric [44], [45]. However, since the local differential
privacy metric normally provides stronger privacy guarantees
than the MI or MaxL metrics, it can readily be shown that it
is not possible to further lower the download cost in the sin-
gle server scenario. This is in contrast to the case of multiple
servers [25].

The remainder of this article is structured as follows.
Section II presents the notation, definitions, and the problem
formulation. In Section III, we introduce the download-leakage
function of single-server WPIR, which is defined as the
minimum achievable download cost for a given information
leakage constraint and for an arbitrary file size. Moreover,
we discuss some properties of the function when the leak-
age is measured in terms of the MI or MaxL metrics. In
Section IV-A, a basic solution for single-server WPIR is
presented in which the file indices are partitioned into several
partitions. In Section IV-B, we give a closed-form expression
for the single-server WPIR capacity for both the MI and MaxL
metrics. A capacity-achieving WPIR scheme is proposed in
Section V. The converse result on the minimum download
cost for the MI metric is provided in Section VI, while that of
the MaxL metric is given in Section VII. Finally, Section VIII
concludes this article.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Notation

We denote by N the set of all positive integers, [a] �
{1, 2, . . . , a}, and [a : b] � {a, a+1, . . . , b} for a, b ∈ {0}∪N

and a ≤ b. The set of nonnegative real numbers is denoted by
R+. Vectors are denoted by bold letters, matrices by sans serif
capital letters, and sets by calligraphic uppercase letters, e.g.,
x, X, and X , respectively. In general, vectors are represented
as row vectors throughout this article. We use uppercase let-
ters for random variables (RVs) (either scalar or vector), e.g.,
X or X. For a given index set S , we write XS to represent
{X(m) : m ∈ S}. X ⊥⊥ Y means that the two RVs X and Y
are independent. (·)T denotes the transpose of its argument.
The Hamming weight of a vector x is denoted by wH(x),
while its support will be denoted by χ(x). EX[·] and EPX [·]
denote expectation with respect to the RV X and distribution
PX , respectively. H(X), H(PX), or H

(
p1, . . . , p|X |

)
represents

the entropy of X, where PX(·) = (p1, . . . , p|X |) denotes the
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distribution of the RV X. I(X ;Y) denotes the MI between X
and Y .

B. System Model

We consider a single server that stores M independent
files X(1), . . . , X(M), where each file X(m) = (X(m)

1 , . . . , X(m)
β ),

m ∈ [M], is represented as a length-β row vector over
X . Assume that each element of X(m) is chosen indepen-
dently and uniformly at random from X . Thus, we have
H
(
X(m)

) = β log2 |X | bits, ∀ m ∈ [M]. A user wishes to effi-
ciently retrieve X(M) by allowing some information leakage to
the server, where the requested file index M is assumed to be
uniformly distributed over [M].2 Similar to the detailed math-
ematical description in [24], we give the following definition
for a single-server WPIR scheme.

Definition 1: An M-file WPIR scheme C for a single server
storing M files consists of:

• A random strategy S with alphabet S , which is privately
designed by the user.

• A query function

φ : {1, . . . , M} × S → Q
that generates a query Q = φ(M, S) with alphabet Q, and
induces a conditional probability mass function (PMF)
PQ|M . The query Q is sent to the server to retrieve the
M-th file.

• An answer function

ϕ : Q × X βM → AβL

that returns the answer A = ϕ
(
Q, X[M]) back to the user,

with download symbol alphabet A. Here, L = L(Q) is the
normalized length of the answer, which is a function of
the query Q.3 More specifically, given a query realization
Q = q, L(q) can be seen as the codeword length of a code
that encodes the files X[M], which is independent of the
particular realization of the files.4

• A privacy leakage metric ρ(·)(PQ|M) ≥ 0, which is
defined as a function of PQ|M , that measures the amount
of leaked information of the identity of the requested file
to the server by observing the generated query Q, where
the superscript “(·)” indicates the used metric.

Furthermore, the scheme should allow a user to retrieve the
requested file from the answer, the query, the index of the
requested file, and the random strategy. In other words, this
scheme must satisfy the condition of perfect retrievability,

H
(

X(M)
∣
∣A, Q, M, S

)
= 0. (1)

2Note that the requested file index M does not necessarily need to be uni-
formly distributed, which is referred to as semantic PIR in the literature [46].

3Note that in this work, the performance metric we focus on is the nor-
malized download cost (see (4) later). Hence, without loss of generality, we
define the answer-length in a normalized manner.

4From a source coding perspective, the files/sources are encoded by a fixed-
length code, i.e., L(q) is independent of the realization of the files, reflecting
the fact that the files are independent and identically distributed (i.i.d.) accord-
ing to a uniform distribution. As opposed to a variable-length code, for a
fixed-length code all codewords are of equal length. Note that this setup
follows the problem formulation in the PIR literature, see [15].

We remark that a PIR scheme corresponds to a WPIR
scheme for which no information leakage is allowed.

C. Metrics of Information Leakage

Given a single-server M-file WPIR scheme and a fixed dis-
tribution PM , the conditional PMF of the query given the index
M of the requested file, PQ|M , can be seen as a privacy mecha-
nism (a randomized mapping). The server receives the random
outcome Q of the privacy mechanism PQ|M , and is curious
about the index M of the requested file. The information leak-
age of a WPIR scheme is then measured with respect to its
corresponding privacy mechanism PQ|M .

In this article, we focus on two commonly-used information-
theoretic measures, namely MI and MaxL. For the former, the
information leakage is quantified by

ρ(MI)(PQ|M
)
� I(M ;Q). (2)

The second privacy metric, MaxL, which is introduced
in [42], [43], is quantified by

ρ(MaxL)
(
PQ|M

)
� MaxL(M ;Q)

= log2

∑

q∈Q
max

m∈[M]
PQ|M(q|m). (3)

We remark that MaxL can also be defined based on the min-
entropy (MinE) information leakage I∞(M ;Q) for the privacy
mechanism PQ|M , where

I∞(M ;Q) � H∞(M) − H∞(M|Q)

and H∞(M) denotes the MinE measure that is widely dis-
cussed in the computer science literature, see [41]. On the
other hand, the authors in [43] proposed the equivalent
definition

MaxL(M ;Q) � sup
X�−−M�−−Q�−−X̂

log2
Pr [X = X̂]

maxx∈X PX(x)

of MaxL, where the supremum is taken over all possible X
and X̂ taking values in the same finite, but arbitrary alphabet
X , and the notation X �−− M �−− Q �−− X̂ means that
the RVs X, M, Q, and X̂ form a Markov chain from left to
right. Note that if MaxL(M ;Q) = ρ bits, the above definition
indicates that for any possible randomized function X of M,
the maximum probability of correctly guessing X based on Q
is bounded from above by the product of 2ρ and the maximum
probability of guessing X with no observation.

It is worth mentioning that since we assume that M is
uniformly distributed, the MinE information leakage and the
MaxL privacy metric can be shown to be equivalent, i.e.,
MaxL(M ;Q) = I∞(M ;Q) [42, Th. 1], [43, Th. 1]. It is also
worth mentioning that there is a relation between MaxL and
differential privacy, see [42, Th. 3].

The following lemma summarizes some useful properties
for both the MI and MaxL privacy metrics.

Lemma 1 (Data Processing Inequalities [43, Lemma 1,
Corollary 1]): For any joint distribution PX,Y ,
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1) if the RVs X, Y , and Z form a Markov chain, then

I(X ;Z) ≤ min{I(X ;Y), I(Y ;Z)}, and

MaxL(X ;Z) ≤ min{ MaxL(X ;Y), MaxL(Y ;Z)}.
2) Consider a fixed distribution PX . Then, both I(X ;Y) and

2 MaxL(X ;Y) are convex functions in PY|X .
Throughout this article, the information leakage metric of

a WPIR scheme C is denoted by ρ(·)(C ). Moreover, since
ρ(·) is defined with a single argument of PQ|M , we will also
simply write the corresponding MI and MaxL metrics as a
function of PQ|M , i.e., I(PQ|M) = I(M ;Q) and MaxL(PQ|M) =
MaxL(M ;Q).

D. Download Cost and Rate for a Single-Server WPIR
Scheme

From the perfect privacy requirement of PIR, the server
should not be able to differentiate the returned answers (e.g.,
by looking at their sizes) no matter which file index is
requested. However, in contrast to PIR, the download cost
for WPIR may be different for the retrieval of different files.
Hence, the download cost is defined as the expected download
cost over all possible requested files. The download cost of a
single-server WPIR scheme C for the retrieval of the m-th file,
denoted by D(m)(C ), is defined as the normalized expected
length of the returned answer over all random queries,

D(m)(C ) �
log2 |A| EPQ|M=m

[
L(Q)

]

log2 |X | ,

and the overall download cost, denoted by D(C ), is measured
in terms of the normalized expected download cost over all
files, i.e.,

D(C ) �
log2 |A| EPM

[
EPQ|M

[
L(Q)

]]

log2 |X |
= γ EM,Q

[
L(Q)

]
, (4)

where γ � log2 |A|/log2 |X |. We remark that in general the sizes
of the download symbol and file symbol alphabets can be dif-
ferent. However, for simplicity, we assume γ = 1 throughout
this article as the value of γ does not affect the general-
ity of the results. Accordingly, the WPIR rate is defined as
R(C ) � D(C )−1.

Intuitively, a smaller download cost can be achieved if we
allow a higher level of information leakage. In this article, our
goal is to characterize the optimal tradeoff between the down-
load cost and the allowed information leakage with respect to
a privacy metric. We start with the following definition of an
achievable download-leakage pair.

Definition 2: Consider a single server that stores M files.
A download-leakage pair (D, �) is said to be achievable in
terms of the information leakage metric ρ(·) if there exists a
WPIR scheme C such that EM,Q

[
L(Q)

] ≤ D and ρ(·)(C ) ≤
�. The download-leakage region is the set of all achievable
download-leakage pairs (D, �).

Remark 1: By Definition 2, it is clear that if the pair (D, �)

is achievable, then the pair (D′, �′) with D′ ≥ D and �′ ≥ �

is also achievable.

III. CHARACTERIZATION OF THE OPTIMAL

DOWNLOAD-LEAKAGE TRADEOFF

Consider the single-server WPIR problem with an arbitrary
file size β, where the leakage is measured by ρ(MI) or ρ(MaxL).
The minimum achievable download cost for a given leakage
constraint � can be formulated as the optimization problem

minimize EPMPQ|M
[
L(Q)

]
(5a)

subject to {L(q)}q∈Q ⊆ Lret, (5b)

ρ(·)(PQ|M
) ≤ � (5c)

over the query function φ(·) and the answer function ϕ(·) from
Definition 1, where Lret is defined as the set of the codeword
lengths of all possible fixed-length codes that satisfy (1). In
this way, it involves the query function, the answer generating
function, and the decoding function from Definition 1. For
brevity, the explicit query and answer function constraints are
omitted as Lret implicitly involves these functions. We recall
Definition 1 here that given a query realization Q = q, L(q)

can be seen as the codeword length of a fixed-length code
that encodes the files and satisfies the lossless property in (1).
Note again that the fixed-length assumption for the code, or
equivalently that L(q) is independent of the specific realization
of the files, reflects the fact that the files are i.i.d. according
to a uniform distribution. Finally, we remark that since PM is
assumed to be fixed, the minimization over PMPQ|M in (5) is
taken over the set of all conditional distributions PQ|M .

A. Download-Leakage Function for Single-Server WPIR

To characterize the optimal achievable pairs of download
cost and information leakage, we define two functions that
describe the boundary of the download-leakage region.

Definition 3: For any file size β, the download-leakage
function D(·)(�) for single-server WPIR is the minimum of
all possible download costs D for a given information leakage
constraint � such that (D, �) is achievable, i.e.,

D(·)(�) � min
{L(q)}q∈Q⊆Lret, PQ|M :ρ(·)(PQ|M)≤�

EPMPQ|M
[
L(Q)

]
.

Following the notion of information-theoretic PIR capacity
in the literature, we define the single-server WPIR capacity as
the supremum of the inverse of all download-leakage functions
over all possible values of β as follows.

Definition 4: The single-server WPIR capacity is defined as
C(·)(�) = maxβ∈N

{[
D(·)(�)

]−1}.
We remark here that the optimality results for the download-

leakage functions in Sections VI and VII hold for any fixed
file size β, since the solutions of the convex optimization
problem formulations are independent of β, which indicates
C(·)(�) = [

D(·)(�)
]−1 for any file size β. This also implies

that increasing the file size does not further improve the
performance. Note that it is known from the original work of
Chor et al. [39] that the single-server PIR capacity is CM = 1

M .
We assume throughout the rest of this article that the perfect

retrievability condition in (5b) holds. Hence, for convenience,
we will sometimes drop the condition of (5b) in the download-
leakage optimization formulation.
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Naturally, we can also determine the optimal download-
leakage region by interchanging the roles of the download
cost and the information leakage.

Definition 5: For any file size β, the leakage-download
function ρ(·)(D) for single-server WPIR is the minimum of
all possible information leakages � for a given download cost
constraint D such that (D, �) is achievable.

Lemma 2:
1) For any file size β, the MI download-leakage function

D(MI)(�) = min
PQ|M : I(PQ|M)≤�

EPMPQ|M
[
L(Q)

]

is convex in �.
2) For any file size β, the MaxL download-leakage function

D(MaxL)(�) = min
PQ|M : MaxL(PQ|M)≤�

EPMPQ|M
[
L(Q)

]

is not a convex function, but D(MaxL)(log2(�)) is convex
in �.

Proof: We first prove the lemma for MI leak-
age. Assume that D(MI)(�1) = EPMPQ∗

1 |M
[
L(Q)

]
and

D(MI)(�2) = EPMPQ∗
2 |M
[
L(Q)

]
are achieved by the answer-

lengths and conditional distributions
({L(q)}q∈Q∗

1
, PQ∗

1|M
)

and({L(q)}q∈Q∗
2
, PQ∗

2|M
)
, respectively, where I

(
M ;Q∗

1

) ≤ �1 and
I
(
M ;Q∗

2

) ≤ �2. Let PQλ|M be the distribution

PQλ|M = (1 − λ)PQ∗
1|M + λPQ∗

2|M,

defined over Qλ � {(i, qi):qi ∈ Qi, i = 1, 2}. It can be seen
that {L(q)}q∈Qλ

⊆ Lret.
Observe that since I(M ;Q) is convex in PQ|M , it follows that

I
(
(1 − λ)PQ∗

1|M + λPQ∗
2|M
) ≤ (1 − λ) I(PQ∗

1|M) + λ I(PQ∗
2|M) ≤

(1 − λ)�1 + λ�2, which implies that PQλ|M is an element of{
PQ|M: I(PQ|M) ≤ (1 − λ)�1 + λ�2

}
.

Thus, by definition we get

D(MI)((1 − λ)�1 + λ�2)

= min
PQ|M : I(PQ|M)≤(1−λ)�1+λ�2

EPMPQ|M
[
L(Q)

]

≤ EPMPQλ|M
[
L(Q)

]

(a)= (1 − λ) EPMPQ∗
1 |M
[
L(Q)

]+ λ EPMPQ∗
2 |M
[
L(Q)

]

= (1 − λ)D(MI)(�1) + λD(MI)(�2),

where (a) follows directly from the definition of PQλ|M . This
shows that D(MI)(�) is convex in � for the MI metric. The
proof for the MaxL metric is analogous, since 2 MaxL(PQ|M) is
convex in PQ|M .

From Remark 1 we can see that the convexity of the
download-leakage function is very useful, since it can help
to describe the download-leakage region if some achievable
pairs are known. This observation can be summarized in the
following corollary.

Corollary 1: Assume that both pairs (D1, �1) and (D2, �2)

are achievable. Then, for any λ ∈ [0, 1], the pair (Dλ =
(1 − λ)D1 + λD2, �λ = (1 − λ)�1 + λ�2) is achievable under
MI leakage, while the pair (Dλ = (1 − λ)D1 + λD2, �λ =
log2 [(1 − λ)2�1 + λ2�2 ]) is achievable for MaxL.

B. Connection to Rate-Distortion Theory

The celebrated rate-distortion theory of Shannon and
Kolmogorov (see [47, Ch. 9], [48, Ch. 10], and references
therein) determines the minimum source compression rate
required to reproduce any source sequence under a fidelity
constraint, which is provided through a distortion measure
between the source sequence and the reconstructed sequence.
Consider an information source sequence with i.i.d. com-
ponents according to PX and a distortion measure d(x, x̂)

between the source sequence x and the reconstructed sequence
x̂. The optimal rate-distortion region is characterized by the
rate-distortion function, defined as the minimum achievable
compression rate I(X ; X̂) under a given constraint on the
average distortion EPXPX̂|X [d(X, X̂)], where X̂ represents the
reconstructed source.

One important observation from (4) is that, if we add the
desired file index m as an argument to the answer-length
function L by defining L(m, q) � L(q) for all m ∈ [M] for
which PQ|M(q|m) > 0, and L(m, q) � ∞ otherwise (i.e.,
an infinite length for a given m and query realization q indi-
cates that q is never sent when requesting the m-th file), then
the download cost can be expressed as EPMPQ|M

[
L(Q)

] =
EPMPQ|M

[
L(M, Q)

]
. Thus, in terms of the MI privacy metric,

the leakage-download function of a given WPIR scheme can
be related to the rate-distortion function, where the leakage
and the download cost play similar roles as the compression
rate and the average distortion, respectively. Below, we will
equivalently use either L(q) or L(m, q) (as defined above).
We defer the detailed discussion to Section VI where we will
utilize results from rate-distortion theory to characterize the
optimal leakage-download tradeoff for single-server WPIR.

IV. RESULTS

A. Partition WPIR Scheme

In [24], a WPIR scheme based on partitioning was proposed.
The set of all file indices, i.e., [M], is first privately pre-
partitioned into η equally-sized partitions by the user, each
consisting of Mη file indices, where Mη = M/η ∈ N. If there
exists a viable Mη-file WPIR scheme, the user can apply the
Mη-file WPIR scheme as a subscheme on each partition, and
retrieve a file from the corresponding partition.

The partition M-file WPIR scheme is formally described as
follows. Assume that the requested file X(m) belongs to the j-th
partition, where j ∈ [η]. Then, the query Q is constructed as

Q = (
Q̃, j

) ∈ Q̃ × [η], (6)

where Q̃ is the query of an existing Mη-file WPIR scheme.
The following theorem states the achievable download-

leakage pairs of the partition scheme.
Theorem 1: Consider a single server that stores M files

and let Mη = M/η ∈ N, η ∈ N. Assume that an Mη-
file WPIR scheme C̃ with achievable download-leakage pair
(D̃, �̃) exists. Then, the download-leakage pair

(
D(C ), ρ(·)(C )

)
= (

D̃, �̃ + log2 η
)

(7)

is achievable by the M-file partition scheme C constructed
from C̃ as described in (6).
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Fig. 1. (a) The capacity C(·)(�̄) for a small number of files M = 2, 3, 4 with privacy metrics ρ(MI) and ρ(MaxL). (b) The capacity C(·)(�̄) for a large number
of files M = 10, 50 with privacy metrics ρ(MI) and ρ(MaxL). The dark green circles mark the achievable rate-leakage pairs of C basic.

Proof: The theorem for the MI privacy metric is proved
in [26] (see proof of Theorem 2). Here, we provide the proof
for the MaxL metric, which follows a similar argumentation
as in the proof for the MI metric.

We refer to the requested file index M by the pair (M̃, j),
where M̃ represents the requested file index in the j-th
partition, j ∈ [η]. Hence, from (3), we have

2 MaxL(M ;Q) =
∑

q∈Q
max

m∈[M]
PQ|M(q|m)

=
∑

j∈[η]

∑

q̃∈Q̃
max

m∈[M]
PQ|M(q|m)

(a)=
∑

j∈[η]

∑

q̃∈Q̃
max

m∈[Mη]
PQ̃|M̃(q̃|m)

= η · 2 MaxL
(
M̃ ; Q̃

)
≤ 2log2 η+�̃,

where (a) follows since for the j-th partition, the conditional
PMF PQ|M is equal to PQ̃|M̃ of the Mη-file WPIR scheme.
Using a similar argumentation as above, it can also be verified
that D(C ) = D(C̃ ) ≤ D̃.

Since a PIR scheme is also a WPIR scheme, this simple
approach for the construction of WPIR schemes can also be
adapted to use any of the existing Mη-file PIR schemes in the
literature as a subscheme. We refer to the partition scheme that
uses a PIR scheme as the underlying subscheme and the query
generation in (6) as a basic scheme and denote it by C basic (it
achieves the pair in (7) with �̃ = 0). It can be seen that for the
single-server setting, the basic scheme simply retrieves all the
files in the partition that includes the requested file. This idea
will be extended to our capacity-achieving scheme presented
in Section V, where for any subset M ⊆ [M] that includes
the requested file, all files in M are downloaded.

B. The Capacity of Single-Server WPIR

The main result of this work is the characterization of
the optimal tradeoff between the download cost and the
information leakage for single-server WPIR for an arbitrary

number of files and a fixed file size β for the MI and MaxL
privacy metrics. The capacity of single-server WPIR for the
MI privacy metric is stated in the following theorem. For the
sake of illustration, we consider the normalized leakage metric
ρ̄(·) � ρ(·)

log2 M .
Theorem 2: For a single server that stores M files, the

WPIR capacity for the MI leakage metric ρ(MI) is

C(MI)(�̄) =
[

w + log2
M
w

log2
w

w−1

− �̄ log2 M
log2

w
w−1

]−1

,

for 1 − log2 w

log2 M
≤ �̄ ≤ 1 − log2 (w − 1)

log2 M
, w ∈ [2 : M]. (8)

The following theorem states the single-server WPIR capac-
ity for the MaxL privacy metric.

Theorem 3: For a single server that stores M files, the
WPIR capacity for the MaxL metric ρ(MaxL) is

C(MaxL)(�̄) =
[

w +
M
w

M
w−1 − M

w

− 2�̄ log2 M

M
w−1 − M

w

]−1

,

for 1 − log2 w

log2 M
≤ �̄ ≤ 1 − log2 (w − 1)

log2 M
, w ∈ [2 : M].

The achievability proof of Theorems 2 and 3 appears in
Section V while the converse part appears in Sections VI
and VII, for Theorems 2 and 3, respectively.

For the MI and MaxL privacy metrics, the achievable rate-
leakage pairs of C basic in (7) and the capacity C(·)(�̄) for
different number of files M, are depicted in Fig. 1.

It is worthwhile noting that the curve
[
C(·)(·)]−1 is a piece-

wise continuous function. For the MI privacy metric, (8)
indicates that the minimum download cost

[
C(MI)(·)]−1 is a

piecewise linear function in ρ̄, illustrating the convexity of
Lemma 2. Note also that, when Mη = M/η ∈ N, the basic
scheme C basic achieves the capacity for both the MI and MaxL
privacy metrics.

Next, we consider the asymptotic capacity of single-server
WPIR, i.e., the capacity as the number of files M tends to
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Fig. 2. The capacity C(·)(�̄) and its upper bound CUB(�̄) for a number of
files M = 102, 103, 104, and 106 with privacy metrics ρ(MI) and ρ(MaxL).

infinity. An upper bound on the single-server WPIR capacity
for any number of files is given in the following theorem.

Theorem 4: For a single server that stores M files, the
single-server WPIR capacity under both the MI metric ρ(MI)

and the MaxL metric ρ(MaxL) is bounded from above by

C(·)(�̄) ≤ CUB(�̄) � 1

M1−�̄
, 0 ≤ �̄ ≤ 1.

Proof: Since it is easy to show that the capacity for MI
leakage is larger than or equal to the capacity for MaxL (see
Fig. 1), we only need to prove that the inverse of (8) is bounded
from below by M1−�̄. Observe that M1−�̄ is a convex function
of �̄ and each point

(
w, 1 − log2 w

log2 M

)
, w ∈ [M], lies on the

curve described by that function, i.e., M1−�̄ = w for �̄ =
1 − log2 w

log2 M . Thus, by the convexity of M1−�̄, we have M1−�̄ ≤
[
C(MI)(�̄)

]−1, where the inequality follows since the inverse
of (8) can be seen as a convex combination of 1 − log2 w

log2 M and

1 − log2 (w−1)

log2 M , w ∈ [2 : M].

In Fig. 2, the capacity C(·)(�̄) and the upper bound CUB(�̄)

are plotted for M = 102, 103, 104, and 106, which illustrates
the asymptotic behavior of C(·)(�̄) as M tends to infinity. Note
that since one can simply download the requested file from the
server in the special case of ρ̄ = 1, and the WPIR rate must
be smaller than or equal to 1, we have C(·)(1) = 1 for either
a finite or infinite number of files M. Hence, by Theorem 4
it can be shown that as M tends to infinity, the asymptotic
capacity is equal to

C(·)
∞(�̄) =

{
0 if 0 ≤ �̄ < 1,

1 if �̄ = 1.

This indicates that the asymptotic capacity is still equal to zero,
unless the server exactly knows the index of the requested file.

V. ACHIEVABILITY

Throughout this section, for simplicity, we set β = 1.
Hence, from Section II-B, we have X(m) = X(m)

1 and
H(X(m)) = log2 |X | bits, ∀ m ∈ [M]. In fact, our proposed

TABLE I
CONDITIONAL PMFS PQw|M , w ∈ [3]

single-server WPIR capacity-achieving scheme can be easily
generalized to an arbitrary file size β, which indicates that
subpacketization does not improve the performance of single-
server WPIR. We will later show that this scheme is optimal
for both the MI and MaxL privacy metrics.

A. Motivating Example: M = 3 Files

Before describing the achievable scheme in detail for the
general case of M files, we present an example for M = 3.
Assume that the single server stores M = 3 files, X(1)

1 , X(2)
1 ,

and X(3)
1 . We design the queries and answers via a conditional

distribution PQw|M , w ∈ [3], defined in Table I. It can be easily
verified that the perfect retrievability condition of (1) is satis-
fied for the three PMFs. Moreover, the download-leakage pairs
(Dw, �w) = (

w, log2
3
w

)
are achievable, by PQw|M , w ∈ [3], in

terms of the MI or MaxL privacy metrics.
Now, construct two conditional query distributions as fol-

lows,

PQλ1
|M = (1 − λ1)PQ2|M + λ1PQ1|M, (9)

PQλ2
|M = (1 − λ2)PQ3|M + λ2PQ2|M, (10)

where 0 ≤ λ1, λ2 ≤ 1.
The retrievability condition can be easily verified for the

WPIR scheme defined by (9)–(10). Using (4), (2), and (3),
respectively, and the conditional PMFs listed in Table I (or,
alternatively, Corollary 1), it follows that the WPIR scheme
defined by (9)–(10) achieves the download cost

D(C ) =
{

(1 − λ1)D2 + λ1D1 = 2 − λ1, 0 ≤ λ1 ≤ 1,

(1 − λ2)D3 + λ2D2 = 3 − λ2, 0 ≤ λ2 ≤ 1,

the MI leakage

ρ(MI) =
{

(1 − λ1) log2
3
2 + λ1 log2

3
1 , 0 ≤ λ1 ≤ 1,

(1 − λ2) log2
3
3 + λ2 log2

3
2 , 0 ≤ λ2 ≤ 1,

and the MaxL

ρ(MaxL) =
⎧
⎨

⎩

log2

(
(1 − λ1)

3
2 + λ1

3
1

)
, 0 ≤ λ1 ≤ 1,

log2

(
(1 − λ2)

3
3 + λ2

3
2

)
, 0 ≤ λ2 ≤ 1.
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In terms of the MI or MaxL privacy metrics, it can be verified
that the download cost corresponds to the single-server WPIR
capacity for M = 3. Note that for M > 2, the capacity is a
piecewise continuous function (see Fig. 1(a)).

B. Arbitrary Number of Files M

We describe the achievable scheme for the general case of
M files. From Corollary 1, it follows that it is sufficient to
show that the download-leakage pairs

(Dw, �w) =
(

w, log2
M
w

)
, w ∈ [M],

are achievable.
1) Query Generation: Consider M random queries Qw,

w ∈ [M], whose alphabet is Qw � {q = (q1, . . . , qM) ∈
{0, 1}M : wH(q) = w}. Recall here that χ(q) denotes the sup-
port of a vector q. Given any requested file index m ∈ [M],
each query q ∈ Qw sent to the server is generated by the
conditional PMF

PQw|M(q|m) =
{

1

(M−1
w−1)

if |χ(q) \ {m}| = w − 1,

0 otherwise.

This is clearly a valid query design, since for each m ∈ [M],
we have

∑
q∈Qw

PQw|M(q|m) = 1.
2) Answer Construction: The answer function ϕ maps the

query q ∈ Qw onto A = ϕ(q, X[M]) = Xχ(q)

1 . The answer
length is L(q) = w.

3) Download Cost and Information Leakage: Clearly, the
download cost is equal to EPMPQw|M

[
L(Qw)

] = w. The MI
leakage is

ρ(MI)(PQw|M
) = I

(
M ;Qw

) = H(M) − H(M |Qw)

= log2 M − log2 w = log2
M
w

and the MaxL is

ρ(MaxL)
(
PQw|M

) = log2

∑

q∈Qw

max
m∈[M]

1
(M−1

w−1

)

= log2

(M
w

)

(M−1
w−1

) = log2
M
w

.

This completes the achievability proof of Theorems 2 and 3.
Notice that the presented capacity-achieving WPIR scheme

can be seen as a generalization of the basic WPIR
scheme C basic. If M/η = w ∈ N, since (D̃, �̃) =
(w, 0) is achievable for a w-file single-server PIR scheme,
from Theorem 1 it follows that the download-leakage pair(
D(C basic), ρ(·)(C (basic))

) = (w, log2 η) = (
w, log2

M
w

)
is

also achievable by C basic for both the MI and MaxL privacy
metrics.

VI. CONVERSE OF THEOREM 2

For any file size β, a general converse (upper bound) can be
derived from the download-leakage function of a given leakage
constraint �, or equivalently, from the leakage-download func-
tion of a given download cost constraint D. The proof consists

of two parts, and we start by outlining the main arguments of
each part before diving further into the technical details.

Part 1: Consider an arbitrary WPIR scheme. Without loss
of optimality, for any query sent to the server, the answer
from the server can be assumed to be a subset of the files
that includes the desired file. This is because in order to have
perfect retrievability, downloading any linear combinations, or
any coded forms of a subset of the files can only lead to a
higher download cost. Moreover, it can also not increase the
privacy leakage, because the server can only infer the identity
of the desired file from an answer that is able to recover a
subset of the files. We formally prove this argument later in
this section. Note that this part is also used in the converse
proof of Theorem 3 as it holds for both the MI and MaxL
privacy metrics.

Part 2: From Part 1 we can limit the consideration to
schemes for which all answers are subsets of files that include
the desired file. Since the minimum achievable information
leakage for a given download cost constraint among this lim-
ited family of schemes can be related to the rate-distortion
function with a certain distortion measure, we can apply a
known lower bound on the rate-distortion function in order
to find an optimal scheme from this family. Finally, we show
that the optimal scheme is exactly the scheme we propose
in Section V. Thus, for a given download cost constraint, the
leakage of any WPIR scheme is bounded below by the leakage
of the scheme proposed in Section V.

We start to prove the first part of the converse proof. Given
an arbitrary query set Q of a WPIR scheme with {L(q)}q∈Q ⊆
Lret, similar to (5), the minimum leakage of this WPIR scheme
for a given download cost constraint D can be formulated as
the convex optimization problem

minimize I(M ;Q) (11a)

subject to EPMPQ|M
[
L(Q)

] ≤ D. (11b)

The minimization is taken over the set of all conditional
distributions PQ|M such that (11b) is satisfied, namely the set

FD =
⎧
⎨

⎩
PQ|M:

∑

q

∑

m∈[M]
PM(m)PQ|M(q|m)L(m, q) ≤ D

⎫
⎬

⎭
.

Next, we show a lower bound to (11) by defining a new
RV that is a function of Q. To facilitate the exposition, we
introduce the following notation.

• For any nonempty subset M ⊆ [M], we define Q̃M to
be the set of queries that are designed to recover the files
X(m), m ∈ M, i.e., Q̃M � {q ∈ Q : H(X(m) |A, Q =
q, M = m, S = s) = 0, ∀ m ∈ M}. Furthermore, define

QM � Q̃M \
⎛

⎝
⋃

M′⊆[M]\M
Q̃M′

⎞

⎠.

The set QM contains all queries that are designed to
recover all files in M, but no more. Note that if q ∈ QM
but m /∈ M, then PQ|M(q|m) = 0.
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• A binary length-M indicator vector 1M = (u1, . . . , uM)

of a subset M ⊆ [M], M �= ∅, is defined as

um =
{

1 if m ∈ M,

0 otherwise.

Q is a RV that is induced by the conditional distribution
PQ|M . Further define a new RV U = f (Q), where

f (q) � 1M, for q ∈ QM, ∀M ⊆ [
M
]
, M �= ∅. (12)

Note that the mapping in (12) is well-defined since the query
sets QM are disjoint and their union is equal Q, i.e., they
constitute a partition of Q. This leads to the conditional PMF

PU|M(u|m) =
{∑

q∈Qχ(u) PQ|M(q|m) if m ∈ χ(u),

0 otherwise.
(13)

To further simplify the notation, in the following we use
p(q|m) and p(u|m) to denote the conditional PMFs PQ|M and
PU|M , respectively.

We then design a WPIR scheme where the queries are gen-
erated according to p(u|m) and the normalized answer-length
function is constructed for any u ∈ {0, 1}M as

L(m, u) =
{

wH(u) if m ∈ χ(u),

∞ otherwise,

where an infinite length for a given file index m and query u
indicates that the m-th file is never retrieved by the designed
query u.

Accordingly, we define the set

PD =
⎧
⎨

⎩
p(q|m) :

∑

u∈{0,1}M

∑

q∈Qχ(u)

∑

m∈[M]

PM (m) p(q|m) L(m, u) ≤ D

⎫
⎬

⎭
.

Given an arbitrary p(q|m) ∈ FD,
∑

u∈{0,1}M

∑

m∈[M]
PM(m)p(u|m)L(m, u)

=
∑

u∈{0,1}M

∑

m∈[M]
PM(m)

∑

q∈Qχ(u)

p(q|m)L(m, u)

(a)≤
∑

u∈{0,1}M

∑

q∈Qχ(u)

∑

m∈[M]
PM(m)p(q|m)L(m, q)

=
∑

q∈Q

∑

m∈[M]
PM(m)p(q|m)L(m, q) ≤ D,

where (a) holds because for any q ∈ Qχ(u) we know from the
lossless source coding theorem that the normalized length of
the answer L(m, q) is larger than or equal to the ratio between
the total sizes of the retrieved wH(u) = L(m, u) files and
the logarithm of the source code’s alphabet, i.e., it satisfies
L(m, q) ≥ L(m,u) log2 |X |/log2 |A| = L(m, u).5 Hence, it follows

5The fundamental theorem of lossless data compression states that
the expected codeword length is no less than H

(
Xχ(u)

)
/log2 |A| =

wH(u) log2 |X |/log2 |A| = L(m, u), and the minimal expected codeword
length can be achieved by an optimal source code, e.g., a Huffman code
(see [49, Th. 5.4.1]). Here, since the files/sources are i.i.d. according to a
uniform distribution, the codeword lengths are identical.

that p(q|m) also lies in PD, and hence FD ⊆ PD. The intuition
behind this fact is that the function L(m, u) defines the min-
imum required lengths of answers for a valid single-server
WPIR scheme, thus we have more choices of conditional
PMFs p(q|m) in PD.

Now, if we take the minimization over PD, which is a
candidate set that is larger than FD, we have

min
p(q|m)∈FD

I(M ;Q) ≥ min
p(q|m)∈PD

I(M ;Q)

(a)≥ min
p(u|m): E[L(M,U)]≤D

I(M ;U), (14)

where (a) follows directly from the data processing inequality
of the first statement of Lemma 1. Therefore, a lower bound
to the convex optimization problem (11) is given.

In the second part of the proof, we show that (14) admits
a closed-form expression by using a useful result from rate-
distortion theory, a lower bound on the rate-distortion func-
tion.6 This lower bound is adapted to (14) and is re-stated as
follows.

Lemma 3 ([47, Th. 9.4.1], [48, Th. 10.19]): Given any D ∈
[M], we have

min
p(u|m): E[L(M,U)]≤D

I(M ;U)

≥ H(M)+
∑

m∈[M]
PM(m) log2 νm − λD (15)

for an arbitrary choice of λ > 0 and for any νm, m ∈ [M],
satisfying

∑

m∈[M]
νm2−λL(m,u) ≤ 1, u ∈ {0, 1}M. (16)

We remark again that the length function L(m, u) is equal
to wH(u) for all m ∈ χ(u). By using the condition in (16) for
each u with wH(u) = 1, we obtain

∑

m∈[M]
νm2−λL(m,u) =

∑

m∈χ(u)

νm2−λwH(u)

= νm2−λ ≤ 1, where m ∈ χ(u).

This implies that for any m ∈ [M], νm · 2−λ ≤ 1, and hence
by symmetry, we can simply assume that

νm = ν, ∀ m.

Next, we apply (16) for all u ∈ {0, 1}M:

ν · 2−1λ ≤ 1 if wH(u) = 1,

2ν · 2−2λ ≤ 1 if wH(u) = 2,

3ν · 2−3λ ≤ 1 if wH(u) = 3,

...

Mν · 2−Mλ ≤ 1 if wH(u) = M.

6The proof of this lower bound is based on the Karush–Kuhn–Tucker
optimality conditions, see the details in [47, Ch. 9], [48, Ch. 10].
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From the above conditions, we obtain

log2 ν ≤

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

λ if λ > log2
2
1 ,

2λ − log2 2 if log2
3
2 < λ ≤ log2

2
1 ,

3λ − log2 3 if log2
4
3 < λ ≤ log2

3
2 ,

...

Mλ − log2 M if 0 < λ ≤ log2
M

M−1 .

Now, taking

(
log2 ν, λ

) =
(

wλ − log2 w, log2
w

w − 1

)
, w ∈ [2 : M

]
,

and substituting this in (15) with PM(m) = 1
M , we have

min
p(u|m): E[L(M,U)]≤D

I(M ;U)

≥ log2 M +
(

w log2
w

w − 1
− log2 w

)
−
(

log2
w

w − 1

)
D

= log2
M

w − 1
−
(

log2
w

w − 1

)
(D − (w − 1)), (17)

for w ∈ [2 : M].
Here, (17) is a linear function of D with slope −λ =

− log2
w

w−1 , which is strictly increasing in w ∈ [2:M].
Therefore, the best lower bound for (14) is the piecewise
function

ρ
(MI)
LB (D) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

log2
M
1 −

(
log2

2
1

)
(D − 1)

if 1 ≤ D ≤ 2,

log2
M
2 −

(
log2

3
2

)
(D − 2)

if 2 < D ≤ 3,

...

log2
M

M−1 −
(

log2
M

M−1

)
(D − (M − 1))

if M − 1 < D ≤ M.

See also the pictorial illustration in Fig. 3. For instance, the
red line log2

M
w−1 − (

log2
w

w−1

)
(D − (w − 1)) going through

the points
(
w − 1, log2

M
w−1

)
and

(
w, log2

M
w

)
has the largest

function values over the interval [w − 1, w].
Since the leakage-download function of an arbitrary WPIR

scheme is bounded from below by ρ
(MI)
LB (D), and it can

be shown that the pair (�̄, D(MI)(�̄)) of Theorem 2 lies on
ρ

(MI)
LB (D) (details are omitted for brevity), this completes the

converse proof.

VII. CONVERSE OF THEOREM 3

Following an argumentation similar to the first part of the
converse proof of Theorem 2, since the MaxL metric also
satisfies the data processing inequality from the first item
of Lemma 1, the leakage-download function for the MaxL
privacy metric can be bounded from below by

min
p(u|m): E[L(M,U)]≤D

MaxL(M ;U). (18)

This by itself is not a convex minimization problem. In this
proof, we derive a lower bound to (18) directly. To make the
problem tractable, we use the fact that 2 MaxL(M ;U) is convex
in PU|M (see 2) in Lemma 1).

Fig. 3. Illustration of the function ρ
(MI)
LB (D), which is defined by many

linear functions. The slope of the linear functions is strictly increasing in
w ∈ [2 : M].

We know from (3) that maximizing the objective function
MaxL(M ;U) is equivalent to maximizing the function

2 MaxL(M ;U) =
∑

u∈{0:1}M

max
m∈[M]

p(u|m).

Moreover, from (13) we know that

p(u|m) = 0, if u ∈ {0, 1}M, m /∈ χ(u).

Thus, (18) can be re-written as the convex minimization
problem

minimize
∑

u∈{0,1}M

max
m∈χ(u)

p(u|m) (19a)

subject to
∑

u∈{0,1}M,m∈[M]

PM(m)p(u|m)L(m, u) ≤ D,

(19b)∑

u∈{0,1}M

p(u|m) = 1, ∀ m ∈ [M]. (19c)

Furthermore, using the fact that
∑

m∈χ(u)

p(u|m) ≤ wH(u) max
m∈χ(u)

p(u|m), ∀ u ∈ {0, 1}M,

and

p
(
1{m}|m

) = 1 −
∑

u:m∈χ(u)
wH(u)>1

p(u|m), ∀ m ∈ [M], (20)

the objective function (19a) becomes7

∑

u

max
m∈χ(u)

p(u|m)

=
∑

u:wH(u)=1

p(u|χ(u)) +
∑

u:wH(u)>1

max
m∈χ(u)

p(u|m)

7In the following, the ranges of the summations and also the explicit
summation variable are sometimes omitted as they are clear from the context.
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TABLE II
EQUIVALENT LP PROBLEM OF (21) WITH THE OBJECTIVE FUNCTION c[y, z]T = −∑M

w=2(1 − 1
w )yw , WHERE THE FIRST ROW INDICATES THE

VARIABLES [y, z] = [y2, . . . , yM, z1, z2], THE SECOND ROW REPRESENTS THE COEFFICIENTS c, AND THE THIRD AND FOURTH ROWS ARE OBTAINED

FROM THE CONSTRAINTS A[y, z]T = bT

=
∑

m∈[M]

⎡

⎢⎢
⎣1 −

∑

u:m∈χ(u)
wH(u)>1

p(u|m)

⎤

⎥⎥
⎦+

∑

u:wH(u)>1

max
m∈χ(u)

p(u|m)

≥ M −
∑

m∈[M]

∑

u:m∈χ(u)
wH(u)>1

p(u|m) +
∑

u:wH(u)>1

∑

m∈χ(u)

p(u|m)

wH(u)

(a)= M −
∑

u:wH(u)>1

∑

m∈χ(u)

(
1 − 1

wH(u)

)
p(u|m),

where (a) holds since by expanding the double summation,
one can see that

∑

m∈[M]

∑

u:m∈χ(u)
wH(u)>1

p(u|m) =
∑

u:wH(u)>1

∑

m∈χ(u)

p(u|m).

Similarly, by substituting (20) into the download cost
constraint (19c), we get

∑

u

∑

m∈χ(u)

p(u|m)L(m, u)

=
∑

wH(u)=1

∑

m∈χ(u)

p(u|χ(u)) · 1

+
∑

wH(u)>1

∑

m∈χ(u)

p(u|m)wH(u)

= M −
∑

wH(u)>1

∑

m∈χ(u)

p(u|m)

+
∑

wH(u)>1

wH(u)
∑

m∈χ(u)

p(u|m)

= M +
∑

wH(u)>1

(wH(u) − 1)

⎡

⎣
∑

m∈χ(u)

p(u|m)

⎤

⎦ ≤ MD.

Next, define yw �
∑

u:wH(u)=w
∑

m∈χ(u) p(u|m) for w ∈
[2 : M]. Because

∑

u:wH(u)>1

(wH(u) − 1)
∑

m∈χ(u)

p(u|m)

=
M∑

w=2

(w − 1)
∑

u:wH(u)=w

∑

m∈χ(u)

p(u|w),

it can be shown that a lower bound to (19) can be computed
from the linear programming (LP) formulation

minimize ρ
(MaxL)

LB (D) � M −
M∑

w=2

[
1 − 1

w

]
yw (21a)

subject to
M∑

w=2

yw ≤ M, (21b)

M∑

w=2

(w − 1) · yw ≤ M(D − 1), (21c)

with variables yw, w ∈ [2 : M].
We convert the inequalities in the constraints (21b)

and (21c) to equalities by introducing variables z1 and z2.
Thus, we have the constraints as

M∑

w=2

yw + z1 = M,

M∑

w=2

(w − 1) · yw + z2 = M(D − 1).

Now, define cw � −(1 − 1
w ), for w ∈ [2 : M], and let

cM+1 = cM+2 = 0. Then, the objective function of (21) can
be written in matrix form as M + c[y2, . . . , yM, z1, z2]T =
M − ∑M

w=2(1 − 1
w )yw, with c = (c2, . . . , cM+2), and the

constraints as A[y, z]T = bT, where

A =
(

1 1 · · · 1 1 0
1 2 · · · M − 1 0 1

)
, bT =

(
M

M(D − 1)

)
,

y = (y2, . . . , yM), and z = (z1, z2). The equivalent LP problem
of (21) (without the constant M) is shown in Table II.

Consider the standard LP problem of minimizing cxT sub-
ject to AxT = bT and x ≥ 0, where A is an arbitrary m × n
matrix. A basic solution is any solution where a subset of n−m
variables are zero. The m nonzero variables of a basic solu-
tion are referred to as the basic variables, while the remaining
variables are known as the nonbasic variables. Let AB denote
the submatrix of A consisting of the m columns of A cor-
responding to the basic variables, and by AN the submatrix
consisting of the remaining n − m columns corresponding to
the nonbasic variables. Denote by xB the basic variables of a
basic solution x, and let cB and cN be the subvectors of c that
correspond to the basic and nonbasic variables, respectively.
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The following proposition provides a sufficient condition for
a basic solution to be optimal for an LP problem.8

Proposition 1 ([50, p. 44]): If there exists a basic solu-
tion such that the relative cost vector for nonbasic variables,
defined as cN − cBA−1

B AN , is nonnegative, then the basic
solution is optimal.

From the capacity-achieving scheme proposed in Section V,
one can show that

p∗(u|m) =

⎧
⎪⎪⎨

⎪⎪⎩

w−D
(M−1

w−2)
if wH(u) = w − 1,

D−(w−1)

(M−1
w−1)

if wH(u) = w,

0 otherwise,

for w − 1 ≤ D ≤ w, w ∈ [2 : M], where the super-
script ∗ indicates that the corresponding quantity is for
the particular scheme from Section V. Then, since y∗

w =∑
u:wH(u)=w

∑
m∈χ(u) p∗(u|m) for w ∈ [2 : M], we have, for

1 ≤ D ≤ 2,

y∗
2 =

∑

u:wH(u)=2

∑

m∈χ(u)

D − 1

M − 1
= M(D − 1),

y∗
w′ = 0, w′ ∈ [3 : M

]
,

z∗
1 = M(2 − D), z∗

2 = 0,

and

y∗
w−1 =

(
M

w − 1

)
(w − 1)

w − D
(M−1

w−2

) = M(w − D),

y∗
w =

(
M
w

)
w

D − (w − 1)
(M−1

w−1

) = M(D − (w − 1)),

y∗
w′ = 0, w′ ∈ [3 : M

] \ {w − 1, w},
z∗

1 = 0, z∗
2 = 0,

for w − 1 ≤ D ≤ w, w ∈ [3 : M]. To prove the converse
part, we use Proposition 1 to verify the optimality of y∗

w, w ∈
[2 : M], and z∗

1, z∗
2, for (21), by considering two special cases

as follows.
Case 1 (1 ≤ D ≤ 2): In this case, y2 and z1 are the basic

variables. Since

cw − cBA−1
B A{yw} = −

[
1 − 1

w

]
−
(

−1

2
, 0

)(
1 1
1 0

)−1( 1
w − 1

)

= w − 1

2
− w − 1

w
> 0,

for w ∈ [3 : M], and 0 − (− 1
2 , 0

)(
1 1
1 0

)−1( 0
1

) = 1
2 > 0 for z2,

it follows that the basic solution is optimal for M ≥ 2.
Case 2 (w − 1 < D ≤ w, w ∈ [3 : M]): In this case,

yw−1 and yw are the basic variables. We can see that for w′ ∈
[3 : M] \ {w − 1, w}, the relative cost coefficient for yw′ is

cw′ − cBA−1
B A{y′

w}
= −

[
1 − 1

w′

]
−
(

−
[

1 − 1

w − 1

]
,−
[

1 − 1

w

])

×
(

1 1
w − 2 w − 1

)−1( 1
w′ − 1

)

8The proof of Proposition 1 can be found in the LP literature,
see [50, pp. 43–44].

= 1

w′ − w − w′

w − 1
+ w − w′ − 1

w
.

By performing some simple calculations, we get

1

w′ − w − w′

w − 1
+ w − w′ − 1

w

= (
w − w′)

[
w − (

w′ + 1
)

w · w′(w − 1)

]

> 0,

either for w′ > w − 1 or w′ < w. Moreover, it is easy to see
that the relative cost coefficients for z1 and z2 are w−2

w > 0
and 1

w−1 − 1
w > 0, respectively, which implies that the given

basic solution is optimal.

VIII. CONCLUSION

We considered relaxing the perfect privacy condition in
single-server PIR and presented a scheme for the studied
weakly-private scenario, referred to as WPIR. In doing so,
we showed that one can trade off privacy to gain in terms of
download cost. Furthermore, we characterized the information
leaked using two different metrics: MI and MaxL. The latter
is known to be a more robust metric to measure information
leakage. Finally, we derived the single-server WPIR capac-
ity for both the MI and MaxL metrics, and showed that the
proposed protocol is capacity-achieving. As a final note, we
drew the connection between WPIR and rate-distortion theory.

An interesting direction for future work is the derivation
of fundamental bounds on other performance metrics like the
upload cost and the access complexity for the single server
scenario.
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