
Covering Sequences for `-Tuples
Sagi Marcovich

Dept. of Computer Science
Technion-Israel Institute of Technology

Haifa 3200003, Israel
Email: sagimar@cs.technion.ac.il

Tuvi Etzion
Dept. of Computer Science

Technion-Israel Institute of Technology
Haifa 3200003, Israel

Email: etzion@cs.technion.ac.il

Eitan Yaakobi
Dept. of Computer Science

Technion-Israel Institute of Technology
Haifa 3200003, Israel

Email: yaakobi@cs.technion.ac.il

Abstract—de Bruijn sequences of order `, i.e., sequences that
contain each `-tuple as a window exactly once, have found many
diverse applications in information theory and most recently in
DNA storage. This family of binary sequences has asymptotic
rate of 1/2. To overcome this low rate, we study `-tuples covering
sequences, which impose that each `-tuple appears at least once
as a window in the sequence. The cardinality of this family of
sequences is analyzed while assuming that ` is a function of the
sequence length n. Lower and upper bounds on the asymptotic
rate of this family are given. Moreover, we study an upper bound
for ` such that the redundancy of the set of `-tuples covering
sequences is at most a single symbol. We present an efficient
encoding and decoding schemes for `-tuples covering sequences
that meet this bound.

I. INTRODUCTION

The binary de Bruijn graph of order `, G`, was introduced
in 1946 by de Bruijn [2]. His target in introducing this graph
was to find a recursive method to enumerate the number of
cyclic binary sequences of length 2` such that each `-tuple
appears as a window exactly once in each sequence. These
sequences were later called de Bruijn sequences. These results
were later generalized in [20] for any alphabet of finite size q,
using a q-ary generalization of the de Bruijn graph of order `,
Gq,`.

The vertices of Gq,` are the q-ary (` − 1)-tuples, and its
edges correspond to the q-ary `-tuples. There is an edge u→ v
if v can be obtained from u by shifting one entry left and ap-
pending a symbol. Eulerian cycles in de Bruijn graphs, i.e.,
cycles that visit all the edges of Gq,` exactly once, are called
de Bruijn cycles. It was proved that the number of de Bruijn
cycles in Gq,` is (q!)q`−1

/q` [20].
Each de Bruijn cycle induces a single (cyclic) de Bruijn

sequence of length q`, by picking any edge in the cycle as
a starting point, considering its first entry and appending the
first entry of each consecutive edge in the cycle. All sequences
that can be generated in this way are considered as the same
sequence. Contrary to this, each de Bruijn cycle induces q`
distinct acyclic de Bruijn sequences, i.e., sequences of length
q` + `− 1 that contain each `-tuple as a window exactly once,
using a similar method with the exception of appending the
(`− 1)-suffix of the last edge as well; each sequence corre-
sponds to a choice of different starting edge from Gq,`. Hence,
the number of such acyclic de Bruijn sequences is (q!)q`−1

and
their asymptotic rate is logq(q!)/q (equals 1/2 for q = 2).
One of the first applications of the de Bruijn graph was in the
introduction of shift-register sequences and linear feedback
shift registers [10]. Throughout the years, an extensive num-
ber of papers have studied the de Bruijn sequences and their
applications, several of those include [3], [5], [7], [8], [12],
[15], [17]. Most recently, DNA storage has brought fresh in-
terest to this family of sequences; for more information on
such applications the reader is referred to [1], [11], [19].

This paper studies a novel generalization of de Bruijn se-
quences (for the rest of this paper we refer only to acyclic
sequences). We say that a sequence is an `-tuples covering
sequence if it contains each q-ary `-tuple as a window at least
once. This work follows recent generalizations of de Bruijn se-
quences that proposed unique variations regarding the appear-
ances of `-tuples in the sequence: `-repeat free sequences [6],
[9] require each `-tuple to appear at most once, (b, `)-locally-
constrained de Bruijn sequences [4] require each `-tuple to
appear at most once in every window of length b, and (`,µ)-
balanced de Bruijn sequences [14] require each `-tuple to ap-
pear exactly µ times in the sequence.

Notice that for sequences of length q` + `− 1, all `-tuples
covering sequences are simply the de Bruijn sequences de-
duced from the de Bruijn graph Gq,`; as a result, their
asymptotic rate is logq(q!)/q. Our main goal is to efficiently
construct codes of `-tuples covering sequences with higher
rates (specifically larger than 1/2 for binary sequences) and
fixed number of redundancy symbols. We study the cardi-
nality for the set of `-tuples covering sequences and present
lower bounds on its asymptotic rate for various values of `.
Additionally, we present an upper bound for ` such that the
redundancy of a set of `-tuples covering sequences is at most
one symbol. Later, we present an encoding algorithm for the
set of binary `-tuples covering sequences that uses a single
redundancy bit and meets this bound on `. Finally, we use a
generalization of de Bruijn graph to develop an upper bound
for the cardinality of this set of sequences.

Another interesting family of sequences is introduced as a
building block to our analysis of `-tuples covering sequences.
For some `-tuple v, we say that a sequence is a v-avoiding
sequence if it does not contain v as a window. Note that if v is
the all-zero `-tuple, then this family of sequences is known as
RLL sequences and was studied before, for example in [13],
[18]. We study this family of sequences for any `-tuple v.

The rest of this paper is organized as follows. In Section II
we formally define the families of sequences studied in this
paper and review several previous results. In Section III, we
study the family of v-avoiding sequences for any `-tuple v.
Based on these results, in Section IV we analyze the cardi-
nality of `-tuples covering sequences and present an encoding
scheme for q = 2 which uses a single redundancy bit. Due to
the lack of space, some of the proofs in this paper are omitted.

II. DEFINITIONS AND PRELIMINARIES

For two integers i, k ∈ N such that i 6 k we denote by [i, k]
the set {i, . . . , k} and use [k] as a shorthand for [0, k− 1]. We
use the notation Σq = {0, 1, . . . , q − 1} as the alphabet of
finite size q. For simplicity, when q = 2, we omit the param-
eter q from this notation and similar ones.

Let n ∈ N and let w = (w0, . . . , wn−1) ∈ Σn
q de-

note a sequence of length n. For two positive integers i

2022 IEEE International Symposium on Information Theory (ISIT)

978-1-6654-2159-1/22/$31.00 ©2022 IEEE 43

and k such that i + k − 1 6 n, let wi,k denote the sub-
string (wi , . . . , wi+k−1). Additionally, let Prefk(w) , w0,k,
Suffk(w) , wn−k,k denote the k-prefix, k-suffix of w, re-
spectively. The notation w ◦ v is the concatenation of w and
another sequence v, and wi denotes the concatenation of w i
times, i.e., wi = w ◦wi−1. Finally, the redundancy of a set
A ⊆ Σn

q is defined as red(A) , n− logq |A|.

Definition 1. The `-th order q-ary de Bruijn graph Gq,` is the
digraph (V, E), where V = Σ`−1

q and

E = {((s0, s1, . . . , s`−2), (s1, s2, . . . , s`−1)) | si ∈ Σq}.

Note that the edges of Gq,` correspond to the set of q-ary
`-tuples, Σ`

q.

Definition 2. Let ` > 1 be an integer and n = q` + `− 1. A
sequence s ∈ Σn

q is called a de Bruijn sequence of order ` if s
contains each q-ary `-tuple as a window exactly once.

Let Sq(`) denote the set of q-ary de Bruijn sequences of
order `. The connection between Eulerian cycles in Gq,` to de
Bruijn sequences is as follows. In order to generate a sequence
from a cycle, we pick any edge in the cycle and set its first
entry as the start of the sequence. Then, we append to the
sequence the first entry of each consecutive edge in the cycle.
Finally, we append the (`− 1)-suffix of the last edge of the
cycle to form the whole sequence. Note that since each edge
of Gq,` can be picked as the first edge of the Eulerian cycle,
a single cycle generates q` unique de Bruijn sequences.

Example 1. Let q = 2, ` = 3, n = 10. The sequence
s = 0001011100 is a de Bruijn sequence. s can be
generated from Gq,` using the Eulerian cycle

00 000→ 00 001→ 01 010→ 10 101→ 01 011→ 11 111→ 11 110→ 10 100→ 00.

Recall that the number of de Bruijn cycles in Gq,` is
(q!)q`−1

/q`. Since each de Bruijn cycle generates q` unique
de Bruijn sequences of length q` + ` − 1, it follows that
|Sq(`)| = (q!)q`−1

. Therefore, the asymptotic rate of Sq(`)
is

lim sup
`→∞

logq |Sq(`)|
q` + `− 1

=
logq(q!)

q
.

Note that when q = 2, this asymptotic rate equals 1/2. How-
ever, for q→ ∞, it approaches 1.

Next, we introduce the main family of sequences that is
discussed in this paper.

Definition 3. Let n, ` be integers. A sequence w ∈ Σn
q is called

an `-tuples covering sequence if w contains each q-ary `-tuple
as a window at least once, i.e., for each v ∈ Σ`

q, there exists
i ∈ [n− `+ 1] such that wi,` = v.

Example 2. Let q = 2, ` = 3, n = 13. The sequence w1 =
0001001110101 is an `-tuples covering sequence. However,
the sequence w2 = 1001001110101 is not an `-tuples cover-
ing sequence, since it does not contain the 3-tuple 000.

We denote the set of all q-ary `-tuples covering sequence
over Σn

q by Rq(n, `) and notate the size of such code by

rq(n, `) , |Rq(n, `)|. For a window length that is a func-
tion of n, that is ` = f (n), we denote the asymptotic rate of
Rq(n, f (n)) by

Rq(`) , lim sup
n→∞

logq rq(n, f (n))

n
.

Note the following connection between `-tuples covering se-
quences and de Bruijn sequences; if n = q` + `− 1, then the
set Rq(n, `) is exactly the set of de Bruijn sequences Sq(`).
Therefore, Rq(`) = logq(q!)/q in this case. In Section IV we
study the cardinality of Rq(n, `) for various sizes of `, i.e.,
for various functions f (n). Moreover, we present an encoding
algorithm for q = 2 that uses a single redundancy bit.

III. v-AVOIDING SEQUENCES

In this section, we present the auxiliary family of v-avoiding
sequences that is used later in our analysis of `-tuples covering
sequences in Section IV.

Definition 4. Let ` be an integer and v ∈ Σ`
q a fixed `-tuple.

The set of v-avoiding sequences over Σn
q , denoted byAq(n, v)

contains all q-ary sequences of length n that do not contain v
as a window. Namely,

Aq(n, v) = {w ∈ Σn
q | ∀i ∈ [n− `+ 1], wi,` 6= v}

For a given `-tuple v, we notate the size of this code by
aq(n, v) , |Aq(n, v)|. Note that for v = 0`, this family of
sequences is the family of (0, `− 1)-RLL sequences [18] (for
integers d, k, a (d, k)-RLL sequence satisfies that the num-
ber of zeros between two consecutive ones is in the range
[d, k]). These sequences were studied extensively in [13] for
different functions ` = f (n).

We are motivated to study this family of sequences due to
the following connection to the family of `-tuples covering
sequences; a sequence s is an `-tuples covering sequence if
and only if for every v ∈ Σ`

q, s is not a v-avoiding sequence.
This connection will be utilized later in order to encode and
analyze the cardinality of Rq(n, `).

First, we give an upper bound for aq(n, v) for any v ∈ Σ`
q

in order to use it later to estimate the cardinality of Rq(n, `).

Lemma 5. Let n, ` be positive integers such that ` 6 n, and let
v ∈ Σ` be any `-tuple. Then,

aq(n, v) 6 q
n−c1

n−2`
q` ,

where c1 =
(q−1)2 logq e

4q2 (e is the base of the natural logarithm).

Next, we focus on binary sequences, i.e., q = 2, and present
a v-avoiding sequences compression algorithm for any v of
length ` 6 log n− 6 and n large enough. The algorithm re-
ceives a v-avoiding sequence of length n and outputs a unique
unconstrained sequence of length n − 1. Clearly, this algo-
rithm can be used for any `′ < ` by padding v to size `
and continuing regularly; hence we assume from now on that
` = log n− 6. This compression algorithm will be utilized in
Section IV to encode binary `-tuples covering sequences.

First, we present some useful notations. For a sequence
s ∈ Σn, let p(s) denote its period, that is, the smallest posi-
tive integer that satisfies si = si+p(s) for every i ∈ [n− p(s)].
For every v ∈ Σ`, we denote two functions,

f1(v) = v ◦ (1− v|v| mod p(v))

2022 IEEE International Symposium on Information Theory (ISIT)

44

f2(v) = Prefb|v|/2c+3(v) ◦ f1(Suffd|v|/2e−3(v)).

Note that both functions append a single bit to v. We have the
following lemma,

Lemma 6. For every v ∈ Σ`, p(f1(v)) > d(`+ 1)/2e.

We say that a sequence has a long period if its period is at least
half its length, i.e., p(v) > d|v|/2e. Hence, from Lemma 6,
for every v ∈ Σ`, f1(v) has a long period, and f2(v) satisfies
that its (d`/2e − 2)-suffix has a long period. These functions
are utilized in the following compression algorithm.

The v-avoiding compression algorithm (Algorithm 1) re-
ceives a sequence s ∈ A(n, v) for v ∈ Σ` and compresses it
to some uniquely decodable sequence x ∈ Σn−1. Initially, the
algorithm checks the first bit of s. If it is zero, then the rest of
s is returned as the result (see Figure 1). Otherwise, an index
i is decoded from the subsequent log n− 1 bits of s (by con-
verting this binary sequence to its integer representation) and
the algorithm will construct x by inserting an occurrence of
v at this index. However, since such an insertion might cre-
ate new instances of v in the sequence x, 5 additional bits are
appended to v in order to ensure that the insertion index can
always be deduced by the decoder (see Figure 2). The redun-
dancy bits are added as follows; first, two bits are appended
to v (independently of the input sequence s) to construct u,
a sequence that satisfies that both u and Suffd(`+1)/2e−2(u)
have long periods. As a result, when u is inserted at position i,
at most three new occurrences can be created to the right of
it (see Lemma 7 which follows). These cases are eliminated
using the 3 remaining bits appended to u, denoted by a. The
result is a sequence x ∈ Σn−1 with its rightmost occurrence
of u at position i.

Figure 1. Algorithm 1 illustration for the case s0 = 0.

Figure 2. Algorithm 1 illustration for the case s0 = 1.

Algorithm 1 v-avoiding compression algorithm
Input: A sequence s ∈ A(n, v)
Output: A sequence x ∈ Σn−1

1: If s0 = 0, return s1,n−1. Otherwise, decode index i from
s1,log n−1 and set w = Suffn−log n(s)

2: Construct u = f2(f1(v))
3: Let

A = {p(u)− 3 6 m 6 |u| − 1 : wi+1,m = Suffm(u)}

4: Set a = 000, notate the elements of A in decreasing order
m2 > m1 > m0 ∈ A (starting from m2)

5: for every mk ∈ A do
6: Set ak = 1− u`−1−mk+k
7: end for
8: Return x = Prefi(w) ◦ u ◦ a ◦ Suff|w|−i(w)

Lemma 7. At Step 3 of Algorithm 1, we have that |A| 6 3 .

Lemma 8. After Step 8 of Algorithm 1, x has its rightmost oc-
currence of u at position i.

Theorem 9. Algorithm 1 compresses a sequence s ∈ A(n, v)
to a sequence x ∈ Σn−1 that can be uniquely decoded to its
input sequence s. The time complexity of the algorithm is
O(log n) and the time complexity of its decoder is O(n).

A decoder for this algorithm constructs u = f2(f1(v)) and
looks for the rightmost occurrence of u in x. If such occur-
rence is found, then it must be at the insertion index i from
Lemma 8. From here, reconstructing s is straightforward.

Remark 1. Note that Algorithm 1 is generic and fits any
v ∈ Σ`. Clearly, with some knowledge of the tuple v some
steps can be skipped and the supported tuple length ` can
be larger. For example, if v has a long period it is unneces-
sary to invoke f1 at Step 2 and ` = log n− 5 can be used.
If p(v) = `, i.e., v is aperiodic, then no additional bits are
necessary (the algorithm returns Prefi(w) ◦ v ◦ Suff|w|−i(w))
and the algorithm is applicable to ` = log n− 1.

Example 3. Let ` = 9, v = 010101010. Notice that
p(v) = 2. We can construct from advance f1(v) =
0101010100, and since | f1(v)|/2− 3 = 2,

u = f2(f1(v)) = 01010101 ◦ f1(00) = 01010101001.

Notice that p(u) = 9.
Let n = 215 and assume the input sequence s1 =

0n ∈ A(n, v). In this case, the algorithm simply returns
x1 = 0n−1 at Step 1. The decoder receives x1 and notices
that no occurrences of v exist in the sequence, thus correctly
returns 0 ◦ x1 = s1.

Next, assume s2 = (10101001)212 ∈ A(n, v). One can
easily verify that |s2| = n and that v does not appear as a
window in s2. At Step 1, since the first bit of the sequence
is 1, the algorithm decodes an index i from the integer value of
(s2)1,14 = 01010011010100, that is i = 5332, and denotes
by w the unused part of s2. Soon, the algorithm will insert
the tuple u at position i. However, we need to ensure that this

2022 IEEE International Symposium on Information Theory (ISIT)

45

insertion does not create additional occurrences of u that start
to the right of i.

Since wi+1,10 = 1010100110, the set of indices that is con-
structed at Step 3 is A = {10}. Note that we have |A| = 1
although by Lemma 7 the maximal size of A is 3. At Step 6
the algorithm constructs a = 001 where a2 = 1 ensures that a
new occurrence of u is not created when concatenating u and
wi+1,10. Finally, at Step 8 the algorithm returns the sequence

x2 = Prefi(w) ◦ 01010101001 ◦ 001 ◦ Suff|w|−i(w).

The decoder receives x2 and identifies the rightmost occur-
rence of v at position i = 5332. Thus, it constructs

s2 = 1 ◦ b(i) ◦ Prefi(x2) ◦ Suff|x2 |−i−5(x2).

IV. `-TUPLES COVERING SEQUENCES

In this section, we focus on the main family of sequences
discussed in this paper, `-tuples covering sequences. We study
the cardinality of this set of sequences and present a lower
bound on its asymptotic rate for various values of `. Then, we
present an upper bound for ` such that the redundancy of a set
of `-tuples covering sequences is at most one symbol. Later,
we present an encoding algorithm for binary `-tuples cover-
ing sequences that uses a single redundancy bit that meets
this bound on `. Finally, we use a generalization of de Bruijn
graph to develop an upper bound for the cardinality of this set
of sequences.

A. Rate Lower Bound Analysis
We begin the discussion of `-tuples covering sequences for

any alphabet of size q. For integers n, `, it is clear that if
n < q` + `− 1 then rq(n, `) = 0 since a sequence of such
length can contain at most n− `+ 1 unique `-tuples where
n − ` + 1 < q`. In the case where n = q` + ` − 1 the set
Rq(n, `) is exactly the set of de Bruijn sequences of order `,
and hence rq(n, `) = |Sq(`)|. For larger values of n, we have
the following lemma.

Lemma 10. Let n = q` + `− 1 + k for `, k ∈ N. Then,

rq(n, `) > (q!)q`−1 · qk.

Proof. We construct `-tuples covering sequences of length n
using any de Bruijn sequence of order ` followed by any k
symbols from Σq. The result follows immediately from the
size of Sq(`).

Therefore, we have the next results.

Corollary 11. Let n = q` + `− 1 + f (n) for ` ∈ N. Then,

Rq(`) >

logq(q!)

q f (n) = o(q`)
q−1 logq(q!)+α

1+α f (n) = αq` + o(q`) forα > 0
1 f (n) = ω(q`)

Alternatively, we have

Corollary 12. Let n ∈ N and let ` = log n− g(n). Then,

Rq(`) >

logq(q!)

q g(n) = o(1)
1 + 1

qc+1 logq(q!)− 1
qc g(n) = c for c > 0

1 g(n) = ω(1)

For convenience, we use both representations of n and `
throughout this section.

B. Single Symbol Redundancy Analysis
Next, we present an upper bound on `, where the redun-

dancy of Rq(n, `) is at most a single symbol. This bound uses
the upper bound on the cardinality of v-avoiding sequences
presented in Section III.

Theorem 13. If n, ` are integers such that ` 6 logq n −
logq logq n−O(1), then for n large enough, red(Rq(n, `)) 6
1.

Proof: For every sequence w ∈ Σn
q that is not an `-tuples

covering sequence, there exists v ∈ Σ`
q such that w is a v-

avoiding sequence, i.e., w ∈ Aq(n, v). Thus, using Lemma 5,
the number of sequences that are not `-tuples covering se-
quences can be bounded above by

∑
v∈Σ`

q

aq(n, v) 6 q
n−c1

n−2`
q`

+`
, (1)

where c1 =
(q−1)2 logq e

4q2 . Therefore, in order to have

red(Rq(n, `)) 6 1, i.e., rq(n, `) > qn−1, we require
that the right-hand side of equation (1) is bounded above
by (q − 1)qn−1, which is satisfied by applying ` 6
logq n− logq logq n− c2 for a constant c2 > − logq c1.

C. Encoding Algorithm for the Binary Case
For the rest of this section, we assume that q = 2. We

present an encoder for `-tuples covering sequences over Σn.
This encoder uses a single redundancy bit and handles `-tuples
of length ` 6 log n− log log n− 6 for n large enough. Note
that this value of ` is associated with the bound presented in
Theorem 13.

This algorithm is based on the compressor of v-avoiding
sequences presented in Algorithm 1. For v ∈ Σ`, let Ev de-
note this compressor, i.e., Ev receives a v-avoiding sequence
of length n such that ` 6 log n − 6 and outputs an uncon-
strained and uniquely decodable sequence over Σn−1. Let nE
denote the maximal sequence length that can be compressed
with Ev such that |v| = `, that is, nE = 2`+6 = n/ log n.
Moreover, Ev can be used to efficiently compress v-avoiding
sequences of length n > nE as well; the input sequence is split
to consecutive segments of length nE and each of them is com-
pressed separately. If there is a remainder smaller than nE , it
is not compressed at all. This way, a v-avoiding sequence of
length n can be compressed to a uniquely decodable sequence
of length n − bn/nE c. We abuse the notation Ev to denote
this generalized compressor as well. Similarly, let Dv denote
the matching decoder of Ev for any v ∈ Σ`.

Algorithm 2 receives as an input w, a sequence of
length n − 1 and outputs x, an `-tuples covering sequence
of length n. The goal of the algorithm is to shorten the in-
put sequence enough in order to make room for appending
a de Bruijn sequence of order ` at its end. The shortening
procedure uses the family of compressors {Ev | v ∈ Σ`},
based on the observation that as long as the sequence is not
an `-tuples covering sequence, then it is v-avoiding for some
tuple v ∈ Σ`. Let s denote a fixed de Bruijn sequence of
length 2` + ` − 1; s can be produces with time complex-
ity of O(`2`), see [8]. The algorithm first sets x = 0 ◦ w
in order to mark the start of the encoding process for the
decoder. Then, as long as x is not `-tuples covering, the al-
gorithm repeatedly shortens x by finding an `-tuple v that

2022 IEEE International Symposium on Information Theory (ISIT)

46

does not appear in x. The algorithm encodes the occurrence
and compresses x using Ev. This process ends when x is ei-
ther an `-tuples covering sequence or it is short enough to
be appended by s. Either way, this results with an `-tuples
covering sequence which is returned after being padded to
length n.

Algorithm 2 `-tuples covering sequences encoding

Input: A sequence w ∈ Σn−1

Output: A sequence x ∈ R(n, `)
1: Set x = 0 ◦w
2: while x is not `-tuples covering and |x| > n− |s| do
3: Pick v ∈ Σ` \ {xi,` : i ∈ [|x| − `+ 1]}
4: Set x = 1 ◦ v ◦ Ev(x)
5: end while
6: Return Prefn(x ◦ s ◦ 1n)

Theorem 14. Algorithm 2 successfully outputs a uniquely de-
codable `-tuples covering sequence of length n. The time com-
plexity of the algorithm and its decoder is O

(
n2

log n log log n

)
.

In order to decode w ∈ Σn−1 given x, an output of Algo-
rithm 2, we iteratively inverse the operation of the while loop
using the set of decoders {Dv | v ∈ Σ`}. As long as x0 = 1,
we repeatedly extract v = x1,` and decode the rest of x us-
ing Dv. This process ends when x0 = 0, where the decoder
returns w = Prefn−1(x).

Note that as a result of the possible concatenation of s
and 1n to x at Step 6, in some cases the values of x in the
matching iterations of the encoder and the decoder are not
equal. In those cases, the decoded sequence contains an ad-
ditional suffix and Dv can be invoked on segments that were
not outputs of Ev in Algorithm 2. However, this does not im-
pact the correctness of the decoder since those segments will
be trimmed from x at the end of the decoding process.

Remark 2. Algorithm 2 can be generalized to any q > 2 us-
ing a q-ary generalization of the compressor Ev. In this case,
the algorithm can encode q-ary `-tuples covering sequences of
length ` 6 logq n− logq logq n− 4 for n large enough.

D. Upper Bound Using de Bruijn Graph
In this section we use an enumeration technique which was

first used to enumerate de Bruijn sequences using the de Bruijn
graph [16]. It was recently used to enumerate another gener-
alization of de Bruijn sequences [14]. In this paper, this tech-
nique is used to derive an upper bound on the cardinality of
`-tuple covering sequences. For simplicity, we focus on bi-
nary sequences, although this technique can be extended to
any alphabet of finite size.

Let n = 2` + `− 1 + k, for k = f (n). For every selection
of k `-tuples (with repetitions) we construct a graph G which
is a generalization of the de Bruijn graph G`. The vertices of
each graph are the same vertices of G` which are represented
by the binary (`− 1)-tuples. The edges are the edges of G`
with additional parallel edges corresponding to each of the k
`-tuples picked. There are (2`+k−1

k) different graphs which are
generated this way.

A reverse spanning tree T of a generalized graph G is
a graph whose underlying graph is a tree rooted at some
r ∈ Σ`−1, it contains all the vertices of G, and there is a

unique directed path from each vertex v of T to r. Clearly,
all the generalized graphs share the same set of reverse span-
ning trees as G`, and there are 22`−1−` such trees for each
r ∈ Σ`−1 [16].

For each graph G, reverse spanning tree T and root vertex r,
we use a nondeterministic algorithm to attempt traversing all
the edges of G exactly once, starting from the root vertex r. In
order to ensure the uniqueness of the path with respect to T,
its edges are notated as starred, and the algorithm leaves a
vertex v on a starred edge only if it is the last outgoing edge
of v that was not traversed before (this algorithm is defined
formally in [14], we omit its formal definition due to the lack
of space). If the algorithm succeeded traversing all the edges
of G, the result is a path that corresponds to an `-tuples cover-
ing sequence of length n. Notice that for some graphs, the al-
gorithm might fail to traverse all the edges and to generate se-
quences. However, all the sequences of R(n, `) are produced
by this method and thus enumerating the paths constructed by
such algorithm derives an upper bound for r(n, `).

Lemma 15. For each reverse spanning tree, at most

2k+`

(
2` + k− 1

k

)
distinct acyclic sequences are constructed

by the algorithm.

Corollary 16. The total number of distinct acyclic se-
quences of length n formed by the algorithm is at most

22`−1+k
(

2` + k− 1
k

)
.

The value presented in Corollary 16 provides an upper
bound on r(n, `). Next, we derive an upper bound for the
asymptotic rate of `-tuples covering sequences, for different
values of `.

Theorem 17. If n = 2` + `− 1 + f (n) where f (n) = o(2`),
then the asymptotic rate of `-tuples covering sequences satisfies

R(`) = 1
2

.

Theorem 18. If n = 2` + `− 1 + f (n) where f (n) = α2` +
o(2`) for α > 0, then the asymptotic rate of `-tuples covering
sequences satisfies

R(`) 6 H
(

α

α + 1

)
+

2α + 1
2α + 2

.

Note that the result of Theorem 18 is useful only for small
values of α in the range 0 < α < 1. Other values of α are
subject for future research.

Table I summarizes the results presented in this paper re-
garding the asymptotic rate of `-tuples covering sequences.

TABLE I
ASYMPTOTIC RATE OF BINARY `- TUPLES COVERING SEQUENCES

n = 2` + `− 1 + f (n)
Case Result
f (n) = o(2`) R(`) = 1/2
f (n) = α2` + o(2`) , α > 0 2α+1

2α+2 6 R(`) 6 min
{

H(α
α+1) +

2α+1
2α+2 , 1

}
f (n) = ω(2`) R(`) = 1

2022 IEEE International Symposium on Information Theory (ISIT)

47

REFERENCES

[1] N. Alon, J. Bruck, F. F. Hassanzadeh, and S. Jain, “Duplication distance
to the root for binary sequences,” IEEE Transactions on Information
Theory, vol. 63, no. 12, pp. 7793–7803, 2017.

[2] N. G. D. Bruijn, “A combinatorial problem,” Koninklijke Nederlandse
Akademie v. Wetenschappen, vol. 49, no. 49, pp. 758–764, 1946.

[3] A. H. Chan, R. A. Games, and E. L. Key, “On the complexities of de
Bruijn sequences,” Journal of Combinatorial Theory, Series A, vol. 33,
no. 3, pp. 233 – 246, 1982.

[4] Y. M. Chee, T. Etzion, H. M. Kiah, S. Marcovich, A. Vardy, V. Khu Vu,
and E. Yaakobi, “Locally-constrained de Bruijn codes: Properties, enu-
meration, code constructions, and applications,” IEEE Transactions on
Information Theory, vol. 67, no. 12, pp. 7857–7875, 2021.

[5] P. Compeau, P. Pevzner, and G. Tesler, “How to apply de Bruijn graphs
to genome assembly,” Nature biotechnology, no. 11, pp. 987–991, 2011.

[6] O. Elishco, R. Gabrys, E. Yaakobi, and M. Mèdard, “Repeat-free codes,”
IEEE Transactions on Information Theory, vol. 67, no. 9, pp. 5749–
5764, 2021.

[7] H. Fredricksen, “A survey of full length nonlinear shift register cycle
algorithms,” SIAM Review, vol. 24, pp. 195–221, 1982.

[8] H. M. Fredricksen, “A class of nonlinear de Bruijn cycles,” Journal of
Combinatorial Theory, vol. 19, pp. 192–199, 1975.

[9] R. Gabrys and O. Milenkovic, “Unique reconstruction of coded se-
quences from multiset substring spectra,” in Proc. of the IEEE Interna-
tional Symposium on Information Theory, Vail, Colorado, USA, 2018,
pp. 2540–2544.

[10] S. W. Golomb, Shift register sequences. World Scientific, Singapore,
2017.

[11] H. M. Kiah, G. J. Puleo, and O. Milenkovic, “Codes for DNA sequence
profiles,” IEEE Transactions on Information Theory, vol. 62, no. 6, pp.
3125–3146, 2016.

[12] A. Lempel, “On a homomorphism of the de Bruijn graph and its appli-
cations to the design of feedback shift registers,” IEEE Transactions on
Computers, vol. C-19, no. 12, pp. 1204–1209, 1970.

[13] M. Levy and E. Yaakobi, “Mutually uncorrelated codes for DNA stor-
age,” IEEE Transactions on Information Theory, vol. 65, no. 6, pp.
3671–3691, 2019.

[14] S. Marcovich, T. Etzion, and E. Yaakobi, “Balanced de Bruijn se-
quences,” in Proc. of the IEEE International Symposium on Information
Theory, Melbourne, Australia, 2021, pp. 1528–1533.

[15] U. M. Maurer, “Asymptotically-tight bounds on the number of cycles
in generalized de Bruijn-Good graphs,” Discrete Applied Mathematics,
vol. 37-38, pp. 421 – 436, 1992.

[16] F. J. Mowle, “Relations between pn cycles and stable feedback shift
registers,” IEEE Transactions on Computers, vol. C-15, pp. 375–378,
1966.

[17] A. Ralston, “A new memoryless algorithm for de Bruijn sequences,”
Journal of Algorithms, vol. 2, pp. 50–62, 1981.

[18] K. Schouhamer Immink, Coding techniques for digital recorders.
Prentice-Hall, 1991.

[19] L. Song, F. Geng, Z. Gong, B. Li, and Y. Yuan, “Robust data storage
in DNA by de Bruijn graph-based decoding,” 2020, [online]. Available:
bioRxiv:423642.

[20] T. van Aardenne-Ehrenfest and N. G. de Bruijn, “Circuits and trees in
oriented linear graphs,” Simon Stevin : Wis-en Natuurkundig Tijdschrif,
vol. 28, pp. 203–217, 1951.

2022 IEEE International Symposium on Information Theory (ISIT)

48

