
7132 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 11, NOVEMBER 2021

On Levenshtein’s Reconstruction Problem Under
Insertions, Deletions, and Substitutions

Maria Abu-Sini , Student Member, IEEE, and Eitan Yaakobi , Senior Member, IEEE

Abstract— The sequence reconstruction problem corresponds to
the model in which a sequence from some code is transmitted
over several noisy channels that produce distinct outputs. Then,
the channels’ outputs, received by the decoder, are used to
recover the transmitted sequence, and the main problem under
this paradigm is to calculate the minimum number of channels
that enables unique reconstruction of the transmitted word.
This problem is equivalent to finding the size of the largest
intersection of channels’ outputs sets received after transmitting
distinct codewords. Motivated by the error behavior observed
in DNA storage systems, the present work extends the study of
the reconstruction model to the case in which a binary word is
transmitted over channels prone to substitutions, insertions, and
deletions. Furthermore, we also study the size of the error balls
generated by either one deletion and at most a fixed number
of substitutions or one insertion and at most one substitution in
a binary word. For the case of only substitutions, we present a
decoder of optimal complexity, which improves upon a recent
construction of such a decoder. Lastly, a simplification of that
decoder is studied in case there are more channels than the
minimum required number.

Index Terms— Sequence reconstruction, Levenshtein distance,
synchronization channel.

I. INTRODUCTION

THE reconstruction problem studied by Levenshtein
in [15] and [16] corresponds to a model in which a

word is transmitted over several identical noisy channels that
produce distinct outputs. Under the assumption that all of
the channels are prone to the same errors pattern, all of the
channels’ outputs belong to a certain error ball surrounding
the transmitted word. For a transmitted word w, denote this
error ball by B(w). Moreover, assume there are m channels.
Since these channels produce distinct words, then their outputs
form a size-m subset of B(w) that, as depicted in Fig. 1, may
be used entirely to reconstruct the transmitted word w. Hence,
when dealing with such a model, one may ask whether it is
possible to unambiguously reconstruct the transmitted word,
in particular efficiently.

Levenshtein studied the reconstruction model in [15]
and [16] for several errors patterns including substitutions,

Manuscript received April 17, 2020; revised August 19, 2021; accepted
September 1, 2021. Date of publication September 10, 2021; date of
current version October 20, 2021. This work was supported in part by
BSF under Grant 2018048. An earlier version of this paper was presented
at the 2019 IEEE International Symposium on Information Theory [DOI:
10.1109/ISIT.2019.8849740]. (Corresponding author: Eitan Yaakobi.)

The authors are with the Department of Computer Science,
Technion—Israel Institute of Technology, Haifa 3200003, Israel (e-mail:
maria.as@cs.technion.ac.il; yaakobi@cs.technion.ac.il).

Communicated by L. Dolecek, Associate Editor for Coding Techniques.
Digital Object Identifier 10.1109/TIT.2021.3110710

Fig. 1. The reconstruction model.

insertions, and deletions. Further advances were also achieved
in [21] for insertions and in [5] for deletions. Moreover,
problems related to the reconstruction model were addressed
in [9] and [22]. More specifically, the connection between
the reconstruction problem and associative memories was
studied in [22]. In addition, the intersection of error balls,
which is highly connected to the reconstruction model,
was analyzed in [9] in order to asymptotically improve the
Gilbert-Varshamov bound. More results for other general
error graphs and metrics were obtained in [8], [11]–[13],
[17], [18], [23].

Recently, Levenshtein’s reconstruction model has gained
considerable significance due to the emergence of DNA stor-
age solution. This storage solution was first implied to in [4]
and suggests storing archival data in synthesized DNA strands.
As we know, a DNA strand consists of a linear sequence of
four types of nucleotides: Adenine (A), Cytonine (C), Gua-
nine (G), and Thymine (T). Hence, in DNA storage systems,
the process of storing the data begins with synthesizing DNA
strands of the sequence that we want to store. However, due
to biotechnological limitations, it is not possible to generate a
single DNA strand of a given sequence [14]. Instead, many
DNA strands with erroneous sequences are generated and
represent the sequence we aimed to store. Thus, in such
systems, a specific sequence is stored using many erroneous
copies kept together in a DNA pool. Later, in order to retrieve
the information, the sequences of the stored DNA strands
are recovered by a process called sequencing. However, this
process is also prone to errors and is usually preceded by PCR
(polymerase chain reaction) amplification, which generates
many copies of each DNA strand. In summary, in DNA
storage systems, the original sequence is retrieved using many
representing erroneous copies for two main reasons. First,
because thousands of copies were synthesized, and second,

0018-9448 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:27:55 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-1011-1655
https://orcid.org/0000-0002-9851-5234

ABU-SINI AND YAAKOBI: ON LEVENSHTEIN’s RECONSTRUCTION PROBLEM 7133

because of the copies duplicated using PCR amplification [3].
Therefore, by considering the steps of storing and reading the
data in DNA storage systems, one can recognize the recon-
struction model described earlier. That is, investigating the
reconstruction model is of sufficient interest for its potential
application in DNA storage systems.

The rest of the paper is organized as follows. First,
Section II presents the formal definition of the reconstruction
problem. Then, motivated by the error behavior in DNA-based
storage systems [6], which includes combinations of inser-
tions, deletions, and substitutions of DNA strands’ nucleotides,
we extend the reconstruction problem for this family of error
types. In Section III, we calculate the size of the single-
deletion t-substitution ball, as well as the single-insertion
single-substitution ball in Section IV. In Section V, we take the
first steps in exploring the reconstruction problem for the com-
bination of different error types and study the case of single-
insertion single-substitution. Next, in Section VI, an optimal
reconstructing algorithm for the case of only substitutions is
presented. Lastly, in Section VII, it is studied how the decoding
algorithms can be simplified in case there are more copies
than the minimum number found by Levenshtein. Section VIII
concludes the paper.

II. DEFINITIONS AND PRELIMINARIES

In this section we review the reconstruction problem which
was first proposed by Levenshtein in [15] and [16]. Let V be
the space of all possible words. In addition, assume that there
are several identical noisy channels over which a word w ∈ V
is transmitted, and that these channels produce distinct outputs.
In this case, the set of all possible channel outputs forms an
error ball surrounding the transmitted word w, and this ball is
denoted by B(w). In this study it is assumed that the errors
can be of several types and do not necessarily correspond to
a specific distance metric . Thus, we keep the definition of
the error ball as general as possible. For example, motivated
by DNA-based storage systems, it will be assumed that each
channel is prone to a combination of substitutions, deletions,
and insertions. Then, the goal is to find the following value
and algorithm.

• The minimum number of distinct outputs needed so that
the transmitted word can be determined uniquely .

• An efficient algorithm that receives the channels’ outputs
and recovers the transmitted word.

More specifically, the following problems arise when studying
the reconstruction model.

Problem1: Given a code C ⊆ {0, 1}n and an error ball B(w)
surrounding a binary word w. Find the largest intersection of
two error balls surrounding distinct codewords, i.e. find the
value of

max
w1,w2∈C,w1 �=w2

|B (w1) ∩ B (w2)|. (1)

Problem 1 was first initiated and studied by Levenshtein
in [15] and [16] and is referred to here as the reconstruction
problem. Assume the transmitted word w belongs to some
code C ⊆ {0, 1}n , then Levenshtein proved that the number
of channels required for the existence of a successful unique
decoder is strictly larger than the value in (1).

In Problem 1, the possibility of unique decoding is inves-
tigated. However, solving this problem does not necessarily
reveal how to recover the transmitted word. In other words,
given that the number of channels m is greater than

max
w1,w2∈C,w1 �=w2

|B (w1) ∩ B (w2)|,
it is guaranteed that unambiguous reconstruction of the trans-
mitted word is possible, yet it is still not clear how to
accomplish this task. Therefore, Problem 2 arises and asks
to design a decoder that retrieves the transmitted word.

Problem 2: Let C ⊆ {0, 1}n be a code, B(w) error ball
surrounding a binary word w and

m � max
w1,w2∈C,w1 �=w2

|B (w1) ∩ B (w2)| + 1.

Design an algorithm that gets as an input at least m distinct
words y1, y2, . . . , ym ∈ B(w) for a word w ∈ C, and
returns w.

Since a decoder from Problem 2 gets at least

max
w1,w2∈C,w1 �=w2

|B (w1) ∩ B (w2)| + 1

channels’ outputs, then under the assumption that all of the
channels’ outputs are of the same length k, the decoder reads
in the worst case at least

k ·
(

max
w1,w2∈C,w1 �=w2

|B (w1) ∩ B (w2)| + 1

)
bits, i.e., its run-time complexity is

�

(
k ·

(
max

w1,w2∈C,w1 �=w2

|B (w1) ∩ B (w2)| + 1

))
.

Therefore, a further goal that one may aim to achieve is
presented in Problem 3 and focuses on efficient algorithms.
That is, Problem 3 asks to design reconstructing algorithms
that receive the minimum number of channels’ outputs and
have minimum oder of run-time complexity.

Problem 3: Let C ⊆ {0, 1}n be a code, B (w) error ball
surrounding a binary word w such that all of the words in⋃

c∈C B (c) are of the same length k, and

m = max
w1,w2∈C,w1 �=w2

|B (w1) ∩ B (w2)| + 1.

Determine whether there exists an algorithm of run-time
complexity

�(m · k)

that gets as an input m distinct words y1, y2, . . . , ym ∈ B (w)
for a word w ∈ C, and returns w. If there exists such a decoder,
then design one.

Problems 1, 2, and 3 may be tackled for several error
models. For example, one can solve these problems under
the assumption that B (w) is an error ball resulting from at
most t1 substitutions, t2 deletions, and t3 insertions, where
t1, t2, t3 � 0.

Furthermore, investigating these problems is indeed of suffi-
cient interest as they are motivated by the DNA-based storage
systems. Recall that, in such systems, recovering the stored
sequence is done by sequencing many erroneous strands.
Thus, we may consider the noisy strands as channels in

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:27:55 UTC from IEEE Xplore. Restrictions apply.

7134 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 11, NOVEMBER 2021

which a sequence is transmitted. Hence, the value calculated
in Problem 1 determines the minimum number of distinct
noisy strands needed to guarantee successful unique decoding.
Moreover, solutions to Problems 2 and 3 provide algorithms
for retrieving the stored sequence using the erroneous strands.

In [5], [15], [16], and [21], Problems 1, 2, and 3 were
tackled under the assumption that all of the channels are
prone to a specific type of errors, i.e., either substitutions,
insertions , or deletions. However, according to [6], combina-
tions of errors might occur in one DNA strand. Therefore,
studying Problems 1, 2, and 3 for combinations of errors
is of high significance. The present paper expands existing
results regarding the reconstruction model in the binary case,
especially when the channels are prone to combinations of
errors. However, among the most preliminary obstacles that
should be tackled in order to achieve this goal we have the
following problem, which asks for the size of the error balls
resulting from combinations of errors.

Problem 4: Given w ∈ {0, 1}∗ and error ball B (w), find
|B (w)| .

In the rest of this section we present the notation used
in the paper along with existing solutions to Problems 1, 2,
and 3. These solutions were achieved under the assumption
that the channels are prone to either substitutions, insertions ,
or deletions. Since our contribution is restricted to the binary
case, we choose to present existing results for the binary case
solely, even though some of them were achieved for every
alphabet size.

In this paper, for n, m ∈ N such that n � m, [n, m]
stands for the set {n, n + 1, . . . , m}. Moreover, given a word
w ∈ {0, 1}∗, the number of runs in w is denoted by r(w).
Next, let w1,w2 be two binary words of the same length.
Then, the Hamming distance between w1 and w2 is denoted
by dH (w1,w2). Similarly, the Levenshtein distance between
w1 and w2, which is one half of the minimum number
of insertions and deletions required to convert w1 to w2,
is denoted by dL(w1,w2).

Given a binary word w, the notation Bt1,t2,t3 (w) stands
for the set of words obtained by at most t1 substitutions and
exactly t2, t3 deletions, insertions in w, respectively. Moreover,
let B∗

t1,t2,t3 (w) be the set of words obtained by at most t1, t2, t3,
substitutions, deletions, insertions in w, respectively. That is,
in Bt1,t2,t3 (w) the number of insertions, deletions is restricted
to be exactly t2, t3, respectively. However, in B∗

t1,t2,t3 (w) at
most t2, t3 deletions, insertions occur, respectively. Given these
definitions, we emphasize that the present work addresses
combinations of substitutions with either insertions or dele-
tions only, leaving combinations of insertions and deletions
for future work. Therefore, studying a combination of exactly
t2 deletions with at most t1 substitutions is sufficient to receive
results regarding the case of at most t2 deletions and at
most t1 substitutions. Mathematically speaking, given a binary
word w, it holds that

B∗
t1,t2,0 (w) =

t2⋃
i=0

Bt1,i,0 (w).

Therefore, finding the size of Bt1,i,0 (w) for every i ∈ N

determines the size of B∗
t1,t2,0 (w) for every t2. Similarly,

calculating the value of

max
w1,w2∈{0,1}n

w1 �=w2

∣∣Bt1,t2,0 (w1) ∩ Bt1,t2,0 (w2)
∣∣

is sufficient in order to find the value of

max
w1,w2∈{0,1}n

w1 �=w2

∣∣B∗
t1,t2,0 (w1) ∩ B∗

t1,t2,0 (w2)
∣∣.

In addition, for the same analysis, results regarding the case
of exactly t3 insertions and at most t1 substitutions can be
easily extended to the case of at most t3 insertions and at
most t1 substitutions.

Furthermore, we define N S
n (t, d) to be the size of the largest

intersection of two t-substitution balls of binary words of
length n and Hamming distance at least d . Mathematically
speaking,

N S
n (t, d) = max

w1,w2∈{0,1}n

dH (w1,w2)�d

∣∣Bt,0,0(w1) ∩ Bt,0,0(w2)
∣∣.

Similarly, N D
n (t, d), N I

n (t, d) stands for the size of the
largest intersection of two t-deletion, t-insertion balls of
binary words of length n and Levenshtein distance at least d ,
respectively, i.e.,

N D
n (t, d) = max

w1,w2∈{0,1}n

dL (w,w′)�d

∣∣B0,t,0(w1) ∩ B0,t,0(w2)
∣∣

and

N I
n (t, d) = max

w1,w2∈{0,1}n

dL (w1,w2)�d

∣∣B0,0,t(w1) ∩ B0,0,t (w2)
∣∣.

However, the more interesting value, especially in the light
of DNA storage advances, is the size of the largest intersection
of balls resulting from insertions, deletions, and substitutions.
More specifically, calculating the following largest intersection
size is of considerable importance.

N∗
n (t1, t2, t3) = max

w1,w2∈{0,1}n

w1 �=w2

∣∣B∗
t1,t2,t3(w1) ∩ B∗

t1,t2,t3(w2)
∣∣.

As stated earlier, the present paper tackles combinations of
substitutions with either insertions and deletions. Therefore,
we also define

Nn(t1, t2, t3) = max
w1,w2∈{0,1}n

w1 �=w2

∣∣Bt1,t2,t3(w1) ∩ Bt1,t2,t3(w2)
∣∣.

In addition, since

∣∣Bt1,t2,0(w)
∣∣ =

t2∑
i=0

∣∣Bt1,i,0(w)
∣∣ ,

∣∣Bt1,0,t3(w)
∣∣ =

t3∑
i=0

∣∣Bt1,0,i (w)
∣∣ ,

and

N∗
n (t1, 0, t3) =

t3∑
i=0

Nn(t1, 0, i),

in section III, IV, V we will first calculate the value
of

∣∣Bt1,1,0(w)
∣∣ , ∣∣B1,0,1(w)

∣∣ , Nn(1, 0, 1), and then derive the

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:27:55 UTC from IEEE Xplore. Restrictions apply.

ABU-SINI AND YAAKOBI: ON LEVENSHTEIN’s RECONSTRUCTION PROBLEM 7135

value of
∣∣∣B∗

t1,1,0(w)
∣∣∣ , ∣∣∣B∗

1,0,1(w)
∣∣∣ , N∗

n (1, 0, 1), respectively.
Lastly, we also emphasize that since studying the balls
Bt,1,0(w) and B1,0,1(w) leads to conclusions regarding the
balls B∗

t,1,0(w) and B∗
1,0,1(w), then for convenience we will

refer to Bt,1,0(w) as the single-deletion single-substitution
ball. Whenever the ball B∗

t,1,0(w) is meant, it will be empha-
sized that at most one deletion case is discussed. Similarly,
the term single-insertion single-substitution ball refers to the
ball B1,0,1(w) and not B∗

1,0,1(w).
Table I summarizes the main notations used throughout the

paper. Moreover, for the convenience of the reader it provides
additional notations that will be used only in specific sections.
More details regarding each of the terms and the notations will
be given in the section in which it is used.

A. Previous Results Regarding the Reconstruction
Problem With Substitutions

In [15], Levenshtein solved Problem 1 under the assumption
that B(w) = Bt,0,0(w). Levenshtein also proved that this
solution does not depend on the choice of the code, but on its
minimum Hamming distance. More specifically, it was shown
in [15] that

N S
n (t, d) =

t−� d
2 	∑

i=0

(
n − d

i

) t−i∑
h=d−t+i

(
d

h

)
.

In addition, another expression for the value of N S
n (t, d)

was provided in [22]. Regarding Problems 2 and 3, significant
advances were made in both of [15] and [22], and may be
summarized as follows.

• Problem 3 was solved in [15] for B(w) = Bt,0,0(w)
and C = {0, 1}n . In [22], under specific assumptions,
this solution was proved to hold for every binary code
of length n and minimum Hamming distance 2.

• Under certain assumptions, Problem 3 was solved in [22]
for B(w) = Bt,0,0(w) and binary code C of length n and
minimum Hamming distance d ∈ [3, 4].

• Under certain assumptions, Problem 2 was solved in [22]
for B(w) = Bt,0,0(w) and every binary code C.

More details may be found in Section VI.

B. Previous Results Regarding the Reconstruction
Problem With Insertions and Deletions

Levenshtein presented in [16] the size of the t-insertion ball.
More specifically, it was shown that for a word w ∈ {0, 1}n,
the size of the ball resulting from exactly t insertions is
given by ∣∣B0,0,t(w)

∣∣ =
t∑

i=0

(
n + t

i

)
.

On the other hand, calculating the size of the t-deletion ball,
i.e., the ball that results from exactly t deletions, is known to
be a challenging problem by itself. Nevertheless, it was shown
in [7] that the size of the largest t-deletion ball is given by

max
w∈{0,1}n

∣∣B0,t,0(w)
∣∣ =

t∑
i=0

(
n − t

i

)
,

and is achieved by the alternating words.

Moreover, Levenshtein solved in [16] Problems 1 and 3
under the assumption that C = {0, 1}n for both of B(w) =
B0,0,t(w) and B(w) = B0,t,0(w). That is, the values
of N I

n (t, 1) and N D
n (t, 1) were determined in [16]. Later,

the value of N I
n (t, d) for every d and t was found in [21],

and the value of N D
n (t, 2) for every t was found in [5].

C. Combinations of Insertions, Deletions, and Substitutions

An ambitious plan that one may aim to accomplish is to
solve Problems 1, 2, and 3 for C = {0, 1}n and B(w) =
B∗

t1,t2,t3(w), and hence determine the value of N∗
n (t1, t2, t3)

for every t1, t2, t3 � 0. However, as explained earlier, before
dealing with these problems, it is important to find the size of
the ball B∗

t1,t2,t3(w), i.e., investigating Problem 4 for B(w) =
B∗

t1,t2,t3(w). We note that, to the best of our knowledge,
finding the size of the ball B∗

t1,t2,t3(w) for all t1, t2, t3 has not
been studied before and is a challenging task by itself. The
only solved case we are aware of is (t1, t2, t3) = (0, 1, 1),
i.e., a single deletion and a single insertion [2], [20].

The rest of the paper takes the first steps towards solving
Problems 1, 2, 3, and 4 for combinations of errors. More
specifically, the following results are achieved.

• Solution to Problem 4 where B(w) = Bt,1,0(w), i.e., the
size of the single-deletion t-substitution ball of any binary
word is determined. This result also reveals the size of
the ball B∗

t,1,0(w) for every t and w.
• Solution to Problem 4 where B(w) = B1,0,1(w), i.e., the

size of the single-insertion single-substitution ball of any
binary word is calculated. Therefore, the size of the ball
B∗

1,0,1(w) is also determined.
• Solution to Problem 1 where B(w) = B1,0,1(w) and
C = {0, 1}n , i.e., the value of Nn(1, 0, 1) is found. This
result leads to value of N∗

n (1, 0, 1) too.
• Solution to Problem 3 where B(w) = B1,0,1(w) and
C = {0, 1}n , that is, an algorithm that receives words
in a single-insertion single-substitution ball and returns
the center word of the ball is provided. It will be
shown that this algorithm achieves the minimum possible
order of run-time complexity. Moreover, this algorithm is
extended to the case of at most one insertion and at most
one substitution.

• Solution to Problem 3 where B(w) = Bt,0,0(w),
C = {0, 1}n , and under the following assumptions.
– n is large enough with respect to t and the minimum

Hamming distance of C.
– There exists a complete decoder for the code C.

Before we proceed to study the combinations of at most t1
substitutions, exactly t2 deletions, and t3 insertions, i.e., the
ball Bt1,t2,t3(w) for a binary word w, we note that the order
in which the deletions, insertions, and substitutions occur
to generate the words of Bt1,t2,t3(w) does not matter. Thus,
throughout the paper we will usually choose the order that
simplifies our proofs.

III. THE SINGLE-DELETION MULTIPLE-
SUBSTITUTIONS BALL SIZE

In this section, we study the size of the ball that results from
at most t substitutions and a single deletion, that is, the size

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:27:55 UTC from IEEE Xplore. Restrictions apply.

7136 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 11, NOVEMBER 2021

TABLE I

TERMINOLOGY AND NOTATIONS

of Bt,1,0(w) for all w. For a word w ∈ {0, 1}n , its number of
runs is denoted by r(w). The next lemma will be useful in
proving our general result.

Lemma 5: Let w ∈ {0, 1}n be a word consisting of
r = r(w) runs. For 1 � i � r , let ki be the starting index of the
i -th run and wi be the word received by deleting a bit from

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:27:55 UTC from IEEE Xplore. Restrictions apply.

ABU-SINI AND YAAKOBI: ON LEVENSHTEIN’s RECONSTRUCTION PROBLEM 7137

the i -th run, so it holds that B0,1,0(w) = {w1,w2, . . . ,wr }.
Denote by Di, j the set of indices in which wi and w j differ.
For 1 � i < j � r , the following properties hold.

1) Di, j = {kt − 1 : i + 1 � t � j}.
2) dH (wi ,w j) = j − i .
3) For h such that j < h � r , it holds that D j,h ⊆ Di,h .

Proof: According to the definition of the words
w1, . . . ,wr , the following equalities hold.

• wi
m = w

j
m = wm for m ∈ [1, ki − 1].

• wi
m = w

j
m = wm+1 for m ∈ [k j , n − 1].

• wi
m = wm+1 for m ∈ [ki , k j − 1].

• w
j
m = wm for m ∈ [ki , k j − 1].

Therefore, Di, j ⊆ [ki , k j − 1]. Furthermore, m ∈ Di, j if and
only if wi

m �= w
j
m , i.e., if and only if

wm+1 �= wm and ki � m � k j − 1,

which holds only for m ∈ {kt − 1 : i + 1 � t � j}. Hence,
|Di, j | = j − i and this proves the first and the second claims
of the lemma. Furthermore, for j < h � r it is possible to
conclude that Di,h = {kt −1 : i +1 � t � h}, D j,h = {kt −1 :
j + 1 � t � h}. Thus, D j,h ⊆ Di,h .

We are now ready to prove the main result of this section,
which is stated in the next theorem. However, we first empha-
size that for n � t + 1 and w ∈ {0, 1}n ,∣∣Bt,1,0 (w)

∣∣ = 2n−1

as every length-(n −1) binary word may be received by single
deletion and at most t substitutions in w. That is, all of the
single-deletion t-substitution balls in case n � t +1 are of the
same size and contain all of the length-(n − 1) binary words.

Theorem 6: The size of the single-deletion t-substitution
ball of a word w ∈ {0, 1}n consisting of r = r(w) runs is
given by

|Bt,1,0(w)| =
t∑

i=0

(
n − 1

i

)

+
min{2,r}∑

i=2

(
n − 2

t

)
+

min{3,r}∑
i=3

(
n − 3

t

)

+
r∑

i=4

⎛
⎜⎜⎝
(

n − 3

t

)
−

min
{

t,
⌊

i−1
2

⌋}∑
j=2

C j−1

(
n − 1 − 2 j

t − j

)⎞⎟⎟⎠,

where Ci is the Catalan number Ci = 1
i+1

(2i
i

)
.

Proof: As stated in Section II, it is sufficient to consider
the case where the single-deletion t-substitution ball consists
of all of the words that can be generated by exactly one
deletion followed by at most t substitutions. Denote by wi

the word that results from a deletion in the i -th run in w.
Then B0,1,0(w) = {w1,w2, . . . ,wr } and

Bt,1,0(w) =
r⋃

i=1

Bt,0,0(w
i).

Hence, Bt,1,0(w) consists of the union of the following
mutually disjoint sets

Si = Bt,0,0(w
i) \

i−1⋃
j=1

Bt,0,0(w
j),

where i ∈ [1, r]. Thus, |Bt,1,0(w)| = ∑r
i=1 |Si | and in

order to find the value of |Bt,1,0(w)|, it is enough to find the
size of Si , i ∈ [1, r]. Based on Lemma 5, the intersection
Bt,0,0(w

i) ∩ Bt,0,0(w
j) is empty if and only if |i − j | > 2t .

Thus,

Si = Bt,0,0(w
i) \

i−1⋃
j=max{1,i−2t}

Bt,0,0(w
j).

Observe that for each word wi , i � 2t +1, there are exactly
2t previous words to consider, wi−2t , . . . ,wi−1. However, for
words wi , i � 2t there are only i − 1 previous words,
w1,w2, . . . ,wi−1. Furthermore, it can be seen in the next
steps that calculating |Si | does not depend on the specific value
of i , i.e., |Si | = |Sj | for i, j ∈ [2t + 1, r]. Considering these
claims we will show how to find |Si | for i ∈ [2t + 1, r]
and deduce the values of |Si |, i ∈ [1, 2t] using the same
approach. More accurately, we will find that

|Si | =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑t
h=0

(n−1
h

)
, i = 1(n−2

t

)
, i = 2(n−3

t

)
, i = 3(n−3

t

)−∑min
{

t,
⌊

i−1
2

⌋}
j=2 C j−1

(n−1−2 j
t− j

)
, i ∈ [4, r]

which proves the theorem’s statement.
Given a word wi , i ∈ [2t +1, r], in order to find the set Si ,

it is enough to exclude from Bt,0,0(w
i) the following disjoint

sets

Tj =
(

Bt,0,0(w
i) ∩ Bt,0,0(w

i− j)
)

\
j−1⋃
h=1

Bt,0,0(w
i−h),

where j ∈ [1, 2t]. In other words, first Bt,0,0(w
i) ∩

Bt,0,0(w
i−1) is excluded from the set Bt,0,0(w

i). Then, words
in Bt,0,0(w

i)∩ Bt,0,0(w
i−2) that were not excluded before are

excluded, i.e.,
(
Bt,0,0(w

i) ∩ Bt,0,0(w
i−2)

) \ Bt,0,0(w
i−1), etc.,

until the set
(
Bt,0,0(w

i) ∩ Bt,0,0(w
i−2t)

) \⋃2t−1
j=1 Bt,0,0(w

i− j)
is excluded at the end.

Hence,

Si = Bt,0,0(w
i) \

2t⋃
j=1

Tj ,

and |Si | = |Bt,0,0(w
i)| − ∑2t

j=1 |Tj |. Remember that

|Bt,0,0(w
i)| = ∑t

h=0

(n−1
h

)
. In the next steps the following

equality is proved .

|Tj | =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(n−2
t−1

)+∑t−1
h=0

(n−1
h

)
, j = 1(n−3

t−1

)
, j = 2

0, j odd number in [3, 2t]
C j

2 −1

(n−1− j

t− j
2

)
, j even number in [3, 2t].

This leads to the claimed values of |Si |, i ∈ [1, r].
In order to find the size of Tj , j ∈ [1, 2t], we begin with

noting that based on Lemma 5, there exists a set of 2t positions
{i1, i2, . . . , i2t } such that, for j ∈ [1, 2t], wi differs from wi− j

in positions i1, i2, . . . , i j .
Since wi and wi−1 differ only in one position, then T1

consists of the following disjoint sets of words.

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:27:55 UTC from IEEE Xplore. Restrictions apply.

7138 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 11, NOVEMBER 2021

1) Words that result from at most t − 1 substitutions in wi .
2) Words that result from t substitutions in wi such that one

of them is in position i1.

Hence,

|T1| =
(

n − 1 − 1

t − 1

)
+

t−1∑
j=0

(
n − 1

j

)
.

Regarding wi−2, since it differs from wi in positions i1
and i2 and since we do not consider words that have been
excluded, then T2 consists of words that result from exactly t
substitutions in wi such that one of them is in position i2 and
none of them is in position i1. Hence, |T2| = (n−1−2

t−1

)
.

The value |Tj |, j ∈ [3, 2t] is found using the following
three claims, where the proofs of the first and the third one
are presented in Appendix A.

Claim 1: The set Tj , j ∈ [3, 2t] consists only of the words
that satisfy all of the following requirements.

1) Result from exactly t substitutions in wi .
2) Identical to wi in positions i1, i2.
3) Result from at least

⌈
j
2

⌉
substitutions in positions

i1, i2, . . . , i j in wi .
4) Result from at most

⌈ h
2

⌉ − 1 substitutions in positions
i1, i2, . . . , ih in wi , for every 3 � h < j .

Claim 2: For j ∈ [3, 2t] odd, |Tj | = 0.
Proof: It is enough to prove that for j ∈ [3, 2t] odd,

there is no word that satisfies all of the requirements stated in
Claim 1. Assume to the contrary that there exits such a word.
Based on the fourth requirement, such a word has at most⌈

j−1
2

⌉
−1 =

⌊
j
2

⌋
−1 substitutions in positions i1, i2, . . . , i j−1.

Hence, it has at most
⌊

j
2

⌋
substitutions in all of the positions

i1, i2, . . . , i j , which contradicts the third requirement.
Claim 3: For j ∈ [3, 2t] even, |Tj | = C j

2 −1

(n−1− j

t− j
2

)
.

Lastly, note that using the same approach, it is possible to
get that

|S2| =
(

n − 2

t

)
, |S3| =

(
n − 3

t

)
,

and for 4 � i � 2t ,

|Si | =
(

n − 3

t

)
−

⌊
i−1

2

⌋∑
j=2

C j−1

(
n − 1 − 2 j

t − j

)
,

which concludes the proof of the theorem.
In the next example we demonstrate the proof of Theorem 6

in order to find the size of the ball Bt,1,0(x).
Example 1: Assume t = 4 and w as presented in the

following table, consists of 9 runs, each of length 2. As stated
earlier, the single-deletion t-substitution ball can be received
by first deleting some bit and then applying at most t substi-
tutions. Thus, we begin with considering the single deletion
ball {w1,w2, . . . ,w9}.

Index w w1 w2 w3 w4 w5 w6 w7 w8 w9

1 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0 0
3 1 1 1 1 1 1 1 1 1 1
4 1 0 0 1 1 1 1 1 1 1
5 0 0 0 0 0 0 0 0 0 0
6 0 1 1 1 0 0 0 0 0 0
7 1 1 1 1 1 1 1 1 1 1
8 1 0 0 0 0 1 1 1 1 1
9 0 0 0 0 0 0 0 0 0 0
10 0 1 1 1 1 1 0 0 0 0
11 1 1 1 1 1 1 1 1 1 1
12 1 0 0 0 0 0 0 1 1 1
13 0 0 0 0 0 0 0 0 0 0
14 0 1 1 1 1 1 1 1 0 0
15 1 1 1 1 1 1 1 1 1 1
16 1 0 0 0 0 0 0 0 0 1
17 0 0 0 0 0 0 0 0 0 0
18 0

The simplest algorithm that can generate Bt,1,0(w) goes
iteratively over the words wi , 1 � i � 9 and each time
adds Bt,0,0(w

i) to a set S. At the end we will have S =
Bt,1,0(w). However, since we do not want to add the same
word to S multiple times, we aim to find for every i ∈ [1, r],
the value of |Bt,0,0(w

i)∩⋃i−1
j=1 Bt,0,0(w

j)| and subtract it from
|Bt,0,0(w

i)|. As specified in the proof of Theorem 6, for each
i ∈ [1, r], we need to consider at most eight previous words
(if they exist), hence, we focus on w9 and find the size of the
set

Bt,0,0(w
9) ∩

8⋃
j=1

Bt,0,0(w
j).

We accomplish this task in the following steps.
1) First, the sets Bt,0,0(w

9) ∩ Bt,0,0(w
8) and Bt,0,0(w

9) ∩
Bt,0,0(w

7) are excluded from Bt,0,0(w
9). It can been seen

that the union of these two sets consists of all of the words
of Hamming distance at most 3 from y9 , and all of the
words of Hamming distance 4 from w9 that differ from
w9 in at least one of the 16-th and 14-th positions.

2) Next, Bt,0,0(w
9)∩Bt,0,0(w

6) is excluded from Bt,0,0(w
9).

It can be seen that based on the first step, no word should
be excluded now.

3) Bt,0,0(w
9) ∩ Bt,0,0(w

5) is excluded from Bt,0,0(w
9).

Based on the previous steps, only words that result from
4 substitutions such that two of them are in positions
10, 12 and none are in positions 14, 16 are excluded at
this step.

4) Regarding Bt,0,0(w
9)∩ Bt,0,0(w

4), based on Claim 2 and
the previous steps no word should be excluded.

5) Bt,0,0(w
9) ∩ Bt,0,0(w

3) is excluded from Bt,0,0(w
9).

Hence, words in which there are exactly two substitutions
in positions 6, 8, one in positions 10, 12 and none in
positions 14, 16 are excluded at this step.

6) Regarding Bt,0,0(w
9)∩ Bt,0,0(w

2), based on Claim 2 and
the previous steps no word should be excluded.

7) Exclude words in Bt,0,0(w
9)∩Bt,0,0(w

1) from Bt,0,0(w
9).

We observe that w1 differs from w9 in positions
2, 4, 6, 8, 10, 12, 14 , and 16. According to the previous

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:27:55 UTC from IEEE Xplore. Restrictions apply.

ABU-SINI AND YAAKOBI: ON LEVENSHTEIN’s RECONSTRUCTION PROBLEM 7139

steps, at this step we aim to exclude words satisfying all
of the following requirements.
• Generated by exactly 4 substitutions in y9.
• Identical to y9 in positions 14 and 16.
• Differ from y9 in at most one position among

10, 12, 14, 16.
• Differ from y9 in at most two positions among

6, 8, 10, 12, 14, 16.
• Differ from y9 in at least four positions among

2, 4, 6, 8, 10, 12, 14, 16.
In other words, we need to find the number of pos-
sibilities for applying substitutions in y9 in positions
2, 4, 6, 8, 10, 12 such that all of the following require-
ments hold.
• At most one substitution in 10, 12.
• At most two substitutions in 6, 8, 10, 12.
• Exactly four substitutions in 2, 4, 6, 8, 10, 12.
• Two substitutions in 2, 4.
Here we note that if we reinterpret a substitution as a ′′)′′
and no substitution as a ′′(′′, then we find that the number
of the possibilities we want to count is equal to the
number of length-4 expressions among the alphabet {(,)}
containing 2 pairs of parentheses such that in every prefix
of even length the number of ′′)′′ is less than or equal to
the number of ′′(′′. The number of such expressions is
equal to C3.

A direct result of Theorem 6 is given in the next corollary,
which its complete proof can also be found in [1].

Corollary7: The single-deletion single-substitution ball size
of w ∈ {0, 1}n is

|B1,1,0(w)| = (n − 3)r(w) + 4,

for r(w) � 2 and |B1,1,0(w)| = n if r(w) = 1.
Based on Corollary 7, we note that, for n � 4, the maximum

size of the single-substitution single-deletion ball is n2−3n+4
and is received only for the alternating word, while the
minimum size is n and is received only for a single run word.
The following corollary extends this observation to every
single-deletion multiple-substitution ball. The proof follows
directly from the result of Theorem 6, as it can be seen that
the larger r(w) is, the larger

∣∣Bt,1,0(w)
∣∣ becomes.

Corollary 8: The largest single-deletion t-substitution ball
is achieved by the alternating words and is of size

t∑
i=0

(
n − 1

i

)
+
(

n − 2

t

)
+
(

n − 3

t

)

+
n∑

i=4

⎛
⎜⎜⎝
(

n − 3

t

)
−

min
{

t,
⌊

i−1
2

⌋}∑
j=2

C j−1

(
n − 1 − 2 j

t − j

)⎞⎟⎟⎠.

Furthermore, the smallest single-deletion t-substitution ball
is achieved by the single run words and is of size

t∑
i=0

(
n − 1

i

)
.

For n � t +1, all of the single-deletion t-substitution balls are
of size 2n−1. However, if n satisfies the inequality

(
n − 3

t

)
−

t∑
j=2

C j−1

(
n − 1 − 2 j

t − j

)
> 0,

then the largest, smallest ball is achieved only by the alternat-
ing, single run words, respectively.

Lastly, the following corollary extends the ball size result
to the case of at most one deletion and at most t substitutions.

Corollary 9: Let w be a length-n binary word consisting of
r = r(w) runs. Then the number of words obtained by at most
one deletion and at most t substitutions in w is given by

|B∗
t,1,0(w)| =

t∑
i=0

(
n

i

)
+

t∑
i=0

(
n − 1

i

)

+
min{2,r}∑

i=2

(
n − 2

t

)
+

min{3,r}∑
i=3

(
n − 3

t

)

+
r∑

i=4

⎛
⎜⎜⎝
(

n − 3

t

)
−

min
{

t,
⌊

i−1
2

⌋}∑
j=2

C j−1

(
n − 1 − 2 j

t − j

)⎞⎟⎟⎠.

IV. THE SINGLE-INSERTION SINGLE-
SUBSTITUTION BALL SIZE

For a word w ∈ {0, 1}n consisting of r(w) runs, we define
its runs-profile vector to be a length-r(w) vector �(w) =
(�1, . . . , �r(w)), which specifies the length of each of the r(w)
runs in w. The runs-profile vector determines the word w up to
its complement. In this section, we find the size of the single-
insertion single-substitution ball, i.e., the ball that results from
a single insertion and at most a single substitution. This result
is proved in the next theorem.

Theorem 10: Let w ∈ {0, 1}n be a word with runs-profile
vector �(w) = (�1, �2, . . . , �r(w)). Then, the size of its single-
insertion single-substitution ball is given by

|B1,0,1(w)| = (n + 2)2 − 2 −
r(w)∑
i=1

�i (�i + 5)

2
.

Proof: Let wi , i ∈ [1, n] be the word generated by
inserting wi after wi in w. Moreover, let w−1,w0 be the
word received by inserting w1, w1 at the beginning of w,
respectively. It holds that B0,0,1(w) = {wi : i ∈ [−1, n]}.
Hence, the single-insertion single-substitution ball is given by

B1,0,1(w) =
⋃

z∈B0,0,1(w)

B1,0,0(z) =
n⋃

i=−1

B1,0,0(w
i),

which can also be expressed by the following union of disjoint
sets

B1,0,1(w) =
n⋃

i=−1

⎛
⎝B1,0,0(w

i) \
i−1⋃

j=−1

B1,0,0(w
j)

⎞
⎠ .

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:27:55 UTC from IEEE Xplore. Restrictions apply.

7140 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 11, NOVEMBER 2021

Thus, |B1,0,1(w)| can be obtained by the following sum

|B1,0,1(w)| =
n∑

i=−1

∣∣∣∣∣∣B1,0,0(w
i) \

i−1⋃
j=−1

B1,0,0(w
j)

∣∣∣∣∣∣
=

n∑
i=−1

|B1,0,0(w
i)|−

∣∣∣∣∣∣B1,0,0(w
i) ∩

i−1⋃
j=−1

B1,0,0(w
j)

∣∣∣∣∣∣ .
Since |B1,0,0(z)| = n + 2 for any word z ∈ B0,0,1(w) and

since B1,0,0(w
−1) ∩ B1,0,0(w

0) = {w1w, w1w}, then

|B1,0,1(w)| = n + 2 + n + 2 − 2

+
n∑

i=1

n + 2 −
∣∣∣∣∣∣B1,0,0(w

i) ∩
i−1⋃

j=−1

B1,0,0(w
j)

∣∣∣∣∣∣
= (n + 2)2 − 2 −

n∑
i=1

∣∣∣∣∣∣B1,0,0(w
i) ∩

i−1⋃
j=−1

B1,0,0(w
j)

∣∣∣∣∣∣ .
Hence, it is enough to prove that

n∑
i=1

∣∣∣∣∣∣B1,0,0(w
i) ∩

i−1⋃
j=−1

B1,0,0(w
j)

∣∣∣∣∣∣ =
r(w)∑
i=1

�i (�i + 5)

2
.

In order to establish the last equation, we aim to find the
size of each of the following n intersections

B1,0,0(w
i) ∩

i−1⋃
j=−1

B1,0,0(w
j),

where i ∈ [1, n]. Let 0 < j1 < j2 � n and assume that the
j2-th bit falls in the h-th run in w. In the following claims we
consider all of the possibilities for j1 and for each one we find
the value of |B1,0,0(w

j1) ∩ B1,0,0(w
j2)|. Lastly, we consider

the words w−1,w0. The following property is well known by
Levenshtein [15] and will be used in our proof.

Proposition 11: B1,0,0(w
j1) ∩ B1,0,0(w

j2) = ∅ if and only
if dH (w j1,w j2) > 2.

Next, we present several claims that will be used in the
proof of the theorem. However, we leave the proofs of some
of them to Appendix B.

Claim 4: The words w j1,w j2 differ only in the following
positions and under the following conditions.

• The (j1 + 1)-st position, only if w j1 = w j1+1.
• Position i ∈ [j1 + 2, j2], only if wi �= wi−1, i.e., a new

run begins in the i -th position in w.
• The (j2 + 1)-st position.

Proof: Observe that the following equalities hold .
• w

j1
i = wi , w

j2
i = wi , where 1 � i � j1.

• w
j1
j1+1 = w j1, w

j2
j1+1 = w j1+1.

• w
j1
i = wi−1, w

j2
i = wi , where j1 + 2 � i � j2.

• w
j1
j2+1 = w j2, w

j2
j2+1 = w j2 .

• w
j1
i = wi−1, w

j2
i = wi−1, where j2 + 2 � i � n + 1.

Hence, w j1,w j2 differ in the (j2 + 1)-st position and in
positions in [j1 + 1, j2] under the conditions stated in the
claim.

Claim 5: If the j1-th bit falls in the (h − 3)-rd run or a
previous one, then B1,0,0(w

j1) ∩ B1,0,0(w
j2) = ∅.

Claim 6: Assume the j1-th bit falls in the (h − 2)-nd or
(h − 1)-st run. Then, B1,0,0(w

j1) ∩ B1,0,0(w
j2) �= ∅ if and

only if the j1-th bit is the last one in its run.
Claim 7: If the j1-th bit falls in the h-th run, then

B1,0,0(w
j1) ∩ B1,0,0(w

j2) �= ∅.
Claim 8: For i � 1, the following statements hold.
• B1,0,0(w

−1) ∩ B1,0,0(w
i) �= ∅ if and only if the i -th bit

falls in the first or the second run.
• B1,0,0(w

0) ∩ B1,0,0(w
i) �= ∅ if and only if the i -th bit

falls in the first run.
Claim 9: Assume B1,0,0(w

i1) ∩ B1,0,0(w
i2) �= ∅ where

−1 � i1 < i2�n and the i2-th bit in w falls in the h′-th run,
then wi1 can be received by some insertion to the h′-th run,
including insertion of wi2 or wi2 at the beginning of the
h′-th run.

To summarize, given a word wi , where −1 � i � n and
the i -th bit falls in the h′-th run, assume that the i -th bit is the
j -th one in the h′-th run. Then the words wi ′ ,−1 � i ′ < i for
which B1,0,0(w

i ′)∩ B1,0,0(w
i) �= ∅ are given by the following

list.
• Word w′ which results from an insertion of wi at the

beginning of the h′-th run.
• Word w′′ which results from an insertion of wi at the

beginning of the h′-th run.
• All words wi ′ where the i ′-th bit falls in the h′-th run in

w. Note that there are j − 1 such words.
It holds that w′′ differs from wi only in the (i +1)-st position.
Hence, B1,0,0(w

′′) ∩ B1,0,0(w
i) = {w′′,wi }. Note that w′′ can

be received by substituting the (i+1)-st bit in wi . Furthermore,
w′ differs from wi in positions i − j + 1 and i + 1. Thus,
B1,0,0(w

′) ∩ B1,0,0(w
i) consists of two words. The first one

is received by substituting the (i − j + 1)-st bit in wi while
the second is received by substituting the (i + 1)-st bit in wi .
Regarding wi ′ where the i ′-th bit falls in the h′-th run, it holds
that wi ′ differs from wi in positions i ′ + 1 and i + 1. Hence,
B1,0,0(w

i ′) ∩ B1,0,0(w
i) consists of the words received by

substituting one of the (i ′+1)-st and (i +1)-st positions in wi .
By considering all of these intersections, it is possible to

conclude that B1,0,0(w
i) ∩ ⋃i−1

k=−1 B1,0,0(w
k) consists of the

word wi itself and any word received by substituting any of
the bits in section [i − j + 1, i + 1] in wi . Hence,∣∣∣∣∣B1,0,0(w

i) ∩
i−1⋃

k=−1

B1,0,0(w
k)

∣∣∣∣∣ = 1 + i + 1 − (i − j + 1)+1

= j + 2.

Furthermore, let ak be the position in which the k-th run
begins, i.e., ak = 1 +∑k−1

i=1 �i . It holds that

n∑
i=1

∣∣∣∣∣∣B1,0,0(w
i) ∩

i−1⋃
j=−1

B1,0,0(w
j)

∣∣∣∣∣∣
=

r(w)∑
k=1

ak+�k−1∑
m=ak

∣∣∣∣∣∣B1,0,0(w
m) ∩

m−1⋃
j=−1

B1,0,0(w
j)

∣∣∣∣∣∣
=

r(w)∑
k=1

ak+�k−1∑
m=ak

m − ak + 3 =
r(w)∑
k=1

�k−1∑
m=0

m + 3

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:27:55 UTC from IEEE Xplore. Restrictions apply.

ABU-SINI AND YAAKOBI: ON LEVENSHTEIN’s RECONSTRUCTION PROBLEM 7141

=
r(w)∑
k=1

3+�k−1∑
m=3

m =
r(w)∑
k=1

�k(3 + 3 + �k − 1)

2

=
r(w)∑
k=1

�k(�k + 5)

2
,

which proves the lemma.
Next we present an example of the calculation of the single-

insertion single-substitution ball.
Example 2: Let n = 8 and w be the word presented

in the following table with its single-insertion ball {wi :
i ∈ [−1, n]}.

Index w w−1 w0 w1 w2 w3 w4 w5 w6 w7 w8

1 0 0 1 0 0 0 0 0 0 0 0
2 0 0 0 1 0 0 0 0 0 0 0
3 1 0 0 0 1 1 1 1 1 1 1
4 1 1 1 1 1 0 1 1 1 1 1
5 0 1 1 1 1 1 0 0 0 0 0
6 0 0 0 0 0 0 0 1 0 0 0
7 1 0 0 0 0 0 0 0 1 1 1
8 1 1 1 1 1 1 1 1 1 0 1
9 1 1 1 1 1 1 1 1 1 0

We observe that, for any i ∈ [−1, n], |B1,0,0(w
i)| = n + 2

and that we have n +2 words in the single-insertion ball of w.
Moreover, the intersection B1,0,0(w

−1)∩B1,0,0(w
0) consists of

the two words w−1,w0. Hence, |B1,0,0(w
−1) ∪ B1,0,0(w

0)| =
2(n + 2) − 2 = 18. Furthermore, all of the following claims
hold.

• w−1,w0,w1 and w2 are words that result from insertions
to the first run.

• w−1,w2,w3 and w4 are words that result from insertions
to the second run.

• w2,w4,w5 and w6 are words that result from insertions
to the third run.

• w4,w6,w7 and w8 are words that result from insertions
to the fourth run.

• B1,0,0(w
1) ∩ (

B1,0,0(w
−1) ∪ B1,0,0(w

0)
)

consists of w1

and the two words that result from substituting the
first or the second bit in w1. Similarly, B1,0,0(w

2) ∩(
B1,0,0(w

−1) ∪ B1,0,0(w
0) ∪ B1,0,0(w

1)
)

consists of the
word w2 itself and the words that result from substituting
one of the first, second and third bits in w2.

• The words w3,w4 are of Hamming distance 3 from
the words w0,w1. Hence, when finding the intersection
B1,0,0(w

i) ∩ ⋃i−1
j=−1 B1,0,0(w

j) for i ∈ {3, 4} we need
to consider only the words w−1,w2, and additionally w3

for i = 4. More specifically, the size of the intersection
B1,0,0(w

i) ∩ ⋃i−1
j=−1 B1,0,0(w

j) is 3, 4 for i = 3, 4,
respectively.

• The size of the intersection B1,0,0(w
i) ∩⋃i−1

j=−1 B1,0,0(w
j) is 3, 4 for i = 5, 6, respectively.

• The size of the intersection B1,0,0(w
i) ∩⋃i−1

j=−1 B1,0,0(w
j) is 3, 4 for i = 7, 8, respectively.

Hence,

|B1,0,0(w)| = 2(n + 2) − 2 +
r(w)∑
i=1

(n + 2 − 3 + n + 2 − 4)

= (n + 2)2 − 2 − 4(3 + 4) = 70.

Lastly, we note that the maximum size of the single-
insertion single-substitution ball is n2 + n + 2 and is received
for the alternating word while the minimum size is n2

2 +
3n
2 + 2 and is received for a single run word. Furthermore,

the following corollary extends the size of the single-insertion
single-substitution ball to the case of at most one insertion and
at most one substitution.

Corollary 12: Let w ∈ {0, 1}n be a word with runs-profile
vector �(w) = (�1, �2, . . . , �r(w)). Then, the number of words
obtained by at most one insertion and at most one substitution
in w is given by

∣∣B∗
1,0,1(w)

∣∣ = n + 1 + (n + 2)2 − 2 −
r(w)∑
i=1

�i (�i + 5)

2
.

V. RECONSTRUCTION FROM A SINGLE SUBSTITUTION

AND A SINGLE INSERTION

In this section we make first steps towards studying Prob-
lem 1 for combinations of errors. More specifically, we focus
on the case of single-insertion single-substitution and show
that

Nn(1, 0, 1) =
⌊

n − 2

2

⌋⌈
n − 2

2

⌉
+ 4n.

Here we emphasize that for words of length n � 2,
the largest single-insertion single-substitution intersection can
be all of the space, for example B1,0,1(0)∩ B1,0,1(1) = {0, 1}2

and B1,0,1(10) ∩ B1,0,1(01) = {0, 1}3. Moreover, for n � 10,⌊ n−2
2

⌋ ⌈n−2
2

⌉+ 4n + 1 � n2

2 + n
2 + 2, i.e., Nn(1, 0, 1) + 1 is

smaller than or equal to the smallest single-insertion single-
substitution ball and for n � 3,

⌊ n−2
2

⌋ ⌈ n−2
2

⌉ + 4n + 1 �
n2 + n + 2, i.e., Nn(1, 0, 1)+ 1 is smaller than or equal to the
largest single-insertion single-substitution ball. First, we prove
the lower bound on Nn(1, 0, 1) in Lemma 15 by presenting
two words for which the size of their balls’ intersection
is
⌊n−2

2

⌋ ⌈ n−2
2

⌉ + 4n. Next, we prove the upper bound by
presenting a decoder that gets

⌊ n−2
2

⌋ ⌈ n−2
2

⌉+4n +1 different
words in B1,0,1(w) where w ∈ {0, 1}n, n � 3, and returns w.
We will also prove that this is an optimal decoder as its time
complexity is �(n3). Finally, we find it important to note that
while the largest intersection in the case of only substitutions,
deletions, or insertions, is received for words that differ on any
single bit or variations of the alternating words, here a special
behavior can be noticed as the largest intersection is received
for words that differ in their middle bits.

In this section, the notation Bsub(w) for a word w ∈ {0, 1}∗
will be used to denote the set of words received by exactly
a single substitution in w. Furthermore, for two words x, x̃,
we say that the diagonal ↘ is maintained on the interval
[k1, k2], denoted by x↘ x̃, if for every bit k ∈ [k1, k2 − 1],
xk = x̃k+1. Similarly, we say that the diagonal ↗ is maintained
on the interval [k1, k2], denoted by x↗ x̃, if for every bit
k ∈ [k1 + 1, k2], xk = x̃k−1. If k2 = k1, then we say that
both of the diagonals are maintained in [k1, k2].

Before proving the lower and the upper bounds, we find
it beneficial to state for which words the intersection of their
single-insertion balls is not empty and which words are found
in this intersection. We summarize this simple observation in

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:27:55 UTC from IEEE Xplore. Restrictions apply.

7142 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 11, NOVEMBER 2021

Lemma 13 and we emphasize that it can be easily extended
to discuss intersection of single deletion balls too.

Lemma 13: For two words y, ỹ ∈ {0, 1}n , let j1, j2 be the
index of the first, last bit in which y, ỹ differ, respectively.
Moreover, let z ∈ B0,0,1(y) ∩ B0,0,1(̃y), then one of the
following properties holds.

1) z = y1 · · · y j1−1 ỹ j1 y j1 · · · yn and the diagonal y↘ ỹ is
maintained in [j1, j2].

2) z = ỹ1 · · · ỹ j1−1 y j1 ỹ j1 · · · ỹn and the diagonal y↗ ỹ is
maintained in [j1, j2].
Proof: First, recall that based on [16] the largest intersec-

tion of two single-insertion balls is of size 2. Furthermore,
observe that words generated from insertions before j1 in
both y, ỹ differ in at least one position, for example j1 + 1.
Hence, such pairs of insertions do not generate words in
B0,0,1(y) ∩ B0,0,1(̃y). The same holds for insertions in y, ỹ
that are both before j2, both after j1, or both after j2.
Therefore, pairs of insertions in y, ỹ that give the same word
are insertions that one of them occurred before j1 while the
other after j2. Next, consider the following two sets of pairs
of insertions in y, ỹ.

1) Insertion in y before j1 and in ỹ after j2: Let z be a
word generated from such insertions. Since the insertion
in ỹ is after j2 (i.e., after ỹ j1), then z j1 = ỹ j1 �= y j1.
Thus, an insertion in y that gives z is an insertion of ỹ j1
exactly before y j1 . Similarly, the insertion after j2 in ỹ
should be an insertion of y j2 exactly after ỹ j2 . Hence

y j1 = ỹ j1+1, y j1+1 = ỹ j1+2, . . . , y j2−1 = ỹ j2,

which means the diagonal y↘ ỹ is maintained in section
[j1, j2].

2) Insertion in y after j2 and in ỹ before j1: Following
the same lines as the previous case, it is possible to
conclude that in this set of insertions, there is only one
word in B0,0,1(y)∩B0,0,1(̃y). This word can be generated
by inserting y j1 exactly before ỹ j1 . Moreover, if this
word exists in the intersection then the diagonal y↗ ỹ
is maintained in section [j1, j2]. This proves the second
claim in the lemma. �

The next corollary follows directly from Lemma 13 and
determines the condition in which the intersection size of two
single-insertion balls is 2.

Corollary 14: Given two words y, ỹ ∈ {0, 1}n such that
|B0,0,1(y) ∩ B0,0,1(̃y)| = 2, let j1, j2 be the first, last
bit in which y, ỹ differ, respectively. Then the sub-words
y j1 · · · y j2, ỹ j1 · · · ỹ j2 are the alternating words.

Now we are ready to prove the lower bound on Nn(1, 0, 1).
The details of this proof appear in Appendix C.

Lemma 15: For n � 3,

Nn(1, 0, 1) �
⌊

n − 2

2

⌋⌈
n − 2

2

⌉
+ 4n.

Next, we present a decoder in Algorithm 1 that gets⌊ n−2
2

⌋ ⌈ n−2
2

⌉ + 4n + 1 different words in B1,0,1(w) where
w ∈ {0, 1}n, n � 3 and recovers w with time complexity
�(n3). Since such an algorithm along with Lemma 15 prove
that Nn(1, 0, 1) = ⌊n−2

2

⌋ ⌈n−2
2

⌉ + 4n, which is �(n2), and
since any decoder needs to iterate over all of the words in

the worst case, then any decoder will be of time complexity
�(n3). Hence, the decoder’s complexity is optimal.

Algorithm 1 Reconstruct

Input: Set Y ⊆ {0, 1}n+1 of size
⌊ n−2

2

⌋ ⌈ n−2
2

⌉+ 4n + 1
Output: Word w such that Y ⊆ B1,0,1(w)
1: if 3 � n � 5 then
2: return the word found by brute-force search
3: Decode the first, last bit w1, wn using the majority algo-

rithm on the first, last bit in the erroneous words,
respectively

4: Define the following subsets.
1) S1 = { y ∈ Y : y1 = w1, yn+1 = wn}
2) S2 = { y ∈ Y : y1 = w1, yn+1 = wn}
3) S3 = { y ∈ Y : y1 = w1, yn+1 = wn}
4) S4 = { y ∈ Y : y1 = w1, yn+1 = wn}

5: Let S′
1, S′

2, S′
3, S′

4 be the set received from removing the
first and the last bit in all of the words of S1, S2, S3, S4,
respectively

6: if |S′
1| = 2 then

7: if only one word in S′
1 begins with w1 then

8: Let x be the word in S′
1 that begins with w1

9: else (both words begin with w1)
10: Let x be the word in S′

1 with a shorter w1 prefix
11: Let z be the prefix of length n − 2 of x
12: return w1 zwn

13: if |S′
4| �

⌊ n−4
2

⌋ ⌈ n−4
2

⌉+ 4(n − 2) + 1 then
14: return w1 Reconstruct(S′

4) wn

15: Let M2 = ∅, M3 = ∅
16: if |S′

2| > 0 then
17: Let x be some word in S′

2
18: for z ∈ B0,1,0(x) ∪ Bsub(x2 x3 · · · xn−1) do
19: if S′

2 ⊆ B0,0,1(z) ∪ w1 Bsub(z) then
20: Add z to M2
21: if |S′

3| > 0 then
22: Let x be some word in S′

3
23: for z ∈ B0,1,0(x) ∪ Bsub(x1x2 · · · xn−2) do
24: if S′

3 ⊆ B0,0,1(z) ∪ Bsub(z)wn then
25: Add z to M3
26: if |S′

2| = 0 then
27: Let z be the only word in M3
28: else if |S′

3| = 0 then
29: Let z be the only word in M2
30: else
31: Let z be the only word in M2 ∩ M3
32: return w1 zwn

We prove the correctness of Algorithm 1 in the following
theorem.

Theorem 16: For n � 3, given
⌊ n−2

2

⌋ ⌈ n−2
2

⌉ + 4n + 1
different words in B1,0,1(w) where w ∈ {0, 1}n , Algorithm 1
returns w with time complexity �(n3).

Proof: As stated in section II, it is sufficient to study the
case where the erroneous words result from a single insertion
followed by at most a single substitution. In fact, it will
be assumed in the rest of this section that the order of the

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:27:55 UTC from IEEE Xplore. Restrictions apply.

ABU-SINI AND YAAKOBI: ON LEVENSHTEIN’s RECONSTRUCTION PROBLEM 7143

occurrences is insertion followed by substitution. Next we
prove the algorithm’s correctness by induction.

Base case: it has been verified by exhaustive search that
for binary words of length n, where 3 � n � 5, the largest
single-insertion single-substitution balls’ intersection is of size⌊ n−2

2

⌋ ⌈ n−2
2

⌉+4n. Hence, Algorithm 1 returns w correctly in
Step 2.

Induction hypothesis: given some n � 6, assume that for any
n′ where 5 � n′ < n, Algorithm 1 recovers any w ∈ {0, 1}n′

using
⌊

n′−2
2

⌋⌈
n′−2

2

⌉
+ 4n′ + 1 different words in B1,0,1(w)

with time complexity �(n′3).
Induction step: given

⌊ n−2
2

⌋ ⌈n−2
2

⌉+4n+1 erroneous words
in B1,0,1(w) where w ∈ {0, 1}n, n � 6, we prove that
Algorithm 1 recovers w with time complexity �(n3).

In Lemma 17, we prove that it is possible to recover the first
and the last bit of w by applying the majority algorithm on the
corresponding bit in all of the erroneous words, which is an
operation of time complexity �(n2). Moreover, the following
statements hold.

1) If |S1| � 2, then based on Lemma 18, |S1| = 2 and
it is possible to recover the word w2 · · ·wn−1 in Steps
7-11 with time complexity �(n).

2) If |S4| �
⌊ n−4

2

⌋ ⌈ n−4
2

⌉ + 4(n − 2) + 1, then according
to the induction hypothesis, it is possible to recover the
word w2 · · ·wn−1 using Algorithm 1 and the input set
S′

4 with time complexity �(n3). It is important to note
that since the words in S4 have correct values in the first
and the last bits, then the words in S′

4 result from a single
insertion and at most a single substitution in w2 · · · wn−1,
i.e., S′

4 ⊆ B1,0,1(w2 · · · wn−1).
3) If |S4| <

⌊ n−4
2

⌋ ⌈ n−4
2

⌉+ 4(n − 2) + 1 and |S1| �= 2, then
based on Lemma 19, it is possible to recover w2 · · · wn−1
in Steps 15-31 with time complexity �(n3).

To sum up, the time complexity to recover the whole word w

is upper bounded by

�(n2) + �(n3) = �(n3).

The next lemmas will complete the proof of Theorem 16.
Lemma 17: Given at least

⌊ n−2
2

⌋ ⌈n−2
2

⌉+ 4n + 1 different
words in B1,0,1(w) where w ∈ {0, 1}n, n � 6, it is possible
to decode the first bit w1 using the majority algorithm on the
first bit of all of the erroneous words. The same holds for the
last bit.

Proof: Since errors in the first bit result from either
substitution, insertion , or both of them in the first bit, then the
set of words in B1,0,1(w) that begin with w1 is given by the
union w1 B1,0,0(w1 · · · wn)∪w1 B0,0,1(w2 · · · wn). Therefore,
there are at most |B1,0,0(w1 · · ·wn)| + |B0,0,1(w2 · · · wn)| =
(n + 1) + (n − 1 + 2) = 2n + 2 words that begin with w1.
Moreover, for n � 6, it holds that

2(2n + 2) <

⌊
n − 2

2

⌋⌈
n − 2

2

⌉
+ 4n + 1,

which means that more than half of the words begin with the
correct value w1. Hence, it is possible to recover w1 using the
majority algorithm. Regarding the last bit, the claim can be
proved similarly.

Lemma 18: If |S1| � 2 then |S1| = 2 and it is possible to
recover the sub-word w2 w3 · · · wn−1 in Steps 7-11 with time
complexity �(n).

Proof: Observe that |S1| = |S′
1|, words of S′

1 are of length
n + 1 − 2 = n − 1 and can result only by the following ways.

1) Insertion in the first bit and substitution of the last
bit of w. In this case the erroneous word in S1 is
w1 w1 w2 · · ·wn−1wn and gives the word w1 w2 · · · wn−1
in S′

1.
2) Substitution of the first bit and insertion in the last

bit of w. In this case the erroneous word in S1 is
w1 w2 · · · wnwn and gives the word w2 · · ·wn in S′

1.
Hence, at least one of the words in S′

1 starts with w1 and
|S′

1| � 2, which implies that |S′
1| = 2. Next consider the

following two cases.
1) If there is only one word in S′

1 that begins with w1
(Step 8), then it is the word w1 w2 · · · wn−1, so the word
x in Step 8 is x = w2 · · ·wn .

2) If the two words in S′
1 begin with w1, then the one with

the longer w1 prefix is w1 w2 · · · wn−1 and the word x
in Step 10 is x = w2 · · · wn .

In both cases, taking the (n − 2)-prefix of x gives
w2 w3 · · ·wn−1. Finally, observe that the time complexity of
these steps is �(n).

Lemma 19: If |S1| �= 2 and |S4| <
⌊ n−4

2

⌋ ⌈ n−4
2

⌉ +
4(n − 2) + 1, then it is possible to recover w2 · · · wn−1 in
Steps 15-32 with time complexity �(n3).

Proof: For a word x and a symbol γ , define the following
sets

T2,γ (x) = B0,0,1(x) ∪ γ Bsub(x),

T3,γ (x) = B0,0,1(x) ∪ Bsub(x)γ .

Moreover, let M ′
2, M ′

3 be the set of all of the possibil-
ities for the word w2 w3 · · · wn−1 that can generate the
sets S′

2, S′
3, respectively. If |S′

2| = ∅, |S′
3| = ∅, then

let M ′
2 = {0, 1}n−2, M ′

3 = {0, 1}n−2, respectively. Hence,
w2w3 · · · wn−1 ∈ M ′

2 ∩ M ′
3. Recall that according to the proof

of Lemma 18, |S1| � 2. Hence, if |S1| �= 2, then |S1| < 2.
Next, it will be proved that under the assumption |S1| < 2

and |S4| <
⌊ n−4

2

⌋ ⌈ n−4
2

⌉+4(n−2)+1, the following properties
hold.

1) |S2| + |S3| � n + 5.
2) S′

2 ⊆ T2,w1(w2 · · · wn−1), S′
3 ⊆ T3,wn (w2 · · · wn−1).

3) |S′
2|, |S′

3| � 2n − 2.
4) If |S′

2| � 1, |S′
3| � 1, then M2 = M ′

2 = �(n), M3 =
M ′

3 = �(n), respectively. Moreover, M2, M3 are gener-
ated in time complexity �(n3) in Steps 17-20, 22-25,
respectively.

5) If |S′
2| � 1 and |S′

3| � 1, then it is possible to compute
the set M2 ∩ M3 in time complexity �(n3).

6) |M ′
2 ∩ M ′

3| � 1.
Here we emphasize that proving these six properties is enough
to derive the lemma’s statement. According to Property 1,
at least one of the sets S2, S3 is not an empty set. Hence,
it is enough to consider the following three cases.

1) |S′
2| � 1, |S′

3| = 0: According to Property 4, at the end of
Step 20, M2 = M ′

2. Moreover, according to Property 6
and the fact that in this case M ′

3 = {0, 1}n−2, it holds

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:27:55 UTC from IEEE Xplore. Restrictions apply.

7144 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 11, NOVEMBER 2021

that |M ′
2| � 1, hence |M2| � 1. In other words, indeed,

in this case only one word will be found in M2 and it is
the only possibility for w2w3 · · ·wn−1. Hence, in Step 29,
z = w2w3 · · · wn−1 and according to Property 4, it is
found in time complexity �(n3).

2) |S′
2| = 0, |S′

3| � 1: As in the case of |S′
2| � 1, |S′

3| = 0,
it can be proved that also here, only one word is found
in M3 and in Step 27, z = w2w3 · · · wn−1.

3) |S′
2| � 1, |S′

3| � 1: According to Property 4, at the end of
Step 25, M2 = M ′

2 and M3 = M ′
3. Moreover, according

to Property 6, |M2 ∩ M3| � 1. Hence, there is only
one possibility for w2w3 · · · wn−1 found in M2 ∩ M3 and
according to Properties 4 and 5, it is generated in time
complexity �(n3).

The six properties stated earlier may be proved as follows.
1) Since |S1| < 2 and |S4| <

⌊ n−4
2

⌋ ⌈n−4
2

⌉+ 4(n − 2) + 1,
then it holds that

|S2| + |S3| �
⌊

n − 2

2

⌋⌈
n − 2

2

⌉
+ 4n + 1 − |S1| − |S4|

�
⌊

n − 2

2

⌋⌈
n − 2

2

⌉
+ 4n + 1

− 1 −
(⌊

n − 4

2

⌋⌈
n − 4

2

⌉
+ 4(n − 2)

)
= n + 5.

2) Words in S2 have an erroneous value in the first bit and
a correct one in the last bit. Therefore, such words may
be generated by one of the following ways.
• Substitution in the first bit and no insertion of wn in

the last one. Thus, the insertion occurs in w2 · · · wn−1.
• Insertion in the first bit and no substitution in the last

one. Thus, the substitution might occur in w1 · · · wn−1.
Therefore,

S′
2 = B0,0,1(w2 · · · wn−1) ∪ B1,0,0(w1w2 · · ·wn−1).

Since

w1w2 · · · wn−1, w1w2 · · · wn−1 ∈ B0,0,1(w2 · · · wn−1),

then the right hand side of the previous equality can be
simplified to receive

S′
2 = B0,0,1(w2 · · · wn−1) ∪ w1 Bsub(w2 · · · wn−1)

= T2,w1(w2 · · · wn−1).

The proof of S′
3 ⊆ T3,wn (w2 · · · wn−1) is similar.

3) It holds that

|w1 Bsub(w2 · · · wn−1)| = n − 2

|B0,0,1(w2 · · · wn−1)| = n − 2 + 2 = n.

Thus, based on property 2, |S′
2| = |S2| � n − 2 + n =

2n − 2. A similar proof holds for |S′
3| � 2n − 2.

4) Let x ∈ S′
2. It holds that x is generated by one

of the 2n − 2 ways specified in B0,0,1(w2 · · ·wn−1) ∪
w1 Bsub(w2 · · · wn−1). In order to get all of the candidates
for w2 · · · wn−1, i.e., candidates for M ′

2, we delete any
bit of x or substitute a bit of x2 · · · xn−1 as done in
Steps 17-20. For each candidate z we need to check if

S′
2 ⊆ B0,0,1(z) ∪ w1 Bsub(z), which can be done in time

complexity �(n2). Thus, the total time complexity for
Steps 17-20 is

(2n − 2) · �(n2) = �(n3),

and at the end of Step 20, M2 = M ′
2. Furthermore,

it holds that |M2| � |B0,1,0(x) ∪ Bsub(x2x3 · · · xn−1)| =
�(n). The same proof holds for S′

3.
5) Given two sets M2, M3 of size �(n), it is possible to find

the set M2 ∩ M3 by going over all of the words in M2.
For each word x ∈ M2, we check if it is found in M3 by
going over all of the words in M3 and comparing them
with x in �(n2) time. To sum up, total time complexity is

n · �(n2) = �(n3).

6) It holds that

S′
2 ⊆ T2,w1(w2 · · · wn−1), S′

3 ⊆ T3,wn (w2 · · · wn−1).

Since

|S2| + |S3| = |S′
2| + |S′

3|
� |T2,w1(w2 · · ·wn−1)| + |T3,wn (w2 · · · wn−1)|,

and since, based on property 1

|S2| + |S3| � n + 5,

then in order to prove that |M ′
2 ∩ M ′

3| = 1, it is enough
to prove that for any two words x, x̃ ∈ {0, 1}n−2 and any
two symbols α, β ∈ {0, 1},
|T2,α(x) ∩ T2,α(̃x)| + |T3,β(x) ∩ T3,β (̃x)| < |x| + 7.

(2)

Note that

T2,α(x) ∩ T2,α(̃x) = (
B0,0,1(x) ∩ B0,0,1(̃x)

)
∪ (αBsub(x) ∩ αBsub(̃x))

∪ (
αBsub(x) ∩ B0,0,1(̃x)

)
∪ (

B0,0,1(x) ∩ αBsub(̃x)
)
,

T3,β(x) ∩ T3,β (̃x) = (
B0,0,1(x) ∩ B0,0,1(̃x)

)
∪ (Bsub(x)β ∩ Bsub(̃x)β)

∪ (
Bsub(x)β ∩ B0,0,1(̃x)

)
∪ (

B0,0,1(x) ∩ Bsub(̃x)β
)
.

It is already known by [15] and [16] that

|B0,0,1(x) ∩ B0,0,1(̃x)|, |Bsub(x) ∩ Bsub(̃x)| � 2.

In Lemma 27 in Appendix D we make several observa-
tions regarding the intersections

αBsub(x) ∩ B0,0,1(̃x), B0,0,1(x) ∩ αBsub(̃x),

Bsub(x)β ∩ B0,0,1(̃x), B0,0,1(x) ∩ Bsub(̃x)β.

Next, let � = n − 2. In order to prove the inequality
in (2), for any two words x, x̃ ∈ {0, 1}�, let j1, j2
be the first, last bit for which x j1 �= x̃ j1, x j2 �= x̃ j2 ,
respectively. The inequality in (2) has been verified by
computer program for all sequences x, x̃ of length at

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:27:55 UTC from IEEE Xplore. Restrictions apply.

ABU-SINI AND YAAKOBI: ON LEVENSHTEIN’s RECONSTRUCTION PROBLEM 7145

most 9. For sequences x, x̃ of length � � 10, we consider
the following two cases.
• In x, before j1 there are at least two runs or after j2

there are at least two runs. For this case, the inequality
in (2) is proved in Lemma 28 in Appendix E.

• In x, before j1 there is at most one run, and after j2
there is at most one run. For this case, the inequality
in (2) is proved in Lemma 29 in Appendix F. �

Lastly, the following corollary extends the largest intersec-
tion size result to the case of at most one insertion and at most
one substitution.

Corollary 20: The size of the largest intersection of two
balls resulting from at most one insertion and at most one
substitution in distinct length-n binary words is given by

N∗
n (1, 0, 1) = Nn(1, 0, 1) + Nn(1, 0, 0)

=
⌊

n − 2

2

⌋⌈
n − 2

2

⌉
+ 4n + 2.

The correctness of this corollary is based on the inequality

N∗
n (1, 0, 1) � Nn(1, 0, 1) + Nn(1, 0, 0)

and the proof of Lemma 15. For n � 2,

B∗
1,0,1(0) ∩ B∗

1,0,1(1) = {0, 1} ∪ {0, 1}2,

and
B∗

1,0,1(01) ∩ B∗
1,0,1(10) = {00, 11} ∪ {0, 1}3.

Hence, the corollary indeed holds in this case. For n � 3,
let

w = 0

⌊
n−2

2

⌋
100

⌈
n−2

2

⌉

and

w′ = 0

⌊
n−2

2

⌋
010

⌈
n−2

2

⌉
.

Then according to the proof of Lemma 15,∣∣B1,0,1 (w) ∩ B1,0,1
(
w′)∣∣ = Nn(1, 0, 1)

=
⌊

n − 2

2

⌋⌈
n − 2

2

⌉
+ 4n.

In addition, it holds that∣∣B1,0,0 (w) ∩ B1,0,0
(
w′)∣∣ = Nn(1, 0, 0) = 2,

which concludes the corollary. Furthermore, given

N∗
n (1, 0, 1) + 1 =

⌊
n − 2

2

⌋⌈
n − 2

2

⌉
+ 4n + 3

words resulting from at most one insertion and at most one
substitution in a length-n binary word w, one can recover the
word w by the following step.

• If at least 3 length-n words are received, then there are
at least 3 words in B1,0,0 (w). Thus, as proved in [15],
w may be recovered by applying the majority algorithm
on every bit.

• Otherwise, there are at least⌊
n − 2

2

⌋⌈
n − 2

2

⌉
+ 4n + 1

length-(n + 1) binary words. Thus, there are at least⌊
n − 2

2

⌋⌈
n − 2

2

⌉
+ 4n + 1

words in B1,0,1 (w), which allows recovering w using
Algorithm 1.

VI. DECODER FOR SUBSTITUTION ERRORS

In this section, it is studied how to construct a decoder
for the reconstruction problem in the substitutions case with
optimal complexity. As mentioned in Section II, it was already
established by Levenshtein that if the transmitted word belongs
to a code with minimum Hamming distance d and there are at
most t errors in every channel, then N S

n (t, d)+1 channels are
necessary and sufficient to decode in the worst case. However,
Levenshtein presented a decoder for this problem only for the
case of d = 1. Since N S

n (t, d) + 1 = �(nt−� d
2), the order of

magnitude of the number of bits in any subset Y ⊆ Bt,0,0(x) of
size N S

n (t, d)+1 is �(nt−� d
2 	+1). Hence, the complexity order

of any decoder is at least this value and a decoder achieving
this complexity order will be called optimal. A decoder for
this problem was presented in [22] for all d and t , however
its complexity is �(n2t−d), and only the case where d = 3 has
been improved in [22] to have an optimal decoder, i.e., with
complexity �(nt−1). In this section we show how to construct
an optimal decoder for all d and t . For the rest of this section
it is assumed that d and t are fixed positive integers and n is
large enough. Furthermore, since for every odd d , N S

n (t, d) =
N S

n (t, d + 1) [22], it is also assumed that d is an odd integer
and t > (d − 1)/2 + 1 (the case t = (d − 1)/2 + 1 has been
solved in [22]). For shorthand, N S

n (t, d)+1 is denoted by Nt,d .
Our algorithm uses some of the ideas which were presented

in [22] for the decoder in case of d = 3. A set Y =
{ y1, . . . , yN } ⊆ {0, 1}n is said to be decoded according to the
majority algorithm with threshold τ such that the algorithm’s
output is denoted by z = majτ (Y), if the following condition
holds: For all 1 � i � n, let

mi,0 =|{ j : j ∈ [N], y j,i = 0}|, mi,1 =|{ j : j ∈ [N], y j,i = 1}|,
(so mi,0 + mi,1 = N). If |mi,0 − mi,1| � τ then, zi =?.
Otherwise, if mi,0 > mi,1 then zi = 0 and if mi,0 < mi,1 then
zi = 1.

For a code C ⊆ {0, 1}n of minimum Hamming distance d ,
we assume that it has a complete decoder DC that can
successfully correct at most d−1

2 errors. If the number of errors
is greater than this value there is no guarantee on the decoder’s
success. However, a complete decoder outputs a codeword for
every input, i.e., even in case there are more than d−1

2 errors,
the decoder outputs a codeword, yet it is not guaranteed to be
the correct one.

In the algorithm, the following value τt,d will be used for
the threshold of the majority algorithm

τt,d � 4

d + 1

t− d+1
2∑

i=0

(
n − d+1

2
i

)
+ d − 3

d + 1
Nt,d .

It is possible to verify that τt,d < Nt,d for n large enough.
We are now ready to present the algorithm. For an integer t

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:27:55 UTC from IEEE Xplore. Restrictions apply.

7146 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 11, NOVEMBER 2021

and a code C ⊆ {0, 1}n of minimum Hamming distance d ,
we define an algorithm that recovers the transmitted codeword
denoted by c using a subset Y ⊆ Bt,0,0(c) of size Nt,d .

The input to the decoder is a set of all Nt,d channels’ outputs
Y = { y1, . . . , yNt,d

} ⊆ Bt,0,0(c) for some c ∈ C and it returns
an estimation ĉ on c.

1) z = majτt,d
(Y).

2) S = {i : i ∈ [n], zi =?}.
3) Z = {u ∈ {0, 1}n : ui = zi for all i /∈ S}.
4) For all u ∈ Z , ĉ = DC(u). If Y ⊆ Bt,0,0(̂c), output ĉ.

The correctness of the algorithm is proved using the next
two lemmas. For 1 � i � n, let ei be ei = |{ y ∈ Y : yi �= ci }|,
i.e., the number of words in Y in which there is an error in the
i -th position. It holds that, zi =? if Nt,d −τt,d

2 � ei � Nt,d +τt,d
2 ,

and zi is in error if ei >
τt,d+Nt,d

2 .
Lemma 21: There are at most d−1

2 errors in the word z in
Step 1.

Proof: Assume to the contrary that there exists a set Y
such that the word z generated in Step 1 contains at least d+1

2
errors. Assume without loss of generality that the first d+1

2
bits are erroneous bits. As specified above, for 1 � i � d+1

2

ei �
Nt,d + τt,d

2
+1= 2

d + 1

t− d+1
2∑

i=0

(
n − d+1

2
i

)
+ d − 1

d + 1
Nt,d+1.

Therefore,

d+1
2∑

i=1

ei �
t− d+1

2∑
i=0

(
n − d+1

2
i

)
+ d − 1

2
Nt,d + d + 1

2

>

t− d+1
2∑

i=0

(
n − d+1

2
i

)
+ d − 1

2
Nt,d

= d+1

2

t− d+1
2∑

i=0

(
n− d+1

2
i

)
+ d−1

2

⎛
⎜⎝Nt,d−

t− d+1
2∑

i=0

(
n − d+1

2
i

)⎞⎟⎠.

On the other hand, there are at most
∑t− d+1

2
i=0

(n− d+1
2

i

)
words

in Y that can have erroneous values in all of the first d+1
2

positions. The other Nt,d − ∑t− d+1
2

i=0

(n− d+1
2

i

)
words can have

at most d−1
2 errors in the first d+1

2 positions. Therefore,
the number of errors in these d+1

2 positions is upper bounded
by

d+1
2∑

i=1

ei �
d+1

2

t− d+1
2∑

i=0

(
n− d+1

2
i

)
+d−1

2

⎛
⎜⎝Nt,d −

t− d+1
2∑

i=0

(
n − d+1

2
i

)⎞⎟⎠,
which results with a contradiction.

Lemma 22: For n large enough it holds that |S| � t ·(d+3
2

)
.

Proof: Since in each of the Nt,d words in Y there are at
most t errors, the total number of errors in all of the Nt,d words
is bounded by t Nt,d . Since every erasure requires at least
Nt,d −τt,d

2 errors in the copies of this bit, the maximum number

of erasures in z is upper bounded by t Nt,d
Nt,d −τt,d

2

= 2t Nt,d
Nt,d −τt,d

.

The value Nt,d satisfies

Nt,d =
t− d+1

2∑
i=0

(
n − d

i

) t−i∑
h=d−t+i

(
d

h

)
+ 1

=
(

d + 1
d+1

2

)(
n − d

t − d+1
2

)
+ �(nt− d+1

2 −1),

and for n large enough we have that Nt,d �
d+3

2

∑t− d+1
2

i=0

(n− d+1
2

i

)
. This implies that

Nt,d

Nt,d − τt,d
= Nt,d

4
d+1

(
Nt,d −∑t− d+1

2
i=0

(n− d+1
2

i

)) � d + 3

4
,

and thus |S| � t · (d+3
2

)
.

Lastly, we conclude with the following theorem.
Theorem 23: The output ĉ of Algorithm VI is the word c.

The algorithm’s complexity is �(nt− d+1
2 +1) and hence it is

optimal.
Proof: From Lemma 21, since there are at most d−1

2
errors in the word z of Step 1, one of the 2|S| words in the set
Z of Step 3 contains at most d−1

2 errors. Thus, the decoding
of this word in Step 4 will give the correct word c. We use
here the result of Lemma 16 from [22], in which ĉ = c if and
only if Y ⊆ Bt,0,0(̂c).

The complexity of Step 1 is �(Nt,d) = �(nt− d+1
2 +1).

According to Lemma 22, the size of the sets S and Z is con-
stant with respect to n. Thus, the decoding in Step 4 is invoked
a constant number of times and the complexity of the condition
in this step is �(nt− d+1

2 +1). Together, we conclude that the

algorithm’s complexity is �(nt− d+1
2 +1). We assumed here that

the complexity of the decoder DC is O(nt− d+1
2 +1).

VII. EXTENSIONS FOR THE DECODER

Typically, the number of reads for each strand in
DNA-based storage systems is different than the value found
by Levenshtein. Since this is not a mechanism which is possi-
ble to directly control, we study its benefits more specifically,
in case there are more reads than the required minimum
number of channels, we show how to take advantage of this
redundant reads in order to construct a simpler decoder. On the
other hand, in case there are less reads than the minimum
number, it is not possible to output the correct word in the
worst case and then the decoder can only output a list of all
potential stored words. While we focus in this work on the
first case, the latter has been studied recently in [10].

The simplest decoding algorithm one can think of is the
majority decoder in which every bit is decoded by the majority
of its copies, that is, z = majτ (Y) for τ = 0. Note that in
case the size of Y is even, the algorithm outputs the erasure
symbol ? for bits having the same number of one and zero
estimations. In fact, this is the decoding algorithm Levenshtein
presented for the case of d = 1 and any t , so the number of
channels is N S

n (t, 1)+1. This number of channels is necessary
for the success of the majority decoder even if the transmitted
word belongs to a code of any minimum Hamming distance

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:27:55 UTC from IEEE Xplore. Restrictions apply.

ABU-SINI AND YAAKOBI: ON LEVENSHTEIN’s RECONSTRUCTION PROBLEM 7147

d � 1. However, in this case the majority decoder only needs
to output a word with at most some k � � d−1

2 � errors, as these
errors can be corrected by any decoder of the code.

In the following theorems we present bounds on the size of
the largest set for which the majority decoder outputs a word
with k + 1 errors.

Theorem 24: For 0 < t < k, n ∈ N large enough and a
word w ∈ {0, 1}n , there exists a set Y ⊆ Bt,0,0(w) of size

M1 � 2
t∑

j=
⌈

k+1
2

⌉
(

k

j − 1

) t− j∑
i=0

(
n − k − 1

i

)
− 1

such that there are at least k + 1 errors in maj0(Y).
Proof: Let Y be the set that consists of the following two

subsets, Y1 and Y2.
1) The set Y1 consists of all words in Bt,0,0(w) in which

there at least
⌈ k+1

2

⌉
errors in the first k + 1 bits.

2) The set Y2 is of size M1 − |Y1| and consists of all words
in Bt,0,0(w) in which there are at most

⌈ k+1
2

⌉− 1 errors
in the first k + 1 bits.

In order to prove the theorem, it is enough to show that the set
Y is well defined and that the first k + 1 bits in maj0(Y) are
erroneous. Hence, it is enough to prove the following claims.

1) |Y1| � M1, i.e., the size of the set Y2 is well defined.
2) There are at least M1 − |Y1| words in Bt,0,0(w) in which

there are at most
⌈ k+1

2

⌉− 1 errors in the first k + 1 bits,
i.e., the set Y2 is well defined.

3) For each bit i ∈ [1, k +1], there are at least
⌈ |Y |

2

⌉
words

in Y in which there is an error in the i -th bit.
These claims may be proved as follows.

1) The size of the set Y1, as defined in the proof, is

t∑
j=
⌈

k+1
2

⌉
(

k + 1

j

) t− j∑
i=0

(
n − k − 1

i

)
.

Since for j �
⌈ k+1

2

⌉
,(

k + 1

j

)
− 2

(
k

j − 1

)
=
(

k

j

)
−
(

k

j − 1

)
� 0,

then it holds that |Y1| � M1.
2) The number of words in Bt,0,0(w) in which there are at

most
⌈ k+1

2

⌉− 1 errors in the first k + 1 bits is equal to

M ′ �

⌈
k+1

2

⌉
−1∑

j=0

(
k + 1

j

) t− j∑
i=0

(
n − k − 1

i

)
.

In order to prove that the set Y2 is well defined, it is
enough to prove that M ′ � M1 −|Y1|. It holds that M1 =
θ(n

t−
⌈

k+1
2

⌉
), whereas M ′ = θ(n

t−
⌈

k+1
2

⌉
+1

). Hence, M1−
|Y1| = O(n

t−
⌈

k+1
2

⌉
), and hence for n large enough M ′ �

M1 − |Y1| as required.
3) For all i ∈ [1, k + 1], the number of words in Y1 with

an error in the i -th position is equal to

t∑
j=
⌈

k+1
2

⌉
(

k

j − 1

) t− j∑
i=0

(
n − k − 1

i

)
,

which is exactly
⌈

M1
2

⌉
, i.e.,

⌈ |Y |
2

⌉
. Hence, applying the

majority algorithm on each of the first k + 1 bits would
result in an erroneous value. Finally, it can be seen that
this analysis is correct no matter which words are chosen
to be in Y2. �

While in Theorem 24 we showed a case in which the output
of the majority decoder has k + 1 errors, the next theorem
establishes a sufficient condition on the number of channels
which guarantees the output to have at most k errors.

Theorem 25: For 0 < t < k, n ∈ N large enough, a word
w ∈ {0, 1}n , and a set Y ⊆ Bt,0,0(w) of size at least

M2 � 2
t∑

j=
⌈

k+1
2

⌉
(

k

j − 1

) t− j∑
i=0

(
n − k − 1

i

)

+ 2k
t∑

j=
⌈

k+1
2

⌉
((

k

j − 1

)
−
(

k

j

)) t− j∑
i=0

(
n − k − 1

i

)
+ 1,

there are at most k errors in maj0(Y).
Proof: First, denote by c1, c2 the value of

t∑
j=
⌈

k+1
2

⌉
(

k

j − 1

) t− j∑
i=0

(
n − k − 1

i

)
,

t∑
j=
⌈

k+1
2

⌉
((

k

j − 1

)
−
(

k

j

)) t− j∑
i=0

(
n − k − 1

i

)
,

respectively. Then, M2 = 2c1 + 2kc2 + 1. Assume to the
contrary that there exists a set Z ⊆ Bt,0,0(w) of size 2c1 +
2kc2 + m where m � 1, for which there are at least k + 1
errors in maj0(Z). Assume without loss of generality that the
first k +1 values in maj0(Z) are erroneous. Hence, for each bit

i ∈ [1, k + 1], there are at least
⌈ |Z |

2

⌉
words in Z in which

there is an erroneous value in the i -th position. Therefore,
the total number of erroneous values in the first k +1 positions
in all of the words of Z is lower bounded by

M ′ = (k + 1)

⌈ |Z |
2

⌉
= (k + 1)c1 + (k + 1)kc2 + (k + 1)

⌈m

2

⌉
.

Next, an upper bound M ′′ is presented on the total number
of erroneous values in the first k + 1 positions in all of the
words of Z . It will be shown that M ′′ < M ′ which results
with a contradiction.

Let Y1 be the set of words in Bt,0,0(w) that have at least⌈ k+1
2

⌉
errors in the first k + 1 positions. It holds that

|Y1| =
t∑

j=
⌈

k+1
2

⌉
(

k + 1

j

) t− j∑
i=0

(
n − k − 1

i

)
= 2c1 − c2,

and hence |Y1| = 2c1 − c2 < 2c1 + 2kc2 + 1 = M2. Moreover,
Y1 contributes c1 errors to each of the first k + 1 positions,
thus, (k +1)c1 errors to all of the first k +1 positions. Observe

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:27:55 UTC from IEEE Xplore. Restrictions apply.

7148 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 11, NOVEMBER 2021

that the number of erroneous values in the first k +1 positions
in all of the words in Z is upper bounded by

M ′′ � (k + 1)c1 +
(⌈

k + 1

2

⌉
− 1

)
(|Z | − |Y1|).

Since

|Z | − |Y1| = 2c1 + 2kc2 + m − (2c1 − c2)

= (2k + 1)c2 + m,

then,

M ′′ = (k + 1)c1 +
(⌈

k + 1

2

⌉
− 1

)
(2k + 1)c2

+
(⌈

k + 1

2

⌉
− 1

)
m.

It is possible to verify that for all k and m it holds that(⌈
k + 1

2

⌉
− 1

)
(2k + 1) < (k + 1)k,(⌈

k + 1

2

⌉
− 1

)
m < (k + 1)

⌈m

2

⌉
and hence M ′′ < M ′, which is a contradiction.

Given 0 < t < k and n ∈ N, let Nmaj
n (t, k) be the

minimum number of channels such that for all w ∈ {0, 1}n

and Y ⊆ Bt,0,0(w), where |Y | � Nmaj
n (t, k), it holds that

dH (w, maj0(Y)) � k. The next corollary summarizes the main
result of this section.

Corollary 26: For 0 < t < k, n ∈ N large enough it holds

that Nmaj
n (t, k) = �(n

t−
⌈

k+1
2

⌉
).

As a direct result of Corollary 26, if d is odd, then for
k = d−1

2 , we get that Nmaj
n (t, k) = �(nt−� d+1

4), while the
minimum number of channels by Levenshtein is Nn(d, t)+1 =
�(nt− d−1

2). That is, the degree of n in the number of channels
increases by d−1

2 − � d+1
4 	 = � d−3

4 �.

VIII. CONCLUSION

In this paper we aim to extend the study of the reconstruc-
tion problem proposed by Levenshtein to the setup where
there are insertions, deletions, and substitutions. In order to
initiate this study, we first found the size of the single-deletion
t-substitution ball and similarly for the single-insertion single-
substitution ball. We then continued to find the largest
intersection of any two different single-insertion single-
substitution balls. Next, we presented an optimal decoder
with respect to its complexity for the only substitutions
case and lastly the error-correction capability of the major-
ity decoder was studied in case there are more channels
than the minimum required number. While significant results
are accomplished in this paper, there are still several more
open problems under this paradigm. For example, studying
the size of the ball under different combinations of inser-
tions, deletions, and substitutions and solving the recon-
struction problem stated in Problem 1 for more parameters
of t1, t2, and t3.

APPENDIX A

Claim 1: The set Tj , j ∈ [3, 2t] consists only of the words
that satisfy all of the following requirements.

1) Result from exactly t substitutions in wi .
2) Identical to wi in positions i1, i2.
3) Result from at least

⌈
j
2

⌉
substitutions in positions

i1, i2, . . . , i j in wi .
4) Result from at most

⌈ h
2

⌉ − 1 substitutions in positions
i1, i2, . . . , ih in wi , for every 3 � h < j .

Proof: Recall that while considering T1, T2, words that
result from at most t − 1 substitutions in wi and words that
result from t substitutions in wi such that at least one of them
is in position i1 or i2 are excluded from Bt,0,0(w

i). Hence,
Tj , j ∈ [3, 2t] consists only of words that result from t
substitutions such that none of them is in position i1 or i2.
This proves the necessity of the first two requirements.

Recall that wi differs from wi− j for j ∈ [1, 2t] in the j
positions i1, i2, . . . , i j . Let z be a word that results from
applying t substitutions in wi such that s of them are applied
in positions i1, i2, . . . , i j . Then, it holds that

dH (wi− j , z) = j − s + t − s = t + j − 2s

as z is identical to wi− j in s positions among i1, i2, . . . , i j .
Hence, z differs from wi− j in j − s positions among
i1, i2, . . . , i j and another t − s positions among [1, n −
1] \ {i1, i2, . . . , i j }. Therefore, if s �

⌈
j
2

⌉
, then

dH (wi− j , z) � t , i.e., z ∈ Bt,0,0(w
i) ∩ Bt,0,0(w

i− j).
Otherwise, dH (wi− j ,wi) > t , i.e., z /∈ Bt,0,0(w

i) ∩
Bt,0,0(w

i− j). This proves the necessity of the third
requirement.

Since words in Tj are not included in
⋃ j−1

h=3 Bt,0,0(w
i−h)

and since for every h < j , wi differs from wi−h in positions
i1, i2, . . . , ih , then based on the same analysis as before, words
in Tj are generated by t substitutions in wi such that for
every h < j there are at most

⌈ h
2

⌉ − 1 substitutions in
positions i1, i2, . . . , ih . This proves the necessity of the fourth
requirement.

To summarize, necessity of all of the four requirements
stated in the lemma is now proved. Lastly, we prove that the
four requirements are sufficient and we assume that z is a
word that satisfies all of the four requirements. Then, based
on the first and the second requirements, z /∈ Bt,0,0(w

i−1) ∪
Bt,0,0(w

i−2). Moreover, based on the third, fourth require-
ment, z ∈ Bt,0,0(w

i− j), z /∈ ⋃ j−1
h=3 Bt,0,0(w

i−h), respectively.
Hence, z ∈ Tj .

Claim 3: For j ∈ [3, 2t] even, |Tj | = C j
2 −1

(n−1− j

t− j
2

)
.

Proof: First we observe that words in Tj satisfy the
following two properties.

1) Result from t substitutions in wi such that exactly j
2

are applied in positions i1, i2, . . . , i j , two in positions
i j−1, i j and j

2 − 2 in positions i3, i4, . . . , i j−3, i j−2. This
property can be proved using the requirements from
Claim 1. Words in Tj result from at most j−2

2 − 1 =
j
2 − 2 substitutions in i1, i2, . . . , i j−2, and hence by
at most j

2 substitutions in positions i1, i2, . . . , i j . This
upper bound, which has to be achieved according to the

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:27:55 UTC from IEEE Xplore. Restrictions apply.

ABU-SINI AND YAAKOBI: ON LEVENSHTEIN’s RECONSTRUCTION PROBLEM 7149

third requirement from Claim 1, may be reached only if
there are two substitutions in positions i j−1, i j . Moreover,
words in Tj are identical to wi in positions i1 and i2

and hence, j
2 − 2 substitutions are applied in positions

i3, i4, . . . , i j−3, i j−2.
2) Result from t substitutions in wi such that for every

h < j , where h is even, at most h
2 − 1 substitutions are

applied in the h − 2 positions i3, i4, . . . , ih . According
to the fourth requirement from Claim 1, it holds that
words in Tj result from at most

⌈ h
2

⌉ − 1 = h
2 − 1

substitutions in positions i1, i2, . . . , ih . Moreover, there
are no substitutions in positions i1 and i2. Thus, there are
at most h

2 − 1 = h−2
2 in the h − 2 positions i3, i4, . . . , ih .

According to these two properties, we conclude that in
order to find the size of Tj , it is enough to find the number
of possibilities for applying j−4

2 substitutions in the j − 4
positions i3, i4, . . . , i j−3, i j−2 such that for each h ∈ [3, j−2]
even, there are at most h−2

2 substitutions in the h −2 positions
i3, i4, . . . , ih . If we reinterpret a substitution as a ′′)′′ and a
correct value as ′′(′′, then we see that the number of such
possibilities is equal to the number of length-(j−4) words over
the alphabet {(,)} that have j−4

2
′′(′′’s and j−4

2
′′)′′’s and satisfy

that in each prefix of even length the number of ′′(′′’s is no less
than the number of ′′)′′’s. Denote the set of such words by W .
Then, there exists a bijective mapping between W and the
set of length-(j −2) expressions containing correctly matched
j
2 − 1 pairs of parentheses. Hence,

|W | = C j−4
2 +1 = C j

2 −1.

Finally, note that after finding the number of such pos-
sibilities, substitutions in the other positions [1, n − 1] \
{i1, i2, . . . , i j } should be considered. Thus,

|Tj | = C j
2 −1

(
n − 1 − j

t − j
2

)
.

APPENDIX B

Claim 5: If the j1-th bit falls in the (h − 3)-rd run or a
previous one, then B1,0,0(w

j1) ∩ B1,0,0(w
j2) = ∅.

Proof: Assume to the contrary that B1,0,0(w
j1) ∩

B1,0,0(w
j2) �= ∅. Then, the (j1 + 2)-nd bit in w falls in

the (h − 1)-st run or a subsequent one. Otherwise, at least
two runs will begin in section [j1 + 2, j2], i.e., according to
Claim 4, dH (w j1,w j2) � 3, which contradicts Property 11.
Furthermore, we observe that since the (j1 + 2)-nd position
falls in the (h−1)-st run or a subsequent one, then the j1-th bit
falls in the (h − 3)-rd run and the (h − 2)-nd, (h − 1)-st run
begins in the (j1 + 1)-st, (j1 + 2)-nd position, respectively.
Therefore, according to Claim 4, dH (w j1,w j2) � 3, which
contradicts Proposition 11.

Claim 6: Assume the j1-th bit falls in the (h − 2)-nd or
(h − 1)-st run. Then, B1,0,0(w

j1) ∩ B1,0,0(w
j2) �= ∅ if and

only if the j1-th bit is the last one in its run.
Proof: Consider the following two cases.

• The j1-th bit is the last one in its run. In this case
w j1 �= w j1+1. Moreover, at most one run begins in section

[j1 + 2, j2]. Hence, according to Claim 4,
dH (w j1,w j2) � 2, i.e., B1,0,0(w

j1) ∩ B1,0,0(w
j2) �= ∅

according to Proposition 11.
• The j1-th bit is not the last one in its run. In this case

w j1 = w j1+1. Moreover, at least one run (for exam-
ple the h-th run) begins in section [j1 + 2, j2]. Hence,
dH (w j1,w j2) � 3, i.e., B1,0,0(w

j1) ∩ B1,0,0(w
j2) = ∅

according to Proposition 11. �
Claim 7: If the j1-th bit falls in the h-th run, then

B1,0,0(w
j1) ∩ B1,0,0(w

j2) �= ∅.
Proof: In this case we observe that w j1 = w j1+1, and

that no run begins in section [j1 + 2, j2]. Hence, according to
Claim 4, dH (w j1,w j2) = 2, which means that B1,0,0(w

j1) ∩
B1,0,0(w

j2) �= ∅ according to Proposition 11.
Claim 8: For i � 1, the following statements hold.
• B1,0,0(w

−1) ∩ B1,0,0(w
i) �= ∅ if and only if the i -th bit

falls in the first or the second run.
• B1,0,0(w

0) ∩ B1,0,0(w
i) �= ∅ if and only if the i -th bit

falls in the first run.
Proof: The two statements may be proved as follows.

• Let the i -th bit in w fall in the third run or a subsequent
one. Then according to Claim 4, w−1 differs from wi

in positions �1 + 1, �1 + �2 + 1 and i + 1. Hence,
dH (w−1,wi) � 3, and thus B1,0,0(w

−1)∩B1,0,0(w
i) = ∅

according to Proposition 11. Furthermore, if the i -th bit
falls in the first, second run, then w−1 can be received by
inserting wi , wi at the beginning of the first, second run,
respectively, i.e., dH (w−1,wi) � 2. Hence, B1,0,0(w

−1)∩
B1,0,0(w

i) �= ∅ according to Proposition 11.
• Let the i -th bit in w fall in the second run or a subsequent

one. Then according to Claim 4, w0 differs from wi in
positions 1, �1 + 1 and i + 1. Hence, dH (w0,wi) � 3,
so B1,0,0(w

0) ∩ B1,0,0(w
i) = ∅ according to Proposi-

tion 11. Furthermore, if the i -th bit falls in the first run,
then both of wi and w0 are received by insertions to
the same run. Hence, dH (w0,wi) � 2 and B1,0,0(w

0) ∩
B1,0,0(w

i) �= ∅. �
Claim 9: Assume B1,0,0(w

i1) ∩ B1,0,0(w
i2) �= ∅ where

−1 � i1 < i2�n and the i2-th bit in w falls in the h′-th run,
then wi1 can be received by some insertion to the h′-th run,
including insertion of wi2 or wi2 at the beginning of the
h′-th run.

Proof: Assume B1,0,0(w
i1) ∩ B1,0,0(w

i2) �= ∅. If i1 >
0, then according to Claims 5 and 6, i1 falls in either the
(h′ − 2)-nd, (h′ − 1)-st, or the h′-th run. In case it falls in
the h′-th run then the proof is immediate. In case it falls in
the (h′ − 2)-nd, (h′ − 1)-st run, then i1 is the last bit in its
run, and hence wi1 can be received by inserting wi2 , wi2 at
the beginning of the h′-th, respectively.

If i1 � 0, then according to Claim 8, wi1 can be received
by some insertion to the h′-th run.

APPENDIX C

Lemma 15.: For n � 3,

Nn(1, 0, 1) �
⌊

n − 2

2

⌋⌈
n − 2

2

⌉
+ 4n.

Proof: It has been verified by a computer program that for
n = 3, Nn(1, 0, 1) = ⌊ n−2

2

⌋ ⌈ n−2
2

⌉+ 4n. Henceforth, assume

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:27:55 UTC from IEEE Xplore. Restrictions apply.

7150 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 11, NOVEMBER 2021

n � 4. Let y, y′ be the word 0

⌊
n−2

2

⌋
, 0

⌈
n−2

2

⌉
, respectively.

Moreover, let w,w′ be the word y10 y′, y01 y′, respectively.
We prove that

|B1,0,1(w) ∩ B1,0,1(w
′)| =

⌊
n − 2

2

⌋⌈
n − 2

2

⌉
+ 4n.

Define the following sets:

S′
000 = B1,0,0 (y) 000 y′,

S′′
000 = y000 B1,0,0

(
y′) ,

S001 = {
y001 y′} ,

S010 = B1,0,0 (y) 010 B1,0,0
(

y′) ,
S011 = B1,0,0 (y) 011 y′,
S100 = {

y100 y′} ,

S′
101 = B1,0,0 (y) 101 y′,

S′′
101 = y101 B1,0,0

(
y′) ,

S110 = y110 B1,0,0
(

y′) ,
S111 = {

y111 y′} .

Observe that the intersection S′
000∩S′′

000, S′
101∩S′′

101 consists
of the word y000 y′, y101 y′, respectively. Furthermore, note
that the sets S′

000∪S′′
000, S001, S010, S011, S100, S′

101∪S′′
101, S110

and S111 differ in positions
⌊n−2

2

⌋+ 1,
⌊ n−2

2

⌋+ 2,
⌊ n−2

2

⌋+ 3,
and hence are disjoint sets and of the following sizes.

|S′
000 ∪ S′′

000| = n − 2 + 1,

|S001| = |S100| = |S111| = 1,

|S010| = 1 + n − 2 +
⌊

n − 2

2

⌋⌈
n − 2

2

⌉
,

|S011| =
⌊

n − 2

2

⌋
+ 1,

|S′
101 ∪ S′′

101| = n − 2 + 1,

|S110| =
⌈

n − 2

2

⌉
+ 1,

Hence, the union of these sets is of size⌊
n − 2

2

⌋⌈
n − 2

2

⌉
+ 4n,

i.e., it is enough to prove that B1,0,1(w) ∩ B1,0,1(w
′) is equal

to the union of these sets.
Next, observe that

B1,0,1(w) ∩ B1,0,1(w
′) =

⋃
z∈B1,0,0(w)

z′∈B1,0,0(w
′)

B0,0,1(z) ∩ B0,0,1(z′).

Since based on Lemma 13, for every two words z, z′ ∈
{0, 1}n , B0,0,1(z) ∩ B0,0,1(z′) = ∅ if and only if no diagonal
is maintained between the the first and the last positions in
which z, z′ differ, then it is enough to consider substitutions
that maintain at least one diagonal.

Let z, z′ be a word generated from at most one sub-
stitution in w,w′, respectively. Moreover, if dH (z,w) =
1, dH (z′,w′) = 1, then assume the m1, m2-th bit is the
substituted one in z, z′, respectively. Consider the following
cases.

1) dH (z,w) = 0, dH (z′,w′) = 0. In this case,

B0,0,1(z) ∩ B0,0,1(z′) = {
y010 y′, y101 y′}

⊆ S010 ∪ S′
101 ∪ S′′

101.

2) dH (z,w) = 1, dH (z′,w′) = 0. In this case, one of the
diagonals is maintained if and only if one of the following
properties holds.
• m1 = ⌊ n−2

2

⌋+ 1, in this case,

B0,0,1(z) ∩ B0,0,1(z′) = {
y010 y′, y001 y′}

⊆ S010 ∪ S001.

• m1 = ⌊ n−2
2

⌋+ 2-th position, in this case,

B0,0,1(z) ∩ B0,0,1(z′) = {
y011 y′, y101 y′}

⊆ S′
101 ∪ S′′

101 ∪ S011.

• m1 >
⌊ n−2

2

⌋+ 2, in this case,

B0,0,1(z) ∩ B0,0,1(z′) = y010 Bsub(y′)∪ {y101 y′}
⊆ S010∪S′

101 ∪ S′′
101.

3) dH (z,w) = 0, dH (z′,w′) = 1. In this case, one of the
diagonals is maintained if and only if one of the following
properties holds.
• m2 = ⌊n−2

2

⌋+ 1, in this case,

B0,0,1(z) ∩ B0,0,1(z′) = {
y101 y′, y110 y′}

⊆ S110 ∪ S′
101 ∪ S′′

101.

• m2 = ⌊n−2
2

⌋+ 2, in this case,

B0,0,1(z) ∩ B0,0,1(z′) = {
y010 y′, y100 y′}

⊆ S010 ∪ S100.

• m2 <
⌊n−2

2

⌋+ 1, in this case,

B0,0,1(z) ∩ B0,0,1(z′) = Bsub (y) 010 y′ ∪ {
y101 y′}

⊆ S010∪S′
101 ∪ S′′

101.

4) dH (z,w) = 1, dH (z′,w′) = 1 and m1, m2 ∈[⌊n−2
2

⌋+ 1,
⌊ n−2

2

⌋+ 2
]
. In this case, one of the diag-

onals is maintained if and only if one of the following
properties holds.

a) m1 = ⌊ n−2
2

⌋+ 1, m2 = ⌊n−2
2

⌋+ 2, in this case,

B0,0,1(z) ∩ B0,0,1(z′) = S′
000 ∪ S′′

000 ∪ S100 ∪ S001

∪ {
y010 y′} ⊆ S′

000 ∪ S′′
000

∪ S100 ∪ S001 ∪ S010.

b) m1 = ⌊ n−2
2

⌋+ 2, m2 = ⌊ n−2
2

⌋+ 1, in this case,

B0,0,1(z) ∩ B0,0,1(z′) = S011 ∪ S110 ∪ S111

∪ {
y101 y′} ⊆ S′

101 ∪ S′′
101

∪ S011 ∪ S110 ∪ S111.

5) dH (z,w) = 1, dH (z′,w′) = 1 and one of m1, m2 is in[⌊n−2
2

⌋+ 1,
⌊ n−2

2

⌋+ 2
]

while the other is not. In this
case, one of the diagonals is maintained if and only if
one of the following properties holds.

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:27:55 UTC from IEEE Xplore. Restrictions apply.

ABU-SINI AND YAAKOBI: ON LEVENSHTEIN’s RECONSTRUCTION PROBLEM 7151

a) m2 = ⌊ n−2
2

⌋+ 1, m1 = ⌊ n−2
2

⌋
, in this case,

B0,0,1(z) ∩ B0,0,1(z′) = {
y110 y′} ⊆ S110.

b) m2 = ⌊ n−2
2

⌋+ 1, m1 >
⌊ n−2

2

⌋+ 2, in this case,

B0,0,1(z) ∩ B0,0,1(z′) = y110 Bsub
(

y′)∪ { y101 y′}
⊆ S110∪S′

101 ∪ S′′
101.

c) m1 = ⌊ n−2
2

⌋+ 2, m2 = ⌊ n−2
2

⌋+ 3, in this case,

B0,0,1(z) ∩ B0,0,1(z′) = {
y011 y′} ⊆ S011.

d) m1 = ⌊ n−2
2

⌋+ 2, m2 <
⌊ n−2

2

⌋+ 1, in this case,

B0,0,1(z) ∩ B0,0,1(z′) = Bsub (y) 011 y′∪ {y101 y′}
⊆ S011∪S′

101 ∪ S′′
101.

6) dH (z,w) = 1, dH (z′,w′) = 1 and m1, m2 <
⌊ n−2

2

⌋+ 1.
In this case, one of the diagonals is maintained if and
only if one of the following properties holds.

a) m1 = m2, in this case,

B0,0,1(z) ∩ B0,0,1(z′) = Bsub (y) 101 y′

∪ Bsub (y) 010 y′ ⊆ S′
101∪S010.

b) m2 = ⌊ n−2
2

⌋
, in this case,

B0,0,1(z) ∩ B0,0,1(z′) =
{

0

⌊
n−2

2

⌋
−1

1010 y′
}

∪ Bsub (y) 101 y′ ⊆ S010∪S′
101.

c) m1 + 1 = m2, in this case,

B0,0,1(z) ∩ B0,0,1(z′) = 0Bsub

(
0

⌊
n−2

2

⌋
−1
)

010 y′

⊆ S010.

7) dH (z,w) = 1, dH (z′,w′) = 1 and m1, m2 >
⌊ n−2

2

⌋+ 2.
In this case, one of the diagonals is maintained if and
only if one of the following properties holds.

a) m1 = m2, in this case,

B0,0,1(z) ∩ B0,0,1(z′) = y101 Bsub
(

y′)
∪ y010 Bsub

(
y′)⊆ S′′

101∪S010.

b) m1 = ⌊ n−2
2

⌋+ 3, in this case,

B0,0,1(z) ∩ B0,0,1(z′) =
{

y01010

⌈
n−2

2

⌉
−1
}

∪ y101 Bsub
(

y′)⊆ S010∪S′′
101.

c) m1 + 1 = m2, in this case,

B0,0,1(z) ∩ B0,0,1(z′) = y010 Bsub

(
0

⌈
n−2

2

⌉
−1
)

0

⊆ S010.

8) dH (z,w) = 1, dH (z′,w′) = 1 and one of m1, m2 is less
than

⌊ n−2
2

⌋+1 while the other is greater than
⌊ n−2

2

⌋+2.
In this case, one of the diagonals is maintained only if
m1 >

⌊ n−2
2

⌋+ 2 and m2 <
⌊ n−2

2

⌋+ 1, hence,

B0,0,1(z) ∩ B0,0,1(z′) = Bsub (y) 010 Bsub
(

y′)
∪ {y101 y′} ⊆ S010∪S′

101 ∪ S′′
101.

Considering all of the cases above, it is possible to verify that
all of the words in the union S′

000 ∪ S′′
000 ∪ S001 ∪ S010 ∪ S011 ∪

S100 ∪ S′
101 ∪ S′′

101 ∪ S110 ∪ S111 belong to the intersection
B1,0,1(w) ∩ B1,0,1(w

′).

APPENDIX D

Lemma 27: Let y, ỹ ∈ {0, 1}� where � � 4. Let j1, j2
be the first, last index in which y and ỹ differ, respectively.
Furthermore, let r1 be the length of the last run in y1 · · · y j1−1
(if j1 = 1 then r1 = 0) and similarly, r2 is the length of the
first run in y j2+1 · · · y� (if j2 = � then r2 = 0). Define i1, i2
to be the following values

i1 = j1 − 1 − r1,

i2 = j2 + r2 + 1.

The following upper bounds hold

|B0,0,1(y)∩αBsub(̃y)|�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, y1 = α

2, y1 = α and the

diagonal y↗ ỹ is not

maintained in [1, j2]
i2 − j2, y1 = α and the

diagonal y↗ ỹ is

maintained in [1, i2−1]
1, y1 = α, the

diagonal y↗ ỹ is

maintained in [1, j2]
and broken in [j2, j2+1]

|B0,0,1(y)∩Bsub(̃y)β|�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, yn = β

2, yn = β and the

diagonal y↘ ỹ is not

maintained in [j1, �]
j1 − i1, yn = β and the

diagonal y↘ ỹ is

maintained in [i1 + 1, �]
1, yn = β, the

diagonal y↘ ỹ is

maintained in [j1, �]
and broken in [j1−1, j1]

Proof: We prove only the upper bound on |B0,0,1(y) ∩
αBsub(̃y)|, while the proof for |B0,0,1(y) ∩ Bsub(̃y)β| follows
the same lines. First, it is possible to verify that the cases
given in the lemma are disjoint and include all of the possible
pairs y, ỹ.

Consider the following cases.
1) y1 = α. In this case there is only one word in B0,0,1(y)

that begins with α. Thus, |B0,0,1(y) ∩ αBsub (̃y)| � 1.
Note that such a word exists only if dH (y, ỹ) = 1.

2) y1 = α and the diagonal y↗ ỹ is not maintained in
[1, j2], i.e., for some bit 1 < k � j2, yk �= ỹk−1.

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:27:55 UTC from IEEE Xplore. Restrictions apply.

7152 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 11, NOVEMBER 2021

Let k ′ be the first bit for which this inequality holds.
Consider the following two subsets that together compose
B0,0,1(y) ∩ αBsub(̃y).
• R1 = {z : z ∈ B0,0,1(y) ∩ αBsub(̃y), zk′ = yk′ }.

Observe that in order to receive such words, the
(k ′ − 1)-st bit in ỹ should be substituted. Thus, |R1| �
|{z : z ∈ αBsub (̃y), zk′ = yk′ }| = 1.

• R2 = {z : z ∈ B0,0,1(y) ∩ αBsub(̃y), zk′ = yk′ =
ỹk′−1}. Observe that in order to receive such a word
an insertion in y should be applied before the k ′-th bit.
Let z be some word in R2, i.e., received by some
insertion before the k ′-th bit in y so it holds that
z j2+1 = y j2 . On the other hand, the (j2 + 1)-st bit
in α ỹ is equal to ỹ j2 . Hence, z and α ỹ differ in
the (j2 + 1)-st bit, which means that in order to get
z from ỹ, a specific substitution should be applied
which is the substitution in the j2-th bit. Thus, R2 ⊆
{α ỹ1 · · · ỹ j2−1 y j2 ỹ j2+1 · · · ỹ�}. i.e., |R2| � 1.

Since B0,0,1(y) ∩αBsub (̃y) = R1 ∪ R2, then |B0,0,1(y) ∩
αBsub(̃y)| � 2 as requested.

3) y1 = α and the diagonal y↗ ỹ is maintained in
[1, i2 − 1]. Note that in this case, based on the def-
inition of the diagonal y↗ ỹ, y j2+1 = ỹ j2+1 = ỹ j2
and y2 · · · y j2 = ỹ1 · · · ỹ j2−1. Since y1 = α, then
y1 · · · y j2 = α ỹ1 · · · ỹ j2−1. Next, we will show that
|B0,0,1(y) ∩ αBsub (̃y)| = i2 − j2 by proving that words
in B0,0,1(y) ∩ αBsub (̃y) can be received by substituting
exactly one of the bits in positions [j2, i2 − 1] in ỹ
and no other bit in ỹ. Hence, we will prove that words
in B0,0,1(y) ∩ αBsub (̃y) differ from α ỹ in the section
[j2 + 1, i2] and are identical to α ỹ in sections [1, j2] and
[i2 + 1, � + 1]. We can prove that by the following three
claims.
• There exist i2 − j2 words in B0,0,1(y)∩αBsub (̃y). This

claim can be proved by observing that all of the i2 − j2
words generated by exactly one substitution in section
[j2+1, i2] in α ỹ can be also received by specific
insertions in positions [j2, i2−1] in y, i.e., these i2− j2
words are in B0,0,1(y) ∩ αBsub(̃y).

• All of the words in B0,0,1(y)∩αBsub (̃y) have the same
length- j2 prefix as the word α ỹ, i.e., the same length- j2
prefix as the word y. If j2 = 1, then the claim holds as
all of the words in B0,0,1(y)∩αBsub (̃y) begin with α.
Henceforth, assume that j2 > 1. In this case, the claim
can be proved by assuming to the contrary that there
is a word in B0,0,1(y) ∩ αBsub(̃y) with a different
length- j2 prefix. Such a word can be received only by
insertions before the j2-th bit in y and substitution of
one of the bits in section [1, j2 −1] in ỹ. Let z be such
a word. Then, the (j2 + 1)-st bit in z, α ỹ is equal to
y j2, ỹ j2 , respectively, which means that z and α ỹ differ
in the (j2 + 1)-st bit. Therefore, dH (z, α ỹ) � 2, which
contradicts the definition of Bsub.

• If i2 = �+1, then the words of B0,0,1(y)∩αBsub (̃y) are
of length i2. Otherwise, all of the words in B0,0,1(y)∩
αBsub(̃y) have the same suffix that begins in the
(i2 + 1)-st bit as the suffix of y, ỹ that begin in the
i2-th bit. This claim can be proved by assuming to

the contrary that there exists a word in B0,0,1(y) ∩
αBsub(̃y) that has a different suffix. Such a word can
be received only by substitution in bits [i2, �] in ỹ and
insertion after the i2-th bit in y. Let z be such a word.
It holds that the i2-th bit in z, α ỹ is equal to yi2 , ỹi2−1.
Since after the j2-th bit, y and ỹ are identical, and
since i2 is a position in which a new run begins, then
z and α ỹ differ in the i2-th bit. Thus, dH (z, α ỹ) � 2,
which contradicts the definition of Bsub.

4) y1 = α, the diagonal y↗ ỹ is maintained in [1, j2] and
is broken in [j2, j2 +1]. First, note that based on the def-
inition of the diagonal y↗ ỹ, y j2+1 �= ỹ j2 , i.e., y j2+1 =
ỹ j2+1 = y j2 . Moreover, as stated in the previous case,
y1 · · · y j2 = α ỹ1 · · · ỹ j2−1 and y j2+1 · · · y� = ỹ j2+1 · · · ỹ�.
Consider the following two subsets that together compose
B0,0,1(y) ∩ αBsub (̃y).
• R1 = {

z :∈ B0,0,1(y) ∩ αBsub (̃y), z j2+1 = ỹ j2

}
.

Observe that words in R1 can be received only by
insertion of ỹ j2 exactly before y j2+1 in y. However,
such an insertion would give the word α ỹ, which
contradicts the definition of Bsub.

• R2 = {
z :∈ B0,0,1(y) ∩ αBsub (̃y), z j2+1 = y j2

}
.

Observe that in order to get words in R2,
a specific substitution should be applied in
ỹ which is substitution of the j2-th. Hence,
R2 ⊆ {

α ỹ1 · · · ỹ j2−1 y j2 ỹ j2+1 · · · ỹ�

}
, i.e., |R2| � 1.

Since B0,0,1(y) ∩αBsub (̃y) = R1 ∪ R2, then |B0,0,1(y) ∩
αBsub(̃y)| � 1. �

APPENDIX E

Lemma 28: Given two binary words y, ỹ of length � � 10,
let j1, j2, i1, i2 be as defined in Lemma 27. Assume that i1 > 0
or i2 < � + 1 (i.e., either before j1 there are two runs or after
j2 there are two runs). It holds that for every α, β ∈ {0, 1},
|T2,α(y) ∩ T2,α(̃y)| + |T3,β(y) ∩ T3,β (̃y)| < � + 7.

Proof: We prove the lemma by induction.
Base case: The claim has been verified by exhaustive search

for words of length at most 9 as mentioned at the end of the
proof of Lemma 19.

Induction hypothesis: Let � � 10. Assume that for all words
y, ỹ of length �′ < � for which i1 > 0 or i2 < �′ + 1,
the following inequality holds

|T2,α(y) ∩ T2,α(̃y)| + |T3,β(y) ∩ T3,β (̃y)| < �′ + 7.

Inductive step: Let � � 10. We prove that for length-� words
y, ỹ for which i1 > 0 or i2 < � + 1, it holds that

|T2,α(y) ∩ T2,α(̃y)| + |T3,β(y) ∩ T3,β (̃y)| < � + 7.

Assume to the contrary that there are α, β and two words
y, ỹ ∈ {0, 1}� for which i1 > 0 or i2 < � + 1, however,

|T2,α(y) ∩ T2,α(̃y)| + |T3,β(y) ∩ T3,β (̃y)| � � + 7.

Assume without loss of generality that i1 > 0. Then, there
are at least two runs before j1, i.e., j1 > 1 and y1 = ỹ1. We
show that in this case

|T2,y1(y2 · · · y�) ∩ T2,y1(ỹ2 · · · ỹ�)|
+|T3,β(y2 · · · y�) ∩ T3,β(ỹ2 · · · ỹ�)| � � + 7.

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:27:55 UTC from IEEE Xplore. Restrictions apply.

ABU-SINI AND YAAKOBI: ON LEVENSHTEIN’s RECONSTRUCTION PROBLEM 7153

Note that y2 · · · y� and ỹ2 · · · ỹ� are words of length � − 1.
If y2 · · · y� and ỹ2 · · · ỹ� consist of at most one run before the
first different bit and at most one run after the last different
bit, then this conclusion contradicts Lemma 29. Otherwise,
it contradicts the induction hypothesis.

Let T ′
2, T ′

3 be the set received by removing the first bit
in all of the words in T2,α(y) ∩ T2,α(̃y), T3,β(y) ∩ T3,β (̃y),
respectively. In the rest of the proof, we prove the correctness
of the following four claims.

1) T ′
2 ⊆ T2,y1(y2 · · · y�) ∩ T2,y1(ỹ2 · · · ỹ�).

2) T ′
3 ⊆ T3,β(y2 · · · y�) ∩ T3,β(ỹ2 · · · ỹ�).

3) |T2,α(y) ∩ T2,α(̃y)| = |T ′
2|.

4) |T3,β(y) ∩ T3,β (̃y)| = |T ′
3|.

By these four claims, it is possible to conclude that

� − 1 + 8 = � + 7 � |T2,α(y) ∩ T2,α(̃y)|
+ |T3,β(y) ∩ T3,β (̃y)| = |T ′

2| + |T ′
3|

� |T2,y1(y2 · · · y�) ∩ T2,y1(ỹ2 · · · ỹ�)|
+ |T3,β(y2 · · · y�) ∩ T3,β(ỹ2 · · · ỹ�)|,

which results with a contradiction. We proceed with proving
the last four claims.

1) We show that for all z ∈ T2,α(y) ∩ T2,α (̃y), it holds that
z2 · · · z�+1 ∈ T2,y1(y2 · · · y�)∩T2,y1(ỹ2 · · · ỹ�). Recall that
the intersection T2,α(y)∩T2,α(̃y) consists of the following
four subsets.
• B0,0,1(y) ∩ B0,0,1(̃y): Observe that if z ∈ B0,0,1(y)

then z2 · · · z�+1 ∈ B0,0,1(y2 · · · y�), and the same holds
for ỹ. Hence, if z ∈ B0,0,1(y) ∩ B0,0,1(̃y), then
z2 · · · z�+1 ∈ B0,0,1(y2 · · · y�) ∩ B0,0,1(ỹ2 · · · ỹ�)).

• αBsub(y) ∩ αBsub (̃y): Words in this intersection are
received only from substituting the bits that differ
between y, ỹ. Since y1 = ỹ1 then such words are
identical to α y and α ỹ in the first and the second bit
and are different from α y, α ỹ in positions in [3, �+1].
Hence, if z ∈ αBsub(y) ∩ αBsub (̃y) then z2 · · · z�+1 ∈
y1 Bsub(y2 · · · y�) ∩ y1 Bsub(ỹ2 · · · ỹ�).

• B0,0,1(y) ∩ αBsub (̃y): Assume that z belongs to
this intersection, then z2 · · · z�+1 ∈ B0,0,1(y2 · · · y�).
Moreover, either z2 · · · z�+1 = y1 ỹ2 · · · ỹ� ∈
B0,0,1(ỹ2 · · · ỹ�) or z2 · · · z�+1 ∈ y1 Bsub(ỹ2 · · · ỹ�).
Thus,

z2 · · · z�+1 ∈ (B0,0,1(y2 · · · y�) ∩ B0,0,1(ỹ2 · · · ỹ�)
)

∪ (
B0,0,1(y2 · · · y�) ∩ y1 Bsub(ỹ2 · · · ỹ�)

)
.

• αBsub(y) ∩ B0,0,1(̃y): If z belongs to this intersection,
then

z2 · · · z�+1 ∈ (B0,0,1(y2 · · · y�) ∩ B0,0,1(ỹ2 · · · ỹ�)
)

∪ (
y1 Bsub(y2 · · · y�) ∩ B0,0,1(ỹ2 · · · ỹ�)

)
.

for the same explanation as in the previous case.
2) As in the proof of the first claim, in this proof we consider

the four subsets that comprise T3,β(y) ∩ T3,β (̃y). In case
z belongs to the intersection B0,0,1(y) ∩ B0,0,1(̃y) or the
intersection Bsub(y)β ∩ Bsub(̃y)β, then it is possible to
prove that z2 · · · z�+1 ∈ T3,β(y2 · · · y�) ∩ T3,β(ỹ2 · · · ỹ�)
in the same way as in the previous claim. Next, assume

that z ∈ B0,0,1(y) ∩ Bsub(̃y)β. In this case, z2 · · · z�+1 ∈
B0,0,1(y2 · · · y�). Moreover, according to Lemma 27,
z differs from ỹβ only in bits in the run preceding j1.
Since there are two runs before j1 and y1, ỹ1 are not in the
run that comes exactly before j1, then they are not sub-
stituted, i.e., z differs from ỹβ in positions in the interval
[2, �]. Thus, z2 · · · z�+1 ∈ Bsub(ỹ2 · · · ỹ�)β, which means
that z2 · · · z�+1 ∈ B0,0,1(y2 · · · y�) ∩ Bsub(ỹ2 · · · ỹ�)β.
A similar proof holds in case z ∈ Bsub(y)β ∩ B0,0,1(̃y).

3) Here it is proved that there are no two words in T2,α(y)∩
T2,α(̃y) that differ only in the first bit. Assume to the
contrary that there are two words x, x̃ ∈ T2,α(y)∩T2,α(̃y)
that differ only in the first bit (thus removing the first bit
results in the same word x2 · · · x�). Since x1 �= x̃1, then
one of them is α while the other is α. Assume without
loss of generality that x1 = α and x̃1 = α. According to
the definition of T2,α(y) ∩ T2,α(̃y), we have that

x, x̃ ∈ T2,α(y) = B0,0,1(y) ∪ αBsub(y).

Since x̃1 = α, then x̃ /∈ αBsub(y), i.e., x̃ ∈ B0,0,1(y).
Furthermore, we have the following observations.

a) If x ∈ B0,0,1(y) then both x, x̃ were received by a
single insertion to y. Since x and x̃ differ only in
the first bit and both are generated from insertions
to the same word then, the insertions were in the
first position, i.e., x = α y, x̃ = α y. To sum up,
in this case y = x2 · · · x�+1. We will refer to this
conclusion by (*).

b) If x ∈ αBsub(y) then

x2 · · · x�+1 ∈ Bsub(y), x̃ ∈ B0,0,1(y).

Consider the following two cases.
• y1 = ỹ1 = α, then

y = x̃2 · · · x̃�+1 = x2 · · · x�+1,

in contradiction with x2 · · · x�+1 ∈ Bsub(y). In
summary, if x ∈ αBsub (y), then y1 = ỹ1 = α.
We denote this conclusion by (**).

• y1 = ỹ1 = α, then

x2 · · · x�+1 = x̃2 · · · x̃�+1 ∈ B0,0,1(y2 · · · y�),

x̃2 · · · x̃�+1 = x2 · · · x�+1 ∈ Bsub(y).

Thus, the substitution in x is in the first run of y
(because only substitutions in the first run in y can
be achieved by single insertion to y2 · · · y�). We
denote this conclusion by (***).

Now based on the conclusions above, consider the fol-
lowing cases.

a) x, x̃ ∈ B0,0,1(y), x, x̃ ∈ B0,0,1(̃y), then based on (*)

y = x2 · · · x�+1 = x̃2 · · · x̃�+1 = ỹ.

b) x, x̃ ∈ B0,0,1(y), x ∈ αBsub(̃y), x̃ ∈ B0,0,1(̃y).
According to (**), y1 = ỹ1 = α. Then

y = x2 · · · x�+1 = x̃2 · · · x̃�+1.

According to (***), the word x2 · · · x�+1 is generated
from substitution in the first run in ỹ. Thus, y differs

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:27:55 UTC from IEEE Xplore. Restrictions apply.

7154 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 11, NOVEMBER 2021

from ỹ by one bit in the first run, which is a contra-
diction to the fact that y, ỹ are identical in the first
run.

c) x, x̃ ∈ B0,0,1(̃y), x ∈ αBsub(y), x̃ ∈ B0,0,1(y). The
proof follows similar analysis as the case b.

d) x ∈ αBsub(y), x̃ ∈ B0,0,1(y), x ∈ αBsub(̃y), x̃ ∈
B0,0,1(̃y). According to (**), y1 = ỹ1 = α. Moreover,
according to (***), the word x2 · · · x�+1 is received
from substitutions in the first run in both y, ỹ. How-
ever, the first run in y, ỹ is identical, so x2 · · · x�+1 is
generated from the same substitution in the first run of
both y, ỹ. This implies that the rest of y, ỹ is identical
too. Thus, we receive a contradiction.

4) Next, it is proved that all the words in T3,β(y) ∩ T3,β (̃y)
begin with y1 = ỹ1. Recall that this intersection consists
of the following four subsets, and for each subset it is
proved that all of its words begin with y1 = ỹ1.
• B0,0,1(y)∩B0,0,1(̃y): Assume to the contrary that there

is a word z ∈ B0,0,1(y)∩ B0,0,1(̃y) beginning with y1,
then such a word is generated by inserting y1 at the
beginning of y, ỹ, i.e., z = y1 y = y1 ỹ. However,
dH (y1 y, y1 ỹ) = dH (y, ỹ) > 0.

• Bsub(y)β ∩ Bsub(̃y)β: Substitutions in this intersection
occur only in the bits that differ between y, ỹ. Thus,
there is no substitution in the first bit.

• B0,0,1(y)∩ Bsub(̃y)β: According to Lemma 27, substi-
tutions will be only in the run preceding j1, thus not
in the first bit. Hence, all of these words begin with
y1 = ỹ1.

• Bsub(y)β∩ B0,0,1(̃y): Same explanation as for the case
B0,0,1(y) ∩ Bsub(̃y)β. �

APPENDIX F

In the following lemma, for any two words y, ỹ and any
two symbols α, β ∈ {0, 1}, we use the following shortcuts:

B0,0,1(y) ∩ B0,0,1(̃y) I, I
Bsub(y) ∩ Bsub(̃y) S, S

αBsub(y) ∩ αBsub(̃y) αS, αS
Bsub(y)β ∩ Bsub(̃y)β Sβ, Sβ
αBsub(y) ∩ B0,0,1(̃y) αS, I
B0,0,1(y) ∩ αBsub(̃y) I, αS
Bsub(y)β ∩ B0,0,1(̃y) Sβ, I
B0,0,1(y) ∩ Bsub(̃y)β I, Sβ

|T2,α(y) ∩ T2,α(̃y)| + |T3,β(y) ∩ T3,β (̃y)| Sum

Lemma 29: Given two words y, ỹ ∈ {0, 1}� where � � 10,
let j1, j2 be the first, last bit for which the two words y, ỹ
differ. Assume that before j1 there is at most one run in y, ỹ,
and after j2 there is at most one run in y, ỹ, then for any two
symbols α, β ∈ {0, 1}, the following holds

|T2,α(y) ∩ T2,α(̃y)| + |T3,β(y) ∩ T3,β (̃y)| < � + 7.

Proof: First, it holds that

T2,α(y) ∩ T2,α(̃y) = (I, I) ∪ (αS, αS) ∪ (αS, I) ∪ (I, αS),

T3,β(y) ∩ T3,β (̃y) = (I, I) ∪ (Sβ, Sβ) ∪ (Sβ, I) ∪ (I, Sβ).

Hence,

Sum � 2|I, I |+2|S, S|+ |αS, I |+ |I, αS|+ |Sβ, I |+ |I, Sβ|.
Second, we make the following observations which will be

useful in the rest of the proof. Their proofs are omitted since
they repeat previous ideas.

Proposition 30: If j1 > 1, then at most one diagonal is
maintained in the section [1, j1]. Similarly, if j2 < �, then at
most one diagonal is maintained in the section [j2, �].

Proposition 31: Both of the diagonals are maintained in the
sections [1, j1 − 1] and [j2 + 1, �].

Proposition 32: If j1 > 1, j2 < �, y1 = ỹ1 = α and y� =
ỹ� = β, then Sum � 12.

Proof: According to Lemma 27, the following upper
bounds hold

|I, I | |S, S| |I, αS| |αS, I | |I, Sβ| |Sβ, I | Sum
2 2 1 1 1 1 12

Next let y, ỹ be two words as stated in the lemma, and let
c1, c2 be the number of diagonals maintained in the section
[1, j2], [j1, �], respectively. For � � 9, the lemma is proved
by exhaustive search as mentioned at the end of the proof of
Lemma 19. For � > 9, we consider all of the following cases
and for each one we prove that Sum < � + 7.

1) c1 = 0, c2 = 0. In this case, based on Lemma 27,
the following upper bounds hold
|I, I | |S, S| |I, αS| |αS, I | |I, Sβ| |Sβ, I | Sum

2 2 2 2 2 2 16
2) c1 = 1, c2 = 0. Assume without loss of generality that the

only diagonal maintained in [1, j2] is y↘ ỹ, then y↘ ỹ
is maintained also in [j1, j2], however, it is broken in
[j2, �]. Hence, according to Proposition 31, the diagonal
y↘ ỹ is broken in [j2, j2 + 1]. To sum up, the diagonal
y↘ ỹ is the only one maintained in [1, j2], it is broken
in [j2, j2 + 1], and no diagonal is maintained in [j1, �].
Therefore, according to Lemma 27, the following upper
bounds hold.
|I, I | |S, S| |I, αS| |αS, I | |I, Sβ| |Sβ, I | Sum

2 2 2 1 2 2 15
3) c1 = 0, c2 = 1. The proof is similar to the case

of c1 = 1, c2 = 0.
4) c1 = 2, c2 = 0. Observe that only one diagonal can be

broken in [j2, j2 + 1]. Hence, a diagonal is broken in
[j2 + 1, �], which contradicts Proposition 31. Therefore,
y, ỹ, cannot satisfy c1 = 2, c2 = 0 and hence there is no
need to consider this case.

5) c1 = 0, c2 = 2. The proof is similar to the case of
c1 = 2, c2 = 0.

6) c1 � 1, c2 � 1. Consider the following cases.
a) j1 = 1, j2 = �. In this case, according to Lemma 27,

the following upper bounds hold
|I, I | |S, S| |I, αS| |αS, I | |I, Sβ| |Sβ, I | Sum

2 2 2 2 2 2 16
b) j1 = 1, j2 < �. Assume without loss of generality that

y1 = α, ỹ1 = α. The following properties hold.
• If the diagonal y↘ ỹ is not maintained in [j1, j2],

then the following upper bounds hold

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:27:55 UTC from IEEE Xplore. Restrictions apply.

ABU-SINI AND YAAKOBI: ON LEVENSHTEIN’s RECONSTRUCTION PROBLEM 7155

|I, I | |S, S| |I, αS| |αS, I | |I, Sβ| + |Sβ, I | Sum
2 2 1 2 4 15

• Exactly one diagonal is maintained in [j1, �]. This
claim can be proved as follows. According to
Proposition 30, at most one diagonal is maintained
in [j2, �], i.e., c2 � 1. Moreover, c2 � 1. Hence,
c2 = 1.

• If the diagonal y↘ ỹ is maintained in [j1, j2] and
not in [j1, �], then according to Proposition 31, it is
broken in [j2 + 1, j2]. In this case, according to
Lemma 27, the following upper bounds hold
|I, I | |S, S| |I, αS| |αS, I | |I, Sβ| + |Sβ, I | Sum

2 2 1 1 4 14
Considering all of these claims, it is enough to deal
with words y, ỹ in which the diagonal y↘ ỹ is main-
tained in all of the word, while the diagonal y↗ ỹ may
be maintained only in [1, j2] and may not. Note that
since the diagonal y↘ ỹ is maintained in [j2, j2 + 1],
and since y j2 �= ỹ j2 and y j2+1 = ỹ j2+1, then the
diagonal y↗ ỹ is not maintained in [j2, j2 + 1]. Let
k = j2 − j1 + 1, consider the following cases.

• k = 1. In this case y = α(α)h , ỹ = α(α)h where
h � 1. Let

z1 = αα(α)h,

z2 = αα(α)h,

z3 = αα(α)h,

z4 = α(α)hα,

z5 = α(α)hα,

z6 = α(α)hα.

Then,

I, I = {z1, z2} ,

αS, αS = {z1, z3} ,

I, αS = {z1} ,

αS, I = αBsub

(
α(α)h

)
.

If β = α, then
Sβ, Sβ = {z4, z1} ,

Sβ, I = {z1, z2} ,

I, Sβ = {z4} .

Otherwise,

Sβ, Sβ = {z5, z6} ,

Sβ, I = {z5} ,

I, Sβ = {z6} .

Since, z3 ∈ αS, I and since

|αS, I | =
∣∣∣Bsub

(
α(α)h

)∣∣∣ = �,

then∣∣T2,α(y) ∩ T2,α (̃ y)
∣∣= |I, I ∪ αS, αS ∪ αS, I ∪ I, αS|
= � + 2,∣∣T3,β (y) ∩ T3,β (̃ y)
∣∣= |I, I ∪ Sβ, Sβ ∪ Sβ, I ∪ I, Sβ|
� 4,

which means that Sum � � + 6.

• k = 2. In this case y = αααh , ỹ = αααh where
h � 1. Let

z1 = ααααh ,

z2 = ααααh ,

z3 = ααααh ,

z4 = ααααh ,

z5 = αααhα,

z6 = αααhα,

z7 = αααhα.

Then,

I, I = {z1, z2} ,

αS, αS = {z3, z4} ,

I, αS = ∅,

αS, I = ααBsub

(
ααh

)
.

If β = α, then

Sβ, Sβ = {z4, z5} ,

Sβ, I = {z2} ,

I, Sβ = {z5} .

Otherwise,

Sβ, Sβ = {z6, z7} ,

Sβ, I = I, Sβ = ∅.

Since z3 ∈ αS, I and since

|αS, I | =
∣∣∣Bsub

(
ααh

)∣∣∣ = � − 1,

then∣∣T2,α(y) ∩ T2,α (̃ y)
∣∣= |I, I ∪ αS, αS ∪ αS, I ∪ I, αS|
= � + 2,∣∣T3,β (y) ∩ T3,β (̃ y)
∣∣= |I, I ∪ Sβ, Sβ ∪ Sβ, I ∪ I, Sβ|
= 4,

which means Sum = � + 6.
• k � 3. In this case y = α · · · y j2 y j2+1 · · · y�, ỹ =

α · · · y j2 ỹ j2+1 · · · ỹ� where yi = ỹi = y j2 for
i > j2. Moreover, in this case, it holds that

αS, I = y1 · · · y j2−1 Bsub
(
y j2 · · · y�

)
.

Hence, |αS, I | = ∣∣Bsub
(
y j2 · · · y�

)∣∣ � � − 2
and according to Lemma 27, the following upper
bounds hold

|I, αS| |αS, I | |I, Sβ| |Sβ, I |
1 � − 2 1 2

Furthermore, if dH (y, ỹ) � 3, then |I, I | � 2 and
S, S = 0, which means that

Sum �2|I, I | + 2|S, S| + |I, αS| + |αS, I |
+ |I, Sβ| + |Sβ, I | � � + 6.

However, if dH (y, ỹ) � 2, then at most one diago-
nal is maintained in section [j1, j2] as this section

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:27:55 UTC from IEEE Xplore. Restrictions apply.

7156 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 11, NOVEMBER 2021

consists of at least 3 bits, i.e., y = α(α)hααt , ỹ =
α(α)hααt where h, t � 1. In this case, the follow-
ing statements hold.
– αα(α)hααt ∈ (αS, αS) ∩ (αS, I).
– If β = α, then |Sβ, I | � 1 and |I, Sβ| � 1.
– If β = α, then α(α)hααtα ∈ (Sβ, Sβ)∩(I, Sβ).
– I, I � 1.
– S, S � 2.

Hence, the following upper bounds hold
|I, I | |αS, αS ∪ αS, I | |I, αS|

1 2 + � − 2 − 1 1
If β = α, then

|I, I | |Sβ, Sβ ∪ I, Sβ| |Sβ, I |
1 2 + 1 − 1 2

Otherwise, β = α and
|I, I | |Sβ, Sβ| |I, Sβ| |Sβ, I |

1 2 1 1
Therefore, in both of the cases β = α and β = α,
Sum � � + 6.

c) j1 > 1, j2 = �. The proof is similar to the case of
j1 = 1, j2 < �.

d) j1 > 1, j2 < �. In this case, according to Proposi-
tion 30, at most one diagonal is maintained in each
of the sections [1, j2], [j1, �], i.e., c1 = 1, c2 = 1.
Moreover, if different diagonals are maintained in each
of these sections, then according to Proposition 31,
the diagonals are broken in [j1 − 1, j1], [j2, j2 + 1].
Thus, the following upper bounds hold according to
Lemma 27.

|I, I | |S, S| |I, αS| + |αS, I | |I, Sβ| + |Sβ, I | Sum
2 2 2 + 1 2 + 1 14
Therefore, it is enough to consider words for which
only one diagonal is maintained in all of the word.
Assume without loss of generality that the diagonal
y↘ ỹ is the one maintained in all of the word. Consider
the following cases.

• k = 1. In this case the words y, ỹ have one of the
following forms.
– y = αhα(α)t , ỹ = αhα(α)t where h, t � 1. Let

z1 = αhαα(α)t ,

z2 = αhαα(α)t ,

z3 = ααhα(α)t ,

z4 = αhα(α)tα,

z5 = αhα(α)tα,

z6 = αhα(α)tα.

Then,

I, I = {z1, z2} ,

αS, αS = {z1, z3} ,

I, αS = {z1, z2} ,

αS, I = ααh Bsub
(
α(α)t) .

If β = α, then

Sβ, Sβ = {z4, z5} ,

Sβ, I = {z5} ,

I, Sβ = {z4} .

Otherwise,

Sβ, Sβ = {z1, z6} ,

Sβ, I = {z1, z2} ,

I, Sβ = Bsub

(
αhα

)
(α)tα.

Since

z3 ∈ αS, I,

|αS, I | = ∣∣Bsub
(
α(α)t)∣∣ � � − 1,

and since for β = α, z6 ∈ I, Sβ, and

|αS, I | + |I, Sβ| = ∣∣Bsub
(
α(α)t)∣∣

+
∣∣∣Bsub

(
αhα

)∣∣∣ = � + 1,

then

Sum � � + 5, β = α,

Sum = � + 5, β = α.

– y = (α)hααt , ỹ = (α)hααt where h, t � 1.
In this case, if β = α, then the solution is
identical to the previous case when β = α. Oth-
erwise, β = α and according to Proposition 32,
Sum � 12.

• k = 2. In this case the words y, ỹ have one of the
following forms.

– y = αhαααt , ỹ = αhαααt . Let

z1 = αhααααt ,

z2 = αhααααt ,

z3 = ααhαααt ,

z4 = ααhαααt ,

z5 = αhαααtα,

z6 = αhαααt α,

z7 = αhαααtα.

Then,

I, I = {z1, z2} ,

αS, αS = {z3, z4} ,

αS, I = ααhαBsub
(
ααt) ,

I, αS = {z2} .

If β = α, then

Sβ, Sβ = {z5, z6} ,

Sβ, I = I, Sβ = ∅.

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:27:55 UTC from IEEE Xplore. Restrictions apply.

ABU-SINI AND YAAKOBI: ON LEVENSHTEIN’s RECONSTRUCTION PROBLEM 7157

Otherwise,

Sβ, Sβ = {z3, z7} ,

Sβ, I = {z2} ,

I, Sβ = Bsub

(
αhα

)
ααt α.

Since z4 ∈ αS, I ,

|αS, I | = ∣∣Bsub
(
ααt)∣∣ � � − 2,

and since for β = α, z7 ∈ I, Sβ,

|αS, I | + |I, Sβ| = ∣∣Bsub
(
ααt)∣∣

+
∣∣∣Bsub

(
αhα

)∣∣∣ = �,

then

Sum = � + 6, β = α,

Sum � � + 5, β = α.

– y = (α)hαα(α)t , ỹ = (α)hαα(α)t where
h, t � 1. In this case, if β = α, then the
solution is identical to the previous case when
β = α. Otherwise, β = α and according to
Proposition 32, Sum � 12.

• k � 3. In this case, if dH (y, ỹ) � 3, then
|I, I | � 2, |S, S| = 0. Hence,

2|I, I | + |αS, αS| + |Sβ, Sβ| � 4.

However, if dH (y, ỹ) � 2, then |I, I | � 1,
|S, S| � 2. Hence,

2|I, I | + |αS, αS| + |Sβ, Sβ| � 6,

where this bound can be achieved only if exactly
one diagonal is maintained in [j1, j2]. Furthermore,
note that since j1 > 1, j2 < � and the diagonal
y↘ ỹ is the only one maintained in all of the word,
then y1 = ỹ j1 and y� = y j2 . Next consider the
following cases.
– y1 = α, y� = β. In this case, according to

Proposition 32, Sum � 12.
– y1 = α, y� = β. In this case, the following

upper bounds hold
2|I, I | + 2|S, S||I, αS||αS, I | |I, Sβ||Sβ, I | Sum

6 0 0 � − 2 2 � + 6
where the equalities |I, αS| = |αS, I | = 0 can
be proved as follows. The words in I, αS begin
with α, and hence can be received from y only
by an insertion of α at the beginning of y.
However, such an insertion leads to a word of
Hamming distance 2 from α ỹ, i.e., a word that
is not in αBsub (̃y).

– y1 = α, y� = β. The proof is similar to the
previous case.

– y1 = α, y� = β. In this case, observe that the
following holds.
∗ yi = ỹi = α, i < j1.
∗ y j1 = α, ỹ j1 = α.
∗ y j2 = β, ỹ j2 = β.
∗ yi = ỹi = β, i > j2.

∗ |I, αS| � 1. This claim can be proved by
observing that any word z ∈ I, αS satisfies
z j1 = α and there is only one such word in
αBsub(̃y). Assume to the contrary that there
is a word x ∈ I, αS such that x j1 = α. Such
a word can be received only by insertion of
α at the beginning of y. Hence x = α y.
However, x /∈ αBsub(̃y) as dH (α y, α ỹ) =
dH (y, ỹ) � 2.

∗ |Sβ, I | � 1, same proof as |I, αS| � 1.
∗ |αS, I | + |I, Sβ| � � − 1.
Considering all of these claims, the following
upper bounds can be derived.
2|I, I | + 2|S, S||I, αS||αS, I | + |I, Sβ||Sβ, I | Sum

6 1 � − 1 1 � + 7
Observe that this upper bound may be achieved
only if the following conditions hold.
∗ dH (y, ỹ) = 2 and exactly one diagonal is

maintained in [j1, j2]. Otherwise, |I, I | +
|αS, αS| + |Sβ, Sβ| < 6.

∗ j1 + 2 = j2. Otherwise, |αS, I | + |I, Sβ| <
� − 1.

Therefore, it is enough to consider words sat-
isfying these two properties. Such words are
y = αhααααt , ỹ = αhααααt where h, t � 1.
In this case, the word ααhααααt is counted
twice, once in αS, αS, and once in αS, I .
Therefore, the upper bound � + 7 cannot be
achieved for these words too. �

REFERENCES

[1] M. A. Sini and E. Yaakobi, “Reconstruction of sequences in DNA
storage,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Paris, France,
Jul. 2019, pp. 290–294.

[2] D. Bar-Lev, T. Etzion, and E. Yaakobi, “On the size of Levenshtein
balls,” in Proc. Int. Symp. Inf. Theory, Melbourne, VIC, Australia,
Jul. 2021, pp. 1979–1984.

[3] D. Carmean, L. Ceze, G. Seelig, K. Stewart, K. Strauss, and M. Willsey,
“DNA data storage and hybrid molecular-electronic computing,” Proc.
IEEE, vol. 107, no. 1, pp. 63–72, Jan. 2019.

[4] R. P. Feynman, “There’s plenty of room at the bottom,” Eng. Sci., vol. 23,
no. 5, pp. 22–36, Feb. 1960.

[5] R. Gabrys and E. Yaakobi, “Sequence reconstruction over the deletion
channel,” IEEE Trans. Inf. Theory, vol. 64, no. 4, pp. 2924–2931,
Apr. 2018.

[6] R. Heckel, G. Mikutis, and R. N. Grass, “A characterization of the DNA
data storage channel,” Sci. Rep., vol. 9, no. 1, Dec. 2019, Art. no. 9663.

[7] D. S. Hirschberg, “Bounds on the number of string subsequences,” in
Proc. Annu. Symp. Combinat. Pattern Matching, 1999, pp. 115–122.

[8] M. Horovitz and E. Yaakobi, “Reconstruction of sequences over
non-identical channels,” IEEE Trans. Inf. Theory, vol. 65, no. 2,
pp. 1267–1286, Feb. 2019.

[9] T. Jiang and A. Vardy, “Asymptotic improvement of the
Gilbert–Varshamov bound on the size of binary codes,” IEEE Trans.
Inf. Theory, vol. 50, no. 8, pp. 1655–1664, Aug. 2004.

[10] V. Junnila, T. Laihonen, and T. Lehtilä, “On Levenshtein’s channel and
list size in information retrieval,” IEEE Trans. Inf. Theory, vol. 67, no. 6,
pp. 3322–3341, Aug. 2020.

[11] E. Konstantinova, “Reconstruction of permutations distorted by rever-
sal errors,” Discrete Appl. Math., vol. 155, no. 18, pp. 2426–2434,
Nov. 2007.

[12] E. Konstantinova, “On reconstruction of signed permutations distorted
by reversal errors,” Discrete Math., vol. 308, pp. 974–984, Mar. 2008.

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:27:55 UTC from IEEE Xplore. Restrictions apply.

7158 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 11, NOVEMBER 2021

[13] E. Konstantinova, V. Levenshtein, and J. Siemons, “Recon-
struction of permutations distorted by single transposition
errors,” Feb. 2007, arXiv:math/0702191. [Online]. Available:
http://arxiv.org/abs/math/0702191v1

[14] S. Kosuri and G. M. Church, “Large-scale de novo DNA synthesis: Tech-
nologies and applications,” Nature Methods, vol. 11, no. 5, pp. 499–507,
May 2014.

[15] V. I. Levenshtein, “Efficient reconstruction of sequences,” IEEE Trans.
Inf. Theory, vol. 47, no. 1, pp. 2–22, Jan. 2001.

[16] V. I. Levenshtein, “Efficient reconstruction of sequences from their
subsequences or supersequences,” J. Combinat. Theory A, vol. 93, no. 2,
pp. 310–332, 2001.

[17] V. I. Levenshtein, E. Konstantinova, E. Konstantinov, and S. Molodtsov,
“Reconstruction of a graph from 2-vicinities of its vertices,” Discrete
Appl. Math., vol. 156, pp. 1399–1406, May 2008.

[18] V. I. Levenshtein and J. Siemons, “Error graphs and the reconstruction
of elements in groups,” J. Combinat. Theory, A, vol. 116, no. 4,
pp. 795–815, 2009.

[19] L. Organick et al., “Random access in large-scale DNA data storage,”
Nature Biotechnol., vol. 36, no. 3, pp. 242–248, 2018.

[20] F. Sala and L. Dolecek, “Counting sequences obtained from the syn-
chronization channel,” in Proc. IEEE Int. Symp. Inf. Theory, Istanbul,
Turkey, Jul. 2013, pp. 2925–2929.

[21] F. Sala, R. Gabrys, C. Schoeny, and L. Dolecek, “Exact reconstruction
from insertions in synchronization codes,” IEEE Trans. Inf. Theory,
vol. 63, no. 4, pp. 2428–2445, Apr. 2017.

[22] E. Yaakobi and J. Bruck, “On the uncertainty of information retrieval
in associative memories,” IEEE Trans. Inf. Theory, vol. 65, no. 4,
pp. 2155–2165, Apr. 2019.

[23] E. Yaakobi, M. Schwartz, M. Langberg, and J. Bruck, “Sequence
reconstruction for Grassmann graphs and permutations,” in Proc. Int.
Symp. Inform. Theory, Istanbul, Turkey, Jul. 2013, pp. 874–878.

Maria Abu-Sini (Student Member, IEEE) received the B.A. and M.Sc.
degrees in computer science from the Technion—Israel Institute of Technol-
ogy, Haifa, Israel, in 2017 and 2020, respectively, where she is currently
pursuing the Ph.D. degree with the Computer Science Department. Her
research interests include algorithms, information theory, and coding theory
with applications to DNA-based storage.

Eitan Yaakobi (Senior Member, IEEE) received the B.A. degree in computer
science and mathematics and the M.Sc. degree in computer science from
the Technion—Israel Institute of Technology, Haifa, Israel, in 2005 and 2007,
respectively, and the Ph.D. degree in electrical engineering from the University
of California at San Diego, in 2011. From 2011 to 2013, he was a Post-
Doctoral Researcher with the Department of Electrical Engineering, California
Institute of Technology, and the Center for Memory and Recording Research,
University of California at San Diego. He is currently an Associate Professor
with the Computer Science Department, Technion—Israel Institute of Tech-
nology. His research interests include information and coding theory with
applications to non-volatile memories, associative memories, DNA storage,
data storage and retrieval, and private information retrieval.

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 23,2022 at 17:27:55 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

