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Abstract—Motivated by DNA-based applications, we generalize the
bee identification problem proposed by Tandon et al. (2019). In this
setup, we transmit all M codewords from a codebook over some
channel and each codeword results in N noisy outputs. Then our
task is to identify each codeword from the MN noisy outputs.

First, via a reduction to a minimum-cost flow problem on a
related flow network GN , we show that the problem can be solved
in O(M3) time in the worst case. Next, we consider the deletion
channel and study the expected number of edges in the network
GN . Specifically, we obtain closed expressions for this quantity for
certain codebooks and when the codebook comprises all binary
words, we show that this quantity is sub-quadratic when the
deletion probability is less than 1/2. This then implies that the
expected running time for this codebook is o(M3). For other
codebooks, we develop methods to compute the expected number
of edges efficiently. Finally, we adapt classical peeling-decoding
techniques to reduce the number of nodes and edges in GN .

I. INTRODUCTION

In 1953, when Watson and Crick proposed the double helix
model of the DNA molecule [1] , they wrote: “It has not escaped
our notice that the specific pairing that we have postulated
immediately suggests a possible copying mechanism for the
genetic material.” In the same year, the authors described the
details of this replication mechanism [2] and more than seven
decades later, the polymerase chain reaction (PCR) and other
amplification techniques that exploit this copying mechanism
have become an essential component in many bioengineering
applications. Of interest to this paper are the applications in
DNA based data storage (see [3], [4] for a survey) and pooled
testing of viral RNA [5]–[9].

In both applications, to read the information on either a
synthetic DNA data block or a viral RNA sample, the user
typically employs a sequencing platform that creates multiple
copies of the same strand. The sequencer then reads all these
copies and provides multiple (possibly) errononeous reads to
the user. Even though multiple reads allow the user to store
more information or augment the testing capacity [10], [11],
the unsorted nature of DNA strands poses certain computation
problems. More concretely, in DNA based storage systems1, a
file is typically broken into many information blocks and stored
onto different DNA strands, where their relative order is not
preserved. Hence, when the user retrieves the information, in
addition to decoding the data, the user has to determine the
identity of the data that each strand stored. Now, a typical
solution is to simply have a set of addresses and have each
DNA strand to store this address information in its prefix. As
the addresses are also known to the user, the user is able to
identify the information after the decoding process.

1There are numerous works that address the unsorted nature of DNA-based
data storage system. Due to space constraints, we provide only a short summary
here and defer the detailed description in the extended version of this paper.
Broadly, there are a few coding solutions: those that read all files [14]–[17],
those that allow fast clustering [18], those that allow random access [19]–[21].
Also, fundamental limits of such storage systems are studied in [22]–[24].

However, as these addresses may also be corrupted, this
solution requires further refinements and we discuss one ex-
perimental approach adopted by Organick et al. [12]. Here, the
reads are first clustered with respect to the edit distance. Then
the authors determine a consensus output amongst the reads in
each cluster and finally, decode these consensus outputs using a
classic concatenation scheme. For this approach, the clustering
step is computationally expensive and in [13], a subset of the au-
thors developed a distributed approximate clustering algorithm
and clustered 5 billion reads in 46 minutes on 24 processors.

In this work, we study a method that avoids clustering. Here,
we use the fact that the addresses C is available to the user.
Instead of clustering the entire reads, we look at the collection of
prefixes Y of the reads and assign each prefix y ∈ Y to a certain
address π(y) , x ∈ C. If we assume certain channel character-
istics, that is, the probability of prefix y given an address x is
P (y|x), then the likelihood of an assignment can be computed
to be

∏
y∈Y P (y|π(y)). Therefore, our optimization objective

is to find an assignment that maximizes this probability. We
formally define this problem in Section II.

We remark that our approach generalizes the bee identi-
fication problem originally proposed by Tandon et al. [25].
Informally, the bee identification problem requires the receiver
to identify M “bees” using a set of M unordered noisy measure-
ments. Tandon et al. studied the binary symmetric channel and
showed that decoding the noisy measurements jointly results in a
significantly smaller probability of erroneous identification [25].
Later, Kiah et al. investigated efficient ways of performing this
joint decoding [26]. Specifically, for the binary erasure and
binary symmetric channels, they reduced the bee-identification
problem to certain combinatorial optimization problems. Then,
applying well-known algorithms, they demonstrated that joint
decoding can be performed in polynomial time (in M ).

Here, we extend this model by assuming that each of the M
bees results in N noisy measurements with N ≥ 1, and we
call this the bee identification problem for multi-draw channels.
Our first contribution is to reduce this identification problem
to the problem of finding a minimum-cost flow on a related
flow network. Then, applying the Edmonds-Karp or Tomizawa
algorithm [27], [28], we show that the bee identification problem
for multi-draw channels can be solved in O(M3) time.

Similar to [26], our second contribution is a detailed study
of this flow network in the context of deletion channels. Since
the complexity of the network flow algorithm scales with the
number of edges, we provide estimates on the expected number
of edges. For certain codebooks, we obtain closed formulae
for this quantity and in the case when C = {0, 1}n, we show
that the expected edge density of the network tends to zero
when the deletion probability is less than 1/2. This implies that
the expected running time is sub-cubic. For other codebooks,
determining the expected number of edges is challenging.
Nevertheless, we develop techniques to compute this quantity in
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polynomial time (in n). Finally, we explore the use of peeling
decoders to further reduce the number of nodes and edges in
this flow network. In the next section, we formally define our
problem and describe our contributions.

II. PROBLEM FORMULATION

Let N and M be positive integers. Let [M ] , {1, 2, . . . ,M}.
An N -permutation π over [M ] is an NM -tuple (π(i))i∈[MN ]

where every symbol in [M ] appears exactly N times, and we
denote the set of all N -permutations over [M ] by SN (M).

Let Σ be an alphabet of size two and we consider a length-n
code C ⊆ {0, 1}n with M codewords x1, x2, . . . , xM . Consider,
in addition, a channel S where the output y given an input x is
received with probability P (y|x).

In our setup, we send all M codewords over the chan-
nel S and suppose that each codeword results in exactly
N outputs. Therefore, we obtain an unordered multiset
of MN outputs {y1,y2, . . . ,yMN}. Note that the outputs
yiN−N+1,yiN−N+2, . . . ,yiN are not necessarily the channel
output of xi and in fact, our task is to find an N -permutation
π over [M ] such that yi is most likely to be the channel output
of the input xπ(i) for all i ∈ [MN ]. Formally, assuming the
channels are independent, our task is as follows.

(Bee Identification for Multi-draw Channels). To
find an N -permutation π over [M ] so as to maximize
the probability

∏MN
i=1 P

(
yi|xπ(i)

)
.

A. A Flow Network

To perform our identification task, we define the following
flow network GN = (V,E, γγγ,δδδ) using the M codewords C =
{xi : i ∈ [M ]} and MN outputs Y = {yj : j ∈ [MN ]}.

(i) Nodes. The set of left and right nodes corresponds to the
set of M codewords and the multiset of MN outputs,
respectively. In other words, V , C ∪ Y.

(ii) Demands. For each left node / codeword x ∈ C, we assign
the demand δδδ(x) , −N , while for each right node / output
y ∈ Y, we assign the demand δδδ(y) , 1.

(iii) Edges. For a codeword x and an output y, we draw the
edge from x to y if and only if it is possible to obtain
the channel output y from the input codeword x, that is,
P (y|x) > 0. Hence, E , {(x,y) ∈ C× Y : P (y|x) > 0}.

(iv) Costs. For an edge (x,y) ∈ C × Y, we assign the cost
γγγ(x,y) = − logP (y|x). Note that the cost is well-defined
as the value P (y|x) is necessarily positive.

Given this flow network GN , the minimum-cost network flow
problem is defined as follows.

min
∑

(x,y)∈E

f(x,y)γγγ(x,y)

such that
∑

(x,y)∈E

f(x,y) = −δδδ(x) = N for all x ∈ C, (1)

∑
(x,y)∈E

f(x,y) = δδδ(y) = 1 for all y ∈ Y, (2)

f(x,y) ∈ {0, 1} for all (x,y) ∈ E.

Consider a flow f in GN with cost γγγ(f). That is, f fulfills
both (1) and (2). We construct an N -permutation π as follows:
set π(j) = i if and only if f(xi,yj) = 1. It follows from (2) that
π(j) is assigned a value for all j ∈ [MN ]. From (1), we have
that every i ∈ [M ] appears exactly N times in π, and so, π is

an N -permutation. Finally, we observe that
∏MN
i=1 P

(
yi|xπ(i)

)
is given by 2−γγγ(f). Therefore, minimizing the cost of a flow
in GN is equivalent to maximizing the probability for the bee-
identification problem for multi-draw channels2.

For the binary erasure (BEC) and binary symmetric channels
(BSC), when N = 1, the preceding algorithm reduces to the
bee-identification problem to the problem of finding a perfect
matching and minimum-cost matching in G1, respectively [26].
In this work, we focus on the deletion channel, denoted by
Del(p), where each bit in a sent codeword is independently
deleted with probability p. More generally, the deletion multi-
draw channel, denoted by Del(p;N), results in N independent
outputs for each codeword sent through the deletion channel.
Then for a codeword x and an output y, the probability P (y|x)
is given by Emb(x,y)pd(1 − p)n−d. Here, d = |x| − |y| is
the number of deletions, while Emb(x,y) denotes embedding
number of y in x, that is, the number of times y occurs as a
subsequence of x. When P (y|x) > 0, we draw an edge between
x and y and we assign the cost − log Emb(x,y)−d log p−(n−
d) log(1− p), where the logarithm base is two.

Example 1. Consider a multi-draw deletion channel with p =
0.2 and N = 2. Let C be the code {0000, 1001, 0110, 1111}
with M = 4 codewords of length four. This is a Varshamov-
Tenengolts (VT) code [29].

Suppose that we pass all four words through the channel and
obtain the following eight outputs are:

y1 = 0, y2 = 11, y3 = 11, y4 = 000,

y5 = 000, y6 = 0110, y7 = 0110, y8 = 1111.

Next, we describe the flow network GN . For the demand
values, we simply have δδδ(x) = −2 for x ∈ C and δδδ(y) = 1
for y ∈ Y. To display the cost values, we use a 4 × 8-table to
reduce clutter. Here, the (i, j) entry is given by the cost of the
edge (xi,yj), i.e. − logP (xi,yj), and when there is no edge
between xi and yj , we write the entry as ∞.

y1 y2 y3 y4 y5 y6 y7 y8

x1 = 0000 5.288 ∞ ∞ 1.288 1.288 ∞ ∞ ∞
x2 = 1001 6.288 5.288 5.288 ∞ ∞ ∞ ∞ ∞
x3 = 0110 6.288 5.288 5.288 ∞ ∞ 1.288 1.288 ∞
x4 = 1111 ∞ 2.703 2.703 ∞ ∞ ∞ ∞ 1.288

Highlighted in blue are the edges whose flow values are one
in a minimum-cost flow of GN . Notice that in each row and
column, the number of blue edges are two and one, respectively.
This meets the respective flow constraints (1) and (2). Then the
corresponding maximum likelihood N -permutation is given by
(2, 2, 4, 1, 1, 3, 3, 4).

In what follows, we discuss how to obtain this minimum-cost
flow efficiently. To this end, we apply the algorithm of Edmonds
and Karp [27], and Tomizawa [28], to compute a minimum-
cost flow, and hence, a maximum likehood N -permutation, in
O(|V|(|E|+ |V| log |V|)) time. However, in the worst case, the
network GN may be complete. That is, |E| = NM2 where M

2A reviewer pointed out that it is more reasonable to assume that each
codeword results in at most N outputs. Now, we can modify the network in
Section II-A to address this. Specifically, when there are N ′ < MN right
nodes, we include another N ′ −MN right auxiliary nodes. For each of the
M left nodes, we draw an edge to each right auxiliary node. The capacity and
cost of each edge is then set to one and ∞, respectively. Then applying the
minimum cost flow algorithm, we find the maximum-likehood N -permutation.

2022 IEEE International Symposium on Information Theory (ISIT)

910



is the size of the code. Thus, in the worst case, the running time
of this method is cubic in the number of codewords M .

However, observe that the network GN in Example 1 is
sparse, that is, |E| = 14 is small as compared to NM2 = 32.
In this paper, under certain mild assumptions, we show that on
average this is indeed the case, that is, the expected number of
edges is o(M2). Specifically, for a codebook C and channel S,
we use BN (C; S) to denote the expected number of edges in GN .
When the codebook comprises all binary words of length n and
the deletion probability p is less than 1/2, we have the following
result which is immediate from Proposition 11 in Section IV.

Theorem 1. Let S = Del(p;N) for fixed values of p and N .
For p < 1/2, we have then BN ({0, 1}n; S) ≤ NM1+ε, where
M = 2n and 0 < ε < 1 is a constant dependent only on p.
Therefore, the expected running time of the minimum-cost flow
algorithm is o(M3). Here, asymptotics are with respect to n.

Furthermore, in Proposition 11, we show that the threshold
p = 1/2 is tight. Specifically, the quantity BN ({0, 1}n)/NM2

tends to 1/2 and 1, when p = 1/2 and p > 1/2, respectively.
To obtain this result, we provide closed formula for

B1({0, 1}n, S) using combinatorial techniques. Similar formu-
lae are obtained for constant-weight and even-weight code-
books. For other codebooks, this enumeration problem is non-
trivial and it is not clear that BN (C; S) can be computed in
polynomial time. Nevertheless, in the extended version, we use
standard dynamic programming techniques to compute BN (C)
in polynomial time for a class of codebooks. We remark that
this class is rather general and includes many classical codes
such as linear codes and VT codes.

B. Pruning with Peeling Decoder

Next, we reduce the running time of the network flow
algorithm by pruning away certain nodes and edges. To do so,
we modify the classic peeling decoders used in graph-based
codes [35]. Intuitively, we search for degree-one nodes in the
network GN . For any such node u with the edge uv, we must
assign u to v. In such cases, we either remove u or v and the
edge uv from the network. Specifically, we do the following.

• If the output y is a degree-one node and x is the only node
adjacent to y, we remove the output node y and the edge
xy. We also increase the demand of x by one and if the
resulting demand is zero, we also remove the node x too.

• If the codeword x is a degree-one node and y is the only
node adjacent to x, we then remove both nodes x and y
and all edges incident to the node y.

We repeat this procedure until neither of these rules can be
applied. That is, there is no degree-one node in the resulting
flow network. We then denote this flow network by G∗N .

Example 2. Continuing Example 1, we remove nodes and edges
from GN according to the rules. Then the resulting network G∗N
has only codewords x2 and x4 with outputs y2 and y3.

y2 y3

x2 = 1001 5.288 5.288
x4 = 1111 2.703 2.703

Here, the resulting demand is δδδ(x2) = δδδ(x4) = −1. Applying
the network flow algorithm to G∗N recovers the same solution
as in Example 1.

As before, since the running time of the network flow
algorithm depends on the number of nodes and edges, we
are interested in determining the size of G∗N . Specifically, we
estimate A∗N (C; S) and B∗N (C; S) which denote the expected
number of nodes and edges, respectively, in G∗N .

III. EXPECTED NUMBER OF EDGES FOR GENERAL
MULTIDRAW CHANNELS

Throughout this section, we fix some codebook C with M
codewords. We send all M codewords through a general multi-
draw channel S and obtain NM noisy outputs. Following the
preceeding section, we then construct the flow network GN .
First, we study the expected number of edges in GN for any
general channel S and denote this quantity by BN (C; S).

Now, let the codewords in C be x1, x2, . . . , xM . For i ∈ [M ],
let the N noisy outputs of xi be x̃1

i , x̃
2
i , . . . , x̃

N
i . For i, j ∈ [M ]

and k ∈ [N ], we consider the event that we insert an edge
between codeword xi and output x̃kj . Recall that we insert an
edge if and only if the channel probability P (x̃kj |xi) is strictly
positive. As the expected number of edges in GN is given by the
sum of these probabilities, we have the following proposition.

Proposition 2. If Q(x ≺ x′) denote the probability that an
output of x is also an output of x′, then we have

B1(C; S) =
∑
x∈C

∑
x′∈C

Q(x ≺ x′), (3)

BN (C; S) =

N∑
k=1

∑
x∈C

∑
x′∈C

Q(x ≺ x′) = NB1(C; S). (4)

Therefore, it suffices to compute B1(C; S) for general code-
books and channels. For the binary symmetric and binary
erasure channels, we have the following results on the expected
number of edges from [26].

Proposition 3 ([26]). If S is the BSC, then B1(C; S) = |C|2. If
S is the BEC with erasure probability p, then B1(C; S) = D(p)
where D(z) is the distance enumerator of the code C. Here,
D(z) is the polynomial D(z) =

∑n
i=0Diz

i, where Di is the
number of pairs of (not necessarily distinct) codewords with
distance i.

Since determining the distance enumerator D(z) for a gen-
eral linear code is NP-hard [36], we have that evaluating
the quantity B1(C; S) is also NP-hard3 when S is the binary
erasure channel. Therefore, we conjecture that the problem of
determining B1(C; S) is also difficult when S is the deletion
channel. Nevertheless, in the next section, we study this problem
and obtain closed formulas for certain special codebooks.

Here, we continue our discussion for general multidraw
channels. Using the peeling decoder described in Section II-B,
we can reduce the number of edges and vertices and obtain the
flow network G∗N . Recall that A∗N (C; S) and B∗N (C; S) denote
expected number of nodes and edges, respectively, in G∗N . It
turns out we can bound these values using the quantity B1(C; S)
defined in (3).

3Suppose otherwise that there is a polynomial-time method to evaluate D(p)
for 0 ≤ p ≤ 1. Then we can evaluate D(z) at n+1 distinct points and recover
the coefficients of D(z) in polynomial time using Lagrange interpolation.
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Similar to the case for BN (C; S), we observe that A∗N (C; S)
and B∗N (C; S) depend on the case when N = 1. Specifically,
we have the following relations:

A∗N (C; S) ≤ NA∗1(C; S), (5)
B∗N (C; S) = NB∗1(C; S). (6)

Now, to provide upper bounds on both A∗1(C; S) and
B∗1(C; S), we estimate the number of degree-one nodes in G1.

Proposition 4. The expected number of degree-one left (code-
word) nodes in G1 is at least M −B1(C; S)/2.

Proof. For any codeword x, similar to the proof of Proposi-
tion 2, the expected degree of x (in G1) is

∑
x′∈CQ(x ≺ x′),

where Q(x ≺ x′) is the probability that an output of x is also
an output of x′. Then by Markov inequality, the probability
that x has degree at least two is at most 1

2

∑
x′∈CQ(x ≺ x′).

That is the probability that x has degree one is at least
1 − 1

2

∑
x′∈CQ(x ≺ x′). Therefore, the expected number of

degree-one left (codeword) nodes is at least∑
x∈C

(
1− 1

2

∑
x′∈C

Q(x ≺ x′)

)
= M − B1(C; S)

2
.

Recall that all degree-one nodes and its corresponding edges
must be removed at the first step. Hence, the following is
immediate from Proposition 4.

Corollary 5.

A∗1(C; S) ≤ B1(C; S), and B∗1(C; S) ≤ 3B1(C; S)

2
−M.

IV. THE DELETION CHANNEL

Throughout this section, we have that S = Del(p), for
0 < p < 1. Observe from (4) and Corollary 5 that the
quantity B1(C; S) is useful for providing estimates on sizes of
the networks GN and and G∗N Hence, we study B1(C; S) and for
brevity, write this quantity as B(C). Our first proposition states
that the problem of determining B(C) is equivalent to certain
enumeration problems concerning subsequences.

Proposition 6. Fix some code C ⊆ Σn. We have that

B(C) =

n∑
t=0

∑
z∈Σn−t

I(z;C)I∗(z;C)pt(1− p)n−t. (7)

Here, I(z;C) denotes the number of words in C that contain z
as a subsequence, while I∗(z;C) =

∑
x∈C Emb(x, z). In other

words, I∗(z;C) counts the total number of occurrences of z
amongst all codewords in C.

Proof. Observe that for the Del(p)-channel, the quantity Q(x ≺
x′) denotes the probability that an output of x is a subsequence
of x′. So, for 0 ≤ t ≤ n, if we use Dt(x) to denote the set
of all (n − t)-subsequences of x, then we have Q(x ≺ x′) =∑n
t=0

∑
z∈Dt(x) Emb(x, z)I(z ∈ x′)pt(1− p)n−t. Here, we use

I(z ∈ x′) to denote the indicator function for the event that z
is a subsequence of x′. Using this expression and switching the

order of summation, we can rewrite (3) as

B(C)

=

n∑
t=0

pt(1− p)n−t
∑

z∈Σn−t

∑
x∈C

∑
x′∈C

Emb(x, z)I(z ∈ x′)

=

n∑
t=0

pt(1− p)n−t
∑

z∈Σn−t

(∑
x∈C

Emb(x, z)

)(∑
x′∈C

I(z ∈ x′)

)
.

Since
∑

x∈C Emb(x, z) and
∑

x′∈C I(z ∈ x′) yields the
quantities I∗(z;C) and I(z;C), respectively, we obtain (7).

Next, we look at the quantities I(z;C) and I∗(z;C) for the
following codebooks:

An , {0, 1}n,
En , {x ∈ {0, 1}n : wt(x) is even},

Cn,w , {x ∈ {0, 1}n : wt(x) = w}.

Now, the quantity I(z;C) has been studied in other contexts
[37], [38]. Of significance, I(z; {0, 1}n) depends on |z| and n
only, while I(z;C(n,w)) depends on |z|, wt(z), n, and w only.
In both cases, the quantity does not depend on the actual string
z. Specifically, we have the following proposition.

Proposition 7 ([37], [38]). Let |z| = n− t. Then

I(z;An) =

t∑
i=0

(
n

i

)
, IA(n, t). (8)

Furthermore, if wt(z) = u,

I(z;Cn,w)

=

{(
n
w

)
, if u = 0 and w ≤ t,∑t−w+2u
i=u

(
i−1
u−1

)(
n−i
w−u

)
, if u > 1

(9)

, IC(n,w, t, u).

Next, using standard techniques in combinatorics [39], we
have the following result. If |z| = n− t and wt(z) = u, then

I∗(z;An) = 2t
(
n

t

)
, (10)

I∗(z;Cn,w) =

(
n

t

)(
t

w − u

)
, (11)

I∗(z;En) =


2t−1

(
n
t

)
, if t ≥ 1,

1, if t = 0 and u is even,
0, if t = 0 and u is odd.

(12)

Using (7–11), we then obtain the following closed formulae
for the expected number of edges. We defer the detailed proof
to the extended version of this paper.

Theorem 8. For all n,

B(An) = 2n
n∑
t=0

t∑
i=0

(
n

i

)(
n

t

)
pt(1− p)n−t. (13)

For w ≤ n,

B(Cn,w) =

n∑
t=0

w∑
u=0

(
n− t
u

)(
n

t

)(
t

w − u

)
· IC(n, t, w, u)pt(1− p)n−t . (14)
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Now, for the codebook with even-weight words, one can
apply (9) and (12) directly. However, the formula becomes
unwieldy. Nevertheless, in what follows, we show that the
expected number of edges when C = En is approximately
a quarter of the expected number of edges when C = An.
Specifically, we have the following theorem.

Proposition 9. If n is odd,

B(En) =
1

4
B(An) + 2n−2(1− p)n. (15)

To prove this proposition, we use the following combinatorial
lemma whose proof is deferred to the journal version.

Lemma 10. Let 0 ≤ t ≤ n. If n is odd, then∑
z∈{0,1}n−t

I(z;En) =
1

2

∑
z∈{0,1}n−t

I(z;An). (16)

Proof of Proposition 9. It is immediate from (10), (12) and (16)
that for t ≥ 1,∑
z∈{0,1}n−t

I(z;En)I∗(z;En) =
1

4

∑
z∈{0,1}n−t

I(z;An)I∗(z;An) .

So, we have that

B(En) =
1

4
(B(An)− 2n(1− p)n) + 2n−1(1− p)n

=
1

4
B(An) + 2n−2(1− p)n.

A. Polarization of Edge Density

In this subsection, we consider a family of codebooks
{Cn : n ≥ 1} with increasing block lengths n, and study
the quantity limn→∞B(Cn)/|Cn|2. Observe that B(Cn)/|Cn|2
represents the expected edge density of the graph G1. When
Cn = An, the next proposition states that this density ap-
proaches zero whenever the deletion probability is strictly less
than half.

Proposition 11. Let C = An and M = 2n. If 0 ≤ p < 1/2,
then B1(C) ≤ M1+ε for some constant 0 < ε < 1 that is
dependent only on p.

Sketch of proof. The detailed argument is deferred to the full
version of the paper. Instead, we simply provide the choice of ε
for which the upper bound is valid. We choose ε such that ε ≥
max{H(p), H(β) + 2(log n)/n}+ 1/n. Here, β = α/(1 + α)
with α =

√
p/(1− p).

Applying (4), we obtain Theorem 1 and hence, on average,
the running time of the network flow algorithm is sub-cubic.
Next, to complete our analysis, we show that the threshold p =
1/2 is tight and that the edge density polarizes. That is, when
p = 1/2, we no longer have the property that B(An) = o(M2)
and when p > 1/2, we have B(An) approaches M2. Before we
formally state the result, we observe that B(En) shares the same
polarization behavior as B(An). This follows directly from (15).

Proposition 12.

lim
n→∞

B(En)

|En|2
= lim
n→∞

B(An)

|An|2
=


0, if p < 1/2 ,
1
2 , if p = 1/2 ,

1, if p > 1/2 .

Fig. 1. Expected edge density of G1 for constant weight codebooks Cn,ωn

with ω = 0.4 .

We defer the proof to the full version. Here, we conjecture
that the same polarization phenomenon is present for constant-
weight codebooks.

Conjecture. Let 0 < ω < 1/2. There exists 0 < pω < 1, a
constant dependent on ω only, such that

= lim
n→∞

B(Cn,bωnc)

|Cn,bωnc|2
=

{
0, if p < pω ,

1, if p > pω .

We exhibit this polarization phenomenon numerically for the
case ω = 0.4 in Figure 1.

B. Enumeration via Dynamic Programming
Here, we consider the problem of enumerating B1(C) for a

certain class of codebooks. Consider a finite ring R that contains
the q-ary alphabet Σ. We fix H to be a r×n-matrix over R and
σσσ be some syndrome in Rr. Then we consider the codebook C

which is defined to be

C , {x ∈ Σn : xHT = σσσ} .

If a codebook satisfies this definition, we say that the codebook
is defined by a linear syndrome and we observe that this general
definition includes many classical codes.
• If R = Zn+1, Σ = {0, 1}, H = (1, 2, . . . , n) and σσσ = (a)

where a ∈ Zn+1, then the resuling codebook C is the
Varshamov-Tenengolts code [29].

• If R = Σ = F2, H = (1, 1, . . . , 1) and σσσ = (0). Then
C = En. More generally, if we allow H to be any parity-
check matrix, then C is a binary linear code.

Due to space constraints, we do not describe the detailed
recursive formulas and the dynamic programming implementa-
tion. Instead, we simply state the running time of our proposed
enumeration method.

Proposition 13. Let C be a q-ary code defined by a linear
syndrome with ring R, r × n-matrix H and syndrome σσσ. Then
B(C) can be determined in O(q2n4|R|2r) time.

In particular, if C is a VT code of length n, we can determine
B(C) in O(n6) time.
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