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Abstract— In graph theory, a tree is one of the more popular
families of graphs with a wide range of applications in computer
science as well as many other related fields. While there are
several distance measures over the set of all trees, we consider
here the one which defines the so-called tree distance, defined by
the minimum number of edit operations, of removing and adding
edges, in order to change one tree into another. From a coding
theoretic perspective, codes over the tree distance are used for
the correction of edge erasures and errors. However, studying
this distance measure is important for many other applications
that use trees and properties on their locality and the number of
neighbor trees. Under this paradigm, the largest size of code over
trees with a prescribed minimum tree distance is investigated.
Upper bounds on these codes as well as code constructions are
presented. A significant part of our study is dedicated to the
problem of calculating the size of the ball of trees of a given
radius. These balls are not regular and thus we show that while
the star tree has asymptotically the smallest size of the ball,
the maximum is achieved for the path tree.

Index Terms— Codes over graphs, tree distance, Prüfer
sequences, Cayley’s formula, tree edit distance.

I. INTRODUCTION

IN GRAPH theory, a tree is a special case of a connected
graph, which comprises of n labeled nodes and n − 1

edges. Studying trees and their properties has been beneficial
in numerous applications. For example, in signal processing,
trees are used for the representation of waveforms [5]. In pro-
gramming languages, trees are used as structures to describe
restrictions in the language. Trees also represent collections
of hierarchical text which are used in information retrieval.
In cybersecurity applications trees are used to represent fin-
gerprint patterns [19]. One of the biology applications includes
the tree-matching algorithm to compare between trees in order
to analyze multiple RNA secondary structures [30]. Trees
are also used in the subgraph isomorphism problem which,
among its very applications, is used for chemical substructure
searching [3].

An important feature when studying trees is defining
an appropriate distance function. Several distance measures
over trees have been proposed in the literature. Among
the many examples are the tree edit distance [31], top-
down distance [28], alignment distance [12], isolated-subtree
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distance [32], and bottom-up distance [34]. These distance
measures are mostly characterized by adding, removing, and
relabeling nodes and edges as well as counting differences
between trees with a different number of nodes. One of
the more common and widely used distance, which will be
referred in this work as the tree distance [10], [21], considers
the number of edit edge operations in order to transform one
tree to another. Namely, given two labeled trees over n nodes,
the tree distance is defined to be half of the minimum number
of edges that are required to be removed and added in order to
change one tree to another. This value is also equivalent to the
difference between n−1 and the number of edges that the two
trees share in common. Despite the popularity of this distance
function, the knowledge of its characteristics and properties is
quite limited. The goal of this art is to close on these gaps
and study trees under the tree distance from a coding theory
perspective. To the best of our knowledge, this direction has
not been explored rigorously so far.

Motivated by the coding theory approach, in this work we
apply the tree distance, which is a metric, to study codes over
trees with a prescribed minimum tree distance. This family of
codes can be used for the correction of edge erasures. There
are several applications in which such codes can be used. For
example, in data structures, a tree is a widely used abstract
data type that simulates a hierarchical tree structure [6]. Such
tree data structures store the information in nodes and use
edges as pointers between them. There are numerous examples
for such tree data structures including abstract syntax trees
(AST), parsing trees and binary search trees (BST) [6], [13].
AST represent the abstract syntactic structure of source code
written in a programming language, while each node of the
tree denotes a construct occurring in the source code. Parsing
trees represent the syntactic structure of a string according to
some context-free grammar. BST trees store in each node a
value greater than all the values in the node’s left subtree and
less than those in its right subtree. These tree data structures
can be implemented such that each node stores a list of
pointers to other nodes in the tree. Theoretically, such pointers
might have wrong addresses, which affects the reliability of the
data structure. By adding redundancy edges and nodes, codes
over trees may correct the unexpected pointer mismatches.
Another family of applications include data structures such
as tries and suffix trees [13] in which the information is stored
on the edges rather than the nodes. Such data structures can
be implemented by a list of n − 1 edges which is a list
of node pairs together with the information on every edge.
Again, theoretically, such an edge list may have failures that
can indeed be corrected using classical error-correction codes.
However, these codes will not be cardinality optimal since
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they do not take advantage of the structure of the tree. For the
binary case, using classical error-correction codes, we show in
the paper the construction of codes over trees of size Ω(nn−2d)
where d � n/2 corresponds to the minimum tree distance of
the code. Using codes over trees we show that it is possible
to construct codes of cardinality Ω(n2), while the minimum
tree distance d approaches �3n/4� and n is a prime number.

Another interesting problem for the tree distance is the
study of the size of balls according to the tree distance. This
investigation is useful not only for applying the sphere packing
bound on codes over trees, but also for other applications.
For example, in [7] it was claimed that recent research on
nanotechnology discovered that structures of DNA molecules
can be constructed into trees or lattices, and that future syn-
thesis techniques may use physical constraints to enforce tree
structures on the written base. The authors of [7] introduced
the tree trace reconstruction problem, in which the goal is
to reconstruct a tree from several of its copies while each
copy can have node deletions. In this case, the size of the
tree balls may be useful. Another approach deals with graph
matching, i.e., the problem of finding a similarity between
graphs [9], [16]. Graph matching is an important tool used
for example in computer vision and pattern recognition. One
of the problems under this setup is to find a model graph,
which represents the prototype symbol, as a subgraph in an
input graph that represents a diagram, which is also called
subgraph isomorphism problem [16]. If the model graph
cannot be found exactly in the input graph, then the goal is
to find a subgraph that is close to the model graph while the
similarity is determined by edit operations on the nodes and
edges. This problem is also studied for trees called subtree
isomorphism problem [29], and the size of balls of trees
may be useful for this problem. Lastly, one of the classical
problems in graph theory is finding a minimum spanning
tree (MST) for a given graph. While the MST problem is
solved in polynomial time [15], [22], it may become NP-hard
under some specific constraints. For example, in the degree-
constrained MST problem (d-MST) [14], [23], [24], [35], it is
required that the degree of every vertex in the MST is not
greater than some fixed value d. In another example, the goal
is to look for an MST in which the length of the simple
path between every two vertices is bounded from above by
a given value D � 4 [25]. One of the common approaches for
solving such problems uses evolution algorithms (EA). Under
this setup, the goal is to find a feasible tree to the problem
by iteratively searching for a candidate tree. This iterative
procedure is invoked by using mutation operations over the
current tree in order to produce a new candidate tree. These
mutation operations typically involve the modification of edges
in the tree and as such are highly related to the tree distance.
Thus, in order to analyze the complexity of such algorithms,
it is necessary to study the size of the balls according to the
tree distance. In fact, in [10] the size of the radius-one ball
was computed for all trees with at most 20 vertices. According
to this computer search, it was observed that the smallest size
of the ball is achieved when the tree is a star tree (i.e., the tree
has one node connected to all other nodes), while the largest
for a path tree (i.e., the tree has two leaves and the degree

of all other nodes is two). In this article, we establish this
result for any number of nodes in the tree as well as for any
radius. Furthermore, it is shown that the size of the radius-t
ball ranges between Ω(n2t) (for a star tree) and O(n3t) (for
a path tree), while the average size of all balls is Θ(n2.5t).

This article is organized as follows. In Section II, we for-
mally define the tree distance and codes over trees as well
as several more useful definitions and properties for balls of
trees, that will be defined in the sequel. An edge erasure is
the event in which one of the edges in the tree is erased and
a forest is received with two connected components. This is
also extended to the erasure of multiple edges. If t edges
are erased, then a forest with t+ 1 connected components is
received and the number of such forests is

(
n−1

t

)
. In Section III

we summarize all main results of the paper. In Section IV,
by using several known results on the number of forests
with a fixed number of connected components we are able
to derive a sphere packing bound for codes over trees. More
specifically, the size of codes over trees of minimum tree
distance d cannot be greater than O(nn−d−1). In Section V,
we study balls of trees. The tree ball of trees of a given tree
T consists of all trees such that their tree distance from T
is at most some fixed radius t. These balls are not regular.
In this section, these balls are studied for radius one. Balls
with a general radius are studied in Section VI. In Section VII,
the size of star, path tree ball is presented, respectively. Lastly,
in Section VIII, for a fixed d we show a construction of
codes over trees of size Ω(nn−2d). It is also shown that it
is possible to construct codes of cardinality Ω(n2), while the
minimum distance d approaches �3n/4� and n is a prime
number. Finally, Section IX concludes the paper.

II. DEFINITIONS AND PRELIMINARIES

Let G = (Vn, E) be a graph, where Vn =
{v0, v1, . . . , vn−1} is a set of n � 1 labeled nodes, also called
vertices, and E ⊆ Vn × Vn is its edge set. In this article,
we only study undirected trees and forests. By a slight abuse
of notation, every undirected edge in the graph will be denoted
by �vi, vj� where the order in this pair does not matter, i.e., the
notation �vi, vj� is identical to the notation �vj , vi�. Thus, there
are
(
n
2

)
possibilities for the edges and the edge set is defined

by

En = {�vi, vj� | i, j ∈ [n]}, (1)

where [n] � {0, 1, . . . , n− 1}.
A finite undirected tree over n nodes is a connected undi-

rected graph with n − 1 edges. The degree of a node vi is
the number of edges that are incident to the node, and will be
denoted by deg(vi). Each node of degree 1 is called a leaf.
The set of all trees over n nodes will be denoted by T(n).
An undirected graph that consists of only disjoint union of
trees is called a forest. The set of all forests over n nodes
with exactly δ trees will be denoted by F(n, δ). Denote by
F (n, δ) the size of F(n, δ). We sometimes use the notation
{C0, C1, . . . , Cδ−1} = F ∈ F(n, δ) to explicitly denote a
forest with t connected components (or subtrees) of F . Note
that F(n, 1) = T(n).
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By Cayley’s formula [1] it holds that |T(n)| = nn−2. The
proof works by showing a bijection F : T(n) → [n]n−2,
where for every tree T ∈ T(n), the prüfer sequence of T
is denoted by F(T ) = wT . An important property is that for
each T = (Vn, E), the number of appearances of node vi ∈ Vn

in wT is equal to deg(vi) − 1.
Definition 1: A code over trees CT , denoted by T -(n,M),

is a set of M trees over n nodes. Each tree in the code CT is
called a codeword-tree. The redundancy r of the code CT is
defined by r = (n− 2) log(n) − log(M)1.

Every codeword-tree corresponds to unique information that
is stored, sent, or read, i.e., the information is the structure
of the codeword-tree. The storage of information depends
mainly on the application that will be used. For example,
in binary search trees [6] the information values and pointers
that represent edges are stored in nodes. In tries or suffix
trees [13] the symbols or strings are stored on edges. In order
to deal with erasures and errors of edges of trees, we initiate
the study of codes over trees as will be defined next.

Definition 2: An erasure of ρ edges in a tree T ∈ T(n) is
the event in which ρ of the edges in T are erased and T is
separated into a forest of ρ+ 1 connected components over n
nodes. An error of ψ edges in a tree T ∈ T(n) is the event
in which ψ of the edges in T are replaced with other ψ edges
such that we receive a new tree T ′ ∈ T(n).

The tree distance for trees is next defined.
Definition 3: The tree distance between two trees T1 =

(Vn, E1) and T2 = (Vn, E2) will be denoted by dT (T1, T2)
and is defined to be,

dT (T1, T2) = n− 1 − |E1 ∩ E2|.

It is clear that dT (T1, T2) = |E1 \E2| = |E2 \E1|. Every
tree over n nodes can be represented by a binary vector of
length

(
n
2

)
called the characteristic vector. Such a vector is

indexed by all possible
(
n
2

)
edges that the tree can have and

it has ones only in the indices of the tree’s edges. Using
this representation, the tree distance between any two trees
is one half the Hamming distance between their characteristic
vectors. Thus, the tree distance is a metric as was mentioned
in [21] and is stated in the next lemma.

Lemma 4: The tree distance is a metric.
The tree distance of a code over trees CT is denoted by

dT (CT ), which is the minimum tree distance between any two
distinct trees in CT , that is,

dT (CT ) = min
T1 �=T2 T1,T2∈CT

{dT (T1, T2)}.

Definition 5: A code over trees CT of tree distance d,
denoted by T -(n,M, d), has M trees over n nodes and its
tree distance is dT (CT ) = d.

Since the tree distance is a metric the following theorem
holds straightforwardly.

Theorem 6: A T -(n,M) code over trees CT is of tree
distance at least d if and only if it can correct any d − 1
edge erasures and if and only if it can correct any �(d−1)/2�
edge errors.

1The base of all logarithms in the paper is assumed to be 2.

Fig. 1. For n = 5 a star and a path trees are presented.

Next, we define the largest size of a code over trees with a
prescribed tree distance.

Definition 7: The largest size of a code over trees with tree
distance d is denoted by A(n, d). The minimum redundancy of
a code over trees will be defined by r(n, d) = (n−2) log(n)−
log(A(n, d)).

A tree will be called a star tree (or a star in short) if it has
a node vi, i ∈ [n] such that deg(vi) = n− 1, and all the other
nodes vj , j ∈ [n], j 
= i satisfy deg(vj) = 1. A path graph or a
path tree over n nodes is a graph whose nodes can be listed
in the order vi0 , vi1 , . . . , vin−1 , where i0, i1, . . . , in−1 ∈ [n],
such that its edges are �vij , vij+1 � for all j ∈ [n− 1].

Definition 8: The tree ball of a tree of radius t in T(n)
centered at T ∈ T(n) is defined to be

BT (n, t) = {T ′ ∈ T(n) | dT (T ′, T ) � t}.

The size of the tree ball of trees of T , BT (n, t), is denoted by
VT (n, t).

Note that VT (n, t) depends on the choice of its center T .
For example, we will show that if T is a star then VT (n, 1) =
(n − 1)(n − 2) + 1 and if T is a path tree, then VT (n, 1) =
(n− 1)(n− 2)(n+ 3)/6 + 1. If T is a star, path tree the size
of VT (n, t) is denoted by V �(n, t), V –(n, t), respectively. We
define the average ball size of radius t to be the average value
of all tree balls of trees of radius t, that is,

V (n, t) =

∑
T∈T(n) VT (n, t)

nn−2
.

Definition 9: The sphere of radius t � 0 centered at T ∈
T(n) is defined to be

ST (n, t) = BT (n, t) \ BT (n, t− 1),

where ST (n, 0) = BT (n, 0) = {T }, by definition. The size
of the sphere of radius t is equal to the number of all trees
in ST (n, t) and is denoted by ST (n, t). If T is a star, path
tree then we denote the sphere ST (n, t) by S�(n, t), S–(n, t),
respectively.

For each T = (Vn, E) ∈ T(n) and for each E′ ⊆ E, |E′| =
t, denote the forest FT,E′ = (Vn, E \ E′). Note that FT,E′ ∈
F(n, t+ 1).

Definition 10: The forest ball of a tree T = (Vn, E) of
radius t in F(n, t+ 1) is defined to be

PT (n, t) = {FT,E′ ∈ F(n, t+ 1) | E′ ⊆ E, |E′| = t}.

Given a tree T = (Vn, E) and an edge-set E′ ∈ E, |E′| = t,
let FT,E′ = (Vn, E \ E′) ∈ PT (n, t) be the forest which is
also denoted by FT,E′ = {C0, C1, . . . , Ct}, such that |C0| �
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TABLE I

TABLE OF DEFINITIONS AND NOTATIONS

|C1| � · · · � |Ct|. The profile vector of T and E′ is denoted
by PT (E′) = (|C0|, |C1|, . . . , |Ct|) and the multi-set PT (n, t)
is given by

PT (n, t) = {PT (E′) | E′ ⊆ E, |E′| = t}. (2)

It is can be verified that |PT (n, t)| = |PT (n, t)| =
(
n−1

t

)
.

Definition 11: The tree ball of a forest (or the forest’s ball
in short) of radius t centered at F ∈ F(n, t + 1) is defined
to be

BF (n, t) = {T ∈ T(n) | F ∈ PT (n, t)}.

The size of the forest’s ball of radius t is equal to the number
of all trees in BF (n, t) and is denoted by VF (n, t).

Notice that for every two distinct trees T1, T2 ∈ BF (n, t) it
holds that dT (T1, T2) � t. Note also that we have three dif-
ferent ball definitions, the forest ball of trees of Definition 10
denoted by PT (n, t), the tree ball of trees of Definition 8,
denoted by BT (n, t), the forest’s ball of Definition 11, denoted
by BF (n, t).

Furthermore, for the convenience of the reader, relevant
notation and terminology referred to throughout the paper is
summarized in Table I.

III. MAIN RESULTS

This section summarizes the main results in the paper.
Theorem 12 states three main upper bounds which will be
presented in Section IV. The first bound is a sphere packing
bound that will be proved in Theorem 18. The second, third
bound is an improved upper bound in case that d = n−2, d =
n− 3 that will be derived in Theorem 20, 23, respectively.

Theorem 12:

a) For all n � 1 and fixed d,

A(n, d) � F (n, d)/
(
n− 1
d− 1

)
= O(nn−1−d).

b) For all positive integers n, A(n, n− 2) � n.

c) For all n � 9, A(n, n− 3) � n2.
While in Theorem 12 we obtained upper bounds on A(n, d)

using forest balls of trees, in Theorem 13 we show another
approach to obtain both lower and upper bounds on codes
over trees using tree balls of trees. For that, in Section V tree
balls of trees of radius one are studied and the main results
on these balls are summarized in the next theorem.

Theorem 13: a) For any T ∈ T(n),

V �(n, 1) � VT (n, 1) � V –(n, 1).

b) For all n � 1, V (n, 1) ≈ 0.5
√

π
2n

2.5 = Θ(n2.5).
c) For all n � 1, V �(n, 1) = Θ(n2), V –(n, 1) = Θ(n3).
The first, second result of Theorem 13 is proved in The-

orem 25, 28, respectively, while the third is deduced using
Lemma 24. The reader can verify that the hardest part of this
theorem is to prove, using inductive and recursive arguments,
that VT (n, 1) � V –(n, 1). In fact this is shown for arbitrary
t in Section VII. By using the fact that V �(n, 1) = Θ(n2),
the upper bound A(n, 3) = O(nn−4) is concluded which is
the same upper bound result as the sphere packing bound.
Applying the generalized Gilbert-Varshamov bound1 [33],
while using the fact that V (n, 1) = Θ(n2.5), it is then
deduced that A(n, 2) = Ω(nn−4.5). This bound is improved
in Section VIII.

In Section VI similar results, summarized in the next
theorem, of tree balls of trees with arbitrary radius are shown.

Theorem 14: For all T ∈ T(n) and fixed t, it holds that
a) VT (n, t) = Ω(n2t), VT (n, t) = O(n3t).
b) V (n, t) = Θ(n2.5t).
c) V �(n, t) = Θ(n2t) and V –(n, t) = Θ(n3t).

The first result is shown in Theorem 35, the second is
deduced in Corollary 38, and the third one is shown in
Section VII as a result of Theorem 40 and Theorem 41. These
results are derived from recursive formulas that calculate the
size of the tree balls of trees of radius t.

Again, using the fact that V �(n, t) = Θ(n2t), it is deduced
that for all d = 2t + 1, A(n, d) = O(nn−1−d) which
matches the upper bound results by the sphere packing bound.
Applying the generalized Gilbert-Varshamov lower bound and
using the fact that V (n, t) = Θ(n2.5t), it is also derived that
for d = t + 1, A(n, d) = Ω(nn−2−2.5(d−1)). This bound is
also improved in Section VIII.

In Section VII, we study the sizes of tree balls of trees of
stars and path trees for arbitrary radius. Our main contribution
in this section is formulated in recursive formulas for the sizes
of tree balls of trees for arbitrary trees. We then show upper
and lower bounds on these formulas using the sizes of tree
balls of trees of the star and path trees. We present these results
in the following theorem.

Theorem 15: For all n and fixed t let

P = nt−1

(
n− 1
t

)
(n− t), Q = nt−1

(
n+ t

2t+ 1

)
.

1 Let X be a finite set with some distance function d : X × X → N.
Assume that the volume of every ball is Br(x) = {y ∈ X|d(x, y) �
r}. It was proved in [33] that if Δr =

��
x∈X |Br(x)|

�
/|X|, then the

generalized Gilbert-Varshamov bound asserts that there exists a code with
minimum distance r + 1 and of size at least |X|/Δr .
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The following properties holds:

a)

t∑
i=0

(
n− 2 − t+ i

i

)
V �(n, t− i) = P.

b)

t∑
i=0

(
n− 2 − t+ i

i

)
V –(n, t− i) = Q.

c) For all T ∈ T(n)

P �
t∑

i=0

(
n− 2 − t+ i

i

)
VT (n, t− i) � Q.

The first result is deduced from Theorem 33 and is also
shown in Equation (17). The second result is due to The-
orem 41 and the last result can be found in the proof of
Theorem 44. The reader will find out that the challenging part
of this theorem is to prove that

t∑
i=0

(
n− 2 − t+ i

i

)
VT (n, t− i) � Q,

which is also used in order to prove that VT (n, 1) � V –(n, 1).
This section concludes with conjecturing that for fixed t and
n large enough,

V �(n, t) � VT (n, t) � V –(n, t).

Lastly, in Section VIII we provide several constructions
that improve upon the generalized Gilbert-Varshamov lower
bounds. The results of these constructions are summarized in
the following theorem.

Theorem 16: It holds that

a) There exists an T -(n, �n/2�, n− 1) code.
b) There exists an T -(n, n, n− 2) code.
c) For any positive integer d � n/2, there exists an

T -(n,M, d) code such that M = Ω(nn−2d).
d) For fixed m and prime n, there exists an T -(n, n−1

2 ·
�n−1

m �, � 3n
4 � − � 3n

2m
 − 2) code.

The result in a) is proved in Theorem 46 using Construc-
tion 1, the result in b) is due to Theorem 47 and Construc-
tion 2, the result in c) holds according to Corollary 49 and
Construction 3, and the result in d) follows from Construc-
tion 4 and is proved in Theorem 53. The result in d) assures
that it is possible to construct codes of cardinality Ω(n2),
while the minimum distance d approaches �3n/4� and n is
a prime number. Comparing to Theorem 23 in which it was
shown that A(n, n − 3) = O(n2), the result of Theorem 53
shows that A(n, d) = Ω(n2), when d approaches �3n/4� and
n is prime. Thus, finding the range of values of d for which
A(n, d) = Θ(n2) is left for future work.

IV. UPPER BOUNDS ON CODES OVER TREES

In this section we show upper bounds for codes over trees.
Remember that F (n, δ) is the size of F(n, δ), i.e., the number
of forests with n nodes and δ connected components. The
value of F (n, δ) was shown in [18], to be

F (n, δ) =
(
n

δ

)
nn−δ−1

δ∑
i=0

(
(−1

2
)i

(
δ

i

)
(δ + i)(n− δ)!
ni(n− δ − i)!

)
or another representation of it in [4],

F (n, δ) = nn−δ

(
δ∑

i=0

(−1
2
)i

(
δ

i

)(
n− 1

δ − 1 + i

)
(δ + i)!
niδ!

)
.

The next corollary summarizes some of these known results.
Corollary 17: The following properties hold for all n.

a) F (n, 1) = nn−2,
b) F (n, 2) = 1

2n
n−4(n− 1)(n+ 6),

c) F (n, 3) = 1
8n

n−6(n− 1)(n− 2)(n2 + 13n+ 60),
d) F (n, n− 4) = 1

16

(
n
4

)
(n2 + 3n+ 10)(n− 4)(n+ 3),

e) F (n, n− 3) = 1
2

(
n
4

)
(n2 + 3n+ 4),

f) F (n, n− 2) = 3
(
n+1

4

)
,

g) F (n, n− 1) =
(
n
2

)
,

h) F (n, n) = 1.

A. Sphere-Packing Bound

The following theorem proves the sphere packing bound for
codes over trees.

Theorem 18: For all n � 1 and 1 � d � n, it holds that
A(n, d) � F (n, d)/

(
n−1
d−1

)
.

Proof: Let CT be a T -(n,M, d) code such that n � 1
and 1 � d � n. Using Theorem 6, it is deduced that given
a codeword-tree T1, each d − 1 of its edge erasures can be
corrected. Thus, every forest F in the forest ball of trees
PT1(n, d − 1) cannot appear in any other forest ball of trees
PT2(n, d − 1), for all T2 ∈ CT \ {T1}. Thus, for every two
distinct codeword-trees T1, T2 ∈ CT it holds that

PT1(n, d− 1) ∩ PT2(n, d− 1) = ∅.

As already mentioned, for all T = (Vn, E) it holds that
|PT (n, d− 1)| =

(
n−1
d−1

)
. Therefore,

M ·
(
n− 1
d− 1

)
= M · |PT (n, d− 1)| � F (n, d),

which leads to the fact that

A(n, d) � F (n, d)(
n−1
d−1

) .
It was also proved in [18] that for any fixed δ,

lim
n→∞

F (n, δ)
nn−2

=
1

2δ−1(δ − 1)!
,

which immediately implies the following corollary.
Corollary 19: For all n � 1 and fixed d, it holds that

A(n, d) � F (n, d)/
(
n− 1
d− 1

)
= O(nn−1−d),
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and thus r(n, d) = (d− 1) log(n) + O(1).
Notice that by Corollary 17(g) it holds that

A(n, n− 1) �
(
n

2

)
/(n− 1) = n/2. (3)

In Section VIII we will show that

A(n, n− 1) = �n/2�,

by showing a construction of a T -(n, �n/2�, n−1) code over
trees for all n � 1. Similarly, by Corollary 17(f),

A(n, n− 2) � 3
(
n+ 1

4

)
/

(
n− 1
n− 3

)
=

1
2

(
n+ 1

2

)
, (4)

however, we will next show how to improve this bound such
that A(n, n − 2) � n. In Section VIII, a construction of
T -(n, n, n − 2) codes over trees will be shown, leading to
A(n, n− 2) = n. Finally, by Corollary 17(e),

A(n, n− 3) �1
2

(
n

4

)
(n2 + 3n+ 4)/

(
n− 1
n− 4

)
=

1
8
n(n2 + 3n+ 4), (5)

where a better upper bound will be shown in the sequel, which
improves this bound to be A(n, n − 3) � 1.5n2. Finding a
construction for this case is left for future work.

Before we show the improved upper bound for A(n, n−3),
a few more definitions are presented. The girth of a graph is
the length of a shortest cycle contained in the graph. If the
graph does not contain any cycles (i.e. it is an acyclic graph),
its girth is defined to be infinity. For a positive integer n,
let En be the set of all

(
n
2

)
edges as defined in (1). A graph

G = (U ∪ V, E) is a bipartite graph with two sets of nodes
U and V such that U ∩ V = ∅ and every edge connects a
vertex from U to a vertex from V , i.e., E ⊆ U ×V . Reiman’s
inequality in [20] and [26] states that if |V | � |U |, then every
bipartite graph G = (U ∪ V, E) with girth at least 6 satisfies

|E|2 − |U | · |E| − |V | · |U | · (|V | − 1) � 0. (6)

B. An Improved Upper Bound for A(n, n− 2)

According to Theorem 18, A(n, n−2) � 1
2

(
n+1

2

)
and in the

next theorem this bound will be improved to be A(n, n−2) �
n.

Theorem 20: For all positive integers n, A(n, n− 2) � n.
Proof: Let CT be a T -(n,M, n− 2) code. Let G = (U ∪

V, E) be a bipartite graph such that V = CT , U = En

(defined in (1)) and (T, e) ∈ E if and only if the tree T ∈ CT
has the edge e ∈ En. Clearly, |V | = M, |U | =

(
n
2

)
and |E| =

M(n− 1).
Since CT is a T -(n,M, n − 2)D code it holds that for all

T1 = (Vn, E1), T2 = (Vn, E2) ∈ CT , |E1 ∩ E2| � 1. That is,
there are no two codeword-trees in CT that share the same two
edges. Hence, there does not exist a cycle of length four in G.
If the girth of G is at least 6 (including the case in which G is
acyclic by definition of the girth), by (4), for all n � 3, it holds
that |V | = M � 1

2

(
n+1

2

)
�
(
n
2

)
= |U |, so the inequality

Fig. 2. An example of the H4 set. Given a forest-set F ∈ H4, every two
forests F1 = (Vn, E1) ∈ F , F2 = (Vn, E2) ∈ F hold |E1 ∩ E2| � 1.

stated in (6) will be used next. Since |V | = M, |U | =
(
n
2

)
and

|E| = M(n− 1),

M2(n− 1)2 −
(
n

2

)
M(n− 1) −M

(
n

2

)
(M − 1) � 0,

or equivalently

M(n− 1) − n

2
(M − 1) �

(
n

2

)
,

which is equivalent to

M(
n

2
− 1) �

(
n

2

)
− n

2
,

and since(
n
2

)
− n

2

(n
2 − 1)

=
n
2 (n− 1) − n

2

(n
2 − 1)

= n
(n

2 − 1)
(n

2 − 1)
= n,

we deduce that M � n.
As mentioned above, in Section VIII we will show that

A(n, n− 2) = n.

C. An Improved Upper Bound for A(n, n− 3)

We showed in (5) that A(n, n− 3) � 1
8n(n2 + 3n+ 4) =

O(n3). In this section this bound will be improved by proving
that A(n, n− 3) � n2.

Denote by Hn the set of forest-sets

Hn =
{
F⊆F(n, 2)

∣∣∣∣ ∀F1 = (Vn, E1), F2 = (Vn, E2) ∈ F ,
|E1 ∩ E2| � 1

}
.

Example 1: For n = 4 we partially show an example of the
forest-sets in H4.

We start with showing the following lemma.
Lemma 21: For n � 9 and for all F ∈ Hn it holds that

|F| � 2n.
Proof: Let F be a forest-set in Hn, and let G = (U ∪

V, E) be a bipartite graph such that V = F , U = En and
(F, e) ∈ E if and only if the forest F ∈ F has the edge e ∈ En.
Clearly |V | = |F|, |U | =

(
n
2

)
, and |E| = |F|(n−2). Note that

G does not have girth 4 since for all F1 = (Vn, E1), F2 =
(Vn, E2) ∈ F it holds that |E1 ∩E2| � 1.

Assume that the girth of G is at least 6. We consider the
following two cases regarding the sizes of the V and U . In the
first case, where |V | � |U | we receive the bound stated in the
lemma and we will show that the latter case cannot hold.
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Case 1: Assume that |V | = |F| �
(
n
2

)
= |U |. By (6)

|F|2(n− 2)2 −
(
n

2

)
|F|(n− 2) − |F|

(
n

2

)
(|F| − 1) � 0,

or equivalently

|F|(n− 2)2 −
(
n

2

)
(|F| − 1) �

(
n

2

)
(n− 2),

which is equivalent to

|F|
(
(n− 2)2 −

(
n

2

))
�
(
n

2

)
(n− 2) −

(
n

2

)
.

Next it is deduced that

|F|
(
(n− 2)2 −

(
n

2

))
�
(
n

2

)
(n− 3),

which is equivalent to

|F| � n3 − 4n2 + 3n
n2 − 7n+ 8

,

and therefore |F| � 2n for all n � 9.
Case 2: Assume that |V | = |F| >

(
n
2

)
= |U |. Again, since

the girth is at least six we have that

|F|2(n− 2)2 − |F|2(n− 2) −
(
n

2

)
|F|(
(
n

2

)
− 1) � 0,

or equivalently

|F|(n− 2)2 − |F|(n− 2) �
(
n

2

)
(
(
n

2

)
− 1),

which is equivalent to

|F|(n− 3) �
(
n
2

)
(
(
n
2

)
− 1)

(n− 2)
.

Hence for all n � 9

|F| � n(n2 − 1)
4(n− 3)

�
(
n

2

)
,

which results with a contradiction.
Let CT be a T -(n,M, n− 3) code. For all e ∈ En, denote

by c(CT , e) the number of codeword-trees of CT having the
edge e.

Lemma22: Let CT be a T -(n,M, n−3) code, where n � 9.
Then, for all e ∈ En it holds that c(CT , e) � 2n.

Proof: For e ∈ En, denote k = c(CT , e) and let T0 =
(Vn, E0), T1 = (Vn, E1), . . . , Tk−1 = (Vn, Ek−1) ∈ CT be
the k codeword-trees such that

e ∈
⋂

i∈[k]

Ei. (7)

Denote by F ⊆ F(n, 2) the set of k different forests received
by removing the edge e from T0, T1, . . . , Tk−1. Notice that
since CT is a T -(n,M, n− 3) code it holds that |Ei ∩Ej | �
2, i, j ∈ [k] and by (7) we deduce that for all distinct Fi =
(Vn, Ei), Fj = (Vn, Ej) ∈ F , |Ei ∩ Ej | � 1. By Lemma 21,
for all n � 9, k = |F| � 2n which leads to the fact that
c(CT , e) � 2n.

Lastly, the main result for this section is shown.
Theorem 23: For all n � 9, A(n, n− 3) � n2.

Proof: Let n � 9 and let CT be a T -(n,M, n− 3) code
over trees. Since for all e ∈ En, c(CT , e) is the number
of codeword-trees of CT having the edge e, we deduce that∑

e∈En
c(CT , e) = M(n− 1). By Lemma 22, for all e ∈ En,

c(CT , e) � 2n. Therefore,

M(n− 1) =
∑

e∈En

c(CT , e) �
(
n

2

)
· 2n = n2(n− 1),

and therefore, M � n2.

Lastly, we verified that for 4 � n � 8, it holds that A(n, n−
3) � 1.5n2.

V. BALLS OF TREES OF RADIUS ONE

In previous section we introduced and studied the forest
ball of a tree in order to derive a sphere packing bound on
codes over trees with a prescribed minimum tree distance.
In this section we study the size behavior of tree balls of
trees. These results will also be used to apply the generalized
Gilbert Varshamov bound [33] on codes over trees. We start
from some definitions.

Our main goal in this section is to study the size of the
radius-one tree ball of trees for all trees. This result is proved
in the next lemma.

Lemma 24: For any T ∈ T(n) it holds that

VT (n, 1) =
∑

(i,n−i)∈PT (n,1)

(
i(n− i) − 1

)
+ 1. (8)

Proof: Let T = (Vn, E) ∈ T(n). For any tree T ′ =
(Vn, E

′) ∈ BT (n, 1) \ {T }, if e ∈ E \ E′ and e′ ∈ E′ \ E,
then T ′ is generated uniquely by removing an edge e from
E, yielding two connected components (subtrees) {C0, C1} ∈
PT (n, 1), |C0| � |C1|, and adding the edge e′ 
= e between
C0 and C1. Thus,

|BT (n, 1) \ {T }| =
∑

(|C0|,|C1|)∈PT (n,1)

(
|C0||C1| − 1

)
.

By denoting |C0| = i and |C1| = n− i,

VT (n, 1) =
∑

(i,n−i)∈PT (n,1)

(
i(n− i) − 1

)
+ 1.

Note that if T is a star, then

PT (n, 1) =
{

(1, n− 1), . . . , (1, n− 1)︸ ︷︷ ︸
n − 1 times

}
.

Therefore,

V �(n, 1) =
∑

(1,n−1)∈PT (n,1)

(
1 · (n− 1) − 1

)
+ 1

= (n− 1)(n− 2) + 1.

If T is a path tree, for odd n,

PT (n, 1) =
{

(i, n− i), (i, n− i) | 1 � i � n− 1
2

}
,
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and for even n,

PT (n, 1) =
{
(i, n− i), (i, n− i) | 1 � i � n− 2

2

}
∪ {(n/2, n/2)}.

In both cases,

V –(n, 1) =
n−1∑
i=1

(
i · (n− i) − 1

)
+ 1

=
n−1∑
i=1

(
i · (n− i)

)
− (n− 1) + 1

(a)
=
(
n+ 1

3

)
− (n− 1) + 1

= (n+ 1)n(n− 1)/6 − 6(n− 1)/6 + 1

= (n− 1)(n2 + n− 6)/6 + 1
= (n− 1)(n− 2)(n+ 3)/6 + 1,

where (a) and its general case is shown in the proof of
Theorem 41.

Our next goal is to show that for any T ∈ T(n) it holds
that

V �(n, 1) � VT (n, 1) � V –(n, 1).

The following claim is easily proved.
Claim 1: Given positive integers i, n such that i ∈ [n],

it holds that n− 1 � i(n− i).
Next we state that for all T ∈ T(n),∑

(i,n−i)∈PT (n,1)

i(n− i) �
(
n+ 1

3

)
, (9)

while the proof will be shown in the general case in Lemma 43
where more than one edge is erased.

Theorem 25: For any T ∈ T(n) it holds that

V �(n, 1) � VT (n, 1) � V –(n, 1).

Proof: First we prove the lower bound. For all T ∈ T(n)

VT (n, 1) =
∑

(i,n−i)∈PT (n,1)

(
i · (n− i) − 1

)
+ 1

�
∑

(i,n−i)∈PT (n,1)

(
1 · (n− 1) − 1

)
+ 1

= (n− 1)(n− 2) + 1 = V �(n, 1),

where the inequality holds due to Claim 1. Next, due to (9),

VT (n, 1) =
∑

(i,n−i)∈PT (n,1)

(
i · (n− i) − 1

)
+ 1

=
∑

(i,n−i)∈PT (n,1)

(
i · (n− i)

)
− (n− 1) + 1

�
(
n+ 1

3

)
− (n− 1) + 1

= (n− 1)(n− 2)(n+ 3)/6 + 1 = V –(n, 1),

which leads to the fact that VT (n, 1) � V –(n, 1).

Our next goal is to show an approximation for the average
ball of radius one, that is, the value V (n, 1). The first step
in this calculation is established in the next lemma, where its
proof can be found in Appendix A.

Lemma 26: For a positive integer n it holds that∑
T∈T(n)

VT (n, 1) =
∑

F∈F(n,2)

(VF (n, 1))2 − (n− 2)nn−2.

In proof of Lemma 26 we use the equality∑
T∈T(n)

∑
F∈PT (n,1)

1 =
∑

F∈F(n,2)

∑
T∈BF (n,1)

1. (10)

which holds by changing the order of summation of all distinct
couples of trees and forests. One can check that (10) is true
also for t > 1, and we will use it in Lemma 36 which is in the
next section. Notice also that from this equality it is deduced
that ∑

F∈F(n,t+1)

VF (n, t) =
(
n− 1
t

)
nn−2.

Now, we are ready to show the following theorem.
Theorem 27: For all n,

∑
T∈T(n)

VT (n, 1) =
1
2
n!

n−2∑
k=0

nk

k!
− (n− 2)nn−2.

Proof: It was shown in [18] that

F (n, 2) =
1
2

n−1∑
i=1

(
n

i

)
ii−2(n− i)n−i−2,

where i and n − i represent the sizes of two connected
components of each forest in F(n, 2). Furthermore, since for
all {C0, C1} = F ∈ F(n, 2), if |C0| = i then VF (n, 1) =
i(n− i), it is deduced that,

∑
F∈F(n,2)

(VF (n, 1))2 =
1
2

n−1∑
i=1

(
n

i

)
ii−2(n− i)n−i−2[i(n− i)]2

=
1
2

n−1∑
i=1

(
n

i

)
ii(n− i)n−i (a)

=
1
2
n!

n−2∑
k=0

nk

k!
,

where (a) holds according to Theorem 5.1 in [2]. Using
Lemma 26 it is deduced that∑

T∈T(n)

VT (n, 1) =
1
2
n!

n−2∑
k=0

nk

k!
− (n− 2)nn−2.

For two functions f(n) and g(n) we say that f(n) ≈ g(n)
if limn→∞

f(n)
g(n) = 1. As a direct result of Theorem 27 the

next corollary follows.
Corollary 28: It holds that,

V (n, 1) ≈ 0.5
√
π

2
n2.5.

Proof: It was shown in [8] that

n!
n−2∑
k=0

nk

k!
≈
√
π

2
nn+0.5,
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and therefore,

V (n, 1) =

∑
T∈T(n) VT (n, 1)

nn−2
≈ 1

2

√
π

2
nn+0.5−(n−2)

=
1
2

√
π

2
n2.5.

To summarize the results of this section, we proved that for
every T ∈ T(n) it holds that VT (n, 1) = Ω(n2), VT (n, 1) =
O(n3) and the average ball size satisfies V (n, 1) = Θ(n2.5).
In order to apply the sphere packing bound for the tree balls
of trees of radius one, we can only use the lower bound
VT (n, 1) = Ω(n2) and get that

A(n, 3) � nn−2

αn2
=

1
α
nn−4,

for some constant α. This bound is equivalent in its order to
the one achieved in Corollary 19.

While we could not use the average ball size in applying
the sphere packing bound, this can be done for the generalized
Gilbert-Varshamov lower bound [33]. Intuitively, it is done
by dividing the number of all trees over n nodes by the
average ball size. Namely, according to [33], the following
lower bound on A(n, 2) holds

A(n, 2) = Ω(nn−2−2.5) = Ω(nn−4.5).

The reader can find Construction 3 in Section VIII for codes
over trees with tree distance d and cardinality Ω(nn−2d).
In case that d = 2 the cardinality is

Ω(nn−2d) = Ω(nn−4),

which improves upon the generalized Gilbert-Varshamov
lower bound of this case. In the next section, we show similar
results of the ball BT (n, t) for general radius t.

VI. BALLS OF TREES OF ARBITRARY RADIUS

The main goal of this section is to calculate for each
T ∈ T(n) the size of its ball BT (n, t) and sphere ST (n, t)
for general radius t. For that, in Subsection VI-A, it is first
shown how to calculate the forest’s ball. Using this result,
in Subsection VI-B, a recursive formula for the tree ball of
trees is given and finally in Subsection VI-C we study the
average ball size of trees.

A. The Size of the Forest’s Ball

In this subsection it is shown how to explicitly find the size
of the forest’s ball BF (n, t). By using this result, we will be
able to proceed to the next step, which is calculating the size
of the tree ball of trees BT (n, t). Throughout this section we
use the notation degT (vi) for the degree of the node vi in a
tree T in order to emphasize over which tree the degree is
referred to. We start with several definitions and claims.

Let T = (Vt, E) ∈ T(t) be a tree, where Vt =
{v0, v1, . . . , vt−1}, and let F = {C0, C1, . . . , Ct−1} ∈ F(n, t)

Fig. 3. For n = 10 and t = 4, a forest F = {C0, C1, C2, C3, C4} ∈
F(10, 5) over the set of nodes {vi | i ∈ [10]}, and a tree T ∈ T(4) over
the set of nodes {wi | i ∈ [5]}, are presented. Notice that |C0| = 1, |C1| =
2, |C2| = 1, |C3| = 3, |C4| = 3, and thus, P1(F,T ) = |C0| · |C1| · |C0| ·
|C2| · |C0| · |C4| · |C2| · |C3| = 18.

be a forest. Let P1(F, T ) : F(n, t) × T(t) → N be the
following mapping. For all F and T ,

P1(F, T ) =
∏

〈vi,vj〉∈E

|Ci||Cj |.

The mapping P1 counts the number of options to complete
a forest F with t connected components into a complete
tree, according to a specific tree structure T with t nodes,
corresponding to the t connected components of F . Since
every |Ci| appears in this multiplication exactly degT (vi)
times (vi is a node in T ), it is deduced that,

P1(F, T ) =
∏

〈vi,vj〉∈E

|Ci||Cj | =
∏

Ci∈F

|Ci|degT (vi). (11)

Fig. 3 demonstrates the mapping P1.
Let F = {C0, C1, . . . , Ct−1} ∈ F(n, t) be a forest and let

EF be its edge set. For all T = (Vn, ET ) ∈ VF (n, t) we
denote its component edge set EF,T by

EF,T = ET \ EF .

The component edge set is the set of edges that were added
to the forest F in order to receive the tree T . We are ready to
show the following claim.

Claim 2: For all F ∈ F(n, t+ 1) it holds that

VF (n, t) =
∑

T ∈T(t+1)

P1(F, T ).

Proof: Let F = {C0, C1, . . . , Ct} be a forest. Let H be
a mapping H : VF (n, t) → T(t + 1) that will be defined as
follows. For each T ∈ VF (n, t) with a component edge set
EF,T , it holds that H(T ) = T if for all e ∈ EF,T such that
e connects between Ck and C�, the edge �vk, v�� exists in T .
Clearly, every T ∈ VF (n, t) is mapped and H is well defined.
Moreover, for any T = (Vt+1, E) ∈ T(t+1), H maps exactly∏

〈vi,vj〉∈E

|Ci||Cj |.
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trees from VF (n, t) into T , which is exactly the value of
P1(F, T ). Thus,

VF (n, t) =
∑

T ∈T(t+1)

P1(F, T ).

Next, another mapping P2(F, T ) : F(n, t) × T(t) → N is
defined. For every forest F = {C0, C1, . . . , Ct−1} ∈ F(n, t)
and a tree T ∈ T(t) with a prüfer sequence

wT = (i0, i1, . . . , it−3) ∈ [t]t−2,

we let

P2(F, T ) = |Ci0 | · |Ci1 | · · · |Cit−3 |.

Using the fact that each number i of node vi appears in
the prüfer sequence wT of T exactly degT (vi) − 1 times,
we deduce that

P2(F, T ) =
∏

Ci∈F

|Ci|degT (vi)−1. (12)

Let gF (x) be the generating function of F , defined by

gF (x) =
t−1∑
i=0

x|Ci|.

This generating function will be used in the proof of the
following claim.

Claim 3: Let F be a forest in F(n, t+ 1). Then,∑
T ∈T(t+1)

P2(F, T ) =
( ∑

Ci∈F

|Ci|
)t−1

= nt−1.

Proof: Let F ∈ F(n, t+1) be a forest and let gF (x) be its
generating function. Let G(x) = (gF (x))t−1 and we deduce
that

G(x) = (gF (x))t−1 =
( t∑

i=0

x|Ci|
)t−1

=
∑

(i0,i1,...,it−2)∈[t+1]t−1

x|Ci0 |·|Ci1 |···|Cit−2 |.

Since each monomial of G(x) is of the from
x|Ci0 |·|Ci1 |···|Cit−2 | for (i0, i1, . . . , it−2) ∈ [t + 1]t−1,
it holds that the sum of all the powers of x in G(x) is∑

(i0,i1,...,it−2)∈[t+1]t−1

|Ci0 | · |Ci1 | · · · |Cit−2 |,

which is equal to the sum( ∑
Ci∈F

|Ci|
)t−1

.

Furthermore, each vector (i0, i1, . . . , it−2) ∈ [t + 1]t−1 is a
prüfer sequence wT of some T ∈ T(t+ 1). Thus we deduce
that

G(x) =
∑

T ∈T(t+1)

xP2(F,T ),

and the powers sum of x is exactly∑
T ∈T(t+1)

P2(F, T ).

Therefore, ∑
T ∈T(t+1)

P2(F, T ) =
( ∑

Ci∈F

|Ci|
)t−1

.

Lastly, since
∑

Ci∈F |Ci| = n, it holds that( ∑
Ci∈F

|Ci|
)t−1

= nt−1,

which concludes the proof.
According to the last two claims, the next corollary is

derived and provides an explicit expression to calculate the
forest’s ball size.

Corollary 29: For any {C0, C1, . . . , Ct} = F ∈ F(n, t+1)
it holds that

VF (n, t) = nt−1
∏

Ci∈F

|Ci|.

Proof: The proof will hold by the following sequence of
equations, that will be explained below,

VF (n, t)
(a)
=

∑
T ∈T(t+1)

P1(F, T )

(b)
=

∑
T ∈T(t+1)

∏
Ci∈F

|Ci|degT (vi)

(c)
=
∏

Ci∈F

|Ci|
∑

T ∈T(t+1)

∏
Ci∈F

|Ci|degT (vi)−1

(d)
=
∏

Ci∈F

|Ci|
∑

T ∈T(t+1)

P2(F, T )

(e)
=
∏

Ci∈F

|Ci|
( ∑

Ci∈F

|Ci|
)t−1

(f)
= nt−1

∏
Ci∈F

|Ci|.

Equality (a) holds by Claim 2. Equality (b) holds due
to (11). Equality (c) is a result of taking the common factor∏

Ci∈F |Ci| from the summation. Note also that for all i ∈
[t + 1], degT (vi) > 0. Equality (d) holds due to (12).
Equality (e) holds by Claim 3. Equality (f) holds since
(|C0| + |C1| + · · · + |Ct|) = n.

B. The Size of the Tree Ball of Trees

In this subsection we present a recursive formula for the
tree ball of trees BT (n, t) and its sphere ST (n, t), as well as
asymptotic bounds on their sizes. First, according to Corol-
lary 29, we immediately get the following corollary.

Corollary 30: For all T ∈ T(n) it holds that∑
F∈PT (n,t)

VF (n, t) = nt−1
∑

(i0,i1,...,it)∈PT (n,t)

i0i1 · · · it.

Next, a recursive connection between the sizes of forest’s
balls and spheres (of trees) is shown.
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Lemma 31: For all T ∈ T(n) it holds that

∑
F∈PT (n,t)

VF (n, t) =
t∑

i=0

(
n− 1 − t+ i

i

)
ST (n, t− i).

(13)

Proof: Let T = (V,E) ∈ T(n). First notice that for all
0 � i � t,

t⋃
i=0

ST (n, i) =
⋃

F∈PT (n,t)

VF (n, t).

Therefore, our main goal in this proof is finding, for a given
tree Ti = (V,Ei) ∈ ST (n, i), the number of forests in
PT (n, t) in which the tree belongs to their ball of trees.
This number equals to the size of the intersection PT (n, t) ∩
PTi(n, t) since all of these forests belong also to PTi(n, t).
Thus, every forest F ∈ PT (n, t)∩PTi(n, t) is received in two
steps. First, remove from Ti the t− i edges in Ei \E. Then, i
more edges from E∩Ei are chosen, where |E∩Ei| = n−1−
(t− i). Note that indeed every forest in PT (n, t) ∩ PTi(n, t)
is generated by this procedure. Thus,

|PT (n, t) ∩ PTi(n, t)| =
(
n− 1 − (t− i)

i

)
.

Therefore, in (13) each tree Ti ∈ ST (n, t − i) belongs to
the forest’s balls of

(
n−1−(t−i)

i

)
different forests in PT (n, t).

Since it is true for all 0 � i � t we conclude the lemma’s
statement.

Combining Corollary 30 and Lemma 31, a recursive formula
for the size of a sphere is presented.

Corollary 32: For any T ∈ T(n) it holds that
t�

i=0

�
n−1 − t+i

i

�
ST (n, t − i) = nt−1

�
(i0,i1,...,it)∈PT (n,t)

i0i1 · · · it.

Using Corollary 32, a recursive formula for the tree ball of
trees is immediately deduced, see Appendix B.

Theorem 33: For any T ∈ T(n) it holds that
t�

i=0

�
n−2 − t+i

i

�
VT (n, t − i) = nt−1

�
(i0,i1,...,it)∈PT (n,t)

i0i1 · · · it.

The proof of the following lemma can be found in Appen-
dix C, and it is the last step before presenting the main result
of this section.

Lemma 34: For any positive integer α, if
t∑

i=0

(
n− 2 − t+ i

i

)
VT (n, t− i) = Ω(nαt),

and VT (n, 0) = 1, then VT (n, t) = Ω(nαt).
Finally, the main result of this section is shown.
Theorem 35: For all T ∈ T(n) and fixed t, it holds that

VT (n, t) = Ω(n2t), VT (n, t) = O(n3t).

Proof: First we will prove that VT (n, t) = Ω(n2t). Given
positive integers i0, i1, . . . , it−1, it, n such that i0 + i1 + · · ·+
it−1 + it = n, it holds that

n− t
(a)

� i0i1 · · · it
(b)

�
( n

t+ 1

)t+1

, (14)

where (a) is well known and (b) holds by using the arithmetic-
geometric mean inequality. Thus, for all T ∈ T(n)

t∑
i=0

(
n− 2 − t+ i

i

)
VT (n, t− i)

(a)
= nt−1

∑
(i0,i1,...,it)∈PT (n,t)

i0i1 · · · it

(b)

� nt−1

(
n− 1
t

)
(n− t) = Ω(n2t),

and

t∑
i=0

(
n− 2 − t+ i

i

)
VT (n, t− i)

(a)
= nt−1

∑
(i0,i1,...,it)∈PT (n,t)

i0i1 · · · it

(b)

� nt−1

(
n− 1
t

)( n

t+ 1

)t+1

= O(n3t),

where in both cases (a) holds by Theorem 33 and inequality
(b) holds according to (14). Therefore, it immediately deduced
that VT (n, t) = O(n3t). The result VT (n, t) = Ω(n2t) is
deduced according to Lemma 34.

C. The Average Ball Size

In this section we study the asymptotic behavior of the
average ball size (of trees). First, using Theorem 33 and
Lemma 31 we deduce that for all T ∈ T(n)

∑
F∈PT (n,t)

VF (n, t) =
t∑

i=0

(
n− 2 − t+ i

i

)
VT (n, t− i).

(15)

The following recursive relation on the average ball size is
presented.

Lemma 36: For all n and t, it holds that

t∑
i=0

(
n− 2 − t+ i

i

)
V (n, t− i)

= n2t−n 1
(t+ 1)!

∑
1�i0,i1,...,it�n
i0+i1+···+it=n

(
n

i0, i1, . . . , it

)
ii00 i

i1
1 · · · iit

t .

Proof: The following holds,

t∑
i=0

(
n− 2 − t+ i

i

) ∑
T∈T(n)

VT (n, t− i)

(a)
=

∑
T∈T(n)

t∑
i=0

(
n− 2 − t+ i

i

)
VT (n, t− i)

(b)
=
∑

T∈T(n)

∑
F∈PT (n,t)

VF (n, t)
(c)
=

∑
F∈F(n,t+1)

∑
T∈BF (n,t)

VF (n, t)

=
∑

F∈F(n,t+1)

(VF (n, t))2
(d)
=

∑
F∈F(n,t+1)

(nt−1
∏

Ci∈F

|Ci|)2
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(e)
=

n2t−2

(t+1)!

∑
0<i0,...,it<n
i0+···+it=n

(
n

i0, . . . , it

)
ii0−2
0 · · · iit−2

t (i0 · · · it)2

= n2t−2 1
(t+1)!

∑
0<i0,i1,...,it<n
i0+i1+···+it=n

(
n

i0, i1, . . . , it

)
ii00 i

i1
1 · · · iit

t .

Equality (a) holds by changing the summation order. Equality
(b) holds due to (15) and Theorem 33. Equality (c) holds by
changing the summation order of trees and forests as it was
done in (10). Equality (d) holds by Corollary 29. We deduce
equality (e) as follows. It was shown in [18] that

F (n, t+ 1) =
1

(t+1)!

∑
0<i0,...,it<n
i0+···+it=n

(
n

i0, . . . , it

)
ii0−2
0 . . . iit−2

t .

For each F ∈ F(n, t + 1) we denote |Cj | = ij , j ∈ [t + 1].
Thus,

(
∏

Ci∈F

|Ci|)2 = (i0 · · · it)2,

which verifies the equality in step (e). After dividing the last
expression in the series of equations by nn−2, the proof is
concluded.

Next, we seek to show the main result of this section, that is,
the asymptotic size of the average ball. For that, we first show
the following claim, where its proof is shown in Appendix D.

Claim 4: For a positive integer n and a fixed t it holds that

n−1∑
i=1

(
n

i

)
ii(n−i)n−iΘ(it/2)=Θ(nt/2)

n−1∑
i=1

(
n

i

)
ii(n− i)n−i.

The following lemma is now presented.
Lemma 37:∑
0<i0,i1,...,it<n
i0+i1+···+it=n

(
n

i0, i1, . . . , it

)
ii00 i

i1
1 . . . iit

t = Θ(nn+t/2).

Proof: Consider the sequence of integers 11, 22, 33, . . . ,
that is an = nn, for n � 1. Let G(x) be its generating
function, i.e.

G(x) =
∞∑

n=1

an
xn

n!
=

∞∑
n=1

nnx
n

n!
.

Denote by Ft(x) the function Ft(x) = (G(x))t+1. Thus,

Ft(x) =
( ∞∑

i0=1

ii00
xi0

i0!

)
. . .
( ∞∑

it=1

iit
t

xit

it!

)

=
∞∑

n=1

( ∑
0<i0,i1,...,it<n
i0+i1+···+it=n

(
n

i0, i1, . . . , it

)
ii00 i

i1
1 . . . i

it
t

)xn

n!
,

and the coefficient of xn/n! in Ft(x) is exactly∑
0<i0,i1,...,it<n
i0+i1+···+it=n

(
n

i0, i1, . . . , it

)
ii00 i

i1
1 . . . iit

t .

Next, it is shown by induction on t that the order of the
coefficient of xn/n! in Ft(x) is Θ(nn+t/2).
Base: Clearly the coefficient of xn/n! in F0(x) is nn, since
F0(x) = G(x).

Inductive Step: Assume that the coefficient of xn/n! in Ft(x)
is Θ(nn+t/2). Thus, the coefficient of xn/n! in Ft+1(x) is
exactly

Ft+1(x) = Ft(x)F0(x)

=
( ∞∑

i=1

( ∑
0<i0,i1,...,it<i
i0+i1+···+it=i

(
i

i0, i1, . . . , it

)
ii00 i

i1
1 . . . i

it
t

)xi

i!

)

·
( ∞∑

j=1

jj x
j

j!

)
(a)
=
( ∞∑

i=1

Θ(ii+t/2)
xi

i!

)
·
( ∞∑

j=1

jj x
j

j!

)
(b)
=

n−1∑
i=1

(
n

i

)
ii(n− i)n−iΘ(it/2)

xn

n!

(c)
= Θ(nt/2)

n−1∑
i=1

(
n

i

)
ii(n− i)n−ix

n

n!

(d)
= Θ(nt/2)

n−1∑
i=1

Θ(nn+0.5)
xn

n!
=

n−1∑
i=1

Θ(nn+(t+1)/2)
xn

n!
,

where equality (a) holds by the induction assumption, and
equality (b) holds by denoting i+j = n. Equality (c) holds by
Claim 4 and equality (d) holds due to Corollary 28, where we
showed that the coefficient of xn/n! in F1(x) is Θ(nn+0.5).

We are now ready to find the asymptotic size of the average
ball.

Corollary 38: It holds that

V (n, t) = Θ(n2.5t).

Proof: It holds that

t∑
i=0

(
n− 2 − t+ i

i

)
V (n, t− i)

(a)
= n2t−n 1

(t+1)!

∑
1�i0,i1,...,it�n
i0+i1+···+it=n

(
n

i0, i1, . . . , it

)
ii00 i

i1
1 · · · iit

t

(b)
= Θ(n2t−n)Θ(nn+t/2) = Θ(n2.5t),

where (a) holds by Lemma 36 and (b) holds using Lemma 37.
Therefore it is deduced that V (n, t) = O(n2.5t). The result
V (n, t) = Ω(n2.5t) is proved according to Lemma 34.

In summary, we proved that for every T ∈ T(n) and fixed
t it holds that VT (n, t) = Ω(n2t), VT (n, t) = O(n3t) and
the average ball size satisfies V (n, t) = Θ(n2.5t). The sphere
packing bound for smallest tree ball of trees size of radius t
for T -(n,M, d = 2t+ 1) codes over trees in this case shows
that

A(n, d) � nn−2

αn2t
=

1
α
nn−2−2t =

1
α
nn−1−d,

for some constant α. Thus, we derive a similar result as in
Corollary 19.

By using the generalized Gilbert-Varshamov lower bound
for the average ball size [33] for T -(n,M, d = t + 1) codes
over trees, we get,

A(n, d) = Ω(nn−2−2.5(d−1)) = Ω(nn+0.5−2.5d).
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However, in Section VIII, based upon Construction 3, we will
get that

A(n, d) = Ω(nn−2d).

In the next section similar results are shown for stars and
path trees. While the exact size of the tree balls of trees is
found for stars, for path trees we only find its asymptotic
behavior and finding its exact expression is left for future
work. It is also shown that for a fixed t the star tree has
asymptoticly the smallest size of the tree of ball of trees, while
the path tree achieves asymptoticly the largest size.

VII. THE TREE BALLS OF TREES FOR STARS AND PATH

TREES

Several more interesting results on the size of the tree balls
of trees and more specifically for stars and path trees are shown
in this section. First we show an exact formula for V �(n, t)
and conclude that V �(n, t) = Θ(n2t). Then we simplify the
recursive formula in Theorem 33 for path trees and we will
show that V –(n, t) = Θ(n3t). Finally, we will show the
following explicit upper bound on the recursive formula in
Theorem 33, that will not depend on the structure of the tree,

t∑
i=0

(
n− 2 − t+ i

i

)
VT (n, t− i) � nt−1

(
n+ t

2t+ 1

)
.

This result will be shown in Theorem 44.
First, we derive some interesting properties from the recur-

sive formula in Theorem 33, which proved that
t�

i=0

�
n−2−t+i

i

�
VT (n, t − i) = nt−1

�
(i0,i1,...,it)∈PT (n,t)

i0i1 · · · it.

Notice also that for all T ∈ T(n) and t = n− 1,

nn−2 = n(n−1)−1
∑

(1,1,...,1)∈PT (n,n−1)

1

=
n−1∑
i=0

(
n− 2 − (n− 1) + i

i

)
VT (n, n− 1 − i)

=
n−1∑
i=0

(
i− 1
i

)
VT (n, n− 1 − i) = VT (n, n− 1),

where
(−1

0

)
is defined to be 1, and indeed VT (n, n − 1) =

nn−2. Similarly, if t = n− 2 then

2(n− 1)nn−3 = n(n−2)−1
∑

(i0,i1,...,it)∈PT (n,n−2)

2

=
n−2∑
i=0

(
i

i

)
VT (n, n− 2 − i) =

n−2∑
i=0

VT (n, n− 2 − i),

and thus,
n−2∑
i=0

VT (n, i) = 2(n− 1)nn−3. (16)

As for stars, applying Theorem 33, we simply draw the
following formula

t∑
i=0

(
n− 2 − t+ i

i

)
V �(n, t− i) = nt−1

(
n− 1
t

)
(n− t).

(17)

Using this result and the proof of Theorem 33, the following
interesting result holds.

Corollary 39: For any T ∈ T(n) it holds that

t∑
i=0

(
n− 2 − t+ i

i

)(
VT (n, t− i) − V �(n, t− i)

)
� 0.

Next an exact formula of the size of the tree ball of trees
for stars is presented. The proof of this theorem is shown in
Appendix E.

Theorem 40: The size of the sphere for a star satisfies

S�(n, t) =
(
n− 1
t

)
(n− 1)t−1(n− t− 1),

and the size of the tree ball of trees for a star satisfies

V �(n, t) =
t∑

j=0

(
n− 1
j

)
(n− 1)j−1(n− j − 1).

Note that while in Theorem 35 it was shown that for all T ∈
T(n) it holds that VT (n, t) = Ω(n2t), for stars it is deduced
that S�(n, t) = Θ(n2t) and V �(n, t) = Θ(n2t), which verifies
that stars have asymptotically the smallest size of the tree ball
of trees.

We turn to study the size of the tree ball of trees for path
trees. We first simplify the formula of Theorem 33 in the path
tree case.

Theorem 41: The size of the tree ball of trees for a path
tree satisfies

t∑
i=0

(
n− 2 − t+ i

i

)
V –(n, t− i) = nt−1

(
n+ t

2t+ 1

)
.

Proof: Denote by A the set

A =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(j0, j1, . . . , jt)

∣∣∣∣∣∣∣∣∣∣∣

1 � j0 � n− t
1 � j1 � n− (t− 1) − j0

...
1 � jt−1 � n− 1 −

∑t−2
s=0 js

jt = n−
∑t−1

s=0 js

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
.

Let T ∈ T(n) be a path tree. The following equations hold.

1
nt−1

t∑
i=0

(
n− 2 − t+ i

i

)
V –(n, t− i)

(a)
=

∑
(i0,i1,...,it)∈PT (n,t)

i0i1 · · · it

(b)
=

∑
(j0,j1,...,jt)∈A

j0j1 · · · jt
(c)
=
(
n+ t

2t+ 1

)
.

Equality (a) holds due to Theorem 33. As for equality (b),
note that after an erasure of t edges of T , we get t + 1
connected components of T where each of them is a path
tree. The value of ji represents a path subtree as follows. The
first path subtree will be of size j0 which can be at least of size
1 and at most of size n−t. Similarly, the size j1 of the second
path subtree ranges by between 1 and n − (t − 1) − j0, i.e.
1 � j1 � n − (t − 1) − j0. Continuing with this analysis,
the size jt of the last path subtree satisfies jt = n−

∑t−1
s=0 js.

Hence, the set of all vectors (j0, j1, . . . , jt) is exactly the
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set A, which verifies equality (b). Equality (c) holds using
combinatorial proof. Consider the problem of counting the
number of options to choose 2t + 1 numbers from the set
of numbers [n + t]. The right hand side is trivial. As for the
left hand side, denote by (x1, x2, . . . , x2t+1) a vector such
that x1 < x2 < · · · < x2t+1 representing an option of chosen
2t+1 numbers. We choose these 2t+1 in two steps. First we
choose the values of x2, x4, . . . , x2t. We translate choosing
these numbers to choosing the values of j0, j1, . . . , jt such
that

x2 = j0, x4 = j1 + j0, . . . , x2t =
t−1∑
s=0

js = n− jt.

In the next step we choose the values of x1, x3, . . . , x2t+1.
Since x1 < x2, there are j0 options to pick x1. Similarly
since x2 < x3 < x4, there are x4 − x2 = j1 options to
pick x3. Lastly, since x2t < x2t+1 < n, there are jt options
to pick x2t+1. Thus, every option of choosing j0, j1, . . . , jt
counts j0j1 . . . jt−1jt solutions, and since all options of this
problem are counted, the proof is concluded.

Similarly to the case of stars, we showed in Theorem 35 that
for all T ∈ T(n) it holds that VT (n, t) = O(n3t), and it is also
true for path trees as we can see in Theorem 41. According
to Lemma 34 we also deduce that V –(n, t) = Θ(n3t), that is,
a path tree has asymptoticly the largest size of the tree ball of
trees.

Although a path tree has asymptoticly the largest size of
the tree ball of trees, it is not necessarily true that for every
n and t its size is strictly the largest. We will show such an
example at the end of this section.

Our last goal of this section is a stronger upper bound on
the size of the tree ball of trees. According to Theorem 35,
it was shown that for every tree T ∈ T(n) it holds that∑

(i0,i1,...,it)∈PT (n,t)

i0i1 · · · it�
(
n− 1
t

)( n

t+ 1

)t+1

,

while our goal is to improve this upper bound to be∑
(i0,i1,...,it)∈PT (n,t)

i0i1 · · · it �
(
n+ t

2t+ 1

)
. (18)

While this result does not improve asymptotic upper bound
of O(n3t), we believe that this upper bound is interesting and
furthermore it verifies the statement of Theorem 44.

First the definition of (2) is slightly modified. Let v� =
(vi0 , vi1 , . . . , vi�−1) be a vector of � not necessary distinct
nodes of T ∈ T(n) where 1 � � � t + 1. Let FT,E′(v�) =
(Vn, E \E′) ∈ PT (n, t) be a forest which is also denoted by
FT,E′(v�) = {C0, C1, . . . , Ct}, such that vij ∈ Cj , j ∈ [�]
and |C�| � |C�+1| � · · · � |Ct|. In case there is more than
one way to order to connected components C0, C1, . . . , Ct,
we choose one of them arbitrarily. For 1 � � � t + 1 denote
the multi-set PT (n, t; v�)

PT (n, t; v�) ={
(|C0|, . . . , |Ct|)|{C0, . . . , Ct} = FT,E′(v�) ∈ PT (n, t)

}
,

and for � = 0,
PT (n, t; v�) = PT (n, t).

Intuitively, this multi-set consist of profiles of forests such
that all the nodes of the vector v� are in different connected
components of these forests. From this definition, in case that
not all of the nodes in v� are distinct, then PT (n, t; v�) = ∅.
Another property is that for all � ∈ [t+ 2] it holds that

|PT (n, t; v�)| � |PT (n, t)| =
(
n− 1
t

)
.

Next, for all � ∈ [t+ 2], denote by fT (n, t; v�) the function

fT (n, t; v�) =
∑

(c0,c1,...,ct)∈PT (n,t;v�)

c�c�+1 · · · ct,

where in case that � = t+ 1, the function fT is defined as

fT (n, t,vt+1) =
∑

(c0,c1,...,ct)∈PT (n,t;vt+1)

1

= |PT (n, t; vt+1)| �
(
n− 1
t

)
.

Again, if not all of the nodes in v� are distinct, by definition
PT (n, t; v�) = ∅ and

fT (n, t; v�) = 0.

Since in case that t = n− 1, each connected component is of
size 1, the following property is immediately deduced,

fT (n, n − 1; v�) =
�

(c0,c1,...,cn−1)∈PT (n,n−1;v�)

c�c�+1 · · · cn−1 = 1.

(19)

The main goal in this part is to show that

fT (n, t; v�) �
(
n+ t− �

2t+ 1 − �

)
, (20)

where in case that � = 0, the equality (18) is immediately
deduced.

Let T ∈ T(n) for n � 2. For two integers t and � such that
0 � � < t+1 < n, let v� = (vi0 , . . . , vi�−2 , vi�−1) be a vector
of � nodes in T . For j ∈ [�+ 1] denote vj = (vi0 , . . . , vij−1 ).
For any node vx in T denote vj+1(vx) = (vi0 , . . . , vij−1 , vx).
By a slight abuse of notation, given a vector (c0, . . . , ct) ∈
PT (n, t; v�), the connected component Cj is referred to the
value cj , or in other words (c0, . . . , ct) = (|C0|, . . . , |Ct|). For
any node vx in T denote by AT (n, t; v�, vx) the set

AT (n, t; v�, vx) =
�

(|C0|, . . . , |Ct|) ∈ PT (n, t; v�)|vx ∈
�

i∈[�]

Ci

�
.

Let vx be a leaf connected to a node denoted by vy in T ∈
T(n), and let T1 ∈ T(n−1) be a tree generated by removing
vx from T . The definitions introduced above are used in the
next claims and lemmas.

Claim 5: The following properties hold

a) It holds that∑
(c0,...,ct)∈PT (n,t;v�)

c� · · · ct

=
∑

(c0,...,ct)∈AT (n,t;v�,vy)

c� · · · ct +
∑

(c0,...,ct)∈PT (n,t;v�+1(vy))

c� · · · ct.
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b) If vx is not in v� then,∑
(c0,...,ct)∈AT1(n−1,t;v�,vy)

c� · · · ct =
∑

(c′0,...,c′t)∈AT (n,t;v�,vx)

c′� · · · c′t.

c) If vx is not in v� then,∑
(c0,...,ct)∈PT (n,t;v�+1(vx))

c� · · · ct

=
∑

(c′0,...,c′t)∈PT1(n−1,t;v�+1(vy))

(c′� + 1)c′�+1 · · · c′t

+
∑

(c0,...,c�−1,1,c�+1,...,ct)∈PT (n,t;v�+1(vx))

1 · c�+1 · · · ct.

d) If vx = vi�−1 then∑
(c0,...,ct)∈PT (n,t;v�(vx))

c� · · · ct

=
∑

(c′0,...,c′t)∈PT1(n−1,t;v�(vy))

c′� · · · c′t

+
∑

(c0,...,c�−2,1,c�,...,ct)∈PT (n,t;v�(vx))

c� · · · ct.

The proof of Claim 5 can be found in Appendix F. Next
we show a recursive formula with respect to fT .

Lemma 42: If vx is not in v� then,

fT (n, t; v�) = fT1(n− 1, t; v�)
+ fT1(n−1, t; v�+1(vy))+fT1(n− 1, t− 1; v�).

If vx is in v�, and without loss of generality vx = vi�−1 , then

fT (n, t; v�) = fT1(n−1, t; v�(vy))+fT1(n− 1, t− 1; v�−1).

The proof of Lemma 42 can be found in Appendix G.
An example that illustrates this recursive formula is now
presented.

Example 2: For n = 10, we illustrate in Fig. 4(a) a
tree T ∈ T(10). In this example, t = 4 and � = 1,
vx = v5, vy = v6 and v� = (v7). Let T1 ∈ T(9) be
a tree which is derived from T by removing the node v5.
After an erasure of 4 edges, the multiplication of the five
connected components is counted in f(n, t). Fig. 4(b), (c)
and (d) represent the idea of the formula fT (n, t; v�) =
fT1(n−1, t; v�)+fT1(n−1, t; v�+1(vy))+fT1(n−1, t−1; v�).
The dashed edges in Fig. 4(b), (c) and (d) represent the
erased edges from T , yielding a forest with five connected
components C0, C1, C2, C3, and C4. An example of possible
erasure including the edge �v5, v6� is shown in Fig. 4(b).
This example emphasizes the case which corresponds to the
multiplication |C0| · |C1| · |C3| · |C4| that is also counted in
fT1(n− 1, t; (v7)) since |C0| = 1. Fig. 4(c) and (d) similarly
emphasize the case in which an erasure of 4 edges does not
include the edge �v5, v6�. While Fig. 4(c) emphasizes the

multiplication |C0| · |C1| ·
(
|C3| − 1

)
· |C4|, which is counted

in fT1(n − 1, t − 1; (v7)) (since v5 is not in T1), Fig. 4(d)
emphasizes the multiplication |C0|·|C1|·|C4|, which is counted
in fT1(n− 1, t; (v7, v6)). Hence, |C0| · |C1| · |C3| · |C4| is also
counted in the case that the edge �v5, v6� is not erased.

Finally, the upper bound for fT (n, t; v�) is presented, while
the proof is shown in Appendix H.

Lemma 43: For any tree T ∈ T(n), n � 1 and a vector of
0 � � � t+ 1 � n nodes v� = (vi0 , vi1 , . . . , vi�−1),

fT (n, t; v�) �
(
n+ t− �

2t+ 1 − �

)
.

From Lemma 43 it is immediately deduced that for all T ∈
T(n), ∑

(i0,i1,...,it)∈PT (n,t)

i0i1 · · · it = fT (n, t) �
(
n+ t

2t+ 1

)
. (21)

Using (21) the tighter upper bound for the recursive formula
in Theorem 33 is shown in the following theorem.

Theorem 44: For any T ∈ T(n) it holds that

t∑
i=0

(
n− 2 − t+ i

i

)
VT (n, t− i) � nt−1

(
n+ t

2t+ 1

)
.

From Theorem 44 and Theorem 41 we immediately deduce
the following corollary.

Corollary 45: For any T ∈ T(n) it holds that

t∑
i=0

(
n− 2 − t+ i

i

)(
VT (n, t− i) − V –(n, t− i)

)
� 0.

Even though by Corollary 39,

t∑
i=0

(
n− 2 − t+ i

i

)(
VT (n, t− i) − V �(n, t− i)

)
� 0,

and by Corollary 45,

t∑
i=0

(
n− 2 − t+ i

i

)(
VT (n, t− i) − V –(n, t− i)

)
� 0,

it does not imply that for all n and t, V �(n, t) � VT (n, t) �
V –(n, t). For example, if t = n − 2, V �(n, t) = nn−2 while
V –(n, t) < nn−2, since one can check that there are two path
trees T1, T2 ∈ T(n) such that dT (T1, T2) = n− 1. However,
we conjecture that for fixed t and large enough n, it holds that
V �(n, t) � VT (n, t) � V –(n, t).

VIII. CONSTRUCTIONS OF CODES OVER TREES

In this section we show several constructions of codes over
trees. The first is the construction of T -(n, �n/2�, n−1) codes,
and the second is the construction of T -(n, n, n − 2) codes.
The third and our main result in this section is the construction
of T -(n,M, d) codes for fixed d where M = Ω(nn−2d). For
positive integers a and n we will use the notation �a�n to
denote the value of (a mod n).

A. A Construction of T -(n, �n/2�, n− 1) Codes

A path tree T = (Vn, E) with the edge set

E = {(vij , vij+1) | j ∈ [n− 1], ij ∈ [n]},

will be denoted by T = (vi0 , vi1 , . . . , vin−1), i.e., the nodes
vi0 and vin−1 are leaves and the rest of the nodes have degree
2. Note that the number of path trees over n nodes is n!/2,
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Fig. 4. The idea of the recursive formula fT (10, 4; (v7))) = fT1 (9, 3; (v7)) + fT1 (9, 4; (v7)) + fT1 (9, 4; (v7, v6)).

Fig. 5. This code contains 5 trees, T0, T1, T2, T3, and T4.

so every path tree has two representations in this form and we
will use either one of them in the sequel. For s ∈ [�n/2�],
denote by Ts = (Vn, E) the path tree

Ts =

⎧⎨
⎩
(
v〈s〉n

, v〈s−1〉n
, v〈s+1〉n

, . . . , v〈s+ n−1
2 〉n

)
: if n is odd,(

v〈s〉n
, v〈s−1〉n

, v〈s+1〉n
, . . . , v〈s− n

2 〉n

)
: if n is even.

Example 3: For n = 10 we show an example of the path
tree T0. By looking at the lower half of the circle in this
figure, i.e. nodes v0, v9, v8, v7, v6, v5, there is a single edge
connecting two vertices on this half circle. The path tree T1 is
received by rotating anticlockwise the nodes on this circle by
one step. Note that all the edges in T0 and T1 are disjoint and
this property holds also for the other path trees T2, T3, T4.

The construction of a T -(n, �n/2�, n− 1) code is given as
follows. This construction is motivated by the factorization of
the complete graph into mutually disjoint Hamiltonian paths;
see [11], [17]. Even though this result is well known, for
completeness we present it here along with its proof.

Construction 1: For all n � 3 let CT1 be the following code
over trees

CT1 = {Ts = (Vn, E)|s ∈ [�n/2�]}.

Theorem 46: The code CT1 is a T -(n, �n/2�, n− 1) code.

Proof: Clearly, since for all distinct s1, s2 ∈ [�n/2�] it
holds that s1 
= s2 + �n/2�, it is deduced that |CT1 | = �n/2�.
Next we prove that this code can correct ρ = n − 2 edge-
erasures, by showing that dT (CT1) > n− 2.

Assume on the contrary that dT (CT1) � n − 2. Therefore,
there are two distinct numbers s1, s2 ∈ [�n/2�] such that the
trees Ts1 = (Vn, E1), Ts2 = (Vn, E2) ∈ CT1 hold |E1 ∩E2| �
1. Therefore, there exist two integers t1, t2 ∈ [�n/2�] such
that one of the following cases hold:

a) �v〈s1+t1〉n
, v〈s1−(t1+1)〉n

� = �v〈s2+t2〉n
, v〈s2−(t2+1)〉n

�,
b) �v〈s1+t1〉n

, v〈s1−(t1+1)〉n
� = �v〈s2−t2〉n

, v〈s2+t2〉n
�,

c) �v〈s1−t1〉n
, v〈s1+t1〉n

� = �v〈s2−t2〉n
, v〈s2+t2〉n

�.
We will eliminate all those options as follows.

a) If �s1 + t1�n = �s2 + t2�n and �s1 − (t1 + 1)�n = �s2 −
(t2 + 1)�n then by summing those equations we deduce
that �2s1 − 1�n = �2s2 − 1�n. Therefore, we deduce that
s1 = s2 which is a contradiction. Similar proof shows
that it is impossible to have �s1 + t1�n = �s2− (t2 +1)�n
and �s2 + t2�n = �s1 − (t1 + 1)�n.

b) If �s1 + t1�n = �s2 − t2�n and �s1 − (t1 + 1)�n = �s2 +
t2�n then by summing those equations we deduce that
�2s1 − 1�n = �2s2�n. Since s1, s2 ∈ [�n/2�], if s1 
= 0
then 2s1−1 < n−1 and 2s2 < n−1. Clearly, �2s1−1�n
is odd and �s2�n is even, (since both of them smaller than
n) so it is deduced that they are distinct. If s1 = 0 then
�2s1 − 1�n = n− 1 but since s2 ∈ [�n/2�] it holds that
2s2 < n−1 and therefore we get again that �2s1−1�n 
=
�2s2�n, which is a contradiction. Similar proof shows that
it is impossible to have �s1 + t1�n = �s2 + t2�n and
�s1 − (t1 + 1)�n = �s2 − t2�n.

c) If �s1−t1�n = �s2−t2�n and �s1+t1�n = �s2+t2�n then
by summing those equations we deduce that �2s1�n =
�2s2�n. Therefore, we deduce that s1 = s2 which is a
contradiction. Similar proof shows that it is impossible to
have �s1− t1�n = �s2 + t2�n and �s1 + t1�n = �s2− t2�n.
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In this construction the result A(n, n−1) � �n/2� is shown,
and since by (3), A(n, n−1) � n/2 it is deduced that A(n, n−
1) = �n/2�.

B. A Construction of T -(n, n, n− 2) Codes

For convenience, a star T with a node vi of degree n − 1
will be denoted by Tvi . The construction of a T -(n, n, n− 2)
code will be as follows.

Construction 2: For all n � 4 let CT2 be the following code

CT2 = {Tvi = (Vn, E)|i ∈ [n]}.

Clearly, the code CT2 is a set of all stars over n nodes. Next
we prove that this code is a T -(n, n, n− 2) code.

Theorem 47: The code CT2 is a T -(n, n, n− 2) code.
Proof: Let Tvi = (Vn, E), i ∈ [n], be a codeword-tree of

CT2 with a node vi of degree n− 1. Since Tvi is a star, after
the erasure of n − 3 edges from Tvi , the node vi will have
degree 2 and all the nodes vj ∈ Tvi , j 
= i will have degree
of at most 1. Therefore the node vi can be easily recognized
and the codeword-tree Tvi can be corrected.

In this trivial construction we showed that A(n, n− 2) � n
and since by Theorem 20, A(n, n− 2) � n it is deduced that
A(n, n− 2) = n.

C. A Construction of T -(n,Ω(nn−2d), d) Codes

In this section we show a construction of
T -(n,Ω(nn−2d), d) codes for any positive integer
d � n/2. Note that according to Corollary 19, for fixed d,
A(n, d) = O(nn−1−d) and by Corollary 49 it will be deduced
that A(n, d) = Ω(nn−2d).

For a vector u ∈ F
m
2 denote by wH(u) its Hamming weight,

and for two vectors u,w ∈ F
m
2 , dH(u,w) is their Hamming

distance. A binary code C of length m and size K over F2

will be denoted by (m,K) or (m,K, d), where d denotes its
minimum Hamming distance. If C is also linear and k is its
dimension, we denote the code by [m, k] or [m, k, d].

Let En be the set of all
(

n
2

)
edges as defined in (1), with a

fixed order. For any set E ⊆ En, let vE be its characteristic
vector of length

(
n
2

)
which is indexed by the edge set En and

every entry has value one if and only if the corresponding
edge belongs to E. That is,

(vE)e =

{
1, e ∈ E

0, otherwise
.

The construction of T -(n,M, d) code over trees will be as
follows.

Construction 3: For all n � 1 let C be a binary code
(
(
n
2

)
,K, 2d− 1). Then, the code CT3 is defined by

CT3 = {T ∈ T(n) | vE ∈ C}.

Theorem48: The code CT3 is a T -(n,M, d) code over trees.
Proof: By Theorem 6, a code over trees CT with parame-

ters T -(n,M) has minimum distance d if and only if CT can
correct any d − 1 edge erasures. Notice also that since C is
a code with Hamming distance 2d− 1, it can correct at most
any d− 1 substitutions.

Let T = (V,E) be a codeword-tree of CT3 with its binary
edge-vector vE . Suppose that T experienced at most d − 1
edge erasures, generating a new forest F with the edge set
E′. Since E′ ⊆ E and |E′| � |E| − (d − 1), it holds that
dH(vE′ ,vE) � d − 1 and the vector vE can be corrected
using a decoder of C.

The next corollary summarizes the result of this construc-
tion.

Corollary 49: For positive integer n and fixed d, A(n, d) =
Ω(nn−2d) and the redundancy is r(n, d) � (d − 1) log(n) +
O(1).

Proof: Applying BCH codes (see Chapter 5.6 in [27]) in
Construction 3 for all n � 1, linear codes [

(
n
2

)
, k, 2d− 1] are

used with redundancy

r = (d− 1) log(
(
n

2

)
) + O(1) = 2(d− 1) log(n) + O(1)

redundancy bits. The 2r cosets of the C codes are also binary
(
(
n
2

)
, 2k, 2d− 1) codes. Note that each tree T from T(n) can

be mapped by Construction 3 to exactly one of these cosets.
Thus, by the pigeonhole principle, there exists a code CT3 of
cardinality at least

nn−2

22(d−1) log(n)+O(1)
=

nn−2

αn2d−2
=

1
α
nn−2d,

for some constant α. Thus, we also deduce that

r(n, d) � 2(d− 1) log(n) + O(1).

Remark 1: We note that the use of BCH codes can be
changed to any linear codes. In fact, it is possible to use in
Construction 3 a code correcting d − 1 asymmetric errors.
However, we chose to use symmetric error-correcting codes
since the use of asymmetric error-correcting codes does not
improve the asymptotic result and in order to derive the result
in Corollary 49 we needed linear codes.

In this section we showed a family of codes with Ω(nn−2d)
codeword-trees where d � n/2. Next we show a construction
of codes over trees with Ω(n2) codeword-trees where d is
almost 3n/4.

D. A Construction of T -(n, n−1
2 · �n−1

m �, � 3n
4 � − � 3n

2m
 − 2)
Codes

In this section, for a prime n, we show a construction of
T -(n, n−1

2 · �n−1
m �, � 3n

4 � − � 3n
2m
 − 2) codes, where m is a

positive integer such that 3 � m � n − 1. By Corollary 49,
A(n, d) = Ω(nn−2d) where d � n/2. Here we extend this
result by showing that for d approaching �3n/4�, there exists
a code with Ω(n2) codeword-trees. First, several definitions
are presented.

A two-star tree over n nodes is a tree who has exactly
n − 2 leaves. For a prime n and integers s, t ∈ [n] where
t 
= 0, denote the following two edge sets

E
(+)
s,t =

{
�vs, v〈s+it〉n

�|1 � i � n+ 1
2

}
,

E
(−)
s,t =

{
�v〈s+ n+1

2 t〉n
, v〈s+ n+2j+1

2 t〉n
�|1 � j � n− 3

2

}
.
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Fig. 6. A two-star tree. The nodes are marked by numbers i ∈ [n] instead of
nodes vi. Note that by the definition of E

(−)
s,t , the node marked by 〈s− t〉n

is exactly the node marked by 〈s + n+2j+1
2

t〉n, where j = n−3
2

.

Denote by Ts,t = (Vn, Es,t) the two-star tree with the edge
set

Es,t = E
(+)
s,t ∪E(−)

s,t .

It is possible to verify that indeed according to this definition
Ts,t is well defined and is a two-star tree. Furthermore, It will
be shown in Theorem 53 that each pair (s, t) defines a unique
tree Ts,t. The nodes vs and v〈s+ n+1

2 t〉n
are called the central

nodes of Ts,t. Also note that

deg(vs) =
n+ 1

2
, deg(v〈s+ n+1

2 t〉n
) =

n− 1
2

. (22)

In Fig. 6 we illustrate a two-star tree Ts,t.
For a prime n and an integer 1 � t � �n−1

m �, where 3 �
m � n − 1 and α ∈ {n+1

2 , n−1
2 }, denote by W (n, t, α) the

set

W (n, t, α) = {�t�n, �2t�n, �3t�n, . . . , �αt�n}. (23)

First we state the following claim.
Claim 6: For any two positive real numbers a, b such that

a < b, the number of integers j such that a < j � b is at
most �b− a
.

The following lemma is now presented.
Lemma 50: Let n be a prime number, α = n+1

2 , and t1, t2
be two distinct integers 1 � t1, t2 � �n−1

m �. Then

|W (n, t1, α) ∩W (n, t2, α)| <
⌈n

4

⌉
+
⌈ 3n
2m

⌉
+ 1.

Proof: It is sufficient to prove this claim for t1 = 1, since
all the other cases are proved by relabeling t1 to 1 and t2 to
t2 − t1 + 1. In this case,

W (n, 1, α) =
{
1, 2, . . . ,

n+ 1
2

}
=
[n+ 3

2

]
\ {0}.

Thus, denote t = t2 and since 0 /∈ W (n, t, α), it is sufficient
to prove that for all 2 � t � �n−1

m �,∣∣∣[n+ 3
2

]
∩W (n, t, α)

∣∣∣ < ⌈n
4

⌉
+
⌈ 3n
2m

⌉
+ 1.

For an integer k such that 1 � k � n+1
2n t, let Ak be the set

Ak = {�jt�n | (k − 1)
n

t
< j � k

n

t
}.

Note that jt = (k − 1)n+ �jt�n and also

W (n, t, α) =
	n+1

2n t
⋃
k=1

Ak,

where all Ak’s are mutually disjoint. Moreover, for all 1 �
k � n+1

2n t,

|Ak| �
⌈
k
n

t
− (k − 1)

n

t

⌉
= �n/t
,

which holds due to Claim 6. Hence,∣∣∣Ak ∩
[n+ 3

2

]∣∣∣ � ∣∣∣Ak ∩
[n− 1

2

]∣∣∣+ 2

(a)

� |{�jt�n | (k−1)
n

t
<j�(k−0.5)

n

t
}| + 2

(b)

�
⌈
(k − 0.5)

n

t
− (k − 1)

n

t

⌉
=
⌈ n
2t

⌉
+ 2,

where (a) holds since for all �jt�n ∈ Ak ∩ [n−1
2 ] it holds that

0 < �jt�n < n−1
2 and hence

(k − 1)n < jt = (k − 1)n+ �jt�n

< (k − 1)n+
n− 1

2
< (k − 0.5)n.

Equality (b) holds by Claim 6. Since t � �n−1
m �, it is deduced

that

∣∣∣W (n, t, α) ∩
[n+ 3

2

]∣∣∣ � ∣∣∣ 	
n+1
2n t
⋃
k=1

Ak ∩
[n+ 3

2

]∣∣∣
� n+ 1

2n
t
(⌈ n

2t

⌉
+ 2
)

� n+ 1
2n

t
( n

2t
+ 3
)

=
n+ 1

4
+

3
2
n+ 1
n

t

� n+ 1
4

+
3
2
n+ 1
n

n− 1
m

=
n+ 1

4
+

3
2
n2 − 1
nm

<
⌈n

4

⌉
+
⌈ 3n
2m

⌉
+ 1.

Note that this lemma holds also for α = n−1
2 . We state the

following corollary which is derived directly from Lemma 50.
Corollary 51: Assume that W is a subset of one of the sets

W (n, t, α), where 1 � t � �n−1
m � and α = n+1

2 . If |W | �
�n

4 
+� 3n
2m
+1, then the value of t can be uniquely determined.

This corollary holds also for α = n−1
2 . We proceed by

introducing several more definitions. For all 1 � t � �n−1
m �

denote the following set

Bt =
{〈n+ 1

2
it
〉

n

∣∣∣∣ i ∈ [n], i is odd

}
and the set An,m to be

An,m =
{
(s, t)

∣∣ s ∈ Bt, 1 � t � �n−1
m �

}
.
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Note that for every fixed 1 � t � �n−1
m �, it holds that |Bt| =

n−1
2 . Thus,

|An,m| =
n− 1

2
·
⌊n− 1

m

⌋
. (24)

Next, the following lemma is presented.
Lemma52: For any a ∈ [n], it holds that

(
�a− n+1

2 t�n, t
)
∈

An,m if and only if (a, t) /∈ An,m.

Proof: If
(
�a − n+1

2 t�n, t
)
∈ An,m then �a− n+1

2 t�n ∈
Bt. Therefore, there is an odd i ∈ [n] such that〈

a− n+ 1
2

t
〉

n
=
〈n+ 1

2
it
〉

n
.

Thus, a = �n+1
2 (i + 1)t�n when i + 1 is even. Therefore,

a /∈ Bt which leads to (a, t) /∈ An,m. The opposite direction
is proved similarly.

The construction of a T -(n, n−1
2 · �n−1

m �, � 3n
4 �−� 3n

2m
−2)
code will be as follows.

Construction 4: For a prime n � 3 let CT4 be the following
code over trees

CT4 = {Ts,t = (Vn, Es,t) | (s, t) ∈ An,m}.

Theorem 53: The code CT4 is a T -(n, n−1
2 · �n−1

m �, � 3n
4 � −

� 3n
2m
 − 2) code over trees.

Proof: First, it is deduced above in (24) that |An,m| =
n−1

2 · �n−1
m �. We now prove that

|CT4 | = |An,m| =
n− 1

2
·
⌊n− 1

m

⌋
.

It is clear that |CT4 | � |An,m| and assume in the contrary
that |CT4 | < |An,m|. Thus, there are two distinct pairs
(s, t), (s′, t′) ∈ An,m such that Ts,t = Ts′,t′ , which implies
that the central nodes of Ts,t and Ts′,t′ are identical. Since
deg(s) = deg(s′), the nodes vs and vs′ represent the same
center node, so it is deduced that s = s′. From that, by the
definition of the second central node, it is immediately implied
that t = t′ which results with a contradiction.

Next, we show that d = � 3n
4 �−� 3n

2m
−2 by showing that it
is possible to correct ρ = d−1 edge erasures due to Theorem 6.
Assume that ρ edges are erased in a tree Ts,t ∈ CT4 . We
separate the proof for two cases.
Case 1: after the erasure, both central nodes have degree of
at least two, and will be denoted by va and vb. If a = s and
b = �s+ n+1

2 t�n, then

�(a− b) · 2�n =
〈(
s− (s+

n+ 1
2

t)
)
· 2
〉

n
= �−t�n.

Similarly, if a = �s+ n+1
2 t�n and b = s, then

�(a− b) · 2�n =
〈(

(s+
n+ 1

2
t) − s

)
· 2
〉

n
= t.

Since t � �n−1
m �, it is deduced that �n−1

m 
 < �−t�n � n− 1,
so only one of these options is valid and t is easily determined.
Moreover, it is now determined which one of the values a or b
is equal to s, and thus, Ts,t is corrected.
Case 2: after the erasure, one of the central nodes has degree
of at most one. Denote by va the central node with degree
of at least two. Let α be a number such that if a = s then

α = n+1
2 and if a = �s + n+1

2 t�n then α = n−1
2 . Note that

since ρ edges were erased, va has degree of at least

(n− 1) − ρ− 1 = (n− 1) − (
⌊3n

4

⌋
−
⌈ 3n
2m

⌉
− 3) − 1

=
⌈n

4

⌉
+
⌈ 3n
2m

⌉
+ 1.

Thus, there are integers i1, i2, . . . , i(n−2)−ρ ∈ [n] such that
the edge set

E = {�va, v〈a+ijt〉n
�|1 � j � (n− 2) − ρ}

consists of all the edges connected to va and were not erased.
Let W (n, t, α) be the set defined in (23), and let W be the
set

W =
{
�ijt�n ∈W (n, t, α)

∣∣∣∣ 1 � j � (n− 2) − ρ,
�va, v〈a+ij t〉n

� ∈ E

}
.

Since |W | = (n− 2)− ρ = �n
4 
+ � 3n

2m
+1, by Corollary 51,
the value of t is uniquely determined. Therefore, the codeword-
tree Ts,t is either Ta,t or T〈a−n+1

2 t〉n,t. By Lemma 52, it holds

that
(
�a − n+1

2 t�n, t
)
∈ An,m if and only if (a, t) /∈ An,m.

Thus, Ta,t ∈ CT4 if and only if T〈a−n+1
2 t〉n,t /∈ CT4 , and

by finding either Ta,t or T〈a−n+1
2 t〉n,t in CT4 we find the

codeword-tree Ts,t.
Note that according to Theorem 53, it is possible to con-

struct codes of cardinality Ω(n2), while the minimum distance
d approaches �3n/4� and n is a prime number. In Theorem 23
we showed that A(n, n−3) = O(n2), while from Theorem 53,
A(n, d) = Ω(n2), when d approaches �3n/4� and n is prime.
Thus, it is interesting to study the values of d for such that
A(n, d) = Θ(n2).

IX. CONCLUSION

In this article, we initiated the study of codes over trees over
the tree distance. Upper bounds on such codes were presented
together with specific code construction for several parameters
of the number of nodes and minimum tree distance. For the
tree ball of trees, it was shown that the star tree reaches the
smallest size, while the maximum is achieved for the path tree.
This guarantees that for a fixed value of t, the size of every
ball of a tree is lower, upper-bounded from below, above by
Ω(n2t), O(n3t), respectively. Furthermore, it was also shown
that the average size of the ball is Θ(n2.5t). We also showed
that optimal codes over trees ranged between O(nn−d−1) and
Ω(nn−2d).

While the results in the paper provide a significant contri-
bution in the area of codes over trees, there are still several
interesting problems which are left open. Some of them are
summarized as follows.

a) Improve the lower and upper bounds on the size of codes
over trees, that is, the value of A(n, d).

b) Find an optimal construction for d = n− 3.
c) Study codes over trees under different metrics such as the

tree edit distance.
d) Study the problem of reconstructing trees based upon

several forests in the forest ball of trees; for more details
see [7].
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APPENDIX A

Lemma 26.: For a positive integer n it holds that∑
T∈T(n)

VT (n, 1) =
∑

F∈F(n,2)

(VF (n, 1))2 − (n− 2)nn−2.

Proof: The following sequence of equalities will be
explained below,∑

T∈T(n)

VT (n, 1) =

(a)
=

∑
T∈T(n)

( ∑
F∈PT (n,1)

(VF (n, 1) − 1) + 1
)

=
∑

T∈T(n)

∑
F∈PT (n,1)

VF (n, 1)−

⎛
⎝ ∑

T∈T(n)

∑
F∈PT (n,1)

1

⎞
⎠+ nn−2

(b)
=
∑

T∈T(n)

∑
F∈PT (n,1)

VF (n, 1) − (n− 1)nn−2 + nn−2

(c)
=

∑
F∈F(n,2)

∑
T∈BF (n,1)

VF (n, 1) − (n− 1)nn−2 + nn−2

=
∑

F∈F(n,2)

(VF (n, 1))2 − (n− 2)nn−2.

In equality (a) we explain why

VT (n, 1) − 1 = |BT (n, 1) \ {T }| =
∑

F∈PT (n,1)

(VF (n, 1) − 1).

Note that for all T, T ′ ∈ T(n) such that dT (T, T ′) = 1,
there exists exactly one forest F ∈ F(n, 2) such that F ∈
PT (n, 1)∩PT ′(n, 1). Thus, each T ′ ∈ BT (n, 1) \ {T } can be
generated from T uniquely by removing and adding exactly
one edge. Equivalently, each such a tree is counted by adding
an edge to a forest F ∈ PT (n, 1). By doing so for all forests
in PT (n, 1), while subtracting 1 for the tree T , equality (a)
holds. In equality (b) it is deduced that∑

T∈T(n)

∑
F∈PT (n,1)

1 = (n− 1)nn−2.

Lastly, in equality (c), by taking pairs of trees and forests,
the order of summation is changed,∑

T∈T(n)

∑
F∈PT (n,1)

1 =
∑

F∈F(n,2)

∑
T∈BF (n,1)

1.

APPENDIX B

Theorem 33.: For any T ∈ T(n) it holds that

t�
i=0

�
n−2−t+i

i

�
VT (n, t − i) = nt−1

�
(i0,i1,...,it)∈PT (n,t)

i0i1 · · · it.

Proof: By definition, for t � 1, ST (n, t) = VT (n, t) −
VT (n, t− 1). Thus,

t∑
i=0

(
n− 1 − t+ i

i

)
ST (n, t− i) =

t−1∑
i=0

(
n− 1 − t+ i

i

)(
VT (n, t− i) − VT (n, t− 1 − i)

)

+
(
n− 1
t

)
VT (n, 0) = VT (n, t)

+
t∑

i=1

VT (n, t− i)
((n− 1 − t+ i

i

)
−
(
n− 2 − t+ i

i− 1

))
(a)
= VT (n, t) +

t∑
i=1

VT (n, t− i)
(
n− 2 − t+ i

i

)

=
t∑

i=0

(
n− 2 − t+ i

i

)
VT (n, t− i),

where (a) holds by the identity
(
n
k

)
+
(
n+1

k

)
=
(
n+1
k+1

)
. Using

the result of Corollary 32, we conclude the proof.

APPENDIX C

Lemma 34.: For any positive integer α, if

t∑
i=0

(
n− 2 − t+ i

i

)
VT (n, t− i) = Ω(nαt),

and VT (n, 0) = 1, then VT (n, t) = Ω(nαt).
Proof: This lemma is proved by induction on t.

Base: for t = 0, VT (n, 0) = n0 = 1 which is true by the
definition.
Inductive Step: suppose that the lemma holds for all 0 � t′ �
t− 1. Thus,

Ω(nαt) =
t∑

i=0

(
n− 2 − t+ i

i

)
VT (n, t− i)

= VT (n, t) +
t∑

i=1

(
n− 2 − t+ i

i

)
VT (n, t− i)

= VT (n, t) +
t∑

i=1

(
n− 2 − t+ i

i

)
Ω(nα(t−i))

= VT (n, t) +
t∑

i=1

Ω(ni)Ω(nα(t−i))

= VT (n, t) + Ω(nα(t−1)+1).

Therefore we deduce that

VT (n, t) = Ω(nαt) − Ω(nα(t−1)+1) = Ω(nαt).

APPENDIX D

Claim 4.: For a positive integer n and a fixed t it holds that

n−1∑
i=1

(
n

i

)
ii(n−i)n−iΘ(it/2)=Θ(nt/2)

n−1∑
i=1

(
n

i

)
ii(n− i)n−i.

Proof: The upper bound is derived immediately,

n−1∑
i=1

(
n

i

)
ii(n−i)n−iΘ(it/2)=O(nt/2)

n−1∑
i=1

(
n

i

)
ii(n−i)n−i.
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Next, the lower bound is proved by,

n−1∑
i=1

(
n

i

)
ii(n− i)n−iΩ(it/2)

�
n−1∑

i=	n−1
2 


(
n

i

)
ii(n− i)n−iΩ(it/2)

= Ω(nt/2)
n−1∑

i=	n−1
2 


(
n

i

)
ii(n− i)n−i

= Ω(nt/2)
n−1∑
i=1

(
n

i

)
ii(n− i)n−i.

APPENDIX E

Theorem 40.: The size of the sphere for a star satisfies

S�(n, t) =
(
n− 1
t

)
(n− 1)t−1(n− t− 1),

and the size of the tree ball of trees for a star satisfies

V �(n, t) =
t∑

j=0

(
n− 1
j

)
(n− 1)j−1(n− j − 1).

Proof: Let T ∈ T(n) be a star tree, and denote the
function

H(n, t) =
(
n− 1
t

)
(n− 1)t−1(n− t− 1).

We say that d
dn(f(n)) is the derivative of f(n) with respect

to n. Thus,

t∑
i=0

(
n− 1 − t+ i

i

)
H(n, t− i)

=
t∑

i=0

(
n− 1 − t+ i

i

)(
n− 1
t− i

)
(n− 1)t−1−i(n− t− 1 + i)

(a)
=

t∑
i=0

(
n− 1
t

)(
t

i

)
(n− 1)t−1−i(n− t− 1 + i)

=
(
n− 1
t

) t∑
i=0

(
t

i

)
(n− 1)t−1−i(n− t− 1 + i)

=
(
n− 1
t

)( t∑
i=0

(
t

i

)
(n− 1)t−1−i(n− 1)

−
t∑

i=0

(
t

i

)
(n− 1)t−1−i(t− i)

)

=

�
n − 1

t

�� t�
i=0

�
t

i

�
(n − 1)t−i − d

dn

� t�
i=0

�
t

i

�
(n − 1)t−i

��
(b)
=
(
n− 1
t

)(
nt − tnt−1

)
=
(
n− 1
t

)
nt−1(n− t)

(c)
= nt−1

∑
(i0,i1,...,it)∈PT (n,t)

i0i1 · · · it,

where (a) holds by known formula(
a− (b− c)

c

)(
a

b − c

)
=
(
a

b

)(
b

c

)
(i.e. a = (n − 1), b = t, and c = i), and (b) holds by the
binomial theorem, which is,

t∑
i=0

(
t

i

)
(n− 1)t−i = (n− 1 + 1)t = nt.

Equality (c) holds due to (17). Thus, by Corollary 32, it is
deduced that S�(n, t) = H(n, t). Next,

V �(n, t) =
t∑

j=0

(
n− 1
j

)
(n− 1)j−1(n− j − 1),

which is derived by the fact that for every T ∈ T(n),

VT (n, t) =
t∑

i=0

ST (n, i).

APPENDIX F

Claim 5.: The following properties hold

a) It holds that∑
(c0,...,ct)∈PT (n,t;v�)

c� · · · ct

=
∑

(c0,...,ct)∈AT (n,t;v�,vy)

c� · · · ct +
∑

(c0,...,ct)∈PT (n,t;v�+1(vy))

c� · · · ct.

b) If vx is not in v� then,∑
(c0,...,ct)∈AT1(n−1,t;v�,vy)

c� · · · ct =
∑

(c′0,...,c′t)∈AT (n,t;v�,vx)

c′� · · · c′t.

c) If vx is not in v� then,∑
(c0,...,ct)∈PT (n,t;v�+1(vx))

c� · · · ct

=
∑

(c′0,...,c′t)∈PT1(n−1,t;v�+1(vy))

(c′� + 1)c′�+1 · · · c′t

+
∑

(c0,...,c�−1,1,c�+1,...,ct)∈PT (n,t;v�+1(vx))

1 · c�+1 · · · ct.

d) If vx = vi�−1 then∑
(c0,...,ct)∈PT (n,t;v�(vx))

c� · · · ct

=
∑

(c′0,...,c′t)∈PT1(n−1,t;v�(vy))

c′� · · · c′t

+
∑

(c0,...,c�−2,1,c�,...,ct)∈PT (n,t;v�(vx))

c� · · · ct.

Proof: a) By definition of the set AT (n, t; v�, vy) it
holds that AT (n, t; v�, vy) ⊆ PT (n, t; v�). Moreover,∑

(c0,c1,...,ct)∈PT (n,t;v�)\AT (n,t;v�,vy)

c� · · · ct
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=
∑

(c0,c1,...,ct)∈PT (n,t;v�+1(vy))

c� · · · ct,

and the proof is concluded.
b) Again, AT (n, t; v�, vx) ⊆ PT (n, t; v�). Since vx is not

in v� it holds that vx and vy are always in the same
connected component with respect to AT (n, t; v�, vx),
and thus, |AT (n, t; v�, vx)| = |AT1(n − 1, t; v�, vy)|.
Moreover, since there is an index j ∈ [�] such that
vx, vy ∈ Cj in T , it holds that (c0, . . . , cj, . . . , ct) ∈
AT (n, t; v�, vx) if and only if (c0, . . . (cj − 1), . . . , ct) ∈
AT1(n − 1, t; v�, vy). Hence, this difference does not
affect the equality, which concludes this proof.

c) Assume that vx and vy are in the same connected compo-
nent C� with respect to T . In this case since vx, vy ∈ C�,
it holds that (c0, . . . , c�, . . . , ct) ∈ PT (n, t; v�+1(vx))
if and only if (c0, . . . , c� − 1, . . . , ct) ∈ PT1(n −
1, t; v�+1(vy)). Thus, the following expression∑

(c′0,c′1,...,c′t)∈PT1(n−1,t;v�+1(vy))

(c′� + 1)c′�+1 · · · c′t

corresponds to all cases where the edge �vx, vy� was not
removed, and ∑

(c0,...,c�−1,1,c�+1,...,ct)∈PT (n,t;v�+1(vx))

1 · c�+1 · · · ct,

corresponds to all cases where the edge �vx, vy� was
removed. Hence, the sum of the two expressions equals
to ∑

(c0,c1,...,ct)∈PT (n,t;v�+1(vx))

c� · · · ct.

d) Assume that vx and vy are in the same connected
component C�−1 with respect to T . Since vx, vy ∈ C�−1,
it holds that (c0, . . . , c�−1, . . . , ct) ∈ PT (n, t; v�(vx))
if and only if (c0, . . . , c�−1 − 1, . . . , ct) ∈ PT1(n −
1, t; v�(vy)). Thus, the following expression∑

(c′0,c′1,...,c′t)∈PT1(n−1,t;v�(vy))

c′� · · · c′t,

corresponds to all cases where the edge �vx, vy� was not
removed, and ∑

(c0,...,c�−2,1,c�,...,ct)∈PT (n,t;v�(vx))

c� · · · ct.

corresponds to all cases where the edge �vx, vy� was
removed. Again we get that the sum of the two expres-
sions equals to ∑

(c0,...,ct)∈PT (n,t;v�(vx))

c� · · · ct.

APPENDIX G

Lemma 42.: If vx is not in v� then,

fT (n, t; v�) = fT1(n− 1, t; v�)
+ fT1(n−1, t; v�+1(vy)) + fT1(n− 1, t− 1; v�).

If vx is in v�, and without loss of generality vx = vi�−1 , then

fT (n, t; v�) = fT1(n−1, t; v�(vy)) + fT1(n− 1, t− 1; v�−1).

Proof: In this proof, it is assumed that vy is not in v�,
although the proof is valid also for this case, where by the
definition fT1(n−1, t; v�+1(vy)) = 0. First we prove the case
where vx is not in v�. In this case, we have that

fT1(n− 1, t; v�) + fT1(n− 1, t; v�+1(vy))
(a)
=

∑
(c′0,c′1,...,c′t)∈PT1(n−1,t;v�)

c′� · · · c′t

+
∑

(c′0,c′1,...,c′t)∈PT1(n−1,t;v�+1(vy))

c′�+1 · · · c′t

(b)
=

∑
(c′0,c′1,...,c′t)∈AT1(n−1,t;v�,vy)

c′� · · · c′t

+
∑

(c′0,c′1,...,c′t)∈PT1(n−1,t;v�+1(vy))

c′� · · · c′t

+
∑

(c′0,c′1,...,c′t)∈PT1(n−1,t;v�+1(vy))

c′�+1 · · · c′t

=
∑

(c′0,c′1,...,c′t)∈AT1(n−1,t;v�,vy)

c′� · · · c′t

+
∑

(c′0,c′1,...,c′t)∈PT1(n−1,t;v�+1(vy))

(c′� + 1) · · · c′t

(c)
=

∑
(c0,c1,...,ct)∈AT (n,t;v�,vx)

c� · · · ct

+
∑

(c0,c1,...,ct)∈PT (n,t;v�+1(vx))

c� · · · ct

−
∑

(c0,...,c�−1,1,c�+1,...,ct)∈PT (n,t;v�+1(vx))

1 · c�+1 · · · ct

(d)
=

∑
(c0,c1,...,ct)∈PT (n,t;v�)

c� · · · ct

−
∑

(c0,...,c�−1,1,c�+1,...,ct)∈PT (n,t;v�+1(vx))

1 · c�+1 · · · ct.

Equality (a) holds by definition of the function fT1 . Equality
(b) holds due to Claim 5(a). Equality (c) holds by Claim 5(b)
and (c). Equality (d) holds again due to Claim 5(a). Next we
show that

fT1(n− 1, t− 1; v�)

=
∑

(c′0,...c′
�−1,c′

�+1,...,c′t)∈PT1(n−1,t−1;v�)

c′�+1 · · · c′t

(a)
=

∑
(c0,...,c�−1,1,c�+1,...,ct)∈PT (n,t;v�+1(vx))

c�+1 · · · ct,

where (a) holds since (c0, . . . c�−1, c�+1, . . . , ct) ∈ PT1(n −
1, t − 1; v�) if and only if (c0, . . . c�−1, 1, c�+1, . . . , ct) ∈
PT (n, t; v�). Thus,

fT1(n− 1, t; v�) + fT1(n− 1, t; v�+1(vy))
+ fT1(n− 1, t− 1; v�)

=
∑

(c0,c1,...,ct)∈PT (n,t;v�)

c� · · · ct
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−
∑

(c0,...,c�−1,1,c�+1,...,ct)∈PT (n,t;v�+1(vx))

1 · c�+1 · · · ct

+
∑

(c0,...,c�−1,1,c�+1,...,ct)∈PT (n,t;v�+1(vx))

1 · c�+1 · · · ct

=
∑

(c0,c1,...,ct)∈PT (n,t;v�)

c� · · · ct = fT (n, t; v�).

Similarly, if vx is in v� and vx = vi�−1 ,

fT1(n− 1, t; v�(vy)) + fT1(n− 1, t− 1; v�−1)
(a)
=

∑
(c′0,c′1,...,c′t)∈PT1(n−1,t;v�(vy))

c′� · · · c′t

+
∑

(c′0,...,c′�−2,c′�,...,c′t)∈PT1(n−1,t−1;v�−1)

c′� · · · c′t

(b)
=

∑
(c0,c1,...,ct)∈PT (n,t;v�(vx))

c� · · · ct

−
∑

(c0,...,c�−2,1,c�,...,ct)∈PT (n,t;v�(vx))

c� · · · ct

+
∑

(c0,...,c�−2,1,c�,...,ct)∈PT (n,t;v�(vx))

c� · · · ct

=
∑

(c0,c1,...,ct)∈PT (n,t;v�(vx))

c� · · · ct

= fT (n, t; v�(vx)) = fT (n, t; v�),

where equality (a) holds by the definition of fT1 ,
equality (b) holds due to Claim 5(d), and since
(c0, . . . , c�−2, c�, . . . , ct) ∈ PT1(n − 1, t − 1; v�−1) if
and only if (c0, . . . , c�−2, 1, c�, . . . , ct) ∈ PT (n, t; v�(vx)).

APPENDIX H

Lemma 43.: For any tree T ∈ T(n), n � 1 and a vector of
0 � � � t+ 1 � n nodes v� = (vi0 , vi1 , . . . , vi�−1),

fT (n, t; v�) �
(
n+ t− �

2t+ 1 − �

)
.

Proof: Note that if � = t+ 1 by the definition of fT

fT (n, t; vt+1) �
(
n− 1
t

)
=
(
n+ t− (t+ 1)
2t+ 1 − (t+ 1)

)
.

As showed in (19), if n = t+ 1, then

fT (n, n− 1; v�) = 1 =
(
n+ (n− 1) − �

2(n− 1) + 1 − �

)
, (25)

so the lemma is correct for this two cases. Thus it is left to
prove the cases where 0 � � < t+1 < n, and it will be shown
by the induction on n � 1.
Base: immediately derived from (25).
Inductive Step: assume that for any tree T ∈ T(n− 1), n �
1 and a vector of 1 � � � t + 1 � n − 1 nodes v� =
(vi0 , vi1 , . . . , vi�−1),

fT (n− 1, t; v�) �
(
n− 1 + t− �

2t+ 1 − �

)
.

Let T ∈ T(n) and let vx be a leaf connected to a node denoted
by vy . Assume that T1 ∈ T(n − 1) is the tree generated by

removing vx from T . For two integers t and � such that 0 �
� < t + 1 < n, let v� = (vi0 , vi1 , . . . , vi�−1) be a vector of
� nodes in T . If vx is not in v�, using Lemma 42 and the
induction assumption, we deduce that

fT (n, t; v�) = fT1(n− 1, t; v�)
+ fT1(n− 1, t; v�+1(vy)) + fT1(n− 1, t− 1; v�)

�
(
n− 1 + t− �

2t+ 1 − �

)
+
(
n− 1 + t− �− 1
2t+ 1 − �− 1

)
+
(
n− 1 + t− 1 − �

2t− 1 − �

)
=
(
n− 1 + t− �

2t+ 1 − �

)
+
(
n− 1 + t− �

2t− �

)
=
(
n+ t− �

2t+ 1 − �

)
,

where each equality holds by the identity
(
n
k

)
+
(
n+1

k

)
=
(
n+1
k+1

)
.

Similarly, if vx ∈ v�, and without loss of generality vx =
vi�−1 , then

fT (n, t; v�) = fT1(n−1, t; v�(vy)) + fT1(n− 1, t− 1; v�−1)

�
(
n− 1 + t− �

2t+ 1 − �

)
+
(
n− 1 + t− 1 − �+ 1

2t− 1 − �+ 1

)

=
(
n+ t− �

2t+ 1 − �

)
.
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