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Abstract—This paper investigates the problem of correcting
multiple criss-cross deletions in arrays. More precisely, we study
the unique recovery of n × n arrays affected by any combina-
tion of tr row and tc column deletions such that tr + tc = t
for a given t. We refer to these type of deletions as t-criss-cross
deletions. We show that the asymptotic redundancy of a code cor-
recting t-criss-cross deletions is at least tn+t logn−log(t!). Then,
we present an existential construction of a code capable of cor-
recting t-criss-cross deletions where its redundancy is bounded
from above by tn + O(t2 log2 n). The main ingredients of the
presented code are systematic binary t-deletion-correcting codes
and Gabidulin codes. The first ingredient helps locating the in-
dices of the deleted rows and columns, thus transforming the
deletion-correction problem into an erasure-correction problem
which is then solved using the second ingredient.

I. INTRODUCTION

Deletion-correcting codes have recently witnessed an in-
creased attention due to their application in DNA-based
storage systems, file synchronization, and communica-
tion systems [1]–[7]. The problem of correcting deletions
dates back to the 1960s. In [8], Levenshtein defined the
notion of t-deletion-correcting codes and bounded from
below the redundancy of any binary t-deletion-correcting
code by t log n − O(1). Moreover, he proved that the
Varshamov-Tenengolts codes [9], originally designed to cor-
rect a single asymmetric error, can also correct a single
deletion and have redundancy of roughly log(n + 1) bits.
Several recent works studied the problem of constructing bi-
nary t-deletion-correcting codes, for t > 1, with redundancy
approaching Levenshtein’s bound [10]–[16]. Of particular im-
portance to us is the work of Sima et al. [17] in which the
authors present a binary systematic t-deletion-correcting code
with redundancy 4t log(n) + o log(n).

This paper considers the problem of coding for deletions
in the two-dimensional space. The motivation stems from the
two-dimensional erasure and substitution correction where it
has been shown that leveraging the structure of the array is
more beneficial than applying one dimensional error correcting
codes on each dimension of the array. The deletion correction
problem is however more involved due to the loss of syn-
chronization in the locations of the deleted rows and columns.
Along this line of thought, the trace-reconstruction problem,
which is related to coding for deletions, is investigated for the
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two-dimensional space in [18]. Given a certain number of
deletions t and an array X, we assume that the array can be
affected by any combination of tr row and tc column deletions
such that tr + tc = t. This type of deletions are referred to as
t-criss-cross deletions. Our goal is to construct codes that can
uniquely recover the array X from any t-criss-cross deletion
and we refer to these codes as t-criss-cross codes. We borrow
this terminology from previous works that studied the prob-
lem of correcting criss-cross erasures and substitution errors
in the two-dimensional space, e.g., [19]–[26].

The first works to study this problem were [27] and [28].
In [27], we investigated the problem of correcting exactly one
row and one column deletion in arrays. We showed that the
redundancy for this special case is bounded from below by
2n + 2 log n − O(1) and presented an existential and an ex-
plicit construction with redundancy approximately 2 log n and
7 log n far from the lower bound, respectively. In [28], Hagi-
wara constructed codes for the problem of correcting criss-
cross deletions with at most tr row deletions and at most tc
column deletions, for given values of tr and tc. His construc-
tion splits the array into locators and information part. The lo-
cators are carefully structured arrays that can exactly recover
the index of any deleted rows and columns in the array. Then,
a tensor-product erasure-correcting code is used to recover the
lost symbols in the information part.

Our contributions can be summarized as follows. We
present an asymptotic upper bound (in the code length) on
the cardinality of t-criss-cross codes. Our bound implies that
the redundancy of any t-criss-cross code is bounded from
below by approximately tn + t log n. Then, we construct
existential t-criss-cross codes based on locator arrays, bi-
nary systematic t-deletion correcting codes, and Gabidulin
codes. The main improvement is to use a collection of binary
deletion-correcting codes to locate the indices of the deleted
columns and rows with less redundancy as compared to the
locator arrays used in [28]. However, small locator arrays
are still needed to complement the deletion-correcting codes.
Then, the deletion-correction problem is transformed into a
row/column erasure-correction problem which can be solved
by using Gabidulin codes that have optimal redundancy for
row/column erasure-correction [20]. The redundancy of the
presented construction is tn + O(t2 log2 n). For the con-
sidered problem setting, we substantially improve upon the
current state-of-the-art construction of [28] that needs a
redundancy of approximately 2n · (t2 + t log n).

II. DEFINITIONS AND PRELIMINARIES

This section formally defines the codes and notations that
are used throughout this paper. Let Σ , {0, 1} be the binary
alphabet. We denote by Σn×n the set of all binary arrays of
dimension n× n. All logarithms are base 2 unless otherwise
indicated.
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For an integer n ∈ N, the set {1, . . . , n} is denoted by [n].
For an array X ∈ Σn×n and i, j ∈ [n], we refer to the entry
of X positioned at the ith row and the jth column by Xi,j .
We denote the ith row and the jth column of X by Xi,[n] and
X[n],j , respectively. Similarly, we denote by X[i1:i2],[j1:j2] the
subarray of X formed by rows i1 to i2 and their corresponding
entries from columns j1 to j2. Moreover, for two arrays X ∈
Σn×m1 and Y ∈ Σn×m2 we denote by Z = (X | Y) the
concatenation of these two arrays with Z ∈ Σn×(m1+m2). For
any binary array X, we refer to the complement of X, i.e.,
every bit in X is flipped, by X.

For a positive integer t, we define a t-criss-cross deletion in
a binary array X to be the deletion of any combination of tr
rows and tc columns of X such that tr+tc = t. We refer to X̃
as the array resulting from a t-criss-cross deletion in X, where
the number of deletions that happened in X is clear from the
context. A code C ⊆ Σn×n that can correct any t-criss-cross
deletion is called a t-criss-cross deletion-correcting code. We
abbreviate this code as t-criss-cross code. Throughout this pa-
per we assume that t is a constant with respect to n. We write
f(n) ≈ g(n), f(n) . g(n), and f(n) & g(n) if the equality
or inequality holds for n→∞.

III. UPPER BOUND ON THE CARDINALITY

This section presents an asymptotic upper bound on the
cardinality of any t-criss-cross code. This bound implies an
asymptotic lower bound on the redundancy of any binary t-
criss-cross code, denoted by RB(n, t).

Lemma 1 Any upper bound on the cardinality of a q-ary t-
deletion-correcting code Cq,n,t with q = 2n is also an upper
bound on the cardinality of a binary t-criss-cross code.

Proof: Note that a 2n-ary t-deletion-correcting code
C2n,n,t can be seen also as a binary t column deletion-
correcting code by interpreting the symbols as binary
columns. Since a t-criss-cross code C can correct any combi-
nation of tr row and tc column deletions such that tr + tc = t,
in particular it can also correct any t column deletions. There-
fore, any upper bound on the size of C2n,n,t is also a valid
upper bound on the size of C.

Corollary 2 For any binary t-criss-cross code C it holds that

|C| . t!2n
2

(2n − 1)tnt
.

Consequently, we have RB(n, t) & tn+ t log(n)− log(t!).

Proof: From [29], we have for a q-ary t-deletion correct-
ing code that |Cq,n,t| . t!qn

(q−1)tnt . Even though this bound was
proved in [29] when q is fixed, one can verify that it holds
true also for q = 2n. Therefore, for any binary t-criss-cross
code C it holds by Lemma 1 that

|C| 6 |C2n,n,t| .
t!2n

2

(2n − 1)tnt
.

Therefore, we have

RB(n, t) & n2 − log(|C|) ≈ tn+ t log(n)− log(t!).

IV. CODE CONSTRUCTION

In this section we present an existential construction of t-
criss-cross codes. We start with an intuitive road map to our
code construction and then formally define each ingredient.

A. Road Map

Our construction uses structured arrays so that the indices
of the deleted rows and columns can be exactly recovered.
Then, the set of structured arrays is intersected with arrays
of a Gabidulin code (that can correct row/column erasures) to
recover the arrays of the code. The structure is depicted in
Figure 1.

We structure the n×n codewords C as follows. We protect
the columns with indices between t log n+ 1 and n− (t+ 1)2

using t log n codes where each one is a binary systematic t-
deletion-correcting code. We divide those codes into t blocks
each of size log n. We impose what we call a window con-
straint on the columns of the systematic part of every block.
This constraint ensures that every t + 1 consecutive columns
are different. Therefore, the indices of the deleted columns
within the systematic part can be located by using all log n
deletion-correcting codes of any block (Claim 4).

In the redundancy part, runs may exist. Thus, the recovery
of the index of the deleted columns is only guaranteed within

L(1)

T(1)(
M(2,1)

)T (
M(2,2)

)T

L(2)

T(2)

M(2,1)

M(2,2)

deletion-correcting codes with
window constraint

t log(n)

rw

(t+ 1)2

t log(n) (t+ 1)2

log(n)

Fig. 1: Illustration of an array contained in the locator set
Lt(n) for t = 3. In the first t log(n) rows there are t blocks
each consisting of a systematic part (cyan) and a redundancy
part (red). Each row is encoded using a systematic t-deletion-
correcting code (zoomed in part). In addition, in the systematic
part of each block a window constrained is imposed. Those
blocks are used to locate column deletions. This structure is
protected with the arrays L(1) (blue) against row deletions and
T(1) (brown) against column deletions. Lastly, to locate the
borders of T(1) we use the marker arrays M(2,1) and M(2,2)

(pink). A symmetric structure locates row deletions.
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possible runs. To recover the exact location of the deleted
columns here, we protect the redundancy part of the codes by
appending (from below) what we call a locator array that can
detect the exact positions of column deletions within this part.
We call this array T(1) (Claim 3).

Note that for the window constraint to work, we need to
have all log n deletion-correcting codes of the considered
block. Therefore, we use the subarray C[1:t logn],[n−(t+1)2:n]

as a locator array L(1) that can detect the exact position of a
deleted row within the first t log n rows (Claim 3). As a re-
sult, if all t deletions are row deletions within the first t log n
rows, then the locator array is enough to recover all the in-
dices (Lemma 6). Otherwise, we have at least one block of
the t blocks that is not affected by a row deletion. This would
be the block that will be used to recover any column dele-
tion within the range between t log n + 1 and n − (t + 1)2

(Lemma 7).
One more step is needed. We must be able to locate the

position of the locator arrays within the resulting (n − tr) ×
(n− tc) array C̃. Therefore, we put four marker arrays after
the locators that are detectable even after t deletions. We call
those arrays M(1,1) and M(1,2).

The same structure (transposed) is used to index the rows.
In addition, the columns with indices between 1 and t log n are
protected by the locator array used for protecting the deletion-
correcting codes indexing the rows. Note the claims and lem-
mas mentioned before also include the statements to recover
the row indices.

In the next subsections, we formally define the five main
ingredients of our code: (i) the locator arrays; (ii) the binary
systematic t-deletion-correcting codes with windows con-
straints; (iii) the marker arrays; (iv) the locator set which is
the combination of all the previously mentioned parts; and
(v) a Gabidulin code [30] that is used to correct row/column
erasures.

B. Locator Arrays

For a positive integer a, we denote by Ia the identity array
of dimension a× a and by 1a and 0a the all-one vector and
all-zero vector of length a, respectively. We use ⊗ to indicate
the Kronecker product. We thus have the following definition
from [28].

Definition 1 (Locator arrays) We set L′ ∈ Σ(t+1)×(t+1)2 as
L′ , It+1⊗1t+1. More precisely, L′ has the following struc-
ture

L′ =


1t+1 0t+1 . . . 0t+1

0t+1 1t+1 . . . 0t+1

...
...

. . .
...

0t+1 0t+1 . . . 1t+1

 .

Let s be a multiple of (t + 1) such that s > (t + 1)2. We
define the locator array Ls ∈ Σs×(t+1)2 as

Ls , 1Ts
t+1
⊗ L′.

Moreover, we define the locator array Ts ∈ Σ(t+1)2×s to be
the transpose of Ls, i.e.,

Ts , LTs = 1 s
t+1
⊗ L′T .

Throughout the paper we drop s in the notation Ls and Ts

when the value of s is clear from the context.

Claim 3 Given an array Ls affected by tr row and tc column
deletions such that tr + tc = t. Divide Ls into (t+ 1) subar-
rays each consisting of (t+ 1) consecutive columns of Ls. By
examining L̃s, we can locate the exact positions of the deleted
rows. We can also determine the number of column deletions
that happened in each subarray of Ls.

Given an array Ts affected by tr row and tc column dele-
tions such that tr + tc = t. The same as described above for
Ls can be done by switching rows for columns in the previous
statement.

Proof: We prove the first part of the claim, the second
part follows similarly since Ts = LTs .

By construction of Ls, for any i ∈ [s−t−1] and j ∈ [t+1]
it holds that Li,[(t+1)2] 6= Li+j,[(t+1)2]. This property holds
true even in the presence of at most t column deletions in
Ls. Thus, due to the fixed structure of Ls one can uniquely
determine the exact indices of the deleted rows.

Moreover, we divide Ls in subarrays consisting of
(t+ 1) columns. For any a, b, c ∈ [t + 1] we have
L[s],(c−1)a = L[s],(c−1)a+b. In words, we have (t + 1) iden-
tical columns in a subarray. This property holds true even
if there were at most t row deletions in Ls. Therefore, we
can determine the deleted columns within any subarray by
counting the number of missing columns.

C. Deletion-Correcting Codes with Window Constraints

Deletion-correcting codes: We use the construction of [17]
for our binary systematic t-deletion correcting code. We briefly
recall the results of [17]. Given a sequence k ∈ Σκ, one can
compute a redundancy vector rk ∈ Σρκ with ρκ 6 4t log(κ)+
o(log(κ)). The resulting sequence (k|rk) can be uniquely re-
covered after t deletions. Note that rk is a function of the
information k and ρκ is a function of the information length
κ and the number of deletions t.

Window constraint: We define the window constraint as the
set Wt(`, w) ⊆ Σ`×w, where for any W ∈ Wt(`, w), i ∈
[w − t] and j ∈ [t], it holds that W[`],i 6= W[`],i+j .

For an array W ∈ Wt(`, w), let RW ∈ Σ`×rw be the ar-
ray formed such that for any i ∈ [`] the ith row of RW is the
redundancy vector corresponding to the ith row of W; com-
puted using the construction in [17]. We refer to the array
RW ∈ Σ`×rw as the redundancy array. Let m , w + rw, we
define D(1)

t (`,m) as the set of all arrays resulting from the
concatenation of W and RW, i.e.,

D(1)
t (`,m) ,

{
D ∈ Σ`×m :

D = (W | RW),

s.t.W ∈ Wt(`, w)

}
.

In words, D(1)
t (`,m) is the set of binary systematic t-deletion-

correcting codes in which the systematic part satisfies the
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imposed window constraint. This set will be used to index
the columns of our arrays in the constructed code. We define
D(2)
t (`,m) ,

{
DT : D ∈ D(1)

t (`,m)
}
. This set is going to

be used for indexing the rows.

Claim 4 Given an array D = (W | RW) ∈ D(1)
t (`,m) af-

fected by t column deletions and no row deletions, we can
locate the exact positions of the deleted columns in the sub-
array W.

The same holds for any array in D(2)
t (`,m) by switching

in the argument rows and columns.

Proof: Assume D̃ = (W̃ | R̃W) is the array obtained
after the deletions. For each row in W̃ we can use the cor-
responding redundancy in R̃W to correct the deletions that
happened in this row [17]. We start by looking at the position
of the first recovered bit in each row. In each row, this position
may be unique or may be in an interval of possible positions
(run). The exact location of the column is then determined by
the unique position in which all runs (of all rows) intersect.
The intersection is guaranteed to be unique by the imposed
window constraint; since for any i ∈ [w − t], and j ∈ [t], it
holds that W[`],i 6= W[`],i+j . This process is repeated for all
recovered bits until all t positions are determined.

A similar argument follows for the second statement of the
claim.

D. Marker Arrays

We define the following arrays of dimension (t+1)×(t+1)
which will operate as markers to locate the position of the lo-
cator arrays in the resulting C̃. Recall that we use four locator
arrays in our construction, namely L(1), L(2), T(1), and T(2),
cf. Figure 1. We only need marker arrays for T(1) and L(2).
The position of L(1) and T(2) can be then determined. The
first marker array M(2,1), put on top of L(2), consists of the
first t+1 columns of L′. The second marker array M(2,2), put
on the right of L(2), consists of the complement of the last
t + 1 columns of L′. The marker arrays M(1,1) and M(1,2)

are the transpose of M(2,1) and M(2,2), respectively.

E. Locator Set

We formally define the sets of arrays in Σn×n that form
our code. Let X ∈ Σn×n, we start with the set of arrays
that are used to index the columns. This set is denoted by
Ht(`, n). The arrays in this set have the first t` columns di-
vided into t blocks. The columns whose indices are between
t`+ 1 and n− (t+ 1)2 of each row consist of a systematic t-
deletion-correcting code in which the systematic part satisfies
the window constraint. We can write

Ht(`, n) ,

{
X :

X[(a−1)`+1:a`],[t`+1:n−(t+1)2]

∈ D(1)
t (`, n− t`− (t+ 1)2) ∀ a ∈ [t]

}
.

The set of arrays Vt(`, n) that are used to index the rows is
defined similarly to Ht(`, n) by replacing columns with rows.

Vt(`, n) ,

{
X :

X[t`+1:n−(t+1)2],[(b−1)`+1:b`]

∈ D(2)
t (`, n− t`− (t+ 1)2) ∀ b ∈ [t]

}
.

For a value of rw that divides1 t + 1, the set of arrays
Et(`, n) that contains the locator arrays in the positions shown
in Figure 1 is defined as follows.

Et(`, n)

,

X :

X[1:t`],[n−(t+1)2+1:n] = Lt`,

X[n−rw−(t+1)2+1:n],[t`+1:t`+(t+1)2] = Trw+(t+1)2 ,

X[n−(t+1)2+1:n],[1:t`] = Tt`,

X[t`+1:t`+(t+1)2],[n−rw−(t+1)2+1:n] = Lrw+(t+1)2 ,

.
The set of arrays that contains the marker arrays in the po-

sitions shown in Figure 1, is defined as follows.

Mt(`, n)

,



X :

X[t`+1:t`+(t+1)],[n−rw−(t+1)2−(t+1)+1:n−rw−(t+1)2]

= M(1,1),

X[t`+(t+1)2+1:t`+(t+1)2+(t+1)],[n−(t+1)+1:n]

= M(1,2),

X[n−rw−(t+1)2−(t+1)+1:n−rw−(t+1)2],[t`+1:t`+(t+1)]

= M(2,1),

X[n−(t+1)+1:n],[t`+(t+1)2+1:t`+(t+1)+(t+1)]

= M(2,2)



.

We can conclude this subsection by defining the locator set
that is the set of all arrays that have the structure required by
our code to recover the indices of the deleted columns and
rows. The locator set is the intersection of all the previously
defined sets.

Definition 2 (Locator Set) We define the following set:

Lt(n) , Ht(`, n) ∩ Vt(`, n) ∩ Et(`, n) ∩Mt(`, n).

For an illustration of such arrays we refer to Figure 1. The
defining parameters of Lt(n) are only t and n. By fixing those,
all other parameters can be obtained from the imposed con-
straints. Most noteworthy parameters are w and rw, which are
functions of n and t.

F. Construction

We write CGab(n, t) to refer to a linear Gabidulin code
which is able to correct any pattern of tr row and tc column
erasures in an n × n array as long as tr + tc = t [20]. Now
we are able to present our existential construction.

Construction 1 The code Ct,n ⊆ Σn×n is the set of arrays
that belong to

Lt(n) ∩ CGab(n, t).

Theorem 5 The code Ct,n described in Construction 1 is a
t-criss-cross code.

A rough concept of our construction is as follows. In our
codewords, we first introduce the structure Lt(n) to locate the

1If the value of rw does not divide t+1, then one can simply expand the
dimension of the locator arrays in Et(`, n) to the next multiple of t+ 1 that
is greater than rw + (t+ 1)2.
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indices of the deleted columns and rows. With this knowl-
edge we can introduce erasures into the missing rows and
columns and convert the deletion problem into an erasure prob-
lem which can be solved by the Gabidulin code CGab(n, t)
[20]. We call this type of decoding the locate-decode strategy.
Theorem 5 will be proven by providing a generic decoding
strategy in the next section.

V. DECODER

Assume we have a codeword C ∈ Ct,n. The decoder re-
ceives an array C̃ ∈ Σ(n−tr)(n−tc) obtained from C by tr
row and tc column deletions. Let us denote the set of indices
of the rows and columns that got deleted by I(tr) ⊂ [n] and
I(tc) ⊂ [n], respectively, with |I(tr)| + |I(tc)| = tr + tc = t.
As mentioned before we first focus on locating the indices of
the row and column deletions.

Lemma 6 Given the array C̃, any row index i ∈ I(tr) such
that 1 6 i 6 t` or n−rw−(t+1)2 < i 6 n can be recovered.
Similarly, any column index j ∈ I(tc) such that 1 6 j 6 t` or
n− rw − (t+ 1)2 < j 6 n can be recovered.

Proof: We focus on how to recover the row indices i ∈
I(tr) and the column indices j ∈ I(tc) that satisfy 1 6 i 6 t`
and n − rw − (t + 1)2 < j 6 n. Recovering the remain-
ing indices of the statement follows by the symmetry of the
construction.

It can be shown (and is omitted for brevity) that the bound-
aries of L̃(1) and T̃(1) in C̃ can be exactly recovered by lever-
aging the structure of L(1), T(1), and the imposed markers
M(1,1) and M(1,2). Therefore, by Claim 3 we can locate any
column deletions with indices n− rw − (t+ 1)2 < j 6 n by
decoding T̃(1). Consequently, having the boundaries of L̃(1)

and using Claim 3, we can recover the indices of the deleted
rows that satisfy 1 6 i 6 t`.

Lemma 7 Given the array C̃, any row index i ∈ I(tr) such
that t` < i 6 n−rw−(t+1)2 can be recovered. Similarly, any
column index j ∈ I(tc) such that t` < j 6 n− rw − (t+ 1)2

can be recovered.

Proof: We start by proving that the column indices can
be recovered. We want to leverage the structure imposed by
the set Ht(`, n). For an array C ∈ Ht(`, n), each row of the
subarray C[1:t`],[t`+1:n−(t+1)2] is encoded using a binary sys-
tematic t-deletion-correcting code. In addition, the columns
C[1:t`],j such that t < j 6 n− rw − (t+ 1)2 are the system-
atic part of this code. Recall that the rows are divided into
t blocks, each of size `, where in each block the columns
t < j 6 n − rw − (t + 1)2 satisfy the window constraint.
We assume that at least one column in this interval is deleted.
Therefore, at most (t − 1) rows can be deleted in C. This
means, that there exists at least one block of ` rows that is not
affected by any row deletions. By Lemma 6 we can locate this
block. By Claim 4 we can recover the indices of the columns
deleted within the range t < j 6 n− rw− (t+ 1)2. Similarly,
we can obtain the indices with t` < i 6 n− rw − (t+ 1)2 by

leveraging the structure imposed by Vt(`, n), Lemma 6, and
Claim 4.
Now we can present the full proof of our code construction.

Proof of Theorem 5: By applying Lemma 6 and
Lemma 7, we can determine the sets of indices I(tr) and
I(tc). For all i ∈ I(tr) and j ∈ I(tc) we insert row or column
erasure in C̃ starting from the smallest index. Now we can
apply a Gabidulin criss-cross erasure decoder to determine
the values of the erased symbols [20].

VI. REDUNDANCY

In this section we perform an analysis of the redundancy of
our code denoted by R(n, t). We will refer to the redundancy
of each individual set CGab(t, n), Lt(n), Ht(`, n), Vt(`, n),
Et(`, n), Wt(`, w) and Mt(`, n) by R∗(n, t), where ∗ is re-
placed with the corresponding set letter. For the sake of brevity,
we omit the proofs of the provided claims and lemmas. The
detailed proofs can be found in [31]. In the following, we give
an intuition behind the computations of the redundancy.

Since Ct,n = Lt(n) ∩ CGab(t, n) and due to the fact that
the Gabidulin code is a linear code, we can compute the code
redundancy as follows.

R(n, t) = RL(n, t) +RG(n, t)

Moreover, since the intersected sets in the locator set Lt(n)
impose constraints on disjoint positions in the n × n arrays,
we can further split the redundancy as follows.

RL(n, t) = RH(n, t) +RV(n, t) +RE(n, t) +RM(n, t)

The sets Ht(`, n) and Vt(`, n) impose similar constraints:
t disjoint subarrays constrained with the window constraint
where each row is protected by a systematic t-deletion
correcting code from [17].

Claim 8 The redundancy resulting from the constraints im-
posed by the two sets Ht(`, n) and Vt(`, n) is bounded as

RH(n, t) +RV(n, t) 6 2t(RW(`, w) + log(n) · rw),

where w = n− t log(n)− rw− (t+ 1)2 and rw 6 4t log(n) +
o(log n).

Observe that the constraints for the remaining sets fix values
for certain subarray boundaries. Therefore, the following can
be obtained.

Claim 9 The redundancy RL(n, t) resulting from the
constraints imposed by the set Lt(n) is bounded as

RL(n, t) 6 (8t2 + 2t) log2(n) + o(log2(n)).

We can conclude this section with the statement on the redun-
dancy R(n, t) of the code Ct,n presented in Construction 1.
Note that the redundancy added by the Gabidulin code is tn.

Lemma 10 The redundancy of the code Ct,n is bounded as

R(n, t) 6 tn+ (8t2 + 2t) log2(n) + o(log2(n)).
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