
Equivalence of Insertion/Deletion Correcting Codes
for d-dimensional Arrays

Evagoras Stylianou, Lorenz Welter, Rawad Bitar, Antonia Wachter-Zeh, and Eitan Yaakobi

Abstract— We consider the problem of correcting insertion and
deletion errors in the d-dimensional space. This problem is well
understood for vectors (one-dimensional space) and was recently
studied for arrays (two-dimensional space). For vectors and
arrays, the problem is motivated by several practical applications
such as DNA-based storage and racetrack memories. From a
theoretical perspective, it is interesting to know whether the same
properties of insertion/deletion correcting codes generalize to the
d-dimensional space. In this work, we show that the equivalence
between insertion and deletion correcting codes generalizes to
the d-dimensional space. As a particular result, we show the
following missing equivalence for arrays: a code that can correct
tr and tc row/column deletions can correct any combination
of tinsr + tdelr = tr and tinsc + tdelc = tc row/column insertions
and deletions. The fundamental limit on the redundancy and
a construction of insertion/deletion correcting codes in the d-
dimensional space remain open for future work.

I. INTRODUCTION

Coding for insertions and deletions received a lot of at-
tention due to new applications such as DNA-based data
storage [1], [2], synchronization errors [3], [4] and racetrack
memories [5]. An important notion in this class of codes
is the equivalence of insertion and deletion errors. In his
original work [6], Levenshtein showed that a code can correct
t deletions in a length-n vector if and only if it can correct
any combination of ti insertions and td deletions such that
ti + td = t. A more intuitive proof of the equivalence, which
line of thoughts we follow in this work, is given in [7].
A code C correcting deletions in q-ary length-n vectors is
evaluated by its redundancy defined as R ≜ n− logq |C|. The
redundancy of t-deletion-correcting codes is bounded from
below by t logq n−O(1) [6], [7]. The asymptotical tightness
of this bound is shown using the Varshamov-Tenengolts codes
[6], [8], [9] that can correct one deletion. Several recent works
considered constructing binary t-deletion-correcting codes,
t > 1, whose redundancy approach the previously mentioned
lower bound [10]–[17].

Codes correcting insertions and deletions in two-
dimensional arrays have been investigated in [18]–[23].
The model considered in [20]–[23] is that of coding for

ES, LW, RB and AW-Z are with the ECE department at the Technical
University of Munich. EY is with the CS department of Technion — Israel In-
stitute of Technology. Emails: {evagoras.stylianou, lorenz.welter, rawad.bitar,
antonia.wachter-zeh}@tum.de, yaakobi@cs.technion.ac.il.

This project has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No. 801434), from the Technical University of
Munich - Institute for Advanced Studies, funded by the German Excellence
Initiative and European Union Seventh Framework Programme under Grant
Agreement No. 291763.

row/column insertions and deletions in two-dimensional
arrays. In [22], Hagiwara constructed codes that can correct
up to tc column and tr row deletions where tr and tc are
predetermined. In [20], [23], the authors constructed codes
correcting a variable number of column and row deletions
for a predetermined number of total deletions. In addition,
they provided a lower bound on the redundancy of codes
correcting insertions and deletions in arrays. Moreover, they
generalized the equivalence between insertions and deletions
across each dimension (columns and rows), separately. More
precisely, the authors showed that given an integer t, a code
can correct tr and tc, for all tr + tc = t, row and column
deletions if and only if it can correct the same number of
rows/columns insertions. However, combinations of insertions
and deletions of columns (and rows) was not studied.

In this work we generalize the equivalence between codes
correcting insertions and deletions to the d-dimensional space.
In this setting, the insertions and deletions are defined as
(d − 1)-dimensional hyperplane insertions/deletions in a d-
dimensional array. In the d-dimensional space there are
d =

(
d

d−1

)
different types of (d − 1)-hyperplane dele-

tions/insertions. Each type of deletion is indexed by the
missing dimension. More precisely, let (x1, . . . , xd) describe
the axes of the d-dimensional space. Deleting a (d − 1)-
dimensional hyperplane not containing the axis xi is referred
to as an xi-deletion. See Fig. 1 for an illustrative example for
d = 3. For a vector t = (t1, . . . , td), a t-deletion refers to the
combination of ti xi-deletions for i ∈ {1, . . . , d}. We show
that a code can correct t-deletions if and only if it can correct
t-insertions. We extend this result to combinations of insertion
and deletions, i.e., we show that a code can correct t-deletions
if and only if it can correct any combination of tdel-deletions
and tins-insertions such that tdel + tins = t. We show that the
number of xi-errors (insertions plus deletions) must remain
the same for the equivalence to hold.

II. NOTATION AND PRELIMINARIES

Denote the q-ary alphabet by Σq ≜ {0, . . . , q − 1} and the
set of integers {1, . . . , n} by [n]. Moreover, denote the set of
d-dimensional arrays, in short called arrays, by Σ

⊗d
i=1 ni

q =
Σn1×···×nd

q ≜ Σn1
q × · · · × Σnd

q with entries in Σq . We

abbreviate Σn⊗d

q ≜ Σ
⊗d

i=1 n
q , if ni = nj for all i, j ∈ [d]. Let

(x1, . . . , xd) describe the axes of the d-dimensional space. We
call an xk-deletion in an array X ∈ Σn⊗d

q the deletion of a
(d − 1)-dimensional hyperplane spanned only along the axes
(x1, . . . , xk−1, xk+1, . . . , xd). For two-dimensional arrays an

2022 IEEE International Symposium on Information Theory (ISIT)

978-1-6654-2159-1/22/$31.00 ©2022 IEEE 754

x2

x1

x3

(x2, x3)-plane

(a) x1-deletion

x2

x1

x3

(x1, x3)-plane

(b) x2-deletion

x2

x1

x3

(x1, x2)-plane

(c) x3-deletion

Fig. 1: Illustration of all possible plane deletion or insertion
in a 3-dimensional array.
x1-deletion corresponds to a column deletion and an x2-
deletion to a row deletion. See Fig. 1 for an illustration in the
3-dimensional space. A t-deletion where t ∈ Zd

≥0 corresponds
to the combination of ti xi-deletions for i ∈ [d], resulting in
an array X̃ ∈ Σ

⊗d
i=1(n−ti)

q . Moreover, a t-insdel where t =
tins+tdel corresponds to the combination of tdel-deletions and
tins-insertions resulting in an array X̃ ∈ Σ

⊗d
i=1(n+(tinsi −tdeli))

q .
For X ∈ Σn⊗d

q and t(d) ∈ Zd
≥0, the set of arrays resulting

from a t(d)-deletion in X is called the deletion “ball” and is
denoted by Dd

t (X). We define a t(d)-deletion correcting code
C ⊆ Σn⊗d

q as the code that can correct any t(d)-deletion for
all X ∈ C. The all-zero vector with “1” in the i-th position is
denoted by ei. The 1(d) denotes the all-one vector of length d.
Vectors t of the form t = (t, . . . , t) are denoted by t1(d). For
such vectors we denote the deletion ball by Dd

t1(X). The t-
insertion and the insertion balls Idt (X) and Idt1(X) are defined
similarly. Moreover, the set of arrays resulting from t(d)-insdel
in X is called the insertion-deletion “ball” and denoted by
IDd

t (X). We define a t(d)-insdel correcting code C ⊆ Σn⊗d

q

as the code that can correct any t(d)-insdel for all X ∈ C.
For an integer t ≥ 0, a t(d)-deletion refers to the collection
of all possible t-deletions such that

∑d
i=1 ti = t. We define a

t(d)-deletion correcting code C ⊆ Σn⊗d

q as the code that can
correct any t(d)-deletion for all X ∈ C. The same notation is
used for insertions. For an integer a, we define δa(x) to be
equal to one if x = a and zero otherwise.

For j ∈ [d], the projection Pj projects an array X ∈

Σ
⊗d

i=1 ni
q along the xj-th axis to an array Pj(X) ∈ Σ

⊗i̸=j
i∈[d]

ni

qnj .
The projection Pj preserves the order of the axes, i.e., it
projects X from the space with axes (x1, . . . , xd) onto the
space with axes (x1, . . . , xj−1, xj+1, . . . , xd). Moreover, we
denote by P−1

j the inverse projection, or the expansion, of

an array X ∈ Σ

⊗i̸=j
i∈[d]

ni

qnj along the xj-th axis to obtain

an array P−1
j (X) ∈ Σ

⊗d
i=1 ni

q . The inverse projection P−1
j

also preserves the order of the dimensions (x1, . . . , xd). For
example, given an array X ∈ Σn×n

qn in the (x1, x3) space,
the inverse projection P−1

2 (X) expands each entry of X to a
vector in Σn

q along x2 to obtain P−1
2 (X) ∈ Σn×n×n

q .
Next we state in our notation two preliminary results derived

in [20], [23] for the 2-dimensional case. Lemma 1 is used as
a building block of our proofs.

Theorem 1. [23, Theorem 1] A code C ⊆ Σn×n
q is a t(2)-

deletion correcting code if and only if it is a t(2)-insertion

correcting code, i.e., for any arrays X,Y ∈ Σn×n
q ,

D2
t(X) ∩ D2

t(Y) ̸= ∅ if and only if I2t(X) ∩ I2t(Y) ̸= ∅.

for any choice of t ∈ Z2
≥0 such that t1 + t2 = t.

Lemma 1. [20] For a positive integer m and i, j ∈
[2], any two arrays X ∈ Σ

(m+δ1(i))×(m+δ2(i))
q and Y ∈

Σ
(m+δ1(j))×(m+δ2(j))
q , it holds that

D2
ei
(X) ∩ D2

ej
(Y) ̸= ∅ ⇔ I2ej

(X) ∩ I2ei
(Y) ̸= ∅.

III. SYMMETRIC INSERTION/DELETION EQUIVALENCE

In this section we prove the following theorem.

Theorem 2. A code C ⊆ Σn⊗d

q is a t1(d)-deletion-correcting
code if and only if it is a t1(d)-insertion-correcting code.

To prove Theorem 2 we need three intermediate results.
In Claim 1, we show that t(d)-deletions and t(d)-insertions
in an array X are not affected by the projection Pκ(X) and
the inverse projection P−1

κ (X) such that tκ = 0. We then
extend Lemma 1 to the d-dimensional space, cf., Lemma 2,
and use it as a building block in our proofs. In particular,
we use Lemma 2 to prove Theorem 3 showing that a code
is a 1(d)-deletion-correcting code if and only if it is a 1(d)-
insertion-correcting code. Having the aforementioned results,
proving Theorem 2 follows by showing that for any X,Y ∈
Σn⊗d

q , Dd
t1(X)∩Dd

t1(Y) ̸= ∅ if and only if Idt1(X)∩Idt1(Y) ̸=
∅. The proof holds by using the exact same steps as in the proof
of [20, Corollary 2], but extended to the d-dimensional space
and is thus omitted.

We start with the first intermediate result.

Claim 1. For any two vectors r1, r2 ∈ Nd such that there
exists a κ ∈ [d] for which r1,κ = r2,κ = 0 and any two arrays

X ∈ Σ
⊗d

i=1(n+r1,i)
q , Y ∈ Σ

⊗d
i=1(n+r2,i)

q , it holds that,

Dd
r1
(X) ∩ Dd

r2
(Y) ̸= ∅ ⇔

Dd−1
Pκ(r1)

(Pκ(X)) ∩ Dd−1
Pκ(r2)

(Pκ(Y)) ̸= ∅,

where κ denotes the κ-th dimension in the d-dimensional space
and Pκ(rj) ∈ Nd−1 is equal to rj with the zero deleted in
the κ-th position for j = 1, 2.
The same statement holds for the insertion case.

Proof. We first prove the “if” part. Let D ∈ Dd
r1
(X)∩Dd

r2
(Y)

and D′ ∈ Dd−1
Pκ(r1)

(Pκ(X)) ∩ Dd−1
Pκ(r2)

(Pκ(Y)). The κ-th
dimension is not affected by a deletion in both arrays X and Y.
Therefore, the deletions do not affect the mapping of the q-ary
symbols to qn-ary symbols along the axis xκ, when using the
projection function. Thus, the (d−1)-dimensional hyperplane
deletions in X,Y correspond to (d − 2)-dimensional hyper-
plane deletions in the respective projected arrays. Hence, we
have P−1

κ (D′) = D.
We now prove the “only if” part. By expanding the qn-ary

symbols to q-ary symbols along the xκ-th axis, i.e., by apply-
ing the inverse projection, the (d−2)-dimensional hyperplane
deletions in Pκ(X),Pκ(Y) transform to (d− 1)-dimensional
hyperplane deletions in X,Y with no xκ-deletions. This
follows from the definition of the projections.

2022 IEEE International Symposium on Information Theory (ISIT)

755

We now state and prove the second intermediate result.

Lemma 2. For positive integers m1, . . . ,md and i, j ∈
[d], for any two arrays X ∈ Σ

⊗d
ℓ=1(mℓ+δℓ(i))

q and Y ∈
Σ

⊗d
ℓ=1(mℓ+δℓ(j))

q it holds that,

Dd
ei
(X) ∩ Dd

ej
(Y) ̸= ∅ ⇔ Idej

(X) ∩ Idei
(Y) ̸= ∅.

Proof. We only show the “if” part. The “only if” part is
proven similarly. We prove the statement by induction over
the dimensions. The two-dimensional case, i.e., d = 2, was
already shown in [20] and is recalled in Lemma 1. To illustrate
the proof techniques used in the proof and in this work, we
choose the three-dimensional case as the base case of the
induction. Without loss of generality, we show that

Dd
e1
(X) ∩ Dd

e2
(Y) ̸= ∅ ⇔ Ide2

(X) ∩ Ide1
(Y) ̸= ∅.

Base case d = 3: We show that

D3
e1
(X) ∩ D3

e2
(Y) ̸= ∅ ⇔ I3e2

(X) ∩ I3e1
(Y) ̸= ∅.

For X ∈ Σ
(n+1)×n×n
q and Y ∈ Σ

n×(n+1)×n
q let D ∈

D3
e1
(X) ∩ D3

e2
(Y). Since the deletion does not affect both

arrays along the axis x3, then we can project along this axis
to transform the given three-dimensional deletion problem to
a two-dimensional deletion problem by Claim 1. Thus, the e1-
deletion in X converts to a row deletion in P3(X) and the e2-
deletion in Y to a column deletion in P3(Y). Hence, it holds
that P3(D) ∈ D2

e1
(P3(X)) ∩ D2

e2
(P3(Y)). By Lemma 1, we

have the following statement

D2
e1
(P3(X)) ∩ D2

e2
(P3(Y)) ̸= ∅

⇔ I2e2
(P3(X)) ∩ I2e1

(P3(Y)) ̸= ∅.

Therefore, there exists a P3(I) ∈ I2e2
(P3(X)) ∩ I2e1

(P3(Y)).
Let I = P−1

3 (P3(I)), by Claim 1 the previous statement is
equivalent to stating that there exists a I ∈ I3e2

(X) ∩ I3e1
(Y).

This results from applying the inverse projection P−1
3 (·) on

the respective arrays, transforming the row/column insertions
in the two-dimensional space to e1-/e2-insertion in the three-
dimensional space; thus concluding the base case.

Induction hypothesis: For a positive integer d − 1 assume
that it holds that

Dd−1
e1

(X) ∩ Dd−1
e2

(Y) ̸= ∅ ⇔ Id−1
e2

(X) ∩ Id−1
e1

(Y) ̸= ∅.

Induction step: Given the induction hypothesis we show that
the equivalence holds also for d, i.e.,

Dd
e1
(X) ∩ Dd

e2
(Y) ̸= ∅ ⇔ Ide2

(X) ∩ Ide1
(Y) ̸= ∅,

and let D ∈ Dd
e1
(X)∩Dd

e2
(Y). To apply Claim 1 and use the

induction hypothesis, we project the arrays on an axis different
than the ones affected by a deletion. For the given case, we
have d − 2 available axes to project on. Assume we project
on the axis xκ, where κ ∈ [d] \ {1, 2}. Thus, we transform
the (d− 1)-dimensional hyperplane deletion in X and Y to a

Y ≜ X0,3X ≜ X3,0

D ≜ X0,0

I ≜ X3,3

X2,0

X1,0 X0,1

X0,2X1,1

X2,1 X1,2

X2,2X3,1

X3,2

X1,3

X2,3

e1

e1

e1

e1

e1

e1

e1

e1

e2

e2

e2

e2

e2

e2

e2

e2

e3

e3

e3

e3

e3

e3

e3

e3

L2

L2

L2

L2

L2

L2

L2

L2

L2

Fig. 2: A flow chart of the proof of Theorem 3 for d = 3.
Given a array D ∈ Dd

1(X) ∩ Dd
1(Y), we show the existence

I ∈ Id1(X)∩ Id1(Y). Given the existence of X, Y, D, and the
orange arrays one can show by Lemma 2 the existence of the
green and purple marked arrays and the array I. Since X,Y
and I are connected via the purple arrays as shown one can
conclude the equivalence.

(d−2)-dimensional hyperplane deletion in Pκ(X) and Pκ(Y)
(c.f. Claim 1). Therefore, we can write that

Dd
e1
(X) ∩ Dd

e2
(Y) ̸= ∅,

⇔ Dd−1
e1

(Pκ(X)) ∩ Dd−1
e2

(Pκ(Y)) ̸= ∅,
⇔ Id−1

e2
(Pκ(X)) ∩ Id−1

e1
(Pκ(Y)) ̸= ∅,

where the last equivalence follows from the induction hy-
pothesis. Hence, there exists a Pκ(I) ∈ Id−1

e2
(Pκ(X)) ∩

Id−1
e1

(Pκ(Y)). Due to the fact that we have projected on an
axis xκ ̸= x1, x2 and given Claim 1, we can interpret the
(d−2)-dimensional hyperplane insertion in Pκ(X) and Pκ(Y)
as a (d− 1)-dimensional hyperplane insertion in X and Y by
applying the inverse projection P−1

κ (·) to the projected arrays.
By the above observations we conclude that there exists a
I ∈ Ide2

(X) ∩ Ide1
(Y) if there exists D ∈ Dd

e1
(X) ∩ Dd

e2
(Y)

and conclude the “if” part of the proof.

We now show the equivalence of 1(d)-insertion and 1(d)-
deletion-correcting codes by using the results of Claim 1
and Lemma 2.

Theorem 3. A code C ⊆ Σn⊗d

q is a 1(d)-deletion-correcting
code if and only if it is a 1(d)-insertion-correcting code.

Proof. We provide an illustration of the proof for the case of
d = 3 in Fig. 2. Assume there exists an array D ∈ Σ

(n−1)⊗d

q

such that D ∈ Dd
1(X) ∩ Dd

1(Y). For simplicity of notation,
we fix the order of the deletions in X and Y to obtain D to
be an xd-deletion first, then an xd−1-deletion and so on until
making an x1-deletion. Note that the proof can be replicated
for any ordering by the comprehensiveness of Lemma 2 which

2022 IEEE International Symposium on Information Theory (ISIT)

756

is our main building block. To prove the statement, we build a
grid-like structure with axes i, j ∈ [d] and arrays as grid points
denoted by Xi,j . We define Xd,0 ≜ X, X0,d ≜ Y, and X0,0 ≜
D. For fixed j = 0, let the series of arrays {Xi,0}di=0 be
defined such that Xi−1,0 ∈ Dd

ei
(Xi,0) for i = {1, . . . , d}. We

define the series of arrays {X0,j}dj=0 similarly for fixed i = 0.
The strategy of the proof will show the existence of arrays Xi,j

for any i, j ∈ [d] such that Xd,d ∈ Id1(Xd,0) ∩ Id1(X0,d).
By the definition of the series we have that X0,0 ∈

Dd
e1
(X1,0) ∩ Dd

e1
(X0,1). By Lemma 2 there exists an array

X1,1 ∈ Ide1
(X1,0) ∩ Ide1

(X0,1). From that it follows that
X1,0 ∈ Dd

e2
(X2,0)∩Dd

e1
(X1,1). By applying again Lemma 2

we have that there exists an array X2,1 ∈ Ide1
(X2,0) ∩

Ide2
(X1,1). For j = 1, by repeating the aforementioned

strategy we can show the existence of the series of arrays
{Xi,1}di=2. Given this series of arrays one can show the
existence {Xi,2}di=1, where j = 2 and given the starting
statement X0,1 ∈ Dd

e1
(X1,1) ∩ Dd

e2
(X0,2). Therefore by

consecutively incrementing j ∈ [0, d − 1] and for each j
incrementing consecutively i ∈ [0, d − 1], then for each pair
(i, j) by Lemma 2 one has the following equivalence: Given
Xi,j ∈ Dd

ei
(Xi+1,j) ∩ Dd

ej
(Xi,j+1) there exists an array

Xi+1,j+1 ∈ Idej
(Xi+1,j) ∩ Idei

(Xi,j+1). Therefore, we have
proven the existence of an array Xd,d ∈ Id1(Xd,0) ∩ Id1(X0,d)
which concludes the proof.

IV. EQUIVALENCE OF INSERTION AND DELETIONS
CORRECTING CODES: GENERAL CASE

In this section we show the the equivalence of t(d)-insertions
and t(d)-deletions in d-dimensional arrays for any number
of (d − 1)-dimensional hyperplane insertions and deletions,
respectively, i.e., we show the equivalence of t(d)-deletion-
correcting codes with t(d)-insertion-correcting codes for any
t(d) ∈ Zd

≥0. The proof follows similar steps as the one used
by the authors in [23] for the two-dimensional case.

Theorem 4. A code C ⊆ Σn⊗d

q is a t(d)-deletion-correcting
code if and only if it is a t(d)-insertion-correcting code.

Proof. For notational convenience we define the vector cj ≜
(c1, . . . , cj−1, 0, cj+1, . . . , cd) ∈ Nd. In this proof, the vector
t(d) can be written as t(d) = tj1

(d) + cj ≜ tj,c, where tj =
mini∈[d] ti and ci ≜ ti − tj for i ∈ [d], to emphasize the
composition. Without loss of generality, we show the proof
for j = 1, since by symmetry the proof holds for all j ∈ [d],
and write t ≜ t1. Let t′ ≜

∑d
i=1 ci, the proof proceeds by

induction over t′. For simplicity, we fix in some parts of the
proof the order of the xi-deletions. That serves for a better
presentation of the proofs and incurs no loss of generality.
In the proof the contraposition is shown, i.e., we show that
Dd

t1,c(X)∩Dd
t1,c(Y) ̸= ∅ if and only if Idt1,c(X)∩Idt1,c(Y) ̸= ∅.

We only show the “if” part since the “only if” part follows
by using similar arguments.

Base case
∑d

i=1 ci = 1: For the reader’s convenience, a
flowchart of the proof for d = 3 is presented in Fig. 3. There
are d− 1 possibilities for c1 such that

∑d
i=1 ci = 1. We show

X Y

CkCk

Bk−1

Bk

Ck−1

C3

C2

C1

Gk

Gk+1

Ck+1

eκ

eo1

eκeκ

eo2

eok−1

t1-deletion

Bk−2

B1

B2

B0 = F0

eκ

eκ

eok−1

eκ

L2

eκ

L2

L2

eo2

eo1

eκ

L2

eκ

Fk

Fk−1

t1-insertion

Thm 2.

Fk−2

F2

F1

euk−1

eu1

eu2

G1

Gk−1

G3

G2

eκ eκ

L2

eκ

eκeκ

eκ eu1

L2

eκ

L2

eκ

eu2

eκ euk−1

L2

L2

Fig. 3: A flow chart of the proof of Theorem 4 for d = 3. Given
an array Ck+1 ∈ Dd

t1,c(X)∩Dd
t1,c(Y), we show the existence

Gk+1 ∈ Idt1,c(X) ∩ Idt1,c(Y). Given the existence of X, Y,
Ck+1 and the orange arrays one can show by Lemma 2 the
existence of the green marked arrays and then by Theorem
2 and Lemma 2 the existence of brown and purple marked
arraysand the array Gk+1.

the proof steps for c1 = eκ, i.e., there is a combination of
t1(d)-deletions and an extra xκ-deletion for κ ∈ [d].

For any two arrays X,Y ∈ Σn⊗d

q , assume there exists a
array D such that D ∈ Dd

t1,c(X)∩Dd
t1,c(Y). Let k = dt, define

the array Bk such that Bk ∈ Dd
t1(X) and D ∈ Dd

eκ
(Bk) due

to the choice of c1. For simplicity, we define C1 ∈ Dd
eκ
(Y).

Let o ∈ [d]k denote the vector whose entries oi denote the
series of xoi -deletions to obtain D from C1 and fix ok = κ.
We define the series of arrays {Cs}k+1

s=1 such that

Cs ∈

{
Dd

eκ
(Cs−1) if s = 1 or s = k + 1

Dd
eos−1

(Cs−1) otherwise.

where C0 ≜ Y and Ck+1 ≜ D. We show that there exists a
series of arrays {Bs}k−1

s=0 , resulting from hyperplane insertions
starting from Bk and leading to an array B0 ∈ Σn⊗d

q , such that
Bk ∈ Dd

t1(X) ∩ Dd
t1(B0). By the aforementioned definitions

we have that Ck+1 ∈ Dd
eκ
(Bk)∩Dd

eκ
(Ck). By Lemma 2, there

exists a Bk−1 ∈ Ideκ
(Bk) ∩ Ideκ

(Ck). Applying Lemma 2 se-
quentially shows the existence of the series of arrays {Bs}k−1

s=0 ,
i.e., by Lemma 2 for each Cs+1 ∈ Dd

eκ
(Bs) ∩ Dd

eos
(Cs)

2022 IEEE International Symposium on Information Theory (ISIT)

757

there exists a Bs−1 ∈ Ieos
(Bs)∩ Ideκ

(Cs) for s ∈ {k, . . . , 1}.
Hence, we show the existence of an array B0 ∈ Σn⊗d

q such
that Bk ∈ Dd

t1(X) ∩ Dd
t1(B0).

By Theorem 2, the existence of Bk implies the existence
of an array Fk ∈ Idt1(X) ∩ Idt1(B0), i.e., obtained by a t1(d)-
insertion in B0. Let u ∈ [d]k denote the vector whose entries
ui denote the series of xui

-insertions to obtain Fk from B0

and fix uk = κ. We define the arrays {Fs}ks=1 such that

Fs ∈

{
Ideκ

(Fs−1) if s = k

Ideus
(Fs−1) otherwise,

where F0 ≜ B0. Noting that C1 ∈ Dd
eκ
(B0)∩Dd

eκ
(Y) and ap-

plying Lemma 2, there exists an array G1 ∈ Ideκ
(B0)∩Ideκ

(Y),
which means that F0 ∈ Dd

eu1
(F1)∩Dd

eκ
(G1). By sequentially

applying Lemma 2 we can show the existence of the series
of arrays {Gs}k+1

s=1 such that Gk+1 ∈ Idt1,c(X) ∩ Idt1,c(Y).
Meaning by the fact that Fs−1 ∈ Dd

eus
(Fs) ∩ Dd

eκ
(Gs)

there exists an array Gs+1 ∈ Ideκ
(Fs) ∩ Ideus

(Gs) for s ∈
{1, . . . , k}. Hence, we have shown that if there exists an
array Ck+1 ∈ Dd

t1,c(X)∩Dd
t1,c(Y), then there exists an array

Gk+1 ∈ Idt1,c(X) ∩ Idt1,c(Y), which concludes the base case.
Induction hypothesis: Given any vector c1 such that∑d
i=1 ci = t′, and two arrays X,Y ∈ Σn⊗d

q it holds that

Dd
t1,c(X) ∩ Dd

t1,c(Y) ̸= ∅ ⇔ Idt1,c(X) ∩ Idt1,c(Y) ̸= ∅,

where t1,c ≜ t1+ c1.
Induction step: Assume that the induction hypothesis holds

for all values 0 ≤
∑d

i=1 ci = t′ where c1 = 0. We prove that
the hypothesis holds for

∑d
i=1 ci +1 = t′ +1, i.e., by adding

an extra hyperplane deletion. Let the extra deletion be an xκ-
deletion and define t′1,c = (t, t+c2, . . . , t+cκ+1, . . . , t+cd).
Assume that there exists an array D such that D ∈ Dd

t′1,c
(X)∩

Dd
t′1,c

(Y). Let k′ = dt+ t′+1, then we defined the arrays Bk′

and Ck′ such that Bk′ ∈ Dd
t1,c(X) and Ck′ ∈ Dd

t1,c(Y). The
rest of the proof follows from the base case, by using k′ instead
of k and therefore is omitted due to space limitations.

By considering the collections of all t(d)-deletion-correcting
codes such that

∑d
i=1 ti = t we have the following corollary.

Corollary 1. A code C ⊆ Σn⊗d

q is a t(d)-deletion-correcting
code if and only if it is a t(d)-insertion-correcting code.

V. INSDEL EQUIVALENCE

So far we have only considered the equivalence between
insertion and deletion correcting codes. In this section we
are going to discuss the equivalence between t(d)-deletion
and t(d)-insdel correcting codes. First, we need the following
claim.

Claim 2. For positive integers m1, . . . ,md, i ∈ [d], a vector
ri = (0, . . . , 0, ri, 0, . . . , 0), and any two arrays X,Y ∈
Σ

⊗d
ℓ=1 mℓ

q it holds that

Dd
ri(X) ∩ Dd

ri(Y) ̸= ∅ ⇔ IDd
ri(X) ∩ IDd

ri(Y) ̸= ∅.

Proof. We only show the “if” part, since the “only if” part
follows by similar arguments. Let D ∈ Dd

ri(X)∩Dd
ri(Y). We

define a consecutive series of projections of an array X along
the axes in a set I ⊆ [d] by PI(X). Let I = [d]\{i}, we have
PI(X),PI(Y) ∈ Σn

qn(d−1) . Since we do not project along
the axis affected by deletions we can transform the (d − 1)-
hyperplane deletions to symbol deletions in PI(X),PI(Y)
by Claim 1. Thus, there exits a PI(D) ∈ D1

ri(PI(X)) ∩
D1

ri(PI(Y)) such that P−1
I (PI(D)) = D. Hence, by [7] there

exists a PI(I) ∈ ID1
ri(PI(X)) ∩ ID1

ri(PI(Y)). According to
Claim 1 it follows that there exists a P−1

I (PI(I)) = I ∈
IDd

ri(X)∩ IDd
ri(Y), since all entries of ri are zero except the

i-th position.

It is important to note that the position of ri within the
vector ri must remain the same for any equivalence. This
means that xi-deletions are only equivalent to xi-insdels and
not to xj-insdels, j ̸= i. We show this idea through a
counterexample for two-dimensional arrays.

Counterexample 1. The equivalence of a (1, 0)-deletion-
correcting code and a (0, 1)-deletion-correcting code does not
hold. To show this, we consider two arrays X,Y ∈ Σ3×3

and assume there exists an array D ∈ Σ2×3 such that
D ∈ D2

1,0(X) ∩ D2
1,0(Y) as follows.

X =

1 1 1
0 1 0
0 1 1

 , Y =

1 0 1
0 1 0
0 0 1

 , D =

1 1
0 0
0 1

 ,

where D is obtained by deleting the second column from X
and Y. Since more than one row of X and Y are different, we
see that D2

0,1(X)∩D2
0,1(Y) = ∅ and therefore the equivalence

does not hold.

Given this result, we show that the insertion/deletion equiva-
lence holds if one fixes a number of insdel for each dimension
to be deleted.

Lemma 3. For positive integers m1, . . . ,md, i ∈ [d], a vector
t = (t1, . . . , td) ∈ Nd, and any two arrays X,Y ∈ Σ

⊗d
ℓ=1 mℓ

q

it holds that,

Dd
t (X) ∩ Dd

t (Y) ̸= ∅ ⇔ IDd
t (X) ∩ IDd

t (Y) ̸= ∅.

Proof. We only show the “only if” part, since the “if” part
follows by similar arguments. Let tins = (tins1 , tins2 , . . . , tinsd)
and tdel = (tdel1 , tdel2 , . . . , tdeld) such that t = tins + tdel.
Assume that there exists an array I ∈ Σ

⊗d
i=1(mi+(tinsi −tdeli))

q

such that I ∈ IDd
t (X) ∩ IDd

t (Y). The order of deletions and
insertions matters here, therefore we define X′ and Y′ to
be the arrays resulting from tdel-deletion, i.e., it holds that
X′ ∈ Dd

tdel(X) and Y′ ∈ Dd
tdel(Y). It then follows that

I ∈ Idtins(X
′) ∩ Idtins(Y

′). By Theorem 4, there exists an

array D ∈ Σ
⊗d

i=1(mi−(tinsi +tdeli))
q such that D ∈ Dd

tins(X
′) ∩

Dd
tins(Y

′) and as a result D ∈ Dd
t (X) ∩ Dd

t (Y).

2022 IEEE International Symposium on Information Theory (ISIT)

758

REFERENCES

[1] R. Heckel, G. Mikutis, and R. N. Grass, “A characterization of the dna
data storage channel,” Scientific reports, vol. 9, no. 1, pp. 1–12, 2019.

[2] T. Buschmann and L. V. Bystrykh, “Levenshtein error-correcting bar-
codes for multiplexed dna sequencing,” BMC Bioinformatics, vol. 14,
no. 1, pp. 1–10, 2013.

[3] A. S. J. Helberg, Coding for the correction of synchronization errors.
PhD thesis, Randse Afrikaanse Universiteit, 1993.

[4] F. Sala, C. Schoeny, N. Bitouzé, and L. Dolecek, “Synchronizing files
from a large number of insertions and deletions,” IEEE Transactions on
Communications, vol. 64, no. 6, pp. 2258–2273, 2016.

[5] Y. M. Chee, H. M. Kiah, A. Vardy, and E. Yaakobi, “Coding for racetrack
memories,” IEEE Transactions on Information Theory, vol. 64, no. 11,
pp. 7094–7112, 2018.

[6] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals,” in Soviet Physics Doklady, vol. 10, pp. 707–710,
1966.

[7] D. Cullina and N. Kiyavash, “An improvement to levenshtein’s upper
bound on the cardinality of deletion correcting codes,” IEEE Transac-
tions on Information Theory, vol. 60, no. 7, pp. 3862–3870, 2014.

[8] R. R. Varshamov and G. M. Tenengolts, “Codes which correct single
asymmetric errors (in Russian),” Automatika i Telemkhanika, vol. 161,
no. 3, pp. 288–292, 1965.

[9] G. M. Tenengolts, “Nonbinary codes, correcting single deletion or
insertion (corresp.),” IEEE Transactions on Information Theory, vol. 30,
no. 5, pp. 766–769, 1984.

[10] V. Guruswami and C. Wang, “Deletion codes in the high-noise and
high-rate regimes,” IEEE Transactions on Information Theory, vol. 63,
pp. 1961–1970, Apr. 2017.

[11] J. Brakensiek, V. Guruswami, and S. Zbarsky, “Efficient low-redundancy
codes for correcting multiple deletions,” IEEE Transactions on Informa-
tion Theory, vol. 64, no. 5, pp. 3403–3410, 2017.

[12] S. K. Hanna and S. El Rouayheb, “Guess & check codes for deletions,
insertions, and synchronization,” IEEE Transactions on Information
Theory, vol. 65, no. 1, pp. 3–15, 2018.

[13] R. Gabrys and F. Sala, “Codes correcting two deletions,” IEEE Trans-
actions on Information Theory, vol. 65, pp. 965–974, Feb 2019.

[14] J. Sima, N. Raviv, and J. Bruck, “Two deletion correcting codes from
indicator vectors,” IEEE Transactions on Information Theory, vol. 66,
no. 4, pp. 2375–2391, 2020.

[15] J. Sima and J. Bruck, “On optimal k-deletion correcting codes,” IEEE
Transactions on Information Theory, vol. 67, no. 6, pp. 3360–3375,
2021.

[16] V. Guruswami and J. Håstad, “Explicit two-deletion codes with redun-
dancy matching the existential bound,” in Proceedings of the 2021 ACM-
SIAM Symposium on Discrete Algorithms (SODA), pp. 21–32, SIAM,
2021.

[17] J. Sima, R. Gabrys, and J. Bruck, “Optimal systematic t-deletion
correcting codes,” IEEE International Symposium on Information Theory
(ISIT), 2020.

[18] A. Krishnamurthy, A. Mazumdar, A. McGregor, and S. Pal, “Trace
reconstruction: Generalized and parametrized,” European Symposium on
Algorithms, September 2019.

[19] S. Bakirtas and E. Erkip, “Database matching under column deletions,”
arXiv preprint arXiv:2105.09616, 2021.

[20] R. Bitar, L. Welter, I. Smagloy, A. Wachter-Zeh, and E. Yaakobi, “Criss-
cross insertion and deletion correcting codes,” IEEE Transactions on
Information Theory, vol. 67, no. 12, pp. 7999–8015, 2021.

[21] Y. M. Chee, M. Hagiwara, and V. Van Khu, “Two dimensional deletion
correcting codes and their applications,” IEEE International Symposium
on Information Theory (ISIT), 2021.

[22] M. Hagiwara, “Conversion method from erasure codes to multi-deletion
error-correcting codes for information in array design,” International
Symposium on Information Theory and Its Applications (ISITA), 2020.

[23] L. Welter, R. Bitar, A. Wachter-Zeh, and E. Yaakobi, “Multiple criss-
cross insertion and deletion correcting codes,” IEEE Transactions on
Information Theory (Early Access), 2022.

2022 IEEE International Symposium on Information Theory (ISIT)

759

