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Abstract

Motivation: Recent years have seen a growing number and an expanding scope of studies using synthetic oligo
libraries for a range of applications in synthetic biology. As experiments are growing by numbers and complexity,
analysis tools can facilitate quality control and support better assessment and inference.

Results: We present a novel analysis tool, called SOLQC, which enables fast and comprehensive analysis of synthet-
ic oligo libraries, based on NGS analysis performed by the user. SOLQC provides statistical information such as the
distribution of variant representation, different error rates and their dependence on sequence or library properties.
SOLQC produces graphical reports from the analysis, in a flexible format. We demonstrate SOLQC by analyzing lit-
erature libraries. We also discuss the potential benefits and relevance of the different components of the analysis.

Availability and implementation: SOLQC is a free software for non-commercial use, available at https://app.gitbook.
com/@yoav-orlev/s/solqc/. For commercial use please contact the authors.

Contact: omersabary@cs.technion.ac.il

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

DNA synthesis technology has greatly developed over recent years and
is holding a promise to enable a leap in using natural systems for vari-
ous applications. Synthetic oligonucleotide libraries (OLs) consisting of
thousands of DNA sequences, often (and herein) referred to as variants,
have become a common tool in molecular biology. Studies using OLs
performed systematic, unbiased investigations of gene regulation mech-
anisms and genetic variations (Kotler et al., 2018; Levy et al., 2017;
Sharon et al., 2012). Design and optimization of protein engineering
and CRISPR-Cas9-based tools for genome editing also used OLs (Miles
et al., 2016). Synthetic DNA is also an attractive alternative for data
storage media. With an information density orders of magnitude better
than that of magnetic media and due to its highly robust chemical prop-
erties DNA can potentially efficiently store data for centuries. This was
demonstrated in a series of studies covering a variety of encoding
schemes, sequencing technologies and data access capabilities (Anavy
et al., 2019; Blawat et al., 2016; Church et al., 2012; Erlich and
Zielinski, 2017; Goldman et al., 2013; Grass et al., 2015; Organick
et al., 2018; Yazdi et al., 2017).

The process of using OLs in such studies usually starts with a design
file containing the DNA variants, which will be synthesized as millions
of physical oligonucleotides (oligos). These oligos will typically be
sequenced in one or more steps of the experimental process. It is

important to control the quality of the OL throughout the process to
ensure that the results stem from the biology and not from technical
noise and other biases related to the DNA synthesis and sequencing.
The processes of synthesizing, storing, sequencing and handling oligo-
nucleotides are all error prone. These errors include sequence altera-
tions of specific molecules in the form of base substitutions, insertions
and deletions as well as frequency variation between the different var-
iants that can result from non-uniform synthesis or biases in amplifica-
tion steps (Heckel et al., 2019; Pan et al., 2014; Ruijter et al., 2009).
While quality assessment of NGS data is common in many experimen-
tal pipelines, it is usually done on natural DNA and focuses on the tech-
nical quality assessment reported by the NGS platform and on
assessing possible contamination in the samples without using any in-
formation about the expected sequences (Andrews et al., 2010).
Characterizing errors in OLs, based on the library design, has only
been done in the context of individual studies with no standard assess-
ment protocols and tools (Heckel et al., 2019; Kosuri and Church,
2014; Organick et al., 2018; Tian et al., 2004).

In this work, we present SOLQC, a software tool that supports
and potentially standardize the statistical analysis and quality con-
trol of OLs. The tool is designed to facilitate analysis by individual
labs to obtain information about DNA libraries and to perform error
analysis before or during experiments. Supplementary Information
reports results from analyzing several literature libraries.
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2 SOLQC tool

We present a quality control software tool, called SOLQC—Synthetic
Oligo Library Quality Control. SOLQC generates a report summariz-
ing the analysis of the synthetic DNA library. Figure 1 depicts the over-
all workflow of SOLQC together with example analyses.

2.1 Inputs and outputs
Any input for SOLQC includes:

1. Design file: This file consists of the design variants that were syn-

thesized, in a csv format. The tool also supports an IUPAC de-

scription (Johnson, 2010) of the design.

2. NGS results files: In fastq format and containing all resulting the

NGS reads.

3. Library configuration: Auxiliary parameters which consist of

other details about the design variants such as information

regarding the barcodes etc.

Detailed description of SOLQC report, installation instructions,
example data and an example report file are available as
Supplementary Information and on SOLQC website: https://yoav-
orlev.gitbook.io/solqc/.

2.2 SOLQC workflow
SOLQC includes a complete analysis pipeline where each step can
be customized using the configuration file:

1. Preprocessing: The reads can be filtered so that only valid reads

will be processed by the tool. The selection of valid reads can be

configured by the user according to the sequence barcode and its

length.

2. Matching: Each read is matched to its corresponding variant.

The set of reads which are matched to the same variant form a

variant cluster. The matching parameters are defined by the

user. Matching can be based on barcode sequences included in

the variants, full-length edit distance calculation or approxima-

tion. Alternatively, matching information can be given by the

user.

3. Alignment: Every read is aligned according to its matched vari-

ant and an error vector is computed which represents the

inferred error types at each position of the variant.

4. Analysis: The matched reads and their error vectors are used to

characterize errors and produce data statistics for the library.

5. Report generation: The output of our tool is a report which con-

sists of analysis results, as selected by the user, in a customizable

format.

2.3 Statistical QC analysis for synthetic DNA libraries
SOLQC analyses are divided into two parts; the first one addresses
the composition of the synthesized library (composition statistics),
and the second one addresses the errors inferred from the NGS reads
(error statistics). Detailed description of the analyses, as well as their
figures, can be found in Supplementary Material Document.

2.3.1 Composition statistics

1. Symbol composition. Distribution of all bases by position in the

sequence. This is calculated based on the design and the

observed reads separately.

2. Read length. Distribution of the read lengths observed in the

NGS data compared to the design variant lengths.

3. Variant cluster size. Distribution of the variant cluster sizes (i.e.

the number of filtered reads matched for each design variant).

Variants can be stratified by different parameters such as GC

content (Fig. 1i).

2.3.2 Error statistics

1. Total error rates. Insertion, substitution, single base deletion

and long deletion rates inferred from aligning the reads to the

matching variants (Fig. 1ii).

2. Error rates per position. Insertion, substitution, single base dele-

tion and long deletion rates as a function of the position in the

variant (Fig. 1iii).

3. Error rates stratified by symbol. Symbol-dependent error rates

(Fig. 1iv).

Fig. 1. SOLQC workflow. (Top) Input files. (Center) An example of 22 reads (pur-

ple) aligned to a variant of length 27 (yellow). Deletions, substitutions and inser-

tions are marked in red, blue, green, respectively. (Bottom) Four example analyses

based on data from Erlich and Zielinski (2017). (i) Histogram of the number of fil-

tered reads per variant, stratified by the GC content. (ii) Total error rates. (iii) Error

rates by position. X-axis represents position counted from the 50 end of the designed

variant. The Y-axis is log-scale. (iv) Error rates stratified by symbol. Note that the

numbers are in percents. For example, the value of 0.024 for ‘A’ long deletion,

means that 0.00024 of the occurrences in base A in the library creates long deletion

error
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4. Deletion length distribution. Distribution of the lengths of all

deletions.

5. Error rates stratified by GC content. Distribution of the error

rates stratified by the GC-content of the matched variant.

2.4 Use-case examples
SOLQC can be useful in the following use-case examples:

1. Comparison of different OL designs. Many design parameters

may affect the quality of the synthesized OL. To asses these

parameters, the user may try out different mini-libraries and

compare their quality and error rates using SOLQC.

2. Binning of OL NGS output. SOLQC includes various methods

for matching NGS reads to design variants. Users may incorpor-

ate SOLQC in their analysis pipeline and get the matching

results together with coverage and quality statistics.

3. Assessment of synthesis and sequencing technologies. Users may

choose to synthesize or sequence OL using different platforms to

compare quality performance. SOLQC can serve as standard

tool in such comparisons. A comparison between four OLs can

be found in Supplementary Material.

4. Design of error-correcting codes and coding techniques for DNA

storage. In data storage applications, SOLQC can be used as a

characterization tool of the DNA channel. Using this informa-

tion, the user can design appropriate error-correcting codes and

coding techniques to improve the error rates.

5. Standardization and reproducibility. SOLQC helps detecting

whether a library is behaving as previous libraries from the same

vendor with similar preparation characteristics. Thus, SOLQC

supports uniformity for OLs use in different labs, or in the same

lab at different times or by different lab members.
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