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Abstract— This paper studies the problem of constructing
codes correcting deletions in arrays. Under this model, it is
assumed that an n × n array can experience deletions of
rows and columns. These deletion errors are referred to as
(tr, tc)-criss-cross deletions if tr rows and tc columns are deleted,
while a code correcting these deletion patterns is called a
(tr, tc)-criss-cross deletion correction code. The definitions for
criss-cross insertions are similar. It is first shown that when
tr = tc the problems of correcting criss-cross deletions and criss-
cross insertions are equivalent. The focus of this paper lies on
the case of (1, 1)-criss-cross deletions. A non-asymptotic upper
bound on the cardinality of (1, 1)-criss-cross deletion correction
codes is shown which assures that the redundancy is at least
2n − 3 + 2 log n bits. A code construction with an existential
encoding and an explicit decoding algorithm is presented. The
redundancy of the construction is at most 2n + 4 log n + 7 +
2 log e. A construction with explicit encoder and decoder is
presented. The explicit encoder adds an extra 5 log n + 5 bits
of redundancy to the construction.

Index Terms— Insertion/deletion correcting codes, array codes,
criss-cross deletion errors.

I. INTRODUCTION

RECENTLY, codes correcting insertions/deletions
attracted a lot of attention due to their relevance in many

applications such as DNA-based data storage systems [2],
communication systems [3] and file synchronization [4]–[7].
Due to the loss of synchronization and working over vector
spaces of different dimension, correcting deletions and
insertions is seen as a harder problem than correcting
substitution errors.

The problem of coding for the deletion channel was intro-
duced by Levenshtein [8] in the 1960s. A set C of binary
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vectors of length n is a k-deletion correcting code if and only
if any two vectors in C do not share a common subsequence of
length n− k. Levenshtein showed [8] that a code can correct
any combination of k insertions and deletions if and only if
it can correct k deletions. The main property of the codes
being optimized is the redundancy defined as R � n− log |C|
where n is the length of the codewords in C and |C| is the
cardinality of the code. The optimal redundancy n − log |C|
of any k-deletion correcting code C is O(k log n) [8]. The
Varshamov-Tenengolts (VT) code [9] is a nearly optimal
single insertion correcting code with redundancy log(n + 1)
bits. Constructing k-deletion/insertion correcting codes with
small redundancy was the focus of several recent works,
e.g., [10]–[16]. In [17] and [18], the authors construct codes
that can correct bursts of deletions. The main idea of the papers
is to imagine the codeword as a binary array and to use the
structure of that array to detect and correct bursts of deletions
that happen in the one-dimensional codeword.

In this paper we extend the one-dimensional study of
deletion and insertion correction to two-dimensional arrays.
A (tr, tc)-criss-cross deletion is the event in which an n × n
array experiences a deletion of tr rows and tc columns.
A code capable of correcting all (tr, tc)-criss-cross deletions is
referred to as (tr, tc)-criss-cross deletion correcting code and
(tr, tc)-criss-cross insertion correcting codes are defined sim-
ilarly. Coding in the two dimensional space has proved prof-
itable for data storage and wireless communications [19]–[26].
Therefore, we find it important to understand the general-
ization of the well-studied one-dimensional insertion- and
deletion-correcting codes to the two-dimensional space. The
main advantage of coding in the two-dimensional space is to
leverage the structure of the code arrays rather than applying
one dimensional deletion/insertion correcting codes on each
dimension of the array. Along this line of thought, [27] studies
the problem of correcting a predetermined number of row
and column deletions in two-dimensional arrays. Furthermore,
the trace-reconstruction problem, which is a variant of the
deletion channel, is investigated in the two-dimensional space
in [28].

It is well-known that in the one-dimensional case the size
of the single-deletion ball equals the number of runs in
the word. However, the characterization of the arrays that
can be obtained from a (1, 1)-criss-cross deletion is more
complicated. Nonetheless, we derive a non-asymptotic lower
bound on the redundancy of these codes. Second, we propose
a code construction which heavily depends on the construction
of non-binary single-insertion/deletion correcting codes by
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Tenengolts [29], which can be seen as the extension of the
q-ary alphabet of [8]. In the one-dimensional case, successful
decoding from deletions in the transmitted word does not
necessarily guarantee that the indices of the deleted symbols
are known since the deletion of symbols from the same run
results in the same output. While this does not impose a
constraint in the one-dimensional case, we had to take this
constraint into account when using non-binary single-deletion
correcting codes as our component codes.

The rest of the paper is organized as follows. In Section II,
we formally define the codes and notations that we use
throughout the paper. We give a high level summary of the
presented results in Section III. We prove in Section IV that
the correction of (t, t)-criss-cross deletions and insertions is
equivalent. In Section V, we give a non-asymptotic upper
bound on the cardinality of (1, 1)-criss-cross deletion correct-
ing codes. This bound shows that the minimum redundancy of
these codes is 2n − 3 + 2 log n bits. In Section VI, we con-
struct (1, 1)-criss-cross deletion correcting codes that we call
CrissCross codes. The correctness of this family of codes is
given by an explicit decoding algorithm. The redundancy of
the proposed CrissCross codes is at most 2n + 4 logn +
7 + 2 log e. We present in Section VII CrissCross codes
with explicit encoder and decoder. We show that the explicit
encoder comes at the expense of increasing the redundancy by
5 logn+5 bits compared to the existence result. We conclude
the paper in Section VIII.

II. DEFINITIONS AND PRELIMINARIES

This section formally defines the codes and notations that
we use throughout this paper. Let Σq � {0, . . . , q − 1} be the
q-ary alphabet. We denote by Σn×n

q the set of all q-ary arrays
of dimension n × n. All logarithms are base 2 unless otherwise
indicated. For two integers i, j ∈ N, i � j, the set {i, . . . , j} is
denoted by [i, j] and the set {1, . . . , j} is denoted by [j]. For an
array X ∈ Σn×n

q , we denote by Xi,j the entry of X positioned
at the i-th row and j-th column. We denote the i-th row and
j-th column of X by Xi,[n] and X[n],j , respectively. Similarly,
we denote by X[i1,i2],[j1,j2] the sub array of X formed by rows
i1 to i2 and their corresponding entries from columns j1 to j2.

For two positive integers tr, tc � n, we define a (tr, tc)-
criss-cross deletion in an array X ∈ Σn×n

q to be the deletion
of any tr rows and tc columns of X. We denote by Dtr,tc(X)
the set of all arrays that result from X after a (tr, tc)-criss-
cross deletion (i.e., the two-dimensional deletion ball1). In a
similar way we define (tr, tc)-criss-cross insertion and the set
Itr,tc(X) for the insertion case. If tr = tc = t, we will use
the notation of Dt(X), (t)-criss-cross deletion, (t)-criss-cross
insertion, and It(X). Note that the order between the row and
column deletions/insertions does not matter.

Definition 1 ((tr, tc)-Criss-Cross Deletion Correction
Code): A (tr, tc)-criss-cross deletion correcting code C is
a code that can correct any (tr, tc)-criss-cross deletion.

1Strictly speaking, the set Dtr,tc(X) must be called the two-dimensional
deletion sphere of X. However, we abuse terminology and refer to this set as
the deletion ball to follow the nomenclature used by the literature on deletion-
correcting codes. The same holds for the set Itr,tc (X).

A (tr, tc)-criss-cross insertion correcting code is defined
similarly.

For clarity of presentation, we will refer to a (tr, tc)-criss-
cross deletion as a (t)-criss-cross deletion when t = tr = tc
and (tr, tc)-criss-cross deletion correcting code as (t)-criss-
cross deletion correcting code. The corresponding definitions
for the insertion case are similar. Notice that throughout this
paper, we do not consider combinations of insertions and
deletions (c.f. Section III).

In our code construction we use Varshamov-Tenengolts
(VT) single-deletion correcting codes [9]. A VT code was
proven by Levenshtein [8] to correct a single deletion in a
binary string of length n, with redundancy not more than
log(n+1) bits. In fact, we use Tenengolt’s extension [29] for
the q-ary alphabet, which is briefly explained next. For a q-ary
vector x = (x1, . . . , xn) we associate its binary signature
s = (s1, . . . , sn). The entries of s are calculated such that
s1 = 1 and si = 1 if xi � xi−1 or si = 0 otherwise for i > 1.
Thus, all q-ary vectors of length n can be split into disjoint
cosets VTn,q(a, b) defined as the set of all x with signature s
satisfying

n∑
i=1

(i − 1)si ≡ a mod n,

n∑
i=1

xi ≡ b mod q,

where 0 � a � n − 1, 0 � b � q − 1. Each coset is
a single q-ary insertion/deletion correcting code. Note that
the qn disjoint cosets form a partition of Σn

q . Therefore,
by the pigeon-hole principal, there exists a set (or a VT code)
VTn,q(a�, b�) such that

|VTn,q(a�, b�)| � qn

qn
.

III. MAIN RESULTS

Our main results can be summarized as follows. In
Theorem 1, we extend the equivalence between insertion
correcting codes and deletion correcting to the 2-dimensional
codes considered in this setting. Namely, we show that a
given code C is a (t)-criss-cross deletion correcting code if
and only if C is a (t)-criss-cross insertion correcting code.
As a consequence, all our results proven for the (1)-criss-cross
deletion case hold for the insertion case as well. To evaluate
how good a given (1)-criss-cross deletion correcting code is,
we derive a non-asymptotic upper bound on the cardinality of
any criss-cross deletion correcting code as follows.

A. Lower Bound

(Theorem 11) The non-asymptotic redundancy of a q-ary
(1)-criss-cross deletion correcting code C is bounded from
below by R � 2n − 3 + 2 logq n.

We show that there exist (1)-criss-cross deletion/insertion
correction codes that have redundancy 2 logn + o(1) bits far
from our lower bound. We do so by constructing an existen-
tial (1)-criss-cross deletion correction code called CrissCross
code that has redundancy 2n + 4 logn + o(1). We extend
the existential construction to a (1)-criss-cross code with
explicit encoder and decoder at the expense of increasing the
redundancy by 5 logn + 5 bits.
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B. Code Constructions

The CrissCross code constructed in Section VI is a (1)-criss-
cross deletion/insertion correcting code (Theorem 13). The
redundancy of the code is upper bounded by 2n + 4 log n +
o(1) bits (Corollary 14). The encoder of the code can be made
systematic at the expense of increasing the redundancy to at
most 2n + 9 log n + o(1) bits (Theorem 18).

C. Extensions

In this work we restrict our attention to (t)-criss-cross
deletions and insertions. However, our (t)-criss-cross deletion-
correcting code construction can correct a mixed (1)-criss-
cross error defined as a row/column deletion and a column/row
insertion. In addition our codes can correct a single row
insertion/deletion or a single column insertion/deletion. Nev-
ertheless, the bound on the redundancy does not necessarily
hold for those general problems. In fact, we show in [30] that,
under the generalized model, a code correcting a (1)-criss-
cross deletion is able to correct two row deletions (no column
deletions) or two column deletions (no row deletions). We
leave those general problems as an interesting direction for
future research.

IV. EQUIVALENCE BETWEEN INSERTION AND

DELETION CORRECTION

In this section we first show an equivalence between a
(1)-criss-cross deletion correcting code and a (1)-criss-cross
insertion correcting code (Theorem 1). Then we use the result
of Theorem 1 to prove the more general equivalence between
(t)-criss-cross deletion correcting codes and (t)-criss-cross
insertion correcting codes for all t ∈ [n − 1] (Corollary 2).

Theorem 1: A code C ⊂ Σn×n
q is a (1)-criss-cross deletion

correcting code if and only if it is a (1)-criss-cross insertion
correcting code.

Corollary 2: For any integer t ∈ [n− 1], a code C ⊂ Σn×n
q

is a (t)-criss-cross deletion correcting code if and only if it is
a (t)-criss-cross insertion correcting code.

Note that in the one-dimensional case Theorem 1 holds
since the intersection of the deletion balls of two vectors is
not trivial if and only if the intersection of their insertion
balls is not trivial [8]. Since this property holds over any
alphabet, the following lemma can be derived by considering
the arrays as one dimensional vectors where each element is
a row/column.

Lemma 3: For a positive integer m and two arrays X ∈
Σm×m

q ,Y ∈ Σm×m
q ,

D1,0(X) ∩ D1,0(Y) �=∅ if and only if I1,0(X) ∩ I1,0(Y) �= ∅
D0,1(X) ∩ D0,1(Y) �=∅ if and only if I0,1(X) ∩ I0,1(Y) �=∅.

While the last lemma is derived from properties of vectors,
the next one, albeit similar, requires a complete proof.

Lemma 4: For a positive integer m and two arrays X ∈
Σ(m+1)×m

q ,Y ∈ Σm×(m+1)
q ,

D1,0(X) ∩ D0,1(Y) �=∅ if and only if I0,1(X) ∩ I1,0(Y) �= ∅.

Proof: We show the “if” direction while the “only
if” part is proved similarly. That is, we prove that if

D1,0(X) ∩ D0,1(Y) �= ∅ then I0,1(X) ∩ I1,0(Y) �= ∅. Assume
that there exists D ∈ Σm×m

q such that D ∈ D1,0(X)∩D0,1(Y)
and by contradiction assume that I0,1(X) ∩ I1,0(Y) = ∅.
Let iR, iC be the indices of the row and column deleted in
X and Y, respectively, to obtain D. Let r denote row iR
of X, i.e., XiR,[m], after an insertion of 0 in position iC .
Similarly, let c be the column Y[m],iC

after an insertion of 0
in position iR. Notice that it is also possible to insert 1 in both
of the words, as long as the symbol inserted is the same. The
following relations hold from the definition of D.

Xi,j = Di,j = Yi,j for 1 � i < iR, 1 � j < iC ,

Xi+1,j = Di,j = Yi,j for iR � i � m, 1 � j < iC ,

Xi,j = Di,j = Yi,j+1 for 1 � i < iR, iC � j � m,

Xi+1,j = Di,j = Yi,j+1 for iR � i � m, iC � j � m. (1)

Let Ix be the result of inserting column c at index iC into
X. The array Iy is defined similarly by inserting row r at
index iR in Y. Notice that Ix is a result of inserting a column
to X and thus Ix ∈ I0,1(X). For the same reasons it holds that
Iy ∈ I1,0(Y). We conclude the proof by showing that Ix = Iy .
This will be done by considering the following cases.

• For i < iR, j < iC , both Ix
i,j , I

y
i,j are not affected by the

insertions or deletions. Hence, it follows that

Ix
i,j = Xi,j = Yi,j = Iy

i,j

• For i = iR and for j < iC , the symbols Ix
i,j = rj remain

unaffected by the insertion. On the other hand, Iy
i,j is

exactly an inserted symbol into Y that is defined to be
rj which results in Iy

i,j = rj = Ix
i,j .

• For i < iR and for j = iC , the symbols Iy
i,j = ci remain

unaffected by the insertion. On the other hand, Ix
i,j is

exactly an inserted symbol into X that is defined to be
ci which results in Ix

i,j = ci = Iy
i,j .

• For i = iR and for j = iC , it holds that Ix
i,j = ci and

Iy
i,j = rj . By definition, both of these symbols are 0,

which results in Ix
i,j = Iy

i,j .
• For i > iR and for j < iC , by (1) it holds that

Ix
i,j = Xi,j = Di−1,j = Yi−1,j .

On the other hand, after a row insertion in index iR,
it holds that Iy

i,j = Yi−1,j which results in Ix
i,j = Iy

i,j .
• For i > iR and for j = iC , by definition Ix

i,j = ci = Yi−1,j .
On the other hand, Iy had a row insertion in index iR,
which means that Iy

i,j = Yi−1,j and results in Ix
i,j = Iy

i,j .
• For i < iR and for j > iC , by (1) it holds that

Iy
i,j = Yi,j = Di,j−1 = Xi,j−1.

On the other hand, after a column insertion in index iC ,
it holds that Ix

i,j = Xi,j−1 which results in Ix
i,j = Iy

i,j .
• For i = iR and for j > iC , by definition Iy

i,j = rj = Xi,j−1.
On the other hand, Ix had a column insertion in index iC ,
which means that Ix

i,j = Xi,j−1 and results in Ix
i,j = Iy

i,j .
• For i > iR and for j > iC , Ix had a column insertion

in index iC , which means that Ix
i,j = Xi,j−1. On the

other hand, Iy had a row insertion in index iR, which
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Fig. 1. A flowchart of the proof of Theorem 1.

means that Iy
i,j = Yi−1,j . From (1) it holds that Xi,j−1 =

Di−1,j−1 and Yi−1,j = Di−1,j−1. This results in

Ix
i,j = Xi,j−1 = Di−1,j−1 = Yi−1,j = Iy

i,j .

This concludes that for all i, j ∈ [m+1], Ix
i,j = Iy

i,j , which
assures that Ix = Iy , and hence I0,1(X) ∩ I1,0(Y) �= ∅, that
contradicts our assumption.

We now use the results of Lemma 3 and Lemma 4 to prove
Theorem 1.

Proof of Theorem 1: The proof follows by showing that
for any X,Y ∈ Σn×n

q , D1(X) ∩ D1(Y) = ∅ if and only if
I1(X)∩ I1(Y) = ∅. For the reader’s convenience, a flowchart
of the proof is presented in Figure 1. We only show the “only
if” part as the “if” part follows similarly.

Assume that there exists an array D ∈ Σ(n−1)×(n−1)
q such

that D ∈ D1,1(X) ∩ D1,1(Y). Hence, D can be obtained by
deleting a row and then a column from X and by deleting a
column and then a row from Y (note that the order of the
row and column deletions does not matter and can be chosen
arbitrarily).

Denote the intermediate arrays by X−1,0,Y0,−1, so the
following relation holds.

X Row Deletion−−−−−−−→X−1,0 Col Deletion−−−−−−→ D,

Y Col Deletion−−−−−−→Y0,−1 Row Deletion−−−−−−−→ D.

Hence, it holds that

D ∈ D1,0(Y0,−1) ∩ D0,1(X−1,0),

and thus, from Lemma 4 there exists an array Z ∈ Σn×n
q ,

such that Z ∈ I0,1(Y0,−1) ∩ I1,0(X−1,0). By definition, Z ∈
I1,0(X−1,0) is equivalent to X−1,0 ∈ D1,0(Z). But, it is also
known that X−1,0 ∈ D1,0(X), which means that

X−1,0 ∈ D1,0(Z) ∩ D1,0(X).

From Lemma 3 it follows that there exists some X1,0 ∈
I1,0(Z) ∩ I1,0(X). The same argument can be done for Y,

and define its result by Y0,1. Next, notice that we can also
conclude that

Z ∈ D1,0(X1,0) ∩ D0,1(Y0,1),

so from Lemma 4 it is deduced that there exists an array
I ∈ I0,1(X1,0) ∩ I1,0(Y0,1). Note that I ∈ I0,1(X1,0) and
X1,0 ∈ I1,0(X), which means I is obtained by inserting a row
and a column in X, i.e., I ∈ I1(X). A symmetrical argument
holds for Y, which assures that I ∈ I1(X) ∩ I1(Y).

We now prove Corollary 2 by using the result of Theorem 1.
Proof of Corollary 2: The proof follows by showing that

for any X1,Xt+1 ∈ Σn×n
q , Dt(X) ∩ Dt(Xt+1) �= ∅ if and

only if It(X) ∩ It(Xt+1) �= ∅. We first prove the following
claim.

Claim 5: For any two arrays X1,Xt+1 ∈ Σn×n
q , Dt(X1)∩

Dt(Xt+1) �= ∅ if and only if there exist t−1 arrays X2, . . . ,Xt

such that D1(Xi) ∩ D1(Xi+1) �= ∅ for all 1 � i � t.
Proof: We prove the “if” part by induction. The proof of

the “only if” part follows similarly and is omitted.

A. Base Case

We need to show that if D1(X1) ∩ D1(X2) �= ∅ then
D1(Xi) ∩ D1(Xi+1) �= ∅ for all i = 1 which follows from
the assumption.

B. Induction Step

Assume the property holds for t ∈ [n − 2] and we
show that the property holds for t + 1. Let X1,Xt+2 be
such that Dt+1(X1) ∩ Dt+1(Xt+2) �= ∅. Then, there exists
X(1)

1 ,X(1)
t+1 resulting from a criss-cross deletion of X1 and

Xt+2, respectively, such that Dt(X
(1)
1 ∩Dt(X

(1)
t+1) �= ∅. Thus,

according to the induction hypothesis, there exist t− 2 arrays
X(1)

1 , . . . ,X(1)
t that satisfy D1(X

(1)
i ) ∩ D1(X

(1)
i+1) �= ∅ for all

1 � i � t.
According to Theorem 1, there exist t arrays X2, . . . ,Xt+1

such that for all 2 � i � t + 1, Xi ∈ I(X(1)
i−1) ∩ I(X(1)

i ).
Therefore, it holds that for 1 � 1 � t + 1,

X(1)
i ∈ D1(Xi) ∩ D1(Xi+1).

This completes the “if” part of the proof.
Next we prove a similar claim for the insertion case.
Claim 6: For any two arrays X1,Xt+1 ∈ Σn×n

q , It(X1) ∩
It(Xt+1) �= ∅ if and only if there exist t−1 arrays X2, . . . ,Xt

such that I1(Xi) ∩ I1(Xi+1) �= ∅ for all 1 � i � t.
The proof of Claim 6 is similar to the proof of Claim 5 and

is thus given in Appendix A.
Having the results of Claim 5 and Claim 6, we can now

prove Corollary 2 as follows. For any Xt,Xt+1 ∈ Σn×n
q ,

if Dt(X1) ∩ Dt(Xt+1) �= ∅, then from Claim 5 we know
that there exist t − 1 arrays X2, . . . ,Xt such that D1(Xi) ∩
D1(Xi+1) �= ∅ for all 1 � i � t. Then, according to
Theorem 1, there exist t arrays X(1)

1 , . . . ,X(1)
t such that for

all 1 � i � t,

X(1)
i ∈ I1(Xi) ∩ I1(Xi+1).

Finally, we can now apply Claim 6 to conclude that It(X1)∩
It(Xt+1) �= ∅. The “only if” part follows similarly.
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V. UPPER BOUND ON THE CARDINALITY

In this section we prove a non-asymptotic upper bound on
the cardinality of a (1)-criss-cross deletion correcting code.
For an array X ∈ Σn×n

q , we denote by Xi,j the array obtained
from X after deleting the i-th row and the j-th column.
Let X ∈ Σn×n

q and let i1, i2, j1, j2, δ ∈ [n] be such that
i1 � i2 and j1 � j2. We define a column run of length
i2 − i1 + 1 as a sequence of identical consecutive symbols
in a column j1, i.e., Xi1,j1 = Xi1+1,j1 = · · · = Xi2,j1 .
We define a row run similarly. A diagonal run of length δ +1
is a sequence of identical symbols situated on a diagonal of
X, i.e., Xi1,j1 = Xi1+1,j1+1 = · · · = Xi1+δ,j1+δ. An anti-
diagonal run of length δ+1 is a sequence of identical symbols
situated on an anti-diagonal of X, i.e., Xi1,j1 = Xi1+1,j1−1 =
· · · = Xi1+δ,j1−δ. In Lemma 7 we give a necessary and
sufficient condition that two different (1)-criss-cross deletions
applied on an array X must satisfy to result in the same
array Xi1,j1 = Xi2,j2 for (i1, j1) �= (i2, j2). We start with
an example that illustrates the idea of Lemma 7.

Example 1: Consider the following binary 9 × 9 array
divided into nine 3 × 3 arrays structured as in Figure 2.

X=

⎡⎣ XI XT XII

XL XC XR

XIII XB XIV

⎤⎦=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 1 1 0 1 0
1 1 1 0 0 0 1 0 0
1 0 1 0 0 0 0 1 0
0 1 1 1 0 1 0 1 0
0 1 1 0 1 0 0 1 0
0 1 1 0 0 1 0 1 0
0 1 0 0 0 0 0 1 0
1 1 1 1 1 1 1 0 0
1 0 1 1 1 1 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

It is easy to verify that deleting column 4 and row
4 or deleting column 6 and row 6 results in the same array,
i.e., X4,4 = X6,6. Let (i1, j1) = (4, 4) and (i2, j2) = (6, 6).
The equality X4,4 = X6,6 happens because: all rows of
the arrays XT = X[1,i1−1],[j1,j2] = X[1,3],[4,6] and XB =
X[i2+1,n],[j1,j2] = X[7,9],[4,6] are row runs; all the columns of
the arrays XL = X[i1,i2],[1,j1−1] = X[4,6],[1,3] and XR =
X[i1,i2],[j2+1,n] = X[4,6],[7,9] are column runs; and all the
diagonals of XC = X[i1,i2],[j1,j2] are diagonal runs. Lemma 7
generalises this example to show that given an array X and two
(1)-criss-cross deletions applied on X, the equality Xi1,j1 =
Xi2,j2 for (i1, j1) �= (i2, j2) ∈ [n] × [n] holds if and only if
X has the structure described in this example.

Lemma 7: For i1, i2, j1, j2 ∈ [n] such that (i1, j1) �=
(i2, j2), we define imin � min(i1, i2) and imax � max(i1, i2)
and assume w.l.o.g. that j1 � j2. For all n � 3 and X ∈ Σn×n

q ,
the equality Xi1,j1 = Xi2,j2 holds if and only if the entries
Xi,j of X satisfy the following structure (illustrated in Figure 2
for the case i1 � i2).

i ∈ [1, imin − 1], j ∈ [1, j1 − 1]: Xi,j is arbitrary,
i ∈ [1, imin − 1], j ∈ [j2 + 1, n]: Xi,j is arbitrary,
i ∈ [imax + 1, n], j ∈ [1, j1 − 1]: Xi,j is arbitrary,
i ∈ [imax + 1, n], j ∈ [j2 + 1, n]: Xi,j is arbitrary,
i ∈ [1, imin], j ∈ [j1, j2 − 1]: Xi,j = Xi,j+1,
i ∈ [imax + 1, n], j ∈ [j1, j2 − 1]: Xi,j = Xi,j+1,
i ∈ [imin, imax − 1], j ∈ [1, j1 − 1]: Xi,j = Xi+1,j ,
i ∈ [imin, imax − 1], j ∈ [j2 + 1, n]: Xi,j = Xi+1,j ,�

i ∈ [imin, imax − 1], j ∈ [j1 + 1, j2] :

i ∈ [imin, imax − 1], j ∈ [j1, j2 − 1] :

Xi,j = Xi+1,j+1 for i1 � i2,

Xi,j = Xi+1,j−1 for i1 > i2.

Fig. 2. Required pattern for Xi1,j1 = Xi2,j2 . Let (i1, j1) �= (i2, j2) be the
indices of the deleted row and column in two different criss-cross deletions
on the array X. W.l.o.g j1 < j2 and for case i1 < i2 the constraints are:
1) Each row of the sub arrays XT and XB must be a row run of length
j2− j1 +1 and each column of XL and XR must be a column run of length
i2 − i1 + 1. 2) Each diagonal of the sub array XC must be a diagonal run.
3) The corner sub arrays XI, XII, XIII and XIV are outside of the region
affected by the criss-cross deletions. Therefore, no constraints are imposed on
those sub arrays. The same holds for Xi1,j2 and Xi2,j1 since they are both
deleted by criss-cross deletions. Note that for i1 > i2, all the requirements
remain the same except for XC. In this case, the bottom-left to top-right
diagonals are diagonal runs.

Proof: For a better grasp of the proof we use the notation
of Figure 2 for the sub arrays and the aforementioned notation
of runs. Furthermore, for an array X we write X[:−1] if all the
elements of that array are shifted by one column to the left,
i.e., X[:−1] =

[
X[n],2|X[n],3| · · · |X[n],n

]
where [·|·] denotes a

concatenation of arrays. Similarly, we write X[−1:] for a row
shift by one to the top and X[−1:−1] for a simultaneous row
and column shift.

We now assume that for (i1, j1) �= (i2, j2) ∈ [n]× [n] there
exists an array X̃ ∈ Σ(n−1)×(n−1)

q such that X̃ = Xi1,j1 =
Xi2,j2 . Note that w.l.o.g. we assume that j1 � j2.

Due to the assumption that Xi1,j1 = Xi2,j2 we have
Xi1,j1

I = Xi2,j2
I . The indices of the columns and rows of

Xi1,j1
I and Xi2,j2

I satisfy i < imin and j < j1. Therefore the
entries of those sub arrays are not affected by the criss-cross
deletion. Hence, Xi1,j1

I = Xi2,j2
I = XI irrespective of the

values of the entries of X. For i < imin and j > j2, we have
Xi1,j1

II = Xi2,j2
II = XII[:−1] irrespective of the values of the

entries of X. This equality holds because in both cases the
columns of XII are shifted by one column to the left. Using
a similar argument, one can show that Xi1,j1

III = Xi2,j2
III =

XIII[−1:] and Xi1,j1
IV = Xi2,j2

IV = XIV[−1:−1].
In contrast, from Xi1,j1

T = Xi2,j2
T we get Xi1,j1

T = XT[:−1]

and Xi2,j2
T = XT which produces the row run constraint

XT[:−1] = XT, i.e., Xi,j = Xi,j+1 for all corresponding
values of i and j. The same constraints hold for the equalities
Xi1,j1

B = XB[−1:−1] and Xi2,j2
B = XB[−1:] following from the

existence of X̃.
Furthermore, we observe that Xi1,j1

L = XL[−1:] and
Xi2,j2

L = XL which produces the column run constraint
XL[−1:] = XL, i.e., Xi,j = Xi+1,j for all corresponding
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values of i and j. Once more, due to the existence of X̃
the same constraints holds due to Xi1,j1

R = XR[−1:−1] and
Xi2,j2

R = XR[:−1].
In the center sub array XC we need to distinguish whether

i1 � i2 or i2 > i1, since this imposes different constraints
on XC. For the first case we notice that Xi1,j1

C = XC[−1:−1]

and Xi2,j2
C = XC which leads to a diagonal run constraint of

XC[−1:−1] = XC, i.e., Xi,j = Xi+1,j+1 for all corresponding
values of i and j. In the case where i2 > i1, we see that
Xi1,j1

C = XC[:−1] and XC
i2,j2 = XC[−1:]. Therefore we need

the anti-diagonal run constraint, i.e., Xi,j = Xi+1,j−1 for all
corresponding values of i and j.

The constraints imposed on the sub arrays are exactly the
same as the structure imposed on the array X which concludes
the first part of the proof.

The reverse statement follows by observing that an array
X satisfying the structure described in the claim will result
in X̃ = Xi1,j1 = Xi2,j2 . The reason is that this structure
makes the sub arrays invariant to the different shifts in
X resulting from both (i1, j1) and (i2, j2) (1)-criss-cross
deletions.

We use the following nomenclature throughout this
section.

A. Good and Bad Arrays

An array X ∈ Σn×n
q is called good if its deletion ball is

larger than 2n2

5 , i.e., |D1(X)| � 2n2

5 and X is called bad
otherwise. Denote by Gn,Bn the set of all good and bad arrays
in Σn×n

q , respectively.

B. Bad Columns and Rows

A column X[n],j , j ∈ [2, n], is called bad if for any pair of
row indices i1, i2 ∈ [n] with i1 < i2 the columns X[n],j and
X[n],j−1 satisfy the following constraints:

1) They are identical in the intervals [1, i1 − 1] and [i2 +
1, n], i.e., X[i1−1],j = X[i1−1],j−1 and X[i2+1,n],j =
X[i2+1,n],j−1.

2) The column X[n],j is either identical to X[n],j−1 up to
a single down shift in the interval [i1, i2], i.e., Xi+1,j =
Xi,j−1 for all i ∈ [i1, i2 − 1]; or identical to X[n],j−1 up
to a single up shift in the interval [i1, i2], i.e., Xi−1,j =
Xi,j−1 for all i ∈ [i1 + 1, i2].

For the case i1 = i2 a column X[n],j is bad if it is identical to
the column X[n],j−1, except for the bit i1 which can have an
arbitrary value, i.e., X[i1−1],j = X[i1−1],j−1 and X[i1+1,n],j =
X[i1+1,n],j−1. Columns that do not satisfy the aforementioned
constraints are referred to as good columns. Bad rows and
good rows are defined similarly.

Claim 8: The deletion ball size of an array X ∈ Σn×n
q is

bounded from below by

|D(X)| � |Ic
X||Ir

X|.

Thus, X is good if the number of good columns and the

number of good rows are at least
√

2
5n, i.e., |Ic

X| �
√

2
5n and

|Ir
X| �

√
2
5n.

Proof: Let cg = |Ic
X| and rg = |Ir

X| be the number
of good columns and good rows, respectively. For a column
X[n],j, j ∈ [n], the number of distinct arrays resulting
from deleting the j-th column and any row Xi,[n], i ∈ [n]
is greater than or equal to rg . In other words, deleting
column X[n],j and any good row Xig,[n], ig ∈ Ir

X gives
a new distinct array. To see this, assume by contradiction
that there exists a pair i1, i2 ∈ Ir

X such that Xi1,j =
Xi2,j . Then, according to Lemma 7, all rows Xi1,[n] up
to Xi2,[n] must be identical. Thus we have a contradic-
tion since Xi2,[n] �= Xi2−1,[n] by the definition of a good
row.

We now turn our attention to good columns. For any jg ∈
Ic
X, the arrays resulting from deleting column X[n],jg

and any
row are distinct. Assume by contradiction that there exist j2 ∈
Ic
X, j2 �= jg, and i1, i2 ∈ [n] such that Xi1,jg = Xi2,j2 . Let

jm = max{jg, j2}. Then according to Lemma 7, the columns
X[n],jm−1 and X[n],jm

must satisfy Xi,jm−1 = Xi,jm for all
i ∈ [1, min{i1, i2} − 1] ∪ [max{i1, i2} + 1, n] and X[n],j2

must be identical to X[n],j2 up to a single up or down shift
in the interval [min{i1, i2}, max{i1, i2}] depending whether
i1 > i2 or i2 > i1. However, this contradicts the definition of
a good column.

Hence, |D(X)| � cgrg . Thus, if cg �
√

2
5n and rg �

√
2
5n,

then |D(X)| � 2n2/5 and X is a good array.
Claim 9: For n � 5 the number of possible choices of a

good column (or row) is equal to
(
2n − 2n2

)
.

Proof: For a column X[n],jb
to be bad, for any i ∈ [n]

it could be identical to column X[n],jb−1 on all entries except
the i-th entry which can still be arbitrary, i.e., for all i ∈ [n]
it must hold that X[i−1],jb

= X[i−1],jb−1 and X[i+1,n],jb
=

X[i+1,n],jb−1. There are 2n such columns. In addition, for
two integers i1, i2 ∈ [n] such that i1 < i2, a bad column
X[n],jb

could also be identical to X[n],jb−1 on the intervals
[1, ii − 1] and [i2 + 1, n], i.e., X[i1−1],jb

= X[i1−1],jb
and

X[i2+1,n],jb
= X[i2+1],jb

; and identical to column X[n],jb−1

up to a single down shift on the interval [i1, i2], i.e., X[i+1,jb
=

Xi,jb−1 for all i ∈ [i1, i2 − 1]. We have 2
(
n
2

)
such columns.

Similarly there are 2
(
n
2

)
bad columns resulting from being

identical to X[n],jb−1 up to a single up shift on the interval
[i1, i2]. Therefore, the total number of bad columns is bn �
2n + 4

(
n
2

)
= 2n2 and the total number of good columns is

equal to 2n2 − 2n2. The same calculation holds for good and
bad rows.

We are ready to give an upper bound on |Bn|, the number
of bad arrays.

Lemma 10: For n � 41 and q � 2 the number of bad arrays
is bounded from above by

|Bn| �
√

8
5
· qn2−3n.

Proof: If an array X ∈ Σn×n
q satisfies the conditions of

Claim 8, then it is a good array. Otherwise, X can be either
a good array or a bad array. Therefore, we can compute an
upper bound on the number of bad arrays as the number of
arrays that do not satisfy the conditions of Claim 8, i.e., have

either less than
√

2
5n good columns or less than

√
2
5n good
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rows. Thus, we can write

|Bn| � 2
n∑

j=n−
√

2
5 n+1

(
n

j

)
(bn)jqn·(n−j)

� 2

√
2
5
n2n(2 n2)nq

√
2
5 n2−n =

√
8
5
n(4 n2)nq

√
2
5 n2−n

=

√
8
5
q
√

2
5 n2−n+logq(n)+n logq(4n2)

�
√

8
5
q
√

2
5 n2−n+log2(n)+n log2(4n2)

�
√

8
5
· qn2−3n,

where bn = 2n2 results from the observation of Claim 9. The
upper bound can be interpreted as summing over all arrays

with at least n−
√

2
5n+1 bad columns (or bad rows) which can

be located at
(
n
j

)
different positions. The other columns (rows)

can be chosen arbitrarily. The second inequality is obtained by
bounding

(
n
j

)
with 2n and the last inequality holds for n � 41.

We now use the upper bound on the number of bad arrays
to prove the following lower bound on the redundancy of a
criss-cross deletion correcting code.

Theorem 11: The cardinality of any q-ary (1)-criss-cross
deletion correcting code C for n � 41 and q � 2 is bounded
by

|C| � (1 + ε)
qn2

q2n−1 · 2n2

5

,

with ε = 0.29, and thus its redundancy is lower bounded by

R � 2n − 3 + 2 logq(n).

Proof: Let CB � C ∩ Bn and CG � C ∩ Gn. Consider the
following sphere packing argument

2n2

5
|CG | �

∑
X∈CG

|D1(X)| �
∑
X∈C

|D1(X)| � q(n−1)2 .

Hence, |CG | � q(n−1)2

2n2
5

. From Lemma 10, for n � 41 the

number of bad arrays is bounded by |Bn| �
√

8
5 · qn2−3n.

Thus,

|C| = |CG | + |CB|
� |CG | + |Bn|

� q(n−1)2

2n2

5

+

√
8
5
· qn2−3n

=
qn2

q2n−1 · 2n2

5

(
1 +

√
32
125

n2

qn+1

)
. (2)

We show next that for any n � 5 and q = 2 we have

f(n) �
√

32
125

n2

qn+1
< ε = 0.29.

Then we plug this result in (2) to obtain the bound on the
cardinality of C.

First, the only root of f(n) is at n = 0. Second, we can
find the only maximum at f( 2

loge(2) ) = 0.2850 and a saddle
point at f(0) = 0. Therefore, for n � 3 the function is
monotonically decreasing and is always greater than zero.
Moreover, it holds for any n � 3 and q > 2√

32
125

n2

qn+1
<

√
32
125

n2

2n+1
� f

(
2

loge(2)

)
< ε = 0.29,

since 2n+1 < qn+1.
Consequently, we can re-write the upper bound in (2) with

n � 41 and ε = 0.29 as

|C| � (1 + ε)
qn2

q2n−1 · 2n2

5

,

which coincides with the expression in the theorem.
For the lower bound on the redundancy of a criss-cross code,

we calculate a bound on R = n2 − logq(|C|) as

R � n2 − logq

(
(1 + ε)

qn2

q2n−1 · 2n2

5

)
= n2 − logq(1 + ε)

− n2 + (2n − 1) + 2 logq(n) − logq

(
5
2

)
� 2n − 3 + 2 logq(n),

since logq(1 + ε) + logq(5/2) < log2(1.29) + log2(5/2) < 2.

Corollary 12: For a (1)-criss-cross deletion correcting code
C the following holds:

|C| � qn2

q2n−1 · n2

2

(
1 +

n2

√
2 · qn+1

)
thus its asymptotic redundancy (in n) is at least 2n − 2 +
2 logq n.

Proof: The derivations are similar to the ones in
Theorem 11. We only change the definition of good arrays to
have deletion balls greater than or equal to n2/2. A complete
proof is given in Appendix B.

VI. CONSTRUCTION

In this section we present our CrissCross codes that can
correct a (1)-criss-cross deletion or insertion and state their
main properties. Throughout the rest of the paper, we only
consider binary arrays for the ease of presentation. The same
construction can be extended for q-ary arrays. We denote
the set of all binary arrays {0, 1}n×n by Σn×n. Moreover,
we assume that a, b, c, d are non-negative integers such that
0 � a, b, d � n−1 and 0 � c � n−2. We also assume that n
is a power of 2 so that log n is an integer, while the extension
for other values of n will be clear from the context. The main
results of this section are summarized in the following theorem
and corollary.

Theorem 13: The CrissCross code Cn(a, b, c, d) (defined
in Construction 1) is a (1)-criss-cross deletion and insertion
correcting code that has an explicit decoder.
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Fig. 3. The structure of the codewords of our CrissCross code. U is the
binary representation of a q-ary vector u ∈ VTn,q(a, b) with q = n. Each
column is viewed as a symbol of the VT coded vector u. The last column
of U is an alternating sequence and the second to last column must start
with four consecutive 0’s. V is defined similarly to U where each row is a
symbol of a VT coded vector v ∈ VTn−1,n(c, d). The alternating sequence
of U is extended by one bit in V. For the encoding of V, we replace the
alternating sequence by the all 0 sequence. The column pc is a parity column
consisting of the sum of all columns of its size (and position). The row pr

is a parity row defined similarly to pc. We denote by X ∈ VTn,q(a, b) the
binary representation of a q-ary vector x ∈ Σn

q , such that x ∈ VTn,q(a, b).

Corollary 14: There exist integers a, b, c, d for which the
redundancy of the CrissCross code Cn(a, b, c, d) is at most

2n + log n + 7 + 2 log e

bits and is therefore at most 2 log n + 10 + 2 log e bits away
from the lower bound.

We prove Theorem 13 through a detailed explanation of
the code construction that will be given in Section VI-A.
In Section VI-B, we show how the decoding works for a (1)-
criss-cross deletion and insertion. Afterwards, we compute an
upper bound on the redundancy in Section VI-C, and thus
prove Corollary 14.

A. The Construction

The CrissCross code C is an existential code whose code-
words are n×n binary arrays structured as shown in Figure 3
and as explained next. The code consists of two main com-
ponents. The columns and the rows are indexed using the
binary expansion U and V of two n-ary VT coded vectors to
recover the positions of the inserted/deleted row and column.
The parity bits pc and pr are used to recover the deleted
information in case of a deletion and to help detect the location
of an inserted column or row in case of an insertion.

1) Indexing the Columns: The first log n rows of a code-
word C ∈ C are the binary representation of a q-ary vector
u encoded using a VT code VTn,q(a, b) that can correct one
insertion/deletion, where q = n. The log n × n binary array
U satisfies the following requirements: i) every column of
U is the binary representation of a symbol of the VT coded
vector u ∈ VTn,n(a, b); ii) any two consecutive columns are
different; iii) the last column is the alternating sequence that
starts with 0; and iv) the first 4 bits of the second to last

column are 0’s. As we shall see in the decoding section, this
array serves as an index of the columns. That is, it allows the
decoder to exactly recover the position of the inserted/deleted
column.

2) Indexing the Rows: The (n − 1) × log n array formed
of the last log n bits of rows 1 to n − 1 (situated at the right
of the array C) is the binary representation of a q-ary vector
v encoded using a V T code VTn−1,q(c, d) that can correct
one insertion/deletion, with q = n. The (n−1)× log n binary
array V satisfies the following requirements: i) each row of
V is the binary representation of a symbol of the VT coded
vector v ∈ VTn−1,n(c, d); ii) any two consecutive rows are
different; iii) the first log n rows also satisfy the requirements
imposed on U, with the exception of replacing the alternating
sequence by the all 0 sequence2; and iv) the first bit below
the alternating sequence is the opposite of the last bit of the
alternating sequence. In other words, the alternating sequence
is of length log n+1. Again here we assume that the stored bit
belongs to the alternating sequence, but for the encoding of v
we assume that the first log n + 1 bits of the last column are
all 0’s. This array serves as an index of the rows that allows
the decoder to recover the position of the inserted/deleted row.

3) Parities: The part of the first column of C that is not
included in U is a parity of the same part of all corresponding
columns, i.e., each entry of that column is the sum of all bits
corresponding to its same row. This column is denoted by
pc and is shown on the left in Figure 3. Moreover, the last
row of C is a parity of all the rows and is denoted by pr.
In case of deletion, the parities allow the decoder to recover
the information in the deleted column and row. In case of an
insertion, the parities help the decoder to exactly recover the
index of the inserted row and column in case the arrays U
and V failed to do so, as explained in more details in the
next section. We start with an example to illustrate the idea
before going into the formal definition of the construction. The
example also illustrates the deletion decoder.

Example 2: We construct a 9 × 9 codeword of our code
to illustrate the construction and the decoding algorithm.
We chose n to be 9 (not a multiple of 2) for convenience
and to make the example simpler.

Assume that we want the columns and the rows to be
indexed by codewords of q-ary VT codes with q = 2(�log n�) =
16 with a = 2, b = 0, c = 7 and d = 0. The first 4 rows of
the codeword should then be the binary representation of a
q-ary vector u ∈ VT 9,16(2, 0). For clarity of presentation,
we represent a symbol x = (x1, x2, x3, x4)T ∈ Σ24 as the
decimal representation x =

∑4
i=1 xi2i−1. Our construction

requires the last symbol of u to be 10, i.e., its binary repre-
sentation is the alternating sequence. In addition, the second
to last symbol of u must be 0. Moreover, every two consec-
utive symbols of u must be different. An example is u =
(0, 1, 2, 3, 4, 5, 11, 0, 10) ∈ Σ9

24 . The binary representation U
of u is the first four rows of X given in (3). Given u,

2The array U can still store the alternating sequence. When checking the
constraints on the rows of V we assume the last column of U is the all 0
sequence. Similarly, when encoding V we also assume that the last column
is all 0. Since this information is known by the decoder, the all 0 sequence
need not be stored in the array.
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we now index the columns with a vector v ∈ VT 8,16(7, 0)
such that the first four symbols of v are predetermined to
be 3, 10, 1 and 10, respectively. Our construction requires the
last bit of the binary representation of the fifth symbol of
v to be set to 0 as an extension of the alternating sequence
of the last symbol of u (c.f. (3)). Similarly to u, any two
consecutive symbols of v must be different. An example is
v = (3, 10, 1, 10, 6, 8, 9, 7) ∈ Σ8

24 . The binary representation
V of v is the transpose of the last four columns and first
eight rows of the array X given in (3). The remaining entries
of the array X not belonging to the first column nor the
last row (marked in black) are arbitrary. The entries of the
last row (marked in red) are the column-wise parity bits.
The remaining entries of the first column (in green) are the
row-wise parity bits. The constructed codeword X is shown
in (3).

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 0 1 1 0 0
0 0 1 1 0 0 1 0 1
0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1 0
1 1 1 1 1 0 0 0 1
0 0 1 0 1 1 0 0 1
0 1 0 1 0 1 1 1 0
1 1 1 0 1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3)

X2,7 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 0 1 1 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 1
0 0 1 0 1 1 0 1
0 1 0 1 0 1 1 1
1 1 1 0 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4)

To illustrate the decoding strategy assume that column 7 and
row 2 of X are deleted. The resulting array X2,7 is illustrated
in (4). The decoder looks at the last non-deleted column and
knows that it should be the alternating sequence because it is
not the all zero column in the first four rows. From the last
column, the decoder knows that the second row is deleted.
Using the row-wise parity bits of the last row, the decoder can
recover the second row. Now the decoder has all the rows of
U with one deleted column and can thus use the VT decoder
to recover the value and position of the lost column. Note
that since every two consecutive columns in U are different,
the decoder recovers the exact location of the deleted column.
Having the index of the deleted column, the decoder recovers
the values of the bits outside of U (rows 5 to 8) using the
column-wise parity bits. The last bit of the deleted column is
the sum of all other bits.

Formally, the CrissCross code C can be seen as an inter-
section of four codes over Σn×n that define the constraints
imposed on the codewords of C. Let � � log n, we define W
to be the all zero array except for the first � + 1 bits of the
last column to be the alternating sequence, i.e., W[�+1],n =
[01010101 · · · ]T and Wi,j = 0 otherwise. We denote by
X ∈ VTn,q(a, b) the binary representation of a q-ary vector

x ∈ Σn
q , such that x ∈ VTn,q(a, b).

U(a, b) �

⎧⎪⎪⎪⎨⎪⎪⎪⎩X :

X[�],j �= X[�],j+1, j ∈ [n − 1]

X[4],n−1 = [0000]T ,

X[�+1],n = [010101 · · · ]T ,

X[�],[n] ∈ VTn,2�(a, b)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

V(c, d) �

⎧⎪⎨⎪⎩X :

Xi,[n−�+1,n] �=Xi+1,[n−�+1,n], i ∈ [n−1]

X[�+1],n = [0000 · · · ]T ,

XT
[n−�+1,n],n−1 ∈ VTn−1,2�(c, d)

⎫⎪⎬⎪⎭,

V ′(c, d) �
{

Y :
Y[�+1],n = [010101 · · · ]T ,

Y ⊕ W ∈ V(c, d)

}
,

Pc �

⎧⎨⎩X : xi,1 =
n∑

j=2

xi,j , i = � + 1, . . . , n − 1

⎫⎬⎭ ,

Pr �
{

X : xn,j =
n−1∑
i=1

xi,j , j ∈ [n]

}
.

Construction 1: The CrissCross code Cn(a, b, c, d) is the set
of arrays C ∈ Σn×n that belong to

Cn(a, b, c, d) � U(a, b) ∩ V ′(c, d) ∩ Pc ∩ Pr.

B. Decoder

In this section, we show how the CrissCross code construc-
tion leverages the structure of a codeword C ∈ Cn(a, b, c, d) to
correct a criss-cross deletion or insertion. Formally, we prove
Theorem 13. We assume that the decoder knows the dimension
of received array. In other words, the decoder knows whether
a criss-cross deletion or a criss-cross insertion has happened
and only needs to correct it.

Intuition: The goal of the decoder is to use the
insertion/deletion correction capability of VTn,n(a, b) and
VTn−1,n(c, d) to recover the positions of the inserted/deleted
column and row. The decoder first uses the alternating
sequence to check if a row of U is inserted/deleted and there-
fore corrects it before proceeding to the VT code decoder. In
case of a deletion, the second to last column allows the decoder
to detect whether the alternating sequence was deleted or not.
If the alternating sequence is deleted, the decoder cannot use
U and has to start using V to detect the position of the deleted
row, recover it using the parities and then obtain the position of
the deleted column from U. The parties are used to recover the
deleted information once the decoder has the position of the
deleted row and/or column. In case of an insertion, the inserted
vector may be equal to another consecutive vector in either
U or V. In this case, the decoder uses the parity bits over the
remaining part of the vector to exactly recover the position of
the inserted row or column. We are now ready to present the
proof of Theorom 13.

Proof of Theorem 13: We split the proof into two parts:
i) an explicit decoder for a (1)-criss-cross deletion; and ii) an
explicit decoder for a (1)-criss-cross insertion.

1) Deletion Correcting Decoder: The decoder for
Cn(a, b, c, d) receives as input an (n − 1) × (n − 1) array
C̃ resulting from a (1)-criss-cross deletion in an array C of
Cn(a, b, c, d) and works as follows. The decoder starts by

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:29:25 UTC from IEEE Xplore.  Restrictions apply. 



8008 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 12, DECEMBER 2021

looking at the first � × (n − 1) subarray of C̃ and examining
the last column.

Case 1: Assume the last column of C is not deleted. Using
the alternating sequence, the decoder can detect whether or not
there was a row deletion in U and locate its index. This is done
by locating a run of length 2 in the alternating sequence. The
last bit of the alternating sequence falling in V and not in U
ensures that the decoder can detect whether the last row of U
is deleted or not.

Case 1 (a): If there was a row deletion in U, the decoder
uses the non deleted part of pr to recover the deleted row
except for the bit in the deleted column. The decoder can
now use the properties of VTn,n(a, b) to decode the column
deletion in U. Since any two consecutive columns in U are
different, the decoder can locate the exact position of the
deleted column and recover its value. The position of the
deleted column in U is the same as the deleted column in
the whole array. Using pc, the decoder can now recover the
remaining part of the deleted column.

Case 1 (b): If the deleted row was not in U, the decoder
uses VTn,n(a, b) to recover the index of the deleted column
and its value within U and uses pc to recover the value of
the deleted column outside of U (except for the bit in the
intersection of the deleted row and column). Then, the decoder
uses VTn−1,n(c, d) to recover the index of the deleted row.
Again, since any two consecutive rows in V are different the
decoder can recover the exact position of the deleted row.
Using pr, the decoder recovers the value of the bits of the
deleted row.

Case 2: Now assume that the last column of C is deleted.
By looking at the last column of C̃, the decoder knows that the
alternating sequence is missing thanks to the run of 0’s inserted
in the beginning of the second to last column of C. Note that
irrespective of the location of the row deletion, the last column
will have a run of at least three 0’s which cannot happen in
the alternating sequence. Therefore, the decoder knows that
the last column is deleted and starts by looking at V. Using
the parity pc, the decoder recovers the missing part of the
deleted column that is in V but not in U. By construction,
the first � bits of the last column of V are set to 0 when
encoding V using a VT code. Thus, the decoder recovers the
whole missing column. By using the property of VTn−1,n(c, d)
, the decoder recovers the index of the missing row and uses
pr to recover the value of the bits of this row. After recovering
the deleted row the decoder adds the alternating sequence to
U and recovers the whole array C.

2) Insertion Correcting Decoder: The decoder for
Cn(a, b, c, d) receives as input an (n + 1) × (n + 1) array
C̃ resulting from a (1)-criss-cross insertion of an array C
of Cn(a, b, c, d) and works as follows. The decoder starts by
looking at the first (� + 1) × (n + 1) subarray of C̃ (recall
that � = log n) and examines the last two columns.

Case 1: Assume the second to last column is not an alter-
nating sequence (special insertions that we consider in cases
2 and 3) and the last column is the alternating sequence. Using
the alternating sequence, the decoder can detect whether or not
there was a row insertion in U. This is done by locating a run
of length 2 in the alternating sequence.

Case 1 (a): If there was a row insertion in U, the decoder
has two candidates for the inserted row: the ones that cause
the run of length 2 in the alternating sequence. Recall that
the bit-wise sum of the n rows of C is known to the decoder
(parity check constraint). The decoder verifies which of the
two candidate rows does not satisfy the parity constraints,
i.e., the decoder sums the n− 1 remaining rows together with
each of the candidate rows and checks the Hamming weight
of the resulting vector. The row that results in a vector with
Hamming weight more than 1 is the inserted row.3 If both
resulting vectors are different and result in Hamming weight 1,
then the decoder is confused between two candidates for the
inserted row and two candidates for the inserted column.
In this case, the decoder deletes both candidate rows and
both candidate columns where a “1” appears in the resulting
vectors and uses the deletion correction capability of the code
to recover the original message. This works since the inserted
row and column were removed, i.e., the array is now affected
by one row deletion and one column deletion.

Otherwise, the decoder removes the inserted row and uses
the properties of VTn,n(a, b) to decode the column insertion
in U. Since any two consecutive columns in U are different,
the inserted column is either different from both adjacent
columns or equal to only one of them. In the former case,
the decoder recovers the exact position of the inserted column
and removes it. The position of the inserted column in U is the
same as the inserted column in the whole array. In the latter
case, the decoder has two candidates of inserted columns. The
decoder uses the column parity check to verify which column
is the inserted one and removes it. Note that since the inserted
row is removed, the decoder will have at most one column that
does not satisfy the column parity check constraints. If both
columns verify the parity constraints, then they are identical.

Case 1 (b): If the inserted row was not in U, i.e., the
alternating sequence is intact, the decoder uses VTn,n(a, b) to
recover the index and value of the inserted column in U. If this
column in U is different from both of its adjacent columns in
U, then the decoder removes the whole column and proceeds
to correcting the inserted row. However, if the inserted column
in U is equal to one of its adjacent columns (since any two
consecutive columns are different), then the decoder has two
candidates of inserted columns. In a similar way to Case 1 (a),
the decoder uses the column parity check constraints to verify
which column is the inserted one. After removing the inserted
column, the decoder uses VTn−1,n(c, d) to recover the index
of the inserted row. Again, if the inserted row in V is different
from both adjacent rows in V, the decoder removes the whole
row. Otherwise, the decoder has two candidates for the inserted
rows; therefore the decoder uses the row parity check to
recover the exact position of the inserted row.

Case 2: Now assume that the two last columns of U are
identical. Due to the 4 zeros in the second to last column of
C (now third to last column in C̃), the decoder detects that
a column insertion happened in one of the last two columns
of U. The decoder uses the column parity check to verify

3The original row can only result in at most one 1 located in the position
of the inserted column.
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which column is the inserted one. In case both columns satisfy
the parity check constraints, then they are identical. If both
columns violate the parity check constraints in one position,
similarly to Case 1 (a), the decoder deletes both columns
and both rows where the columns do not satisfy the parity
check constraint and uses the deletion correction capability
of the code. After removing the inserted column, the decoder
examines the alternating sequence to check if the inserted row
is in U. If this is the case, the decoder uses the row parity
check to verify which row is inserted and removes it. If the
inserted row is not in U, the decoder uses VTn−1,n(c, d) and
the column parity check to recover the exact index of the
inserted row.

Case 3: Assume that the last column of U is not the
alternating sequence. Thus, the last column is an inserted
column. The decoder removes this column and proceeds to
detect which row is inserted as explained in the previous
case.

C. Redundancy of the Code

The redundancy RCn(a,b,c,d) of Cn(a, b, c, d) is given by

RCn(a,b,c,d) = log(2n2
) − log |Cn(a, b, c, d)|

= n2 − log |U(a, b) ∩ V ′(c, d) ∩ Pc ∩ Pr| .

In this section we show that there exist a, b, c, d for which

RCn(a,b,c,d) � 2n + 4 logn + 7 + 2 log e.

We do so by computing a lower bound on log |Cn(a, b, c, d)|.
To that end we count the number of n × n binary arrays that
satisfy all the requirements imposed on the codewords C in
Cn(a, b, c, d).

Since the constraints imposed on the codes U(a, b) ∩
V ′(c, d), Pc, and Pr are disjoint, we have that

RCn(a,b,c,d) = RU(a,b)∩V′(c,d) + RPc + RPr

= RU(a,b)∩V′(c,d) + 2n − log n − 1. (5)

Equation (5) follows from the fact that the n− logn−1 bits
of pc and the n bits of pr are fixed to predetermined values.

We now compute an upper bound on the redundancy of the
set U(a, b) ∩ V ′(c, d).

Proposition 15: There exists four values a�, b�, c� and d�

for which the redundancy R1 of U(a�, b�) ∩ V ′(c�, d�) is
bounded from above by

R1 < (2n − 2 log n − 3) log
(

n

n − 1

)
+ 5 logn + 6. (6)

From Equations (5) and (6) we obtain,

RCn(a,b,c,d) < (2n − 2 log n − 3) log
(

n

n − 1

)
+ 2n + 4 logn + 5

< 2n log
(

n

n − 1

)
+ 2n + 4 logn + 5

< 2n + 4 logn + 5 + 2 log 2e (7)

= 2n + 4 logn + 7 + 2 log e.

In (7) we use the inequality 2n log
(

n
n−1

)
� 2 log 2e. This

inequality follows from noting that
(
1 − 1

n

)n
is an increasing

function of n that converges to 1
e and is always greater

than or equal to 0.25 > 1
2e = 0.1852 for n � 2. The proof of

Corollary 14 is now complete. We conclude this section with
the proof of Proposition 15.

Proof of Proposition 15: We start with counting the
number of arrays that satisfy all the imposed constraints except
for the VT constraints in the codes U(a�, b�) and V ′(c�, d�).
To that end, we define the following three sets over Σn×n.

U⊥ �
{
X : X[�],j �= X[�],j+1, j ∈ [n − � − 1]

}
,

V⊥ �
{

X :
Xi,[n−�+1,n] �= Xi+1,[n−�+1,n], �<i<n−1
X�+1,n ≡ � mod 2

}
,

S∩ �

⎧⎪⎪⎪⎨⎪⎪⎪⎩X :

X[�],j �= X[�],j+1, n − � � j < n,

Xi,[n−�+1,n] �= Xi+1,[n−�+1,n], i ∈ [�],

X[4],n−1 = [0000]T ,

X[�],n = [010101 · · · ]T

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

U⊥ is the set of all n × n arrays in which any two
consecutive columns, from column 1 to n − �, are different
when restricted to the first � entries; V⊥ is the set of all
n × n arrays in which the entry X�+1,n is fixed to a
predetermined value and any two consecutive rows, from row
� + 1 to n − 1, are different when restricted to the last �
entries; and S∩ is the set of n × n arrays in which the � × �
sub array ending at the last bit of the first row of the original
array has distinct consecutive columns, distinct consecutive
rows, the last row fixed to a predetermined value and the first
4 bits of the second to last column are also predetermined. S∩
is also defined to guarantee that the first column of the � × �
sub array is different from the � entries of column n − � and
similarly to the last row.

Claim 16: The redundancies of U⊥ and V⊥ are respectively
given by

RU⊥ = (n − log n − 1) log
(

n

n − 1

)
,

RV⊥ = (n − log n − 2) log
(

n

n − 1

)
+ 1.

The intuition behind Claim 16 is that the first log n bits
of any two consecutive columns of U (last log n bits of any
two consecutive rows of V) must be different. The proof of
Claim 16 is given in Appendix C.

Claim 17: The redundancy of S∩ is upper bounded by

RS∩ < log n + 5. (8)

The intuition behind Claim 17 is that with at most one bit of
redundancy we can guarantee that every two consecutive rows
and every two consecutive columns of the log n× log n square
are different. The remaining log n + 4 bits are due to the use
of the alternating sequence and fixing four bits of the second
to last column of the square. The proof of Claim 17 is given
in Appendix C.

The remaining part of the proof is to count the number
of arrays that satisfy the above requirements and have U ∈
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Fig. 4. The structure of the codewords of our CrissCross code with explicit
encoder and decoder. U is the binary representation of a q-ary vector u

encoded using an explicit VT code VT (h)
n,q with q = n. Each column is

viewed as a symbol of the VT coded vector u. V is defined similarly to U
where each row is a symbol of a VT coded vector v encoded using an explicit
VT code VT (v)

n−�−1,n, where � = log n. pc is a parity column consisting
of the sum of all columns of its size (and position). pr is a parity row
consisting of the sum of all rows. The first four bits of the second column
below U (shown as a, a, b, b) are reserved to help the decoders of VT (h)

n,n

and VT (v)
n−�−1,n. The first two bits of the third and fourth columns below

U (i.e., c, c, d, d) are reserved to help the decoder of VT (h)
n,n . Choosing the

values of a, b, c and d will be clarified.

VTn,n(a, b) and V ∈ VTn−1,n(c, d). Using the same argu-
ments explained in Section II, we note that the VT constraints
partition the set U⊥∩V⊥∩S∩ into (n3)(n−1) disjoint cosets.
Therefore, there exist a�, d�, c�, d� for which

|U(a�, b�) ∩ V(c�, d�)| � |U⊥ ∩ V⊥ ∩ S∩|
(n3)(n − 1)

.

In other words, the redundancy R1 of U(a�, b�)∩V(c�, d�)
is bounded from above by

R1 � RU⊥∩V⊥∩S∩ + log
(
(n3)(n − 1)

)
.

Since all the constraints in U⊥, V⊥, S∩ are disjoint by
construction, we can rewrite the previous equation as

R1 � RU⊥ + RV⊥ + RS∩ + log
(
n3(n − 1)

)
< RU⊥ + RV⊥ + RS∩ + 4 logn (9)

� (2n − 2 log n − 3) log
(

n

n − 1

)
+ 5 logn + 6. (10)

In (10) we substituted the results from Claim 16 and
Claim 17.

VII. CONSTRUCTION WITH EXPLICIT ENCODER

In this section we show how to construct a CrissCross code
with explicit encoder and decoder at the expense of increasing
the redundancy by 5 logn+5 bits. The main idea is to change
the arrays U and V so that they are the binary representations
of two q-ary vectors u and v, which are encoded using two
variations of the explicit systematic non-binary VT codes
from [29] and will be introduced in the sequel. The new
structure of the codewords is depicted in Figure 4. In the

remaining of this section we also take log n to be an integer.
The main result of this section is stated in the next theorem.

Theorem 18: The CrissCross code defined below, con-
structed by modifying Construction 1, is a (1)-criss-cross
deletion and insertion correcting code that has explicit encoder
and decoder. The redundancy of this code is bounded from
above by

Rexplicit < 2n + 9 logn + 12 + 2 log e.

A. Construction

We first review the non-binary systematic VT construction
from [29].

1) Systematic VT Code: In [29] Tenengolts presented two
VT code constructions: an existential construction as in
Section II, i.e., one defines the constraints on the codewords
and shows that such a code exists; and a systematic construc-
tion that takes as input a message and only adds redundancy
to it such that the resulting codeword satisfies some imposed
constraints. Before going into the details of our construction,
we explain the construction of the systematic VT code as
presented in [29].

The systematic VT code, denoted by VT �
n,q, takes as input

a message a = (a1, . . . , ak) ∈ Σk
q and encodes it into a vector

c ∈ Σn
q where4 n = k + 3 + �logq k. Since in our case

we take q = n, we explain here the construction of VT �
n,n,

and n = k + 4. Given the message a, the encoded vector
c = (c1, . . . , cn) ∈ Σn

n of VT �
n,n is constructed as follows.

1) The first k symbols of c, referred to as the systematic data
part, are the same as the first k symbols of a, i.e., ci = ai

for i = 1, . . . , k.
2) The symbols ck+1 and ck+2 satisfy ck+1 = ck+2 = ak+1

mod n.
3) To compute ck+3, the signature vector s = (s1, . . . , sk)

is computed as s1 = 1 and

si =

{
1 if ai � ai−1

0 otherwise.

The symbol5 ck+3 is then equal to
∑k

i=1(i−1)si mod k.
4) The symbol ck+4 is computed as ck+4 =

∑k
i=1 ci

mod n.
The symbols ck+3 and ck+4 are referred to as the parity

symbols. The symbols ck+1 and ck+2 are used as separators
between the data part and the parity part so that the decoder
can localize the insertion/deletion. Note that they can have
other values besides ak + 1 mod n as long as they are dif-
ferent from ak. We will use this variation in our construction.
If the insertion/deletion happens in the data part, the decoder
uses ck+3 and ck+4 together with the same VT decoder
explained in [29] to decode the insertion/deletion. Otherwise,
the data part is intact and no decoding is needed.

4In the construction by Tenengolts, three extra symbols are added at the
end of the sequence to account for the case of sending several concatenated
codewords. We do not need those symbols here as only one array is sent
through the channel.

5In the general VT �
n,q where q < n, one needs r = �logq k� sym-

bols ck+3, . . . , ck+3+r to be the q-ary representation of the equal to�k
i=1(i − 1)si mod k.
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2) Encoding of U and V: We slightly modify the sys-
tematic VT code to fit our setting. Namely, for the vector u
(used to compute the array U) we put the systematic part of
the data in the end of the sequence and the parity part in the
beginning. For the vector v, we maintain the structure of the
systematic VT code. For both vectors u and v we pre-encode
the message so that every two consecutive symbols of the
vectors u and v are different. Thus, the construction will not
be systematic, but explicit. Furthermore, we also change the
separator symbols to better fit our setting. We require any two
consecutive symbols to be different to detect a row deletion
within U. These modifications require also adding one more
redundancy symbol.

a) Horizontal VT encoder VT (h)
n,n : Consider the message

a = (a1, . . . , ak) ∈ {1, . . . , n − 1}k to be encoded into the
vector u ∈ Σn

n. Here we take n = k + 5. For notational
convenience we number the indices of u from −4 to n − 5,
i.e., u = (u−4, u−3, . . . , un−5). The vector u is constructed
as follows.

1) To guarantee that every two consecutive symbols are
different, the symbol u1 is made equal to a1 and the
symbols u2 to un−5 are computed as ui = ui−1 + ai

mod n.
2) The symbol u0 can take an arbitrary value up to the

restrictions explained in the sequel.
3) The symbol u−4 is computed as u−4 =

∑n−5
i=0 ui

mod n.
4) To compute u−3, we compute the signature vector s =

(s1, . . . , sk+1) as s1 = 1 and for i = 2, . . . , n

si =

{
1 if ui−1 � ui−2

0 otherwise.

The symbol u−3 is then equal to
∑k+1

i=1 (i − 1)si

mod (k + 1).
5) The symbol u−2 is the n-ary value of a length log n

alternating sequence and u−1 is chosen as the comple-
ment alternating sequence of the binary representation of
u−2.

6) Since for our CrissCross code we need any two con-
secutive symbols to be different, ui �= ui±1 for all i,
we choose the value of u0 to be different from u−1 and
u1 such that it ensures that u−4 �= u−3 and u−3 �= u−2.
This is proved in the next claim.

Claim 19: A value for u0 that satisfies u0 �= u−1, u0 �= u1

and makes u−4 �= u−3 and u−3 �= u−2 always exists.
The intuition behind Claim 19 is that u−3 changes if u0 is

smaller or greater than u1 (2 choices), whereas u−4 changes
with the value of u0 (n−2 choices). A detailed proof is given
in Appendix D.

We refer to this encoding procedure as the horizontal
VT encoder and is denoted by VT (h)

n,n .
b) Vertical VT encoder VT (v)

n−�−1,n: Consider the mes-
sage b = (b1, . . . , bk′) ∈ {1, . . . , n − 1}k′

to be encoded into
the vector v of length n′ = n− �− 1. Here n′ = n− �− 1 =
k′ + 5. The vector v ∈ Σn′

n is encoded similarly to u except
for the ordering of the data part and the parity part.

1) Let v1 = b1 and vi = vi−1+bi mod n for i = 1, . . . , k′.

2) The symbol vk′+1 can take an arbitrary value up to the
constraints explained next.

3) We let vk′+2 and vk′+3 be the n-ary values of two length
log n complement alternating sequences.

4) Computing the signature s′ of the vector (v1, . . . , vk′+1),
we let vk′+4 be equal to

∑k′+1
i=1 (i − 1)s′i mod (k′ + 1).

and vk′+5 =
∑k′+1

i=1 vi mod n.
5) We choose vk′+1 to be different from vk′ and vk′+2 such

that vk′+3 �= vk′+4 and vk′+4 �= vk′+5. By Claim 19,
such a value of vk′+1 always exists.

We refer to this encoding procedure as the vertical
VT encoder and is denoted by VT (v)

n−�−1,n.

B. Encoder

We are now ready to explain our explicit encoder for the
CrissCross code construction. The encoder takes as input
n1 + n2 + n3 bits and encodes them as follows, where

n1 = n2 − 2n− 9 log n − (2n − log n − 11) log (n) − 8,

n2 = �(n − 5) log(n − 1)� ,

n3 = �(n − log n − 6) log(n − 1)� .

1) The first �(n − 5) log(n − 1)� bits are encoded using the
horizontal VT encoder VT (h)

n,n and we let U be the binary
array representation of the resulting vector.

2) The next �(n − log n − 6) log(n − 1)� bits are encoded
using the vertical VT encoder VT (v)

n−�−1,n and let V be
the binary array representation of the transpose of the
resulting vector.

3) The first bit of the alternating sequence representing u−2

is repeated in the second column in the first and second
row below U. This bit is shown as a in Figure 4. The
first bit of the alternating sequence representing vn−�+1

is repeated in the second column in the third and fourth
row below U. This bit is shown as b in Figure 4.

4) The alternating sequences representing u−2 and u−1 are
extended by 1 bit each. This bit is then repeated in the
row below. Those bits are shown in Figure 4 as c and d,
respectively.

5) The remaining n2 − 2n − 9 logn − (2n − log n −
11) log (n) − 8 bits are systematically distributed in the
n × n array outside of U, V, the positions of the
parity check bits, and the eight reserved bits (shown
in Figure 4).

6) The parity check bits are then computed as the respective
column-wise and row-wise sums of all the bits.

C. Decoder

The decoder works exactly the same as explained in
Section VI-B where the alternating sequence is now the third
column of U rather than the last column of U (even after
either u−2 or u−1 is deleted). For completeness, we explain the
subtle details of decoding deletions in U and V. The insertion
case follows similarly.

The decoder first examines the received version of U.
To check whether a row of U is deleted, the decoder checks the
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alternating sequences (or one of them if the other is deleted).
If a row is deleted, the alternating sequence must have a
run of length 2, unless the first row is deleted. If no run
of length 2 exist, the decoder simply counts the length of
the alternating sequence to check if the first row is deleted.
The decoder is guaranteed to count the exact length of the
alternating sequence thanks to extending the sequence by one
bit and repeating that bit. If a row of U is deleted, the decoder
uses the row parity check to recover the value of the deleted
row.

After checking for (and correcting) deleted rows in U,
the decoder checks for deleted columns. If both alternating
sequences are not deleted and are in their correct positions,
then the deleted column is in the systematic data part. The
decoder uses the detailed decoding of [29] to recover the value
and the position of the deleted column. If both alternating
sequences are not deleted and are not in their correct positions,
then the deleted column happened in the first two columns that
are function of the systematic data part. The decoder can then
recompute the parity part from the systematic data part and
recover the index of the deleted column. In case one of the
alternating sequences is deleted, then the decoder needs to
know whether u−2 or u−1 is deleted. To that end, the decoder
verifies the first bit of the non deleted alternating sequence
with the bit in the second column and first row below U.
Thus, the decoder recovers the index of the deleted column.

V is decoded similarly, except that the decoder would have
recovered the index and value of the deleted column.

D. Redundancy

The redundancy of the explicit code is given by

Rexplicit = n2 − (n1 + n2 + n3)
= 2n + 9 log n + (2n − log n − 11) log (n) + 8
− �(n − 5) log(n − 1)�
− �(n − log n − 6) log(n − 1)�

(a)
< 2n + 9 log n + (2n − log n − 11) log (n) + 8
− (n − 5) log(n − 1) + 1
− (n − log n − 6) log(n − 1) + 1

In inequality (a) we used the inequality �a� > a − 1.

Using the fact that (2n− logn−11) log
(

n
n−1

)
is less than

2n log
(

n
n−1

)
which is less than or equal to 2 log 2e = 2 +

2 log e, we can write

Rexplicit = 2n + 9 log n + (2n − log n−10) log
(

n

n − 1

)
+10

< 2n + 9 log n + 12 + 2 log e.

VIII. CONCLUSION

This paper considers the problem of criss-cross inser-
tion/deletion in an n × n array. We have shown that
every (t)-criss-cross deletion correcting code is a (t)-criss-
cross insertion correcting code by extending the equivalence

between insertion and deletion correcting codes from the one-
dimensional case to the considered two-dimensional case.

We derived a bound which shows that the redundancy of any
(1)-criss-cross deletion/insertion correcting code is bounded
from below by 2n−3+2 logn for n � 41. We then constructed
CrissCross code. This code can correct a single row and single
column deletion in an n×n array. The redundancy of the Criss-
Cross code is bounded from above by 2n+4 log n+7+2 log e
bits. We have presented an explicit decoder for correcting
deletions and insertions with this CrissCross code. We also
modified this code construction to an explicit construction
that has an explicit encoder and an explicit decoder. The
explicit encoder is based on systematic VT codes and comes
at the expense of increasing the redundancy of the code by
5 logn + 5 bits.

In this work, we have considered deletions of one row and
one column. Although our CrissCross code can correct a more
general type of deletions, our bound on the redundancy and
the equivalence proof do not directly hold in the more general
model. Thus, as a future research direction, we are interested
in investigating the case where any combination of tr rows
and tc columns, such that tr + tc is equal to a predetermined
constant t, can be deleted or inserted. Another open problem
of interest is also the case of mixed errors in which any tc
columns may be deleted or inserted and any tr rows may be
inserted or deleted. We expect the techniques presented in this
work to provide valuable insights on solving the more general
problem. Preliminary results can be found in [30].

APPENDIX A
PROOF OF CLAIM 6

We prove that for any two arrays X1,Xt+1 ∈ Σn×n
q ,

It(X1) ∩ It(Xt+1) �= ∅ if and only if there exist t − 1 arrays
X2, . . . ,Xt such that I1(Xi)∩I1(Xi+1) �= ∅ for all 1 � i � t.

We prove the “if” part by induction. The proof of the “only
if” part follows similarly and is omitted.

A. Base Case

We need to show that if I1(X1) ∩ I1(X2) �= ∅ then
I1(Xi) ∩ I1(Xi+1) �= ∅ for all i = 1 which follows from
the assumption.

B. Induction Step

Assume the property holds for t ∈ [n − 2] and we show
that the property holds for t + 1. Let X1,Xt+2 be such that
It+1(X1) ∩ It+1(Xt+2) �= ∅. Then, there exists X(1)

1 ,X(1)
t+1

resulting from a criss-cross insertion of X1 and Xt+2, respec-
tively, such that It(X

(1)
1 ) ∩ It(X

(1)
t+1) �= ∅. Thus, according to

the induction hypothesis, there exist t−2 arrays X(1)
1 , . . . ,X(1)

t

that satisfy I1(X
(1)
i ) ∩ I1(X

(1)
i+1) �= ∅ for all 1 � i � t.

According to Theorem 1, there exist t arrays X2, . . . ,Xt+1

such that for all 2 � i � t + 1, Xi ∈ D(X(1)
i−1) ∩ D(X(1)

i ).
Therefore, it holds that for 1 � i � t + 1,

X(1)
i ∈ I1(Xi) ∩ I1(Xi+1).

This completes the “if” part of the proof. �
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APPENDIX B
PROOF OF COROLLARY 12

We want to prove that when n goes to infinity the redun-
dancy of a criss-cross deletion correcting code is bounded from
below by 2n − 2 + 2 logq n.

To that end, we redefine a good array X to have a deletion
ball greater than or equal to n2/2. From Claim 8 we know
that if an array X has more than n/

√
2 good rows and n/

√
2

good columns, then X is good.
Following the same steps of Lemma 10 we can bound the

number of bad arrays (following this new definition) as

|Bn| �2
n∑

j=n− n√
2
+1

(
n

j

)
(bn)jqn·(n−j) �

√
2n2n(2 n2)nq

n2√
2
−n

�
√

2q
1√
2
n2−n+logq(n)+n logq(4n2)

�
√

2q
1√
2
n2−n+log2(n)+n log2(4n2)

�
√

2qn2−3n,

where bn � 3
(
n
2

)
and the last inequality holds for n � 54.

Following the same steps of Theorem 11, we can bound the

number of good arrays as |CG | � qn2−1

n2
2

. We can now write

|C| = |CG | + |CB|
� |CG | + |Bn|

� q(n−1)2

n2

2

+
√

2qn2−3n

=
qn2

q2n−1 · n2

2

(
1 +

n2

√
2 · qn+1

)
≈ qn2

q2n−1 · n2

2

,

where the last equality is an asymptotic statement in n. This
concludes the proof. �

APPENDIX C
PROOFS OF CLAIM 16 AND CLAIM 17

Proof of Claim 16: Remember that we have defined
� = log n. We first show that the redundancy of U⊥ is given
by

RU⊥ = (n − log n − 1) log
(

n

n − 1

)
.

Recall that U⊥ is defined as the set of all n × n arrays in
which any two consecutive columns, from column 1 to n− �,
are different when restricted to the first � entries, i.e.,

U⊥ �
{
X : X[�],j �= X[�],j+1, j ∈ [n − � − 1]

}
.

We count the number of arrays that satisfy those constraints.
The first � entries of the first column can take 2� different
values. For every other column from 2 to n − �, the first �
entries can take 2� − 1 different values because they have to
be different from the entries of the column before. All other

entries have no constraints and can take 2n2−�(n−�) values.
We can then write,

|U⊥| = 2�(2� − 1)n−�−12n2−�(n−�)

= 2n2
2−(n−�−1)�(2� − 1)n−�−1

= 2n2
(1 − 2−�)n−�−1.

Thus, the redundancy can be computed as

RU⊥ = n2 − log |U⊥|

= −(n − log n − 1) log
(

1 − 1
n

)
= (n − log n − 1) log

(
n

n − 1

)
.

To complete the proof we need to show that

RV⊥ = (n − log n − 2) log
(

n

n − 1

)
+ 1.

Recall that V⊥ is defined as the set of all n × n arrays in
which the entry X�+1,n is fixed to a predetermined value and
any two consecutive rows, from row �+1 to n−1, are different
when restricted to the last � entries, i.e.,

V⊥ �
{
X :

Xi,[n−�+1,n] �= Xi+1,[n−�+1,n], �<i < n−1
X�+1,n ≡ � mod 2

}
.

We count the number of arrays that satisfy those constraints.
The last � entries of row � + 1 can take 2�−1 different values,
because X�+1,n is predetermined. For every other row from
� + 2 to n − 1, the last � entries can take 2� − 1 different
values because they have to be different from the entries of
the row before. All other bits have no constraints and can take
2n2−�(n−�−1) values. We can then write,

|U⊥| = 2�−1(2� − 1)n−�−22n2−�(n−�−1)

= 2n2
2−(n−�−2)�(2� − 1)n−�−22−1

= 2n2
(1 − 2−�)n−�−22−1.

The redundancy can then be computed as

RU⊥ = n2 − log |U⊥|

= −(n − log n − 2) log
(

1 − 1
n

)
+ 1

= (n − log n − 2) log
(

n

n − 1

)
+ 1.

Next we prove Claim 17, i.e. we show that the redundancy
of S∩ is upper bounded by

RS∩ < log n + 5.

Proof of Claim 17: Recall that S∩ is defined as the set of
n×n arrays in which the �× � sub array ending at the last bit
of the first row of the original array has distinct consecutive
columns, distinct consecutive rows, the last row fixed to a
predetermined value and the first 4 bits of the second to last
column are also predetermined. S∩ also guarantees that the
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first column of the � × � sub array is different from the �
entries of column n − � and similarly to the last row., i.e.,

S∩ �

⎧⎪⎪⎪⎨⎪⎪⎪⎩X :

X[�],j �= X[�],j+1, n − � � j < n,

Xi,[n−�+1,n] �= Xi+1,[n−�+1,n], i ∈ [�],

X[4],n−1 = [0000]T ,

X[�],n = [010101 · · · ]T

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

Let Sc,r be the set of arrays that have different consecutive
columns and different consecutive rows. S∩ is the intersection
between Sc,r and the set of all arrays that have the first �
entries of the last column for an alternating sequence and the
first 4 entries of the second to last columns fixed to 0. We shall
prove in the sequel that |Sc,r| > 2�2−1. Once we have this
bound, we can write

|S∩| � |Sc,r|
2�24

>
2�2

2�25
. (11)

The first inequality follows from the fact that fixing the last
column to a predetermined value reduces the number of arrays
in S∩ by at most 2� arrays and fixing 4 bits of the second to
last column reduces the number of arrays by at most 24.

Therefore, using (11) we have

RS∩ = �2 − |S∩| � � + 5 < log n + 5.

The remainder of the proof is to show that |Sc,r| � 2�2−1.
We start by showing that the number of � × � arrays is lower
bounded by 2�2−1. This means that with one bit of redundancy
we can guarantee the constraints on the rows and columns.

To that end, we count the number of arrays that have at
least two identical consecutive columns. Let j and j + 1, j =
n − �, . . . , n − 1, be the indices of two identical consecutive
columns. Column j can take 2�−1 possible values and column
j+1 can only take one value. Not imposing any constraints on
the other (�−2) columns, each column can have 2� values and
we have (� − 1) possible values for j. Therefore, the number
of arrays having at least two identical consecutive columns is
(� − 1)(2� − 1)(2�)�−2.

Following the same counting argument, the number of � ×
� arrays that have at least two identical consecutive rows is
(� − 1)2�(2�)�−2.

The number of arrays in Sc,r is lower bounded by the total
number of � × � arrays minus the number of arrays that have at
least two identical consecutive columns and minus the number
of arrays that have at least two identical consecutive rows.
Thus, we can write

|Sc,r| � 2�2 − 2(� − 1)(2� − 1)(2�)�−2

> 2�2 − 2(� − 1)2�(2�)�−2 (12)

� 2�2−1. (13)

The inequality in (12) follows from

2(� − 1)(2� − 1)(2�)�−2 < 2(� − 1)2�(2�)�−2, (14)

which is true because 2� − 1 < 2�. The inequality in (13)
follows from

2(� − 1)2−� � 1
2
. (15)

which is equivalent to 4(� − 1) � 2� and is true for all
� � 3.

APPENDIX D
PROOF OF CLAIM 19

We prove that for a vector u = (u−4, . . . , un−5) ∈ Σn
n,

there exists a value of u0 such that the following holds:

1) u1, . . . , un−5 can take arbitrary values such that any two
consecutive symbols are different.

2) u−2 and u−1 are the n-ary representation of two com-
plement binary alternating sequences i.e., u−2 = −u−1,
of length log n each.

3) u−4 =
∑n−5

i=0 ui mod n.
4) u−3 is equal to

n−4∑
i=1

(i − 1)si mod (n − 4)

where, s = (s1, . . . , sn−4) is the signature vector com-
puted as s1 = 1 and

si =

{
1 if ui−1 � ui−2

0 otherwise.

5) u0 is chosen such that u−4 �= u−3, u−3 �= u−2, u−1 �= u0

and u0 �= u1.

Let u−2, u−1 and u1, . . . , un−5 be fixed. The symbol u−3

can take two different values depending whether the chosen
u0 is less than or equal to u1 or not. The value of u−4 can take
n different values depending on the value of u0. Therefore,
we start by ensuring that u−3 is different than u−2, i.e., we
choose if u0 � u1 or u0 > u1. Assume that u0 � u1. Once
u−3 is fixed, we must choose a given value of u0 such that
u0 �= u−1 that makes u−4 different than u−3. Notice that there
is a one-to-one mapping between the value of u0 and the value
of u−4. Thus, since u−1 is a large number, as long as u−3 � 2,
u0 has at least two options (0 and 1) out of which at least
one satisfies all the aforementioned requirements. However,
if u−3 = 1, u0 must be equal to 0. In this case, if u−4 is equal
to u−3 (then u0 must be non zero) we switch the symbols
u−2 and u−1 so that u0 can now be greater than u1 and has
more than two different options that satisfy the aforementioned
requirements. A similar argument holds for the case where
u0 > u1. �
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