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Abstract—In a Private Inference scenario, a server holds a
model (e.g., a neural network), a user holds data, and the user
wishes to apply the model on her data. The privacy of both parties
must be protected; the user’s data might contain confidential
information, and the server’s model is his intellectual property.

Private inference has been studied extensively in recent years,
mostly from a cryptographic perspective by incorporating homo-
morphic encryption and multiparty computation protocols, which
incur high computational overhead and degrade the accuracy
of the model. In this work we take a perpendicular approach
which draws inspiration from the expansive Private Information
Retrieval literature. We view private inference as the task of
retrieving an inner product of a parameter vector with the data,
a fundamental step in most machine learning models.

By combining binary arithmetic with real-valued one, we
present a scheme which enables the retrieval of the inner product
for models whose weights are either binarized, or given in fixed-
point representation; such models gained increased attention
recently, due to their ease of implementation and increased
robustness. We also present a fundamental trade-off between
the privacy of the user and that of the server, and show that
our scheme is optimal in this sense. Our scheme is simple,
universal to a large family of models, provides clear information-
theoretic guarantees to both parties with zero accuracy loss, and
in addition, is compatible with continuous data distributions and
allows infinite precision.

Index Terms—Private inference, Private computation, Private
information retrieval.

I. INTRODUCTION

Loss of privacy in the information age raises various
concerns, ranging from mental health issues to the future
of democracy [2]. Individual users must choose between
surrendering their personal data to service providers, or be
left without the ability to perform basic day-to-day activities.
On the other hand, training machine learning models is a
laborious task which requires knowledge and resources. As
such, the models themselves are the intellectual property of
their owners, and should be kept private as well.

One such setting in which privacy is a concern is the infer-
ence phase of the machine learning pipeline. In this setting, a
server (e.g., a service provider) holds an already-trained model
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(e.g., a neural network, a logistic/linear regression model, a
linear classifier, etc.), and offers the use of this model to users
in exchange for a fee. A user that wishes to make use of
the model exchanges information with the server in order to
facilitate the inference of the model on her input. A private
inference protocol is one which this exchange of information
provides some privacy guarantees for both parties.

Private inference has been studied extensively in recent
years, mostly from a cryptographic perspective, by using
primitives such as homomorphic encryption [6, 9] and mul-
tiparty computing [14, 18]. Each of these techniques has
its limitations, such as high overhead for non-polynomial
functions, degraded accuracy, multiple rounds, model structure
which must be public, etc., see [1] for a thorough review on
the topic. In this paper we take a perpendicular direction and
develop an information-theoretic approach to private inference.
Among the benefits of the latter over the former are resilience
against computationally unbounded adversaries, clear privacy
guarantees, simplicity, and compatibility with infinite precision
computations, as delineated next.

Our approach begins with the simple observation that
computation in most machine-learning models relies on first
extracting one or more signals from the data, i.e., values
of the form wxᵀ, where w is a vector of weights associ-
ated with the model, x is a vector of features, and both
vectors are usually real-valued. This is the case in linear
classification (sign(xwᵀ)), linear regression (xwᵀ), logistic
regression ( 1

1+exp(−xwᵀ) ), neural networks with sign,ReLU,
or any sigmoid activation functions, and many more.

Next, in order to provide clear information-theoretic guar-
antees, specifically from the server’s side, we leverage the
recently popularized notion of binarized (or more generally,
quantized) models. It has been shown that by restricting the
values of w to ±1, one can obtain significant gains in terms
of the simplicity of implementation [13], as well as in terms
of resilience against adversarial perturbations [5, 15, 17],
while keeping the models efficiently trainable [10]. From the
user’s side, we consider the data distribution to be continuous,
and provide privacy guarantees in terms of the dimension
on which the server knows the data; an explanation for this
approach is given in the sequel using the theory of independent
components [11].

Finally, we note that our approach draws inspiration from
the vast private information retrieval (PIR) literature. In PIR,
a user wishes to retrieve an entry from a distributed dataset,
while keeping the identity of that entry private from (po-
tentially) colluding servers (note the inverted role of “user”
and “server” here with respect to our work). Retrieving an
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entry xi from a dataset x = (x1, . . . , xn) while keeping i
private can be seen as retrieving xeᵀi , where ei is the i’th unit
vector that must remain private. A natural generalization is to
retrieve xwᵀ, rather than xeᵀi , for some weight vector w that
must remain private. In this generalization—often referred to
as private computation [16, 20]—the inner product xwᵀ is
computed over a finite field, unlike private inference. Another
discernible difference is that PIR almost exclusively1 discusses
one user and multiple servers, among which collusion is
restricted in some way. This is usually not the case in private
inference settings, as both the server and the user are cohesive
entities.

This paper is structured as follows. Preliminaries and prob-
lem setup are given in Section II, which includes a discussion
about the privacy measures and a reduction from binarized
weights to fixed-points ones. Our scheme for private inference
is given in Section III. A tradeoff between the privacy of the
server and that of the user is given in Section IV, under the
assumption of polynomial decoding. In Section IV we also
provide a simple lower bound on the communication of the
protocol, which shows the optimality of the scheme introduced
in Section III both in terms of the communication and the
privacy guarantees.

II. PRELIMINARIES AND PROBLEM STATEMENT

The problem is introduced for the case of a weight vector w
with ±1 entries; this case is of particular interest for binarized
models, that are prominent tool in machine learning as stated
above. In the sequel it is shown that the case in which the
entries of w are given in fixed-point representation can be
reduced to the case where they are ±1 with a relatively small
loss of privacy. Hence, we focus on ±1 valued w throughout.

A. Problem statement
A server holds a weight vector w ∈ {±1}n, randomly

chosen from W = Unif({±1}n), and a user holds a data
vector x ∈ Rn, randomly chosen from a continuous data
distribution X . The end goal is for the server to retrieve wxᵀ

(computed over R), while guaranteeing some level of privacy
to both parties, defined shortly. Following the computation
of wxᵀ, the server feeds the result into some pre-trained
model m to obtain the inference m(wxᵀ), which is then
sent to back to the user. In what follows we focus on the
retrieval of wxᵀ and its associated privacy; the remaining
parts of the inference (such as weights in inner layers in
a neural network), insofar as they are independent of w,
remain perfectly private. Note that due to the disclosure
of m(wxᵀ) to the user, some privacy loss is unavoidable,
regardless of the privacy guarantees. For instance, the user
may repeatedly query multiple vectors {xi}Ni=1, collect their
inferences {m(wxᵀ

i )}Ni=1 by following the protocol N times,
and then train a model similar to m. Such minimal N is known
as sample complexity, see e.g. [19].

The modeling of the weight vector as a uniform random
variable reflects the lack of knowledge the user has about it.

1Single-server PIR schemes have very recently been studied [8, 12], yet
still in the finite field case.

Public medium

x1 ∼ X

x2 ∼ X

x3 ∼ X

Server
A1

A2

A3

q ∼ Q

w ∼ W

Ai ⇒ wxᵀ
i ⇒ m

m(wxᵀ
1)

m(wxᵀ
2)

m(wxᵀ
3)

User

User

User

User

x ∼ X

Server

w ∼ W

q ∼ Q

A

m(wxᵀ) A ⇒ wxᵀ ⇒ m

Fig. 1. An illustration of the information-theoretic private inference problem.
(top) in a two-party setting, a server holds a weight vector w ∼ W and
a user holds data x ∼ X . The server sends a query q to the user, which
replies with an answer A. This answer is used by the server to extract wxᵀ,
which is then fed into a model m. The inference m(wxᵀ) is sent back to
the user. (bottom) Our scheme can also be used in a multi-user single-server
case, where each user has her own data xi ∼ X . The query q is published
in a public medium, from which it is downloaded by the users. The protocol
then proceeds as in the single-user single-server case. The privacy guarantees
from the two-party setting remain.

Modeling the data as taken from a distribution is a common
practice in machine learning; while it is normally assumed that
the data distribution X is not known (e.g., in PAC learning),
here we make the more restrictive assumption that the server
knows X , and yet the scheme is compatible with any such X .
Inspired by the PIR literature, we focus on protocols of the
query-answer form, as follows.

1) The server sends to the user a query q ∈ {±1}d
for some d, randomly chosen from a distribution Q;
this distribution is a deterministic function of W ,
i.e., H(Q|W ) = 0, where H is the entropy function.

2) The user computes ` vectors v1, . . . ,v` ∈ Rn determin-
istically from q, and sends an answer A = {vix

ᵀ}`i=1 to
the server.

3) The user combines the elements {vix
ᵀ}`i=1 to retrieve

the value wxᵀ. To prove a lower bound in the sequel, it
is additionally assumed that this part of the protocol is
done by using a polynomial whose coefficients depend
only on Q, and not on X .

We note that the structure of the problem allows the server to
send the same query q to all future users. This way, the server
may post q in some public forum (e.g., the server’s website)
and save all future communication with users interested in
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inference. The upcoming information theoretic analysis guar-
antees that q can be publicly available indefinitely, while the
privacy of w remains protected against any computational
power that exists or may exist in the future (up to the inevitable
learning attack mentioned earlier). These two interpretation of
the problem are illustrated in Fig. 1. The merit of a given
protocol is measured by the following quantities.
• Publication cost, i.e., the number of bits d published by

the server. Notice that this number might change as a
function of the value of Q; finding the optimal expected
value of d is a source coding problem, and this value is
lower bounded by H(Q) according to a famous theorem
by Shannon [4, Th. 5.3.1].

• Server-privacy, measured by the mutual informa-
tion I(Q;W ).

• User-privacy, measured by the dimension of the sub-
space on which x is revealed, i.e., the parameter2 `.

A justification for the latter measure for privacy as a figure
of merit is given shortly by using the independent components
of X . Note that mutual information is largely of no use in this
case, since for most reasonable continuous data distributions
the entropy in infinite.

Naturally, the quantities d, I(Q;W ), and ` should be simul-
taneously minimized. However, it will be shown in the sequel
that I(Q;W ) + ` is bounded from below. Hence, one wishes
to attain this lower bound with equality, while minimizing the
publication cost d as much as possible.

Remark 1. For a fully comprehensive analysis of the commu-
nication of the protocol, one should include ` as upload cost.
However, it will be clear in the sequel (e.g., Example 2) that
usually `� d, and hence it can be neglected. More precisely,
our protocol supports infinite precision, and hence the de-facto
upload cost depends on the required precision level, chosen
by the system designer. In reality, real numbers are normally
presented in fixed or floating point notation, which require
a constant number of bits. This would bring the upload cost
to O(`), which can still be neglected if `� d.

B. From binary weights to fixed-point weights

In this section it is shown that a protocol for the above
problem can also be employed in settings where weights are
quantized in fixed-point representation rather than in binary
form. Consider w ∈ Rn in which each entry wi is represented
using m bits. That is, w can be seen as a matrix in {±1}m×n,
in which the i’th column is the fixed point representation of wi,
namely, wi =

∑m
j=1

1−wi,j

2 · 2j−1. For example, the matrix 1 −1 −1 1
−1 1 −1 −1
1 1 1 −1

 (1)

corresponds to the weight vector

w =
(
21, 20, 20 + 21, 21 + 22

)
= (2, 1, 3, 6).

2More precisely, the parameter dim span{vi}`i=1, but for simplicity of
presentation we consider the worst-case assumption, i.e., that the vectors vi

are independent.

Notice that the choice of 2 as the basis of the representation, as
well as the range of exponents {0, 1, . . . ,m−1}, are arbitrary.

To see that a protocol for binary valued weight vectors can
be used for fixed point ones, we follow several straightforward
computation steps, which are omitted, and get

wxᵀ =
2m − 1

2

n∑
i=1

xi −
m∑
j=1

2j−2w̃jx
ᵀ, (2)

where w̃j = (wj,1, . . . , wj,n). Eq. (2) implies that given black-
box access to a protocol A(x,u) for retrieving uxᵀ for x ∈ Rn

and u ∈ {±1}n, one can use it as follows:
1) The server and the user execute A(x, w̃j) for every j ∈

[m] to retrieve {w̃jx
ᵀ}mj=1.

2) The user sends
∑n

i=1 xi to the server.
3) The server linearly combines

∑n
i=1 xi and {w̃jx

ᵀ}mj=1

as in (2) to retrieve wxᵀ.
It is readily verified that the server-privacy guarantees of the
algorithm A are maintained for each w̃j , and that if the server
learns x on an `-dimensional subspace in each execution of A,
then in the above protocol the server learns x on a subspace
of dimension at most m`+ 1. Therefore, in the remainder of
the paper we focus on {±1}-valued weight vectors.

C. Privacy for continuous data distribution using independent
components

As shown in the sequel, there exists an unavoidable tradeoff
between user- and server-privacy. On the one hand, since
the distributions W and Q are discrete, the mutual infor-
mation I(W ;Q) quantifies the server-privacy well. On the
other hand, since data is often continuous, the mutual informa-
tion I(X;A) is infinite in most cases. Quantifying user-privacy
using the parameter ` can be interpreted by considering the
independent components of the data distribution X .

It is a common practice in the literature [3, 11] to model
the data distribution X as a summation X =

∑c
i=1 Yisi,

where the si’s are fixed linearly independent vectors in Rn,
and the Yi’s are mutually independent random variables in R.
In a sense, the variables Yi are the degrees of freedom of the
data distribution, and thus can be used to quantify lost privacy
as follows.

Assume that the independent components {si}ci=1 of X
are known to both the server and the user. Additionally,
recall that the computation of the vectors {vi}`i=1 from the
query q is deterministic, and hence these are also known to
both the server and the user. From the perspective of the
server, receiving {vix

ᵀ}`i=1 effectively reduces the number
of independent components of X from c to at least c− `. We
illustrate this via an example.

Example 1. Assume that X has c = 3 independent compo-
nents, i.e., X = Y1s1 + Y2s2 + Y3s3, for some Yi’s and si’s.
Suppose that ` = 2, i.e., the server receives the values

v1x
ᵀ = y1v1s

ᵀ
1 + y2v1s

ᵀ
2 + y3v1s

ᵀ
3 , λ1

v2x
ᵀ = y1v2s

ᵀ
1 + y2v2s

ᵀ
2 + y3v2s

ᵀ
3 , λ2. (3)
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For some yi ∼ Yi, i ∈ [3]. Therefore, in the worst-case the
matrix of coefficients in (3) is of full-rank, and the server may
infer that (y1, y2, y3) lie in a subspace of degree c − ` = 1.
Namely, from the server’s perspective, the data distribution X
has been reduced to c− ` = 1 independent components, that
remain unknown.

Therefore, the parameter ` quantifies the loss of privacy
from the continuous data distribution X . Note that one must
choose the parameter ` while considering the number of
independent components c in the data distribution, rather than
the dimension of the feature space n.

III. OUR PROTOCOL

In what follows let F2 be the binary field in its {±1}
representation, i.e., −1 represents the Boolean “one”, and 1
represents the Boolean “zero”. To prevent ambiguity be-
tween F2-operations and R-operations we use ⊕,� for the
former, and +, · for the latter, as well as SpanR and SpanF2

whenever relevant.
For a privacy parameter t ∈ [n] let L ∈ {±1}t×t be an

invertible matrix over R, and let S = {S1, . . . , St} be a
partition of [n] (i.e., Si ∩Sj = ∅ for every i 6= j, Si 6= ∅ for
all i, and ∪iSi = [n]). We assume that L and S are known
to all for every t; further details regarding this assumption are
given in Remark 2 below. For a given partition S let V =
V (S) = SpanF2

{1Si}ti=1, where (1Si)j = −1 if j ∈ Si,
and 1 otherwise. In addition, let M = M(V ) ∈ F(n−t)×n

2 be
a Boolean parity-check matrix for V , i.e., V = {x ∈ Fn

2 |M �
xᵀ = 1} (1 being the zero vector in Fn−t

2 ), and let B(A,b)
be any deterministic algorithm that finds a solution x to the
equation A�xᵀ = b over F2; the algorithm B is assumed to
be known to all as well. Our protocol proceeds as follows.

1) The server:
a) Publishes qᵀ ,M �wᵀ ∈ Fn−t

2 .
b) Defines u , B(M,q), and keeps it private.
c) Finds the unique `1, . . . , `t ∈ {±1} such that u =

w⊕
⊕t

r=1(`r � 1Sr
), and keeps them private as well.

These `i’s exist since M � uᵀ = M � wᵀ, and
therefore u ∈ V ⊕w = SpanF2

{1Si}ti=1 ⊕w.
2) The user:

a) Defines u , B(M,q). This is the same vector u that
is found above by the server since B is deterministic.

b) Defines vi = u ⊕
⊕t

r=1 [Li,r � 1Sr ] for each i ∈ [t].
The vectors {

⊕t
r=1 [Li,r � 1Sr

]}ti=1 can be computed
in a pre-processing step since they depend exclusively
on S and L, and do not depend on w nor on x.

c) Sends A = {vix
ᵀ}ti=1 to the server (the vix

ᵀ’s are
computed over R).

To retrieve wxᵀ, observe that

vi = u⊕
t⊕

r=1

[Li,r � 1Sr
]

= w ⊕

[
t⊕

r=1

`j � 1Sr

]
⊕

[
t⊕

r=1

Li,r � 1Sr

]

= w ⊕
t⊕

r=1

[(`r ⊕ Li,r)� 1Sr
] . (4)

Since the ±1 representation of F2 is used, the ⊕ operation
between F2 elements is identical to the · operation over R
(i.e., x ⊕ y = x · y for every x, y ∈ {±1}). Therefore, (4)
implies that vi,j = wj`rLi,r for every j ∈ [n], where vi,j is
the j’th element of vi, and where r ∈ [t] is the unique integer
such that j ∈ Sr; this integer is unique since S is a partition.
Hence,

vix
ᵀ =

n∑
j=1

vi,jxi =

t∑
r=1

∑
j∈Sr

xjwj`rLi,r

=

t∑
r=1

`rLi,r

∑
j∈Sr

xjwj ,

and therefore the following R-linear equation system holds.

v1x
ᵀ

...
vtx

ᵀ

 =

L1,1 · · · L1,t

...
. . .

...
Lt,1 . . . Lt,t


`1 . . .

`t




∑
j∈S1

xjwj

...∑
j∈St

xjwj


Therefore, the final step of the protocol is as follows.

3) The server computes

1·

`1 . . .
`t

 · L−1 ·
v1x

ᵀ

...
vtx

ᵀ

 =

t∑
i=1

∑
j∈Si

xjwj

=

n∑
i=1

xiwi = wxᵀ. (5)

Theorem 1. For any t ∈ [n], the above scheme has publication
cost n − t, server-privacy I(Q;W ) = n − t, and user-
privacy ` = t.

Proof. The claims regarding user-privacy and publication cost
are immediate from the definitions; a discussion about how to
disclose the partition S and the invertible matrix L without
increasing the publication cost is given shortly. It remains to
show that I(Q;W ) = n − t. Since I(Q;W ) = H(W ) −
H(W |Q) = n−H(W |Q), it suffices to show that H(W |Q) =
t. Notice that disclosing Q = q reveals the identity of the coset
of V in which w resides. Since w is uniformly distributed
over {±1}n, and since cosets of V are of size 2t, it follows
that W |Q = q is uniform over a set of size 2t, and hence
H(W |Q = q) = t. This implies that H(W |Q) = t by a
straightforward computation.

Remark 2. Since the matrix L and the partition S =
{S1, . . . , St} do not depend on w nor on x, they can be
assumed public, and discarded from the publication cost. This,
however, requires deterministic protocols by which the user
and the server can agree on L and S without communicating.
The partition S can simply be determined as S1 being the
first bn/tc elements, S2 being the next bn/tc elements, and
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so on, where St is the last bn/tc + n mod t elements. The
matrix L can be computed from the Sylvester construction of
a Hadamard matrix; this is a simple deterministic construction
of a {±1}-matrix H of size 2m × 2m that satisfies HHᵀ =
2mI , and hence it is invertible over R. Specifically, Let m be
the smallest integer such that t ≤ 2m, and construct a 2m×2m
matrix H by the Sylvester construction. Then, since H is
invertible over R, its first t rows are linearly independent
over R, and hence must have a t×t invertible submatrix. Both
the server and the user define L as the first t × t invertible
submatrix—in lexicographic order—of the first t rows of H .

Example 2. To illustrate the applicability of the above scheme,
consider a dataset of the order of magnitude of MNIST,
say n = 1000 continuous features, that is classified by a neural
network with 10 binarized neurons in its first layer. Iterate
the above protocol with privacy parameter t = 10 for each
weight vector Wi i ∈ [10]. The guarantee I(Q;Wi) = n − t
implies that from the perspective of the user, each wi has 210

equiprobable values. Assuming independence, this leaves 2100

equiprobable values for the first-layer weights of the network,
and the remaining inner layers of the network remain perfectly
concealed. From the perspective of the server, x is revealed on
a subspace of dimension at most 100; if X has c independent
component (see Section II-C), this leaves max{c − 100, 0}
degrees of uncertainty from the perspective of the server. The
overall publication cost is 10 · (n − t) = 9900 bits, and the
upload cost, which is negligible, is 10t = 100 real values.

IV. FUNDAMENTAL PRIVACY TRADEOFF, AND
PUBLICATION COST LOWER BOUND

Clearly, one wishes to minimize both I(Q;W ) and ` in
order to guarantee maximum privacy for both parties. In this
section we show that both quantities cannot be minimized
simultaneously, and their sum is bounded from below. The
above scheme attains this lower bound, and is therefore
optimal in this sense. Then, we derive a simple lower bound
on the publication cost, and show that the scheme is optimal
in this sense as well. The proof of the former bound requires
the following simple lemma.

Lemma 1. [7] For an R-subspace S of dimension ` we have
that |S ∩ {±1}n| ≤ 2`.

Proof. Let S be an `-dimensional R-subspace, and let M ∈
R`×n be a matrix whose row-span is S. Since M has a reduced
row-echelon form, it follows that S can be written as S =
{(v, L(v))|v ∈ R`} (up to a permutation of entries) for some
linear transform L : R` → Rn−`. It follows that

S ∩ {±1}n = {(v, L(v))|v ∈ {±1}` and L(v) ∈ {±1}n−`}

which readily implies that |S ∩ {±1}n| ≤ |{(v, L(v))|v ∈
{±1}`}| = 2`.

The following theorem assumes that the decoding at the
server’s side is done using a polynomial. That is, there exists
a polynomial fQ, which depends only on Q, such that xwᵀ =
fQ(xv

ᵀ
1 , . . . ,xv

ᵀ
` ) for every x.

Theorem 2. I(W ;Q) + ` ≥ n.

Proof. Since I(W ;Q) = H(W )−H(W |Q) = n−H(W |Q),
it suffices to show that H(W |Q) ≤ `. First, observe that since
the vectors vi are a deterministic function of Q, it follows
that H(W |Q) = H(W, {vi}`i=1|Q). Second, we assume
polynomial decoding, i.e., that there exists fQ : R` → R
such that xwᵀ = fQ(xv

ᵀ
1 , . . . ,xv

ᵀ
` ). Since the scheme must

be valid for any data distribution, it must be valid for every x.
That is, the polynomial fQ(xv

ᵀ
1 , . . . ,xv

ᵀ
` )− xwᵀ, seen as a

polynomial in the n variables x1, . . . , xn, must be the zero
polynomial.

Denote fQ(y1, . . . , y`) =
∑

d∈N` fdy
d, where yd =

yd1
1 · · · y

d`

` , and fd ∈ R for every d. It follows that for
each i ∈ [n], the coefficient of xi in fQ(xv

ᵀ
1 , . . . ,xv

ᵀ
` ) −

xwᵀ is
∑`

r=1 fer
vr,i − wi, where ei is the i’th unit vec-

tor of length `. Setting these coefficients to zero yields
the linear equation

∑`
r=1 fervr = w, and therefore w ∈

SpanR{vi}`i=1.
Now, for q ∈ Supp(Q), we bound the support size of the

random variable W, {vi}`i=1|Q = q from above. Since any w
in this support is in the R-span of the vectors v1, . . . ,v`, it
follows that the size of this support cannot be larger than the
maximum possible number of {±1}n vectors in an R-subspace
of dimension `. Formally, it is readily verified that

|Supp(W, {vi}`i=1|Q = q)| ≤ max
S| dimR(S)=`

|S ∩ {±1}n|.

Lemma 1 implies that maxS| dimR(S)=` |S ∩ {±1}n| ≤ 2`,
and hence the entropy H(W, {vi}`i=1|Q = q) cannot be
larger than that of H(Unif([2`])), which is ` ([4, Thm. 2.6.4]).
Therefore,

H(W |Q) = H(W, {vi}`i=1|Q)

=
∑

q∈Supp(Q)

Pr(Q = q)H(W, {vi}`i=1|Q = q)

≤ ` ·
∑

q∈Supp(Q)

Pr(Q = q) = `.

We now turn to provide a lower bound on the publication
cost d. As mentioned in the problem definition, the number d
of published bits is in fact a random variable that depends
on the value of Q. Therefore, the problem of minimizing
the expected value of d is a source coding problem, and
the expected value of d is lower bounded by H(Q). Recall
that I(Q;W ) ≥ n − ` by Theorem 2. Therefore, by the
symmetry of mutual information, we have

I(W ;Q) = H(Q)−H(Q|W ) ≥ n− `,
and hence H(Q) is lower bounded by n− `. This implies that
the expected publication cost is also bounded by n− `. This,
alongside Theorem 2, implies the optimality of our scheme.

Corollary 1. The scheme in Section III is optimal both in
its privacy guarantees and its publication cost. In addition,
the scheme allows infinite precision in retrieving xwᵀ (theo-
retically, up to numerical errors that might arise, say, in the
inversion of L in (5)), and hence incurs zero accuracy loss in
applying the server’s model.
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