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Abstract—Synthetic polymer-based storage promises to ac-
commodate the ever-increasing demand for archival storage. It
involves designing molecules of distinct masses to represent the
respective bits {0, 1}, followed by the synthesis of a polymer of
molecular units that reflects the order of bits in the information
string. The stored data can be read by means of a tandem mass
spectrometer, that fragments the polymer into shorter substrings
and provides their corresponding masses, from which the com-
position, i.e., the number of 1s and 0s in the concerned substring
can be inferred. Prior works tackled the problem of unique
string reconstruction from the set of all possible compositions,
called the composition multiset. This was accomplished either by
determining which string lengths always allow unique reconstruc-
tion, or by formulating coding constraints to facilitate the same
for all string lengths. Additionally, error-correcting schemes to
deal with substitution errors caused by imprecise fragmentation
during the readout process, have also been suggested. This work
extends previously considered error models that were mainly
confined to substitutions of compositions. Our new error models
consider insertions and deletions of compositions. The robustness
of the reconstruction codebook proposed by Pattabiraman et al.
to such errors is examined, and whenever necessary, new coding
constraints are proposed to ensure unique reconstruction.

I. INTRODUCTION

As we progress through this digital age, our rate of data
generation continues to rise unhindered, and with it, so do
our storage requirements. Since current data storage media
are not particularly advantageous in regard to longevity or
density, several molecular storage techniques [1]–[9] have
been proposed. The work in [1] involving synthetic polymer-
based storage systems appears to be especially favorable, given
its promise of efficient synthesis, low read latency and cost.
Under this paradigm, a string of information bits is encoded
into a chain of molecules linked by means of phosphate
bonds, such that the component molecules may only assume
one of two significantly differing masses, which indicate the
bits 0 and 1 respectively. The stored data can be read out
by employing a tandem mass (MS/MS) spectrometer, which
essentially splits the synthesized polymer at the phosphate
linkages and outputs the masses of the resulting fragments.
In this manner, the user is given access to the masses of all
substrings in the encoded string.

This work has been supported by the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme
(Grant Agreement No. 801434).

A previous work [10] dealt with the problem of reconstruct-
ing a binary string from such an MS/MS readout, under the
following modeling assumptions.

Assumption 1. Masses of the component molecules are cho-
sen such that one can always uniquely infer the composition,
i.e., the number of 0s and 1s forming a certain fragment, from
its mass.

Assumption 2. While fragmenting a polymer for the pur-
pose of mass spectrometry analysis, the masses of all of its
constituent substrings are observed with identical frequency.

This setting simplifies the recovery of the original infor-
mation string into the problem of binary string reconstruction
from its composition multiset. More plainly, the reconstruction
process now involves determining the binary string from a
set of compositions of all of its substrings of each possible
length. It is worth noting that a string and its reversal have
identical sets of substring compositions, thus preventing us
from distinguishing between them.

While the authors of [10] mainly focused on string lengths
that ensured unique reconstruction from a composition mul-
tiset, subsequent works [11]–[13] extended this research by
building a code that allows for unique reconstruction of
each member codeword from its composition multiset alone,
regardless of the string length. Similar coding constraints were
also proposed to also correct possible errors in the composition
multiset. The work in [14] takes a step further by dealing with
the recovery of multiple strings from the mass spectrometry
readout of a mixture of synthesized polymers.

Since the errors introduced during an MS/MS readout are
normally context-dependent, we devote this work to the exten-
sion of the error models considered in [11], [12]. Specifically,
we investigate the impact of inserting and deleting one or more
compositions on the reconstructability of the encoded strings.
Furthermore, new coding constraints are proposed to enable
the correction of such errors. We also consider a special kind
of substitution error, namely a skewed substitution error. Such
errors are motivated by imperfect fragmentations of a given
polymer during the MS/MS readout process, as a result of
which the observed molecular mass of a shorter monomer
chain is lower than what the true mass of its perfectly
fragmented version would have been. In this scenario, errors
occur only in one direction, i.e., the measured mass can only
be lower than the true mass. An error-correcting scheme is

2022 IEEE International Symposium on Information Theory (ISIT)

978-1-6654-2159-1/22/$31.00 ©2022 IEEE 742



also suggested for this setting.
Due to space limitations, some proofs and examples are

omitted and can be found in the long version [15].

II. PRELIMINARIES

Let s = s1s2 . . . sn denote a binary string of n bits. Any
substring si . . . sj where i ≤ j, may be indicated by sji . The
composition of this substring, denoted by c(sji ), is said to be
0z1w, where z and w refer to the number of 0s and 1s in sji
respectively, such that z+w = j−i+1. We also define Ck(s)
as the set of compositions si+k−1

i , for 1 ≤ i ≤ n − k + 1.
Evidently, Ck(s) should contain n− k + 1 compositions.

Upon combining the multisets for all 1 ≤ k ≤ n, we obtain
the composition multiset of s,

C(s) =
⋃

k∈[n]

Ck(s),

where [n] = {1, . . . , n}. The authors of [10] determined
string lengths for which unique reconstruction (up to reversal)
from such sets is possible. For the remaining string lengths, a
bivariate generating polynomial representation was exploited
to find strings that are equicomposable with a given string.
Here, two distinct strings s, t ∈ {0, 1}n are said to be
equicomposable if a common composition multiset is shared,
i.e., C(s) = C(t).

A code C is called a composition-reconstructable code if
for all s, t ∈ C, it holds that C(s) ̸= C(t). For all n, we let
A(n) denote the size of the largest composition reconstructable
code of length n. Since composition multisets are identical for
a binary string and its reversal, it holds that

A(n) ≤ 2⌈
n
2 ⌉ +

1

2
(2n − 2⌈

n
2 ⌉) = 2n−1 + 2⌈

n
2 ⌉−1,

where 2⌈
n
2 ⌉ describes the number of palindromic strings of

length n, and [10] determined string lengths n where it is
possible to achieve this bound with equality. Specifically,
it was shown that binary strings of length ≤ 7, of length
one less than a prime, or of length one less than twice a
prime, are uniquely reconstructable up to reversal. For all other
values of n, it is not possible to achieve the aforementioned
bound, and thus a code must be formulated. The composition-
reconstructable code proposed in [11], [12] for even codeword
lengths n is stated as follows:

SR(n) =
{
s ∈ {0, 1}n, s1 = 0, sn = 1, and
∃I ⊂ {2, . . . , n− 1} such that

for all i ∈ I, si ̸= sn+1−i,

for all i /∈ I, si = sn+1−i,

s[n/2]∩I is a Catalan-Bertrand string.
}

(1)

In this context, a Catalan-Bertrand string refers to any binary
vector wherein each prefix contains strictly more 0s than 1s.

The decoder of this code recovers a string from its composi-
tion multiset by employing the approach outlined in [10], [11].
We recapitulate a few underlying principles of this process
since they help to formulate coding constructions for the newer
error models involving insertions and deletions.

The algorithm begins by deducing the following sequence
that characterizes the string to be recovered, say s ∈ {0, 1}n,

σs = (σ1, . . . , σ⌈n/2⌉),

where σi = wt(sisn−i+1) for i ∈ {1, . . . , ⌊n/2⌋}. For odd n,
we set σ⌈n

2 ⌉ = wt(s⌈n
2 ⌉), i.e., the weight of the central bit.

For any string s, one can compute σs from its composition
multiset by exploiting the concept of cumulative weights,
which are defined for each multiset Ck(s) as

wk(s) =
∑

0z1w∈Ck(s)

w.

It is easy to verify that for all k ≤ ⌈n
2 ⌉, these weights obey

the following symmetry relation [11].

wk(s) = wn−k+1(s), ∀ k ∈ [n]. (2)

In light of this, the multisets Ci and Cn−i+1 are henceforth
called symmetric. For notational convenience, we also define

C̃i(s) = Ci(s) ∪ Cn−i+1(s).

Furthermore, the cumulative weights of the multisets of a
string s, are related to the elements of σs as follows:

wk(s) = kw1(s)−
k−1∑
i=1

iσk−i. (3)

Thus, by progressively using this equation for
k ∈ {2, . . . , ⌈n

2 ⌉}, we can determine σs.

III. NEW ERROR MODELS

The subsequent sections explore error models that involve
corrupting a valid composition multiset via the insertion of
compositions or deletion of one or more multisets.

Definition 1. An asymmetric multiset deletion is said to have
occurred in the composition multiset C(s) of a string s ∈
{0, 1}n, if for some i ∈ [n], the multiset Ci(s) is entirely
missing, while Cn−i+1(s) is not corrupted.

Definition 2. A pair of symmetric multiset deletions is said
to have occurred in the composition multiset C(s) of a string
s ∈ {0, 1}n, if for some i ∈ [n] such that i ̸= n − i + 1, the
multisets Ci(s) and Cn−i+1(s) are entirely eliminated.

Definition 3. A composition multiset C(s) of a string s ∈
{0, 1}n is said to have suffered a composition insertion error,
if for some i ∈ [n] the multiset Ci(s) contains n − i + 2
compositions, i.e., an unknown and invalid composition has
been registered.

This work primarily studies the aforementioned error mod-
els and proposes new coding constraints to permit the correc-
tion of such errors. Additionally in Section IV, we establish
an equivalence between codes that correct composition inser-
tions and composition deletions. Consequently, we restrict our
attention to the latter for the remainder of this paper.

To this end, we first attempt to form a composition-
reconstructable code that allows the correction of t asymmetric
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multiset deletions. Specifically, a code S(t)
DA is termed as a t-

asymmetric multiset deletion composition code, if for all s,
v ∈ S(t)

DA, there exists no I ⊆ [n] with |I| ≤ t such that for
all i ∈ I,

Ci(s) ̸= Ci(v),

Cn−i+1(s) = Cn−i+1(v),

Cj(s) = Cj(v) ∀ j ∈ [n] \ I.
(4)

Such a construction is discussed in Section V-A.
Subsequently in Section V-B, we investigate the case when

a pair of symmetric multisets is deleted. In this context, a code
S(t)
DS is termed as a t-symmetric multiset deletion composition

code, if for all s, v ∈ S(t)
DS , there exists no I ⊆

[⌈
n
2

⌉]
with

|I| ≤ t such that

C̃i(s) ̸= C̃i(v), ∀ i ∈ I

Ci(s) = Ci(v), ∀ i ∈
[⌈n

2

⌉]
\ I.

We discover that the code SR(n) can correct the deletion
of a single pair of symmetric multisets, and as a consequence,
can also correct the substitution of a single composition in its
complete composition multiset.

In addition to multiset deletions, we consider another error
model in Section VI, that involves a special kind of substitu-
tion, defined as follows.

Definition 4. A composition multiset C(s) of the string
s ∈ {0, 1}n is said to have suffered an asymmetric skewed
substitution error, if for some i ∈ [n], a single composition
of the multiset Ci(s) is replaced with one of a lower Ham-
ming weight, such that the symmetric counterpart Cn−i+1(s)
remains unaffected.

Formally, a code C′(t) is referred to as a t-asymmetric
skewed composition code, if for all s, v ∈ C′(t), there exists
no I ⊆ [n] with |I| ≤ t such that for all i ∈ I,

Ci(s) ̸= Ci(v),

Cn−i+1(s) = Cn−i+1(v),

wi(s) < wn−i+1(s),

Cj(s) = Cj(v), ∀ j ∈ [n] \ I.

We also prove in Theorem 2 of Section VI that a code
S(t)
DA(n) that can correct at most t asymmetric multiset dele-

tions, can also rectify up to t skewed asymmetric substitution
errors in its composition multiset.

IV. CODE EQUIVALENCE: INSERTION AND DELETION OF
MULTISETS

In this section, we demonstrate how codes which can correct
the deletion of an arbitrary group of t multisets, can also
correct the occurrence of insertion errors in those t multisets 1.

1Error models involving both insertions and deletions do not fall under this
equivalence.

Lemma 1. A code can correct the deletion of t composition
multisets if and only if it can correct any number of compo-
sition insertion errors in those t multisets.

Proof. We prove this by contradiction. Let there be two binary
strings s,v ∈ {0, 1}n such that:

C(s) ̸= C(v)

Dt(s) ∩Dt(v) ̸= ∅.
(5)

where Dt(s) constitutes all u ∈ SR(n) that s becomes
equicomposable with, upon the deletion of at most t multisets,
i.e.,

Dt(s) = {u ∈ SR(n) : ∃ I ⊆ [n], |I| ≤ t,⋃
i∈[n]\I

Ci(s) =
⋃

i∈[n]\I

Ci(u)}.

Equation (5) implies that at least n− t composition multisets
of s and v are identical. In other words, s and v have at most t
differing multisets Ci for i ∈ I ⊂ [n], and when these specific
multisets disappear from both of their composition multiset, s
and v become indistinguishable. Let these differing multisets
correspond to substring lengths i1, i2, . . . , it. We may write:⋃

j∈[n]\{i1,...,it}

Cj(s) =
⋃

j∈[n]\{i1,...,it}

Cj(v).

Upon performing a set union operation on both sides of the
previous equation with

⋃
i∈{i1,...,it} Ci(s) ∪ Ci(v), we get⋃

i∈{i1,...,it}

(Cj(v)\Cj(s)) ∪
⋃

j∈[n]

Cj(s)

=
⋃

i∈{i1,...,it}

(Cj(s)\Cj(v)) ∪
⋃

j∈[n]

Cj(v).

This effectively means that if the multisets Ci1(s), . . . , Cit(s)
are corrupted by the insertion of some specific erroneous
compositions, then this corrupted composition multiset may
correspond to both s and v, and vice-versa. Thus,

It(s) ∩ It(v) ̸= ∅, (6)

where It(s) denotes the set of all codewords u ∈ SR(n)
whose composition multisets, upon suffering any number of
insertion errors in at most t distinct multisets, resemble C(s)
after corruption by certain composition insertions in those
affected multisets. In other words, at least n − t distinct
multisets of s and u are identical. As a consequence,

It(s) =Dt(s)

={u ∈ SR(n) : ∃ I ⊆ [n], |I| ≤ t,

∀ i ∈ [n] \ I, Ci(s) = Ci(u)}

Owing to this result, we deem it sufficient to focus on error
models involving the deletion of one or more multisets. The
subsequent sections examine how multiset deletions affect the
reconstructability of an encoded string drawn from SR(n).
Similar to [11], we categorize such deletion errors into two
major settings, namely symmetric and asymmetric.
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V. MULTISET DELETION COMPOSITION CODES

This section discusses codes that are capable of correcting
the deletion of one or more multisets under the asymmetric
and symmetric settings [see Definition 1 and 2].

A. Asymmetric setting

We begin by considering an error model where a complete
multiset Ck(s) can be deleted from the composition multiset
C(s). This is formally referred to as a single asymmetric
multiset deletion. We investigate whether SR(n) guarantees
unique recoverability under this model.

Lemma 2. [15] The code SR(n) is a single asymmetric
multiset deletion composition code.

It is shown in [15] that when multiple asymmetric multiset
deletions occur, SR(n) can no longer correct them. To remedy
this, we generalize SR(n) to a new construction S(t)

DA(n),
which is a t-asymmetric multiset deletion composition code.
This code is inspired from the following construction in [11],
which is an adaption of the code in (1) by increasing the prefix
and suffix lengths.

S(t)
R (n) =

{
s ∈ {0, 1}n, st1 = 0, snn−t+1 = 1, and
∃I ⊂ {t+ 1, . . . , n− t} such that

for all i ∈ I, si ̸= sn+1−i,

for all i /∈ I, si = sn+1−i,

s[n/2]∩I is a Catalan-Bertrand string
}
.

(7)

This code can correct at most t substitution errors under an
error model that allows up to one substitution error in the
multiset C̃i for i ∈ [n]. We now propose the following t-
asymmetric multiset deletion composition code.

Construction 1:

S(t)
DA(n) =

{
s ∈ {0, 1}n : s1 = 0, sn = 1, and

∃I ⊂ {2, . . . , n
2
}, |I| ≥ t, such that

∀ i ∈ I, si ̸= sn+1−i,

and ∀i /∈ I, si = sn+1−i,

s[n/2]∩I is a string wherein each

prefix has at least t more 0s than 1s
}
.

(8)

Evidently, this construction is similar to S(t)
R (n) in that it

requires at least t 0s in s
n/2
1 and at least t 1s in snn/2+1,

however their locations are not necessarily restricted, unlike
S(t)
R (n). A similar construction for odd n also exists.

Theorem 1. [15] The code S(t)
DA(n) is a t-asymmetric

multiset deletion composition code.

Proof sketch. Consider any s ∈ S(t)
DA(n). We begin with the

observation that despite the deletion of t asymmetric multisets
from C(s), σs can be recovered, since according to (2), the
cumulative weight of each deleted multiset is equal to that of
its symmetric counterpart, which is preserved. Hence, if there
exist two strings s, v ∈ S(t)

DA(n) that are “confusable” after

the deletion of t asymmetric multisets, i.e., for some I ⊆ [n]
with |I| ≤ t, s and v satisfy (4) for all i ∈ I, then it must
hold that σs = σv .

Next, we prove that if all of the t deleted multisets are
consecutive, then any s,v ∈ S(t)

DA(n) that satisfy σs = σv ,
differ by at least two compositions in a minimum of t + 1
multisets [15, Lemma 5]. The approach taken to accomplish
this is similar to that used for [11, Lemma 4], i.e., we create
a set Vs containing all strings v that fulfill two particular
conditions. Firstly, it must hold that σs = σv , and secondly, if
(sk1 , s

n
n−k+1) = (vk

1 ,v
n
n−k+1), then for all i ∈ {1, . . . , t+1},

|Cn−k−i(s) \ Cn−k−i(v)| ≤ 2.

We are interested specifically in Vs, since it accounts
for all such v that may be confused with s during the
reconstruction algorithm, as mentioned in Section II. Af-
ter building Vs, we are able to infer that there exists
no such v ∈ S(t)

DA(n) ∩ Vs that achieves the condi-
tions (sk1 , s

n
n−k+1) = (vk

1 ,v
n
n−k+1), sk+1 ̸= vk+1 and

Cn−k−t−1(s) = Cn−k−t−1(v) simultaneously. In other
words, if the multisets Cn−k−1(s), . . . , Cn−k−t(s) are deleted
from C(s), we can still recover s uniquely, since there exists
no such v ∈ S(t)

DA(n) that satisfies (4) for all i ∈ I, where
I ⊆ [n] with |I| ≤ t.

For the case when the not all of deleted multisets are
consecutive, the proof follows similarly.

We also bound the required redundancy of S(t)
DA(n) as

follows.

Lemma 3. The code S(t)
DA(n) requires at most 1

2 log(n−2t)+
2t+ 3 bits of redundancy.

Proof. We refer to (8) and also recount from [11] that 1
2

(
2h
h

)
indicates the number of all strings of length 2h wherein every
prefix of which contains strictly more 0s than 1s. For odd
lengths 2h + 1, this term serves as a lower bound. Similarly,
to count all strings s ∈ {0, 1}p wherein each prefix (of length
exceeding t) contains at least t more 0s than 1s, we simply
note that such strings satisfy st−1

1 = 0 and spt should be a
standard Catalan-Bertrand string. By virtue of this, we derive
a lower bound on the dimension of the codebook.

|S(t)
DA(n)| ≥

n/2−1∑
i=t

2n/2−2−i

(
n/2− 1

i

)(
i− t+ 1

⌊(i− t+ 1)/2⌋

)
.

After some algebraic manipulations, we deduce that the num-
ber of redundant bits necessary is at most 1

2 log(n−2t)+2t+
3.

B. Symmetric setting

As mentioned in Section III, errors under this category
occur in such a way that the affected multisets occur in pairs.
Specifically, we focus on the case when a single pair of
mutually symmetric multisets is inaccessible2.

2Constructions correcting the deletions of multiple pairs of symmetric
multisets will be presented later.
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Lemma 4. [15] The code SR(n) is a single symmetric
multiset deletion composition code.

The previous result reveals that the codebook SR(n) is
sufficiently robust to correct the deletion of a single pair of
symmetric multisets. Consequently, if a single composition
is substituted in C(s) where s ∈ SR(n), then there occurs
a mismatch between the cumulative weights of the specific
multiset affected, say Ci(s), and its symmetric counterpart
Cn−i+1(s). It is thus possible to identify C̃i(s). Now if we
delete C̃i(s) entirely, Lemma 4 tells us that s is still uniquely
recoverable. Thus, SR(n) can correct a single composition
error just like S

(1)
CA(n) [11], [12].

VI. ASYMMETRIC SKEWED COMPOSITION CODES

In this section, we confine our focus to the correction of
asymmetric skewed substitution errors [see Definition 4].

Lemma 5. Consider any s ∈ SR(n). Given that there occurs
a single skewed substitution error in its composition multiset,
one can uniquely recover s.

Proof. In the following, we let the corrupted composition
multiset be denoted by C ′(s) =

⋃
i∈[n] C

′
i(s).

Case 1. n is even.
Given C ′(s), it is easy to identify the corrupted composition
multiset C ′

k(s), since the following relation only holds for k:

w′
k < w′

n−k+1. (9)

We recall from (2) that these quantities should ideally be equal.
If we now delete all elements of C ′

k(s) from C ′(s), Lemma 2
tells us that s is still uniquely recoverable.
Case 2. n is odd.
Using the arguments of the preceding case, we reach the same
conclusion for an odd n, when the affected multiset is C ′

k(s)
where ⌈n/2⌉ < k ≤ n, because in these cases, an uncorrupted
distinct symmetric counterpart C ′

n−k+1(s) that gives us the
true cumulative weight, exists. Thus σs can be accurately
recovered.

If k = ⌈n/2⌉, this is no longer true since the multiset
C⌈n/2⌉(s) is its own symmetric counterpart. We note from
(3) that this normally helps us determine σ⌈n

2 ⌉−1 and in
turn, the bits (s⌈n/2⌉−1, s⌈n/2⌉+1). We also observe from
[15, Lemma 2] that when these bits are assigned incorrectly,
inconsistencies with the multiset C⌈n/2⌉−1 would arise, which
are not permitted under the considered error model. Hence, we
conclude that s can be recovered uniquely.

We now consider a more general error model involving
multiple asymmetric skewed substitution errors, wherein each
multiset pair C̃i, for any i ∈ [n], may contain at most one
skewed substitution and the total number of errors does not
exceed t. In the following, we prove that the asymmetric t-
multiset deletion-correcting code S(t)

DA(n) is also robust to t
asymmetric skewed substitutions.

Theorem 2. Consider any s ∈ S(t)
DA(n). Given that there oc-

cur t skewed asymmetric substitution errors in its composition

multiset, such that for all 1 ≤ i ≤ n, C̃i(s) contains at most
one skewed substitution error, then one can uniquely recover
s.

Proof. Since the error model allows at most one skewed
substitution in a pair of symmetric multisets, all cumulative
weights can be determined accurately. This is due to the fact
that if a multiset Ck(s) has been corrupted, we may write

wk < wn−k+1. (10)

Hence, the cumulative weights can be correctly re-assigned
and in turn σs can be recovered. The preceding inequality also
allows to identify the affected multisets, the deletion of which
would transform our problem of correcting t asymmetric
skewed substitutions into reconstruction under the absence of
t multisets. According to Theorem 1, unique reconstruction of
s is perfectly possible, thus concluding our proof.

As a consequence, S(t)
DA(n) is also a t-asymmetric skewed

composition code.

VII. OUTLOOK

Several problems pertaining to string reconstruction under
this data storage paradigm still remain open:

• The error model involving skewed substitutions under a
symmetric setting is yet to be investigated. It would be
interesting to know if there exists a suitable codebook
offering a lower redundancy than that designed to correct
standard substitution errors under the symmetric setting,
as stated in [11].

• The problem of reconstructing strings from composition
multisets, error-free or otherwise, could be extended to
larger alphabets.

• Though some bounds on the maximum number of mutu-
ally equicomposable strings were stated in [10], bounds
on the error ball sizes under the error models involving
substitutions, insertions or deletions are still unknown.
These could allow us to infer if the suggested code
constructions are indeed optimal. For instance, our sim-
ulations reveal that a composition-reconstructable code
requiring a lower redundancy than SR(n) should exist.
This makes intuitive sense since SR(n) is designed for
decoding efficiency, in that no backtracking is required
during the reconstruction process of its strings [11], [12].

• One could also extend this research to the construct
wherein bits are arranged in a circular fashion, on a ring.

• As pointed out in [10], a polynomial-time algorithm for
the string reconstruction problem is yet to be found.
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