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Abstract—The de Bruijn graph and its sequences have found
many diverse applications in information theory as well as other
areas of computer science and engineering such as interconnec-
tion networks, VLSI decomposition, and most recently in DNA
storage. Binary balanced sequences have also been a subject to
a large research during the last forty years with various appli-
cations and a lot of interest in information theory. There have
been some works on classification of balanced sequences mainly
based on their spectral-null order. This work generalizes the con-
cept of de Bruijn sequences, based on the de Bruijn graph of
order `, where each edge is multiplied to a fixed number of mul-
tiple edges. This implies that in the sequences derived from the
generalized graph each `-tuple has the same multiplicity. Using
this generalization we form an interesting hierarchy between bal-
anced sequences. Furthermore, another hierarchy is given by the
derivatives of balanced sequences. Enumeration for each such
family of sequences and efficient encoding and decoding algo-
rithms are also provided.

I. INTRODUCTION

The binary de Bruijn graph of order `, G`, was introduced
in 1946 by de Bruijn [4]. His target in introducing this graph
was to find a recursive method to enumerate the number of
cyclic binary sequences of length 2` such that each `-tuple ap-
pears as a cyclic window exactly once in each sequence. These
sequences were later called de Bruijn sequences. It should be
mentioned that in parallel also Good [14] defined the same
graph. These results were later generalized in [34] for any al-
phabet of finite size m.

The vertices of G` are the binary words of length `− 1, and
the edges correspond to the words of length `. There is an edge
u→ v if v can be obtained from u by shifting one entry left
and appending a symbol. Eulerian cycles in de Bruijn graphs,
i.e. cycles that visit all the edges of G` exactly once, are called
de Bruijn cycles. Alternatively, these can be viewed as Hamil-
tonian cycles in G`+1 as well, i.e., cycles that visit each one
of the vertices of G`+1 exactly once. It was proven in [4] that
the number of de Bruijn cycles in G` is 22`−1−`. Since each de
Bruijn cycle induces 2` distinct acyclic de Bruijn sequences,
the number of such acyclic de Bruijn sequences is 22`−1

and
their asymptotic rate is 1/2. One of the first applications of
the de Bruijn graph was in the introduction of shift-register se-
quences and linear feedback shift registers [13]. Throughout
the years, an extensive amount of works have studied the de
Bruijn graph and its sequences. Several of those include [5],
[6], [8], [10], [11], [15], [19], [20], [21], [25], [30]. Most re-
cently, DNA storage has brought fresh interest to this family
of sequences, see [3], [17], [29].

A de Bruijn sequence of length 2` can be viewed as a se-
quence with balanced occurrences of `-tuples. This immedi-
ately implies a connection to another known family of se-
quences, which is the set of balanced sequences. A sequence
is said to be balanced if it contains an identical number of ze-
ros and ones. In [18], Knuth proved that the redundancy of
this family of sequences is 0.5 log n+O(1) bits and designed

an efficient algorithm with linear time complexity which en-
codes an arbitrary binary sequence to a balanced one using
log n+Θ(log log n) redundancy bits. In the following years,
various generalizations of the family of balanced sequences
and Knuth’s algorithm were studied; see e.g. [1], [2], [16],
[26], [27], [28], [31], [32], [33], [35].

This paper studies a novel family of codes that generalizes
both de Bruijn sequences and balanced sequences. For integers
`,µ, we say that an acyclic sequence is an (`,µ)-balanced de
Bruijn sequence, or (`,µ)-BdB sequence in short, if it con-
tains each binary `-tuple as a window exactly µ times. Note
that when µ = 1, the set of (`,µ)-BdB sequences, denoted by
B(`,µ), is the set of acyclic de Bruijn sequences, and when
` = 1 it is the set of balanced sequences.

The first part of this paper studies the problem for the
value ` = 2 and presents an encoding algorithm for the
set B(2, n/4) that is based on Knuth’s algorithm and uses
2 log n + Θ(log log n) redundancy bits. Next, the main re-
sult of this paper, an exact enumeration of B(`,µ) for all
admissible values of `,µ, is presented. This enumeration uses
a construction which is based on a variation of the de Bruijn
graph, where each edge is multiplied µ times. The result of
this enumeration is

|B(`,µ)| = 22`−1
(

2µ − 1
µ − 1

)2`−1

.

Specifically, we prove that when ` = c for some constant
c, the redundancy of B(`,µ) equals 2c−2 log n +O(1), and
when µ is a constant, the asymptotic rate of this set is

R(µ) = lim sup
`→∞

log |B(`,µ)|
µ2`

=
1 + log (2µ−1

µ−1 )

2µ
.

Furthermore, we present a generic encoding scheme for
(`,µ)-BdB sequences with ` = O(log log n) that uses
2`−1(logµ + 1) + `+Θ(log logµ) redundancy bits.

The paper ends with another generalization of the family of
balanced sequences. For a sequence s = (s0, s1, . . . , sn−1) ∈
Fn

2 , let s′ = (s0 + s1, s1 + s2 . . . , sn−1 + s0) ∈ Fn
2 denote its

derivative sequence. These sequences and their applications
were studied in several works; see e.g. [5], [9], [12], [20], [24].
A sequence s ∈ Fn

2 is called a k-order balanced sequence if
the sequences s, s(1), . . . , s(k−1) are all balanced, where s(i)

is the derivative of s(i−1) and s(0) = s. We study the cardinal-
ity of this novel family of sequences for several fixed values
of k, and present an efficient encoder that is based on Knuth’s
algorithm using k log n +Θ(log log n) redundancy bits.

The rest of this paper is organized as follows. In Section II,
we formally define the families of sequences studied in this
paper, and review several previous results. In Section III, we
study the family of (`,µ)-BdB sequences, for various values
of µ and `, and in Section IV the family of k-order balanced
derivatives is studied. Due to the lack of space, some of the
proofs in this paper are omitted.
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II. DEFINITIONS AND PRELIMINARIES

For two integers i, k ∈ N such that i 6 k we denote by [i, k]
the set {i, . . . , k} and use [k] as a shorthand for [0, k− 1]. Let
n ∈ N be an integer and let s = (s0, . . . , sn−1) ∈ Fn

2 denote
a sequence. For two positive integers i, k 6 n, let si,k denote
the cyclic window (si , . . . , si+k−1), when the indices are taken
modulo n. Additionally, let Prefk(s) = s0,k, Suffk(s) = sn−k,k
denote the k-prefix, k-suffix of s, respectively. Let wH(s) de-
note the Hamming weight of s. The notation si denotes the
concatenation of s i times and s ◦ v is the concatenation of
s and another sequence v. For an index i ∈ [n], b(i) denotes
the binary representation of i using dlog2(n)e bits. Finally,
the redundancy of a set A ⊆ Fn

2 is defined as red(A) =
n− log2 |A|. For the rest of this paper, we assume all loga-
rithms are taken to base 2.

Definition 1. The `-th order binary de Bruijn graph G` is the
digraph (V, E), where V = F`−1

2 and

E = {((s0, s1, . . . , s`−2), (s1, s2, . . . , s`−1)) | si ∈ F2}.

Note that the edges of G` correspond to the set of binary `-
tuples, F`

2.

Definition 2. Let ` be an integer and n = 2`. A sequence s ∈
Fn

2 is called an `-de Bruijn sequence if s contains each binary
`-tuple as a cyclic window exactly once.

The connection between Eulerian cycles in G` to `-de Bruijn
sequences is as follows. In order to generate a sequence from a
cycle, we pick any edge in the cycle to start from and consider
the first entry of each consecutive edge in the cycle.

Example 1. Let ` = 3, n = 8. Then,

s = 00010111

is a 3-de Bruijn sequence. s can be generated from G3 using
the Eulerian cycle

00 000→ 00 001→ 01 010→ 10 101→ 01 011→ 11 111→ 11 110→ 10 100→ 00.

Definition 3. Let n ∈ N be an integer and let s ∈ Fn
2 be a

sequence. We say that s is balanced if wH(s) = dn/2e.

Note that Definition 3 is applicable for both even and odd
sequence lengths. When n is even, it is required that the num-
bers of zeros and ones are identical. When n is odd, the bit
one appears one more time than the bit zero.

We define next a family of sequences which constitute a
generalization of de-Bruijn sequences, as well as a general-
ization of the family of balanced sequences.

Definition 4. Let `,µ be integers, and n = µ2`. A sequence
s ∈ Fn

2 is called an (`,µ)-balanced de Bruijn sequence, or an
(`,µ)-BdB sequence in short, if s contains each binary `-tuple
as a cyclic window exactly µ times, i.e., for every v ∈ F`

2, there
exist µ different indices i1, . . . , iµ ∈ [n] such that si j ,` = v for
every j ∈ [µ].

Example 2. Let ` = 3,µ = 2, n = 16. Then, the sequence

s = 0000100101101111

is a (3, 2)-BdB sequence, since it contains each binary 3-tuple
as a window exactly twice.

We denote the set of all (`,µ)-BdB sequences over F2 by
B(`,µ). We also define the asymptotic rate of B(`,µ) as a
function of the multiplicity µ by

R(µ) = lim sup
`→∞

log |B(`,µ)|
µ2`

.

Observe that when µ = 1 the set B(`, 1) is exactly the set
of de Bruijn sequences, and hence R(1) = 1/2. On the other
hand, for ` = 1, we receive the set B(1, n/2) for n = 2µ,
i.e., the set of length-n balanced sequences, and thus

red(B(1, n/2)) = 0.5 log n +O(1).

Lastly, we present the useful definition of a derivative se-
quence.

Definition 5. Let s ∈ Fn
2 be a sequence. Its derivative sequence,

denoted by s′, is the sequence

s′ = (s0 + s1, s1 + s2, . . . , sn−2 + sn−1, sn−1 + s0) ∈ Fn
2 .

It follows immediately from Definition 5 that s can be
uniquely constructed from s′ and s0 by repeatedly invoking
si = s′i−1 + si−1 for i = 1, . . . , n− 1.

III. BALANCED DE BRUIJN SEQUENCES

In this section, we present enumeration methods and en-
coding schemes of (`,µ)-BdB sequences for various values
of `,µ.

A. Encoding Algorithm for ` = 2
First, we present an encoding algorithm for B(2,µ), which

is based on the connection of this set to the family of balanced
sequences. Let n = 4µ denote the length of the sequence.

We seek to extend Knuth’s algorithm [18], which encodes
an arbitrary binary sequence to a balanced one with log n +
Θ(log log n) redundancy bits, for the case where each 2-tuple
appears exactly n/4 times. We derive the following property.

Lemma 6. Let s ∈ Fn
2 be a sequence. Then, s is a (2, n/4)-

BdB sequence if and only if s is balanced and s′ is balanced.

Remember that Knuth’s algorithm [18] balances a sequence
x ∈ Fn

2 by picking a balancing index, i, and flipping Prefi(x)
such that x is balanced. Then, the index i is encoded as a
balanced sequence using log n + Θ(log log n) bits. Let EK
denote this encoder. Additionally, for a sequence x ∈ Fn

2 let
δ(x) denote the imbalance of x, i.e., δ(x) = dn/2e−wH(x).
Notice that by flipping any prefix of x, the derivative x′ is
changed by at most two bits, and thus the imbalance of x′ is
changed by at most 2.

Algorithm 1 receives s, an input sequence over Fn−ρ
2

where ρ = 2 log n + Θ(log log n), and outputs a sequence
in B(2, n/4). The algorithm first uses Knuth’s algorithm to
balance s′ and s. The balancing indices are concatenated to
construct the indices sequence v of length1 2 log n. Then, the
process is repeated to create u, the indices sequence of v, of
length 2 log(2 log n). Since u has length of Θ(log log n), it
can be easily transformed to a balanced sequence with a bal-
anced derivative using a fixed encoding map. Later, s and the
balanced indices sequences are appended to construct x, a
balanced sequence with a nearly balanced derivative. Finally,
x and its derivative are balanced manually by appending se-
quences of constant lengths m0 and m1 respectively. The

1For simplicity, in this section we drop some of the ceiling notations.
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generated result is a sequence that belongs to B(2, n/4)
according to Lemma 6.

Throughout Algorithm 1, for simplicity, we sometimes op-
erate on a derivative of a sequence rather than on the actual
sequence x. This implicitly means that we invoke a derivative
to obtain x′, then operate on x′ to receive x̂′, and the result
is the sequence x̂ that is reconstructed from x̂′ and x0. Lastly,
denote the words w1 = 0001, w0 = 0011, w−1 = 0111 and
notice that δ(w1) = 1, δ(w0) = 0, δ(w−1) = −1.

Algorithm 1 Encoding (2, n/4)-BdB sequences

Input: A sequence s ∈ Fn−ρ
2

Output: A sequence x ∈ B(2, n/4)
1: Use EK to find i1, the balancing index of s′. Flip the i1-

prefix of s′ which transforms s to s∗.
2: Use EK to find i0, the balancing index of s∗, and flip its

i0-prefix to receive ŝ.
3: Construct the indices sequence v = b(i0) ◦ b(i1) of length

2 log n.
4: Repeat Steps 1-3 with v as an input to receive v̂ and the

indices sequence u of length 2 log(2 log n).
5: Use an encoding map to encode u to û, a balanced se-

quence with a balanced derivative of length Θ(log log n).
6: Let x = 0 ◦ ŝ ◦ v̂ ◦ û.
7: Denote g = δ(x′). Append 12g to the end of x′ if g > 0,

and 02|g| otherwise, then append (01)
m1
2 −2|g| to receive x̂.

8: Denote h = δ(x̂). Append wh
1 to the end of x̂ if h > 0,

and w|h|−1 otherwise, then append w
m0
4 −4|h|

0 .
9: Return x̂.

It is presented later in Corollary 15 that

red(B(2, n/4)) = 2 log n +O(1).

Hence, the size of the encoding map used at Step 5 is
2 log log n + Θ(log log log n). Due to its small size, this
encoding map can be generated efficiently and does not affect
the complexity of the algorithm.

Note that the lengths m1, m0 are a function of the imbal-
ance of x′ and x̂ respectively, which can be upper bounded
and set in advance independently of the input sequence.

Theorem 7. Algorithm 1 returns a sequence x ∈ B(2, n/4)
that can be uniquely decoded to its input sequence s. The algo-
rithm uses ρ = 2 log n +Θ(log log n) redundancy bits and its
time complexity is O(n).

B. Enumeration Using the de Bruijn Graph

Next, we use a generalization of the de Bruijn graph, G`,
which was presented in Definition 1, in order to enumerate
and encode (`,µ)-BdB sequences.

Let µ, ` be positive integers and denote n = µ2`. We con-
struct a digraph G`,µ = (V, E) which is based on the de Bruijn
graph G`. Similarly to the vertices of G`, the set V contains
2`−1 vertices represented by the binary (` − 1)-tuples. The
set E has µ2` edges represented by the binary `-tuples. The
edges are the same as in G`, but between any two vertices
which have an edge in G`, E has µ parallel edges.

Let r = 0`−1 denote the all-zero vertex of the graph G`,µ
for the rest of this paper. A reverse spanning tree T of G`,µ
is a graph whose underline graph is a tree rooted at r, it con-
tains all the vertices of G`,µ , and there is a unique directed
path from each vertex v of T to r. Note that the set of reverse

spanning trees is isomorphic to the ordinary spanning trees of
G`,µ , where their edges are reversed. It is known from [22],
[23] that the number of reverse spanning trees of G` is 22`−1−`,
and thus it is also the number of reverse spanning trees of G`,µ .

Algorithm 2 is applied on G`,µ and a reverse spanning tree
T of G`,µ . It is a nondeterministic algorithm that generates nu-
merous different paths that visit each one of the edges of G`,µ
exactly once. First, all the edges are set to be unmarked at the
beginning of the algorithm. When a vertex v of G`,µ is visited,
the edge on which v is left changes its status from unmarked
to marked. In order to guarantee the uniqueness of the path,
the edges of T are notated as starred, and the algorithm leaves
a vertex on a starred edge only if it is the last unmarked edge
left. Finally, for each generated path, the algorithm derives its
associated BdB sequence.

Algorithm 2 Generating sequence in B(`,µ) from T
Input: A reverse spanning tree T of G`,µ
Output: A sequence s ∈ B(`,µ)

1: Place a star on all the edges of T. All the edges of G`,µ
are set to be unmarked.

2: Set the current vertex v := r.
3: while the starred edge outgoing of v is unmarked do
4: if v has an unstarred unmarked outgoing edge then
5: Pick at random an unstarred edge e = v→ u.
6: Leave v on the edge e to its endpoint u. Set v := u

and the edge e as marked.
7: else
8: Leave v on the starred edge, to its endpoint u. Set

v := u and the edge v→ u as marked.
9: end if

10: end while
11: Construct the output sequence s by considering the first

bit of each edge of the path.

Example 3. Let ` = 3,µ = 2. The graph G`,µ is

00

01

10

11000 111

001

?
100

?
011

?
110

010101

where the starred edges correspond to the tree

T = 01 011→ 11 110→ 10 100→ 00.

One of the paths generated by Algorithm 2 when invoked with
T is

00 000→ 00 000→ 00 001→ 01 010→ 10 100→ 00 001→ 01 010→ 10 101→ 01
011→ 11 110→ 10 101→ 01 011?→ 11 111→ 11 111→ 11 110?→ 10 100?→ 00,

which corresponds to the sequence s = 0000100101101111.
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The next few lemmas and corollaries describe the connec-
tion between paths generated by Algorithm 2 and sequences
of B(`,µ). Lemma 8 and Lemma 9 are proved similarly as
related results in [22], [23].

Lemma 8. The path generated by Algorithm 2 ends at the
root r.
Lemma 9. When Algorithm 2 terminates all the edges of the
graph were traversed, i.e., all the edges of G`,µ are marked.

It follows from Lemma 9 that each reverse spanning tree T
corresponds to some sequences of length µ2` in which each
`-tuple appears exactly µ times, i.e., an (`,µ)-BdB sequence.
Since the chosen root is r = 0`−1, it follows that every such
a sequence starts with `− 1 consecutive zeros.

Lemma 10. Each acyclic sequence of B(`,µ) which starts with
` − 1 consecutive zeros can be obtained from exactly one re-
verse spanning tree T.

Proof: Given a vertex v 6= r, its last appearance on the
sequence s, as an (`− 1)-tuple, is related to an edge v→ u.
This edge is the unique starred edge going out of v in G`,µ ,
by the definition of the algorithm. Thus, the starred edges and
the reverse spanning tree T are uniquely defined by the se-
quence s.

Corollary 11. Each acyclic sequence of B(`,µ) which starts
with `− 1 consecutive zeros is constructed exactly once by Al-
gorithm 2.

Lemma 12. From each reverse spanning tree T, there are

2(2µ−1
µ−1 )

2`−1

distinct acyclic sequences which are constructed
by Algorithm 2.

Combining Corollary 11, Lemma 12, and the fact that the
number of reversed spanning trees rooted at r in G`,µ is
22`−1−`, the following result is immediately inferred.

Corollary 13. The total number of distinct acyclic sequences of

B(`,µ) formed by Algorithm 2 is 22`−1−`+1(2µ−1
µ−1 )

2`−1

.

From Corollary 11, the enumerated value of Corollary 13
accounts only for sequences of B(`,µ) that start with `− 1
zeros. The next theorem proves that multiplying the value of
Corollary 13 by |V| = 2`−1 gives the exact size of B(`,µ).

Theorem 14. For every integers `,µ, the size of B(`,µ) is

|B(`,µ)| = 22`−1
(

2µ − 1
µ − 1

)2`−1

Proof: Let x ∈ B(`,µ) be a sequence that is generated
by Algorithm 2 and starts with 0`−1. Let p(x) denote the pe-
riod of x, that is, the smallest positive integer that satisfies
xi = xi+p(x) for every i ∈ [n − p(x) + 1]. We distinguish
between two cases based on the period p(x).

First assume that x is aperiodic. We denote for every v ∈
F`−1

2 the sequences xv,1, . . . , xv,2µ , which are the cyclic shifts
of x such that for every i ∈ [1, 2µ], xv,i starts with the i-th
occurrence of v in x. Since x is aperiodic, it follows that all
these sequences are distinct. We define for the root r and for
every i ∈ [1, 2µ] the set B(xr,i) = {xv,i | v ∈ F`−1

2 }. Note
that since from Corollary 11 all the sequences xr,1, . . . , xr,2µ

are generated by Algorithm 2, we pick one of them w.l.o.g to
denote the baseline sequence x. It follows immidiately from
the definition that for every x 6= s that are generated by the
algorithm, B(x) ∩ B(s) = ∅ and hence applying B(x) on
each aperiodic output of the algorithm generates 2`−1 distinct
sequences in B(`,µ).

On the other hand, if x is periodic, let y = Prefp(x)(x).

Clearly, y ∈ B(`,µ′) where µ′ = µ
|y|
|x| . This time, only the

sequences xr,1, . . . , xr,2µ′ are distinct and are generated by
the algorithm once. We define for each xr,i the set B(xr,i) =

{(yr,i)
µ

µ′ | v ∈ F`−1
2 }. From similar arguments as the aperi-

odic case, this construction yields 2`−1 distinct sequences in
B(`,µ) for each periodic output of Algorithm 2.

Next, we use the result of Theorem 14 in order to derive the
redundancy and the asymptotic rate of B(`,µ) for different
values of `,µ.

Corollary 15. The redundancy of B(`,µ) satisfies

red(B(`,µ)) = 2`−1
(

0.5 logµ + 0.5 log π − log(1− 1
cµ

)

)
,

where 8 6 c 6 9. In particular, for a constant ` ∈ N and
n = µ2` for some integer µ, the redundancy of B(`, n/2`) is

red(B(`, n/2`)) = 2`−2 log n +O(1).

Another interesting case is when µ is a constant. Hence, we
have the following corollary.

Corollary 16. Let µ ∈ N be a constant integer. The asymptotic
rate of B(`,µ) is

R(µ) =
1 + log (2µ−1

µ−1 )

2µ
.

Table I summarizes the asymptotic rate results of B(`,µ)
for some chosen values of µ, compared with the known rates
of de Bruijn sequences.

TABLE I
RATES OF EXACT COVERING WITH MULTIPLICITY

Multiplicity Rate
µ = 1 (de Bruijn) 0.5
µ = 2 0.646
µ = 3 0.720
µ = 4 0.766
µ = 8 0.853
µ = 16 0.911

Remark 1. Note that it is possible to alter the definition of
(`,µ)-BdB sequences such that the sequence length is n =
µ2` + `− 1 and only acyclic windows are considered. How-
ever, since the in-degree and the out-degree of every vertex in
G`,µ are identical, each such a sequence induces a cycle in the
graph and therefore its (`− 1)-suffix equals its (`− 1)-prefix.
Hence, the two representations are isomorphic.

Next, we present an encoding algorithm that utilizes Algo-
rithm 2 in order to generate (`,µ)-BdB sequences of length
n = µ2`, for ` = O(log log n). From Lemma 12, given a re-

verse spanning tree T of G`, Algorithm 2 forms 2(2µ−1
µ−1 )

2`−1

distinct sequences of B(`,µ). This value corresponds to (2µ
µ )

possible orders to travel the outgoing edges of the root r, and
(2µ−1
µ−1 ) possible orders to travel the outgoing edges of each

v 6= r. This immediately yields an efficient enumerative en-
coding algorithm [7] for these sequences for a given reverse
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spanning tree T. The series of choices to travel the outgoing
edges of r can be represented by a balanced word z of length
2µ. Assume that the outgoing edges of r are e0, e1, then at the
i-th visit of r, the algorithm picks to travel e0 if zi = 0, and
e1 otherwise. Similarly, the series of choices to travel the out-
going edges of any v 6= r, with outgoing edges e0 (for edges
parallel to the starred edge) and e1, can be represented by a
word z of length 2µ− 1 and weight µ. In this case, the starred
edge is traveled at the last visit of v, and otherwise the chosen
edge is picked depending if zi = 0 for e0 or zi = 1 for e1.
Each of these balanced words can be encoded using Knuth’s
algorithm [18] with logµ +Θ(log logµ) redundancy bits.

Note that this algorithm needs to generate reverse spanning
trees of G`. Unfortunately, there is no enumerative encoding
algorithm for these spanning trees for large `. Therefore, in
order to have linear time complexity, the algorithm is applica-
ble only for small values of ` that satisfy ` = O(log log n).
Then, the redundancy of the algorithm is

2`−1(logµ + 1) + `+Θ(log logµ).

IV. BALANCED DERIVATIVES

In this section, we study the family of sequences with bal-
anced derivatives, defined next. These sequences are highly
related to balanced de Bruijn sequences as proven later in
Lemma 18.

Definition 17. Let k be an integer. A sequence s ∈ Fn
2 is called

k-order balanced if s, s(1), . . . , s(k−1) are all balanced, where
s(i) is the derivative of s(i−1) for 1 6 i 6 k− 1 and s(0) = s.

Let D(n, k) denote the family of k-order balanced sequences
over Fn

2 . The following lemma presents a connection between
k-order balanced sequences and (`,µ)-BdB sequences.

Lemma 18. For all admissible integers `,µ, every (`,µ)-BdB
sequence is also `-order balanced.

Lemma 18 gives a lower bound on the cardinality of
D(n, k), using the results presented in Section III-B. From
Lemma 6, in the case of k = 2 the opposite direction of
Lemma 18 holds as well and thus the bound is tight.

Corollary 19. The redundancy of D(n, 2) satisfies

red(D(n, 2)) = log n +O(1).

However, for k > 2 the opposite direction of Lemma 18 no
longer holds and a tighter bound remains an open question.
We present next a tight bound for the case of k = 3 that is ob-
tained using exact enumeration of 3-order balanced sequences.

Theorem 20. The redundancy of D(n, 3) satisfies

red(D(n, 3)) = 1.5 log n +O(1).

Next, we have Theorem 21 which gives an upper bound on
the redundancy of D(n, k) for any fixed k ∈ N. This bound
significantly improves the upper bound of 2k−2 log n +O(1)
that follows from Lemma 18 and Corollary 15.

Theorem 21. Let k ∈ N be a constant integer. The redundancy
of D(n, k) satisfies

red(D(n, k)) 6 k log n +Θ(log log n).

The proof of Theorem 21 is given by an explicit encoding
algorithm, presented next. This algorithm generalizes Algo-
rithm 1 and uses Knuth’s encoder, EK, in order to efficiently

encode k-order balanced sequences for any fixed balanced de-
gree k while its redundancy is

ρ = k log n +Θ(log log n).

Algorithm 3 receives an input sequence s ∈ Fn−ρ
2 , and uses

EK to iteratively balance its derivatives, from s(k−1) to s and
constructs the balancing indices sequence v. Then, the process
is repeated with v as an input to create u, a second balancing
indices sequence. Next, u is transformed to a k-order balanced
sequence using a fixed encoding map. Then, s and the indices
sequences are concatenated to construct x, a sequence that is
almost k-order balanced. At the last step, the algorithm manu-
ally balances x(k−1), . . . , x while ensuring that when balancing
a derivative, its higher derivatives remain balanced.

Observe that flipping a prefix of a sequence x changes at
most two bits in x′. Moreover, changing a bit of x affects at
most two bits of x′. We can infer that flipping a prefix to bal-
ance x imbalances the first k derivatives of x by a constant
number of bits. For convenience, similarly to Algorithm 1 we
can operate on a derivative of a sequence instead of the actual
sequence x. The same principle applies to any higher deriva-
tive of x.

Algorithm 3 Encoding k-order balanced sequences

Input: A sequence s ∈ Fn−ρ
2

Output: A sequence x ∈ D(n, k)
1: For every t = k− 1, . . . , 0, use EK to find it, the balanc-

ing index of s(t). Flip the it-prefix of s(t) without adding
the encoding of the index. Let ŝ denote the result of this
process.

2: Construct the indices sequence v = b(i0) ◦ · · · ◦ b(ik−1)
of length k log n.

3: Repeat Steps 1-2 with v as an input to receive v̂ and the
indices sequence u of length k log(k log n).

4: Use a fixed encoding map to translate u to û, a k-order
balanced sequence of length Θ(log log n).

5: Let x = 0k−1 ◦ ŝ ◦ v̂ ◦ û.
6: For every t = k− 1, . . . , 0, append to x(t) a word yt of

length mt such that: (Note that x is changed throughout
the process)
a: Prefk−t−1(yt) = 0,
b: x(t) ◦ yt is balanced,
c: y′t is (k− t− 1)-order balanced.

7: Return x.

The suitable words y0, . . . , yk−1 that satisfy the constraints
mentioned in Step 6 can be generated using a method that
uses similar techniques to those used in Section III in order to
enumerate (`,µ)-BdB sequences. Their lengths m0, . . . , mk−1
are a function of the imbalance of the derivatives of x which
can be upper bounded and set in advance independently of the
input sequence.

Theorem 22. Algorithm 3 returns a sequence x ∈ D(n, k) that
can be uniquely decoded to its input sequence s. The algorithm
uses ρ = k log n +Θ(log log n) redundancy bits and its time
complexity is O(n).
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