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Abstract—Transverse-read is a novel technique to detect the
number of ‘1’s stored in domain wall memory, also known as race-
track memory, without shifting any domains. Motivated by this
technique, we propose a novel scheme to combine transverse-read
and shift-operations such that the number of shift-operations can
be reduced while still achieving high capacity. We also show that
this scheme is helpful to correct errors in domain wall mem-
ory. A set of valid words in this transverse-read channel is called
a transverse-read code. We first present several properties of
transverse-read codes and show that they are equivalent to con-
strained codes. Then, we compute the maximal asymptotic rate of
transverse-read codes for several parameters. Next, we construct
achieving capacity codes with efficient encoding/decoding algo-
rithms. Finally, we discuss transverse-read codes which correct
shift-errors in domain wall memory.

I. INTRODUCTION

Spintronic domain-wall memory (DWM), also referred as
racetrack memory, is a promising candidate as a memory solu-
tion that can overcome the density limitations of spin-transfer
torque magnetic memory (STT-MRAM), while still retaining
its static energy benefits [1]–[4]. DWM is constructed from
ferromagnetic nanowires, referred to as tapes or racetracks,
which are separated into domains and are connected to a sin-
gle or a few access transistors to create access ports. The state
of the magnetic domains is accessed by shifting them along
the nanowire and aligning the target domain to an access de-
vice. Unfortunately, due to process variation of deeply-scaled
domain-wall memories [1], slight fluctuations in current com-
bined with imperfections in the nanowires can cause faults in
the shift process. These faults include over- and under-shifting
of the tape, and thus for domain-wall memory to become vi-
able, the shifting reliability must be addressed. As a result,
several innovative approaches have been developed to detect
and correct shift-errors in racetracks [5]–[9]. Besides that, the
access latency and the energy consumption in racetrack mem-
ory depend on the average number of shift-operations. Several
works have been done to reduce the number of shift-operations
in racetrack memory [10], [11].

Another approach to overcome the faults in the shifting pro-
cess of DMW was proposed recently in [12]–[14]. In these
works , a novel transverse read (TR) mechanism was devel-
oped in order to provide global information about the data
stored within a nanowire. In particular, transverse read can
detect the number of ones among the data stored in a DMW
without shifting any domains, while still requiring ultra-low
power. However, detecting only the number of ones in the
DMW significantly reduces the information rate that can be
stored within the memory. Hence, the authors of [14] also
demonstrated how TR can be applied on partial segments of
the nanowire, such as from an end to an access point or be-
tween two access points. This enables a segmented TR which
allows access to all of the bits of an arbitrarily long nanowire

in several steps, while maintaining isolated current paths.
While independently sensing several segments can increase
the memory’s information rate, this increase is still far from
reaching its full potential.

In this work, we propose a novel scheme that simultane-
ously combines the two important features of DWM. On one
hand, we use transverse reads in order to sense the number of
ones between two consecutive access points, and on the other
hand we still shift all the domains so that we can transverse
read to sense the number of ones in different segments every
time. In general, we consider a message x = (x1, . . . , xn) of
n information bits stored in n domains and consecutive access
points such that each time we can transverse read a segment of
length `. That is, in the first read, the Hamming weight of the
first length-` segment x1, . . . , x` is sensed. Next, we shift all
domains in δ positions and sense the Hamming weight of the
length-` segment (xδ+1, . . . , xδ+`) in the second read. We keep
shifting and sensing until the last segment (xkδ+1, . . . , xkδ+`)
(for simplicity, we assume that there is an integer k such that
n = kδ+ `). For example, we consider the case n = 12, δ = 2,
and ` = 4. If x = (0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0), the output
in our reading scheme is (1, 2, 3, 2, 0). There exist other vec-
tors, for example y = (0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0) 6= x, that
have the same output (1, 2, 3, 2, 0). Hence, we may not obtain
the full capacity using this scheme. First, we observe that the
information rate in this scheme depends on δ and `. For ex-
ample, when δ = ` = 2, we can compute that the information
rate is about 0.7925. Then, we observe that this scheme signifi-
cantly reduces the number of shift-operations by about δ times.
For example, when δ = 2, if we just shift normally about n/2
times, we can only read 50% of information bits but using this
scheme, the achievable information rate is at least 0.79.25. Our
first question of interest is whether we can achieve higher infor-
mation rates. Hence, we are interested in finding the trade-off
between the number of shift-operations and the maximal infor-
mation rate in this scheme. Furthermore, we can show that this
scheme is also helpful to correct shift-errors in racetrack mem-
ories. From a practical point of view, this scheme captures the
two features of DMW in order to significantly reduce the num-
ber of shift-operations and mitigate the shift errors, while still
supporting high information rates. From a theoretical point of
view, it poses some interesting challenges in combinatorics and
algorithms.

In Section II, we present some necessary notations and define
the codes formally. Section III studies properties of transverse-
read codes, their maximal asymptotic rates, and propose several
constructions. Then, in Section IV, we show that our scheme
of using transverse-read codes is helpful to correct shift-errors
in domain wall memories. Finally, in Section V, we summarise
our contributions in this work and discuss future research.
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II. DEFINITIONS AND PRELIMINARIES

Let Σq denote the q-ary alphabet {0, 1, . . . , q − 1}
and [n] denote the set {1, 2, . . . , n}. For each sequence
u = (u1, . . . , un) ∈ Σnq , let u[i;k] = (ui, ui+1, . . . , ui+k−1),
1 6 i 6 n − k + 1, denote a length-k substring of u. The
weight of the vector u is w(u) =

∑n
i=1 ui and when q = 2,

the weight of a binary vector is the number of 1’s in the vec-
tor. A q-ary code C of length n is a set of q-ary sequences of
length n, that is C ⊆ Σnq . For each code C of length n, we
define the rate of the code C to be R(C) = logq(|C|)/n.

Definition 1. Let n, `, δ, k be integers such that n− ` = kδ.
• The (`, δ)-transverse-read vector of a length-n word

x = (x1, . . . , xn) ∈ Σn2 is the vector TR`,δ(x) =(
w(x[1;`]), w(x[δ+1;`]), . . . , w(x[kδ+1;`]

)
∈ Σk+1

`+1 , where
w(x[iδ+1;`]) is the weight of the length-` substring x[iδ+1;`].

• A code C(n, `, δ) ⊆ Σn2 is called a binary (`, δ)-
transverse-read code if for all distinct x,y ∈ C(n, `, δ), it
holds that TR`,δ(x) 6= TR`,δ(y).

• The largest size of a length-n binary (`, δ)-transverse-read
code will be denoted by A(n; `, δ) and the maximal asymp-
totic rate for fixed ` and δ is given by

R(`, δ) = lim sup
n→∞

log2(A(n; `, δ))

n
.

Note that it is also possible to define the cyclic version of these
transverse-read vectors, however we prefer the more practical
noncyclic version. In this work, we always assume that n− ` =
kδ, where ` and δ are fixed while n and k tend to infinity.

We now observe that for each word x ∈ Σn2 , we always find
its transverse read vector TR`,δ(x) ∈ Σk+1

`+1 . However, given a
vector u ∈ Σk+1

`+1 , there may not exist a binary word x ∈ Σn2
that u = TR`,δ(x).

Definition 2. Let n, `, δ, k be integers such that n− ` = kδ.
• A vector u ∈ Σk`+1 is called a valid (`, δ)-transverse read

vector if there exists a binary word x ∈ Σn2 such that u =
TR`,δ(x).

• A set of such vectors u is called a valid (`, δ)-transverse-
read code.

From Definitions 1 and 2, we can easily obtain the following
result.

Proposition 3.
• Let C be a binary (`, δ)-transverse-read code and TR`,δ(C) =
{TR`,δ(c) : c ∈ C} ⊆ Σk+1

`+1 . Then, TR`,δ(C) is a valid
(`, δ)-transverse-read code and |TR`,δ(C)| = |C|.

• Let TR(k, `, δ) denote the set of all valid (`, δ)-transverse
read vectors of length k. Then, |TR(k, `, δ)| = A(n, `, δ).

We now examine a model of domain wall memory of n do-
mains which stores a binary word of length n, and two con-
secutive access points that can transverse read. i.e. can sense
the weight of a segment of length `. A shift-operation in race-
track memory shifts all domains together δ positions. So, if
x = (x1, . . . , xn) ∈ Σn2 is a stored word, the output in our
reading scheme is TR`,δ(x). Using the new scheme, we can

reduce the number of shift-operations by about δ times. How-
ever, given δ and `, the maximal information rate in racetrack
memories is R(`, δ), which may not achieve the full capacity.
Hence, in this work, we are interested in finding the maximal
size A(n, `, δ) and the maximal asymptotic rate R(`, δ). Given
δ, we are also interested in finding the optimal ` such that the
asymptotic rate R(`, δ) is maximal. Furthermore, we also seek
for some constructions of (`, δ)-transverse-read codes with ef-
ficient encoding/decoding algorithms.

Besides that, both shift-operations and transverse-reads may
not work perfectly and errors may occur. It is known that shift-
errors, to be defined in Section IV, can be modeled as synchro-
nizations, including sticky-insertions and deletions. We also see
that errors in transverse-read may cause some substitution er-
rors. Hence, in this work, we also study some transverse-read
codes which can correct shift-errors and substitutions errors.

III. TRANSVERSE-READ CODES

In this section, given `, δ, we study (`, δ)-transverse-read
codes and their properties and aim to find the maximal asymp-
totic rate of these codes. We are also interested in constructing
these codes with efficient encoding/decoding algorithms.

To study the values of A(n; `, δ) and R(`, δ), we may con-
sider the maximal valid (`, δ)-transverse-read code TR(k, `, δ)
since |TR(k, `, δ)| = A(n; `, δ). We first present several basic
results on A(n; `, δ) and R(`, δ) in the following theorem.

Theorem 4.
1) For ` = 1, it holds that A(n; ` = 1, δ) = 2

n−1
δ +1 and

R(` = 1, δ) = 1/δ.
2) For ` = δ, it holds that A(n; `, δ = `) = (` + 1)n/` and
R(`, δ = `) = log2(`+1)

` .
3) For ` 6 δ, it holds that A(n; `, δ) = (` + 1)

n−`
δ +1 and

R(`, δ) = log2(`+1)
δ .

4) For δ = 1 and some constant `, it holds that A(n; `, δ =
1) > 2n−` andR(`, δ = 1) = 1.

Proof:
1) For ` = 1 and k = (n − 1)/δ, we consider a vector

x = (x1, . . . , xn) ∈ Σn2 and its transverse-read vector
TR`,δ(x) = (x1, xδ+1, . . . , xkδ+1) ∈ Σk+1

`+1 . We observe
that for any vector u ∈ Σk+1

2 , u is a valid (`, δ)-transverse
read vector. Hence, A(n, ` = 1, δ) = |TR(k, ` = 1, δ)| =
2k+1 and thus R(` = 1, δ) = limn→∞

k+1
n = 1

δ .
2) For ` = δ, and k = (n/δ)− 1, given x = (x1, . . . , xn) ∈

Σn2 , TR`,δ(x) =
(
w(x[1;`]), w(x[`+1;`]), . . . , w(x[k`+1;`]

)
∈

Σk+1
`+1 . Since all segments x[i`+1;`], for 0 6 i 6 k,

do not overlap, any vector u ∈ Σk+1
`+1 is a valid

(`, `)-transverse read vector. Hence A(n, `, δ = `) =
|TR(k, `, `)| = (` + 1)k+1 = (` + 1)n/` and thus
R(`, δ = `) = limn→∞

(k+1)(log2(`+1))
n = log2(`+1)

δ .
3) Using the same argument as in part 2), note that all seg-

ments x[iδ+1;`], for 0 6 i 6 k, do not overlap, the claim
is proven.

4) Consider two length-n vectors u = (0, . . . , 0, u1, . . . , un−`),
v = (0, . . . , 0, v1, . . . , vn−`) ∈ Σn2 such that u 6= v. We
observe that TR`,δ=1(u) 6= TR`,δ=1(v). Let C(n, `, δ) be
a set of all vectors of length n that the first ` entries are
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zeros. So, C(n, `, δ) is a binary (`, δ = 1)-transverse-read
code and |C(n, `, δ = 1)| = 2n−`. Therefore, A(n, `, δ =
1) > 2n−` and R(`, δ = 1) = limn→∞

n−`
n = 1.

For all cases in Theorem 4, we can find the maximal asymp-
totic rate of (`, δ)-transverse-read codes. In the rest of the paper,
we focus on the more challenging cases when 1 < δ < `. Let
us start with the case where δ = 2 and even values of `, which
will be addressed in the following theorem.

Theorem 5. For δ = 2 and ` even, it holds that

R(`, δ = 2) =
log2 3

2
≈ 0.7925.

Proof: Let n1 = n/2 and `1 = `/2 be two posi-
tive integers. Given a vector x = (x1, . . . , xn) ∈ Σn2 , let
f(x) = (f1, . . . , fn1) ∈ Σn1

3 where fi = x2i−1 + x2i ∈
{0, 1, 2} for 1 6 i 6 n1. We see that TR`,δ=2(x) =(
w(f[1;`1]), w(f[`1+1;`1]), . . . , w(f[k`1+1;`1]

)
∈ Σk+1

`+1 . Let
C(n, `, δ) be a binary (`, δ)-transverse-read code, that
is, for two different vectors x,y ∈ C(n, `, δ), it holds
that TR`,δ(x) 6= TR`,δ(y). Hence, f(x) 6= f(y). So,
|C(n, `, δ)| 6 |Σn1

3 | = 3n1 , for any (`, δ)-transverse-read
code C(n, `, δ). Therefore, A(n, `, δ) 6 3n/2, and thus
R(`, δ = 2) 6 log2 3

2 ≈ 0.7925.
On the other hand, we can construct a binary (`, δ)-

transverse-read code C(n, `, δ) as follows. Let F ⊆ Σn1
3 be

the set of all ternary vectors of length n1 such that their first
`1 entries are all zeros. So, |F| = 3n1−`1 . For each f =
(f1, . . . , fn1

) ∈ F , we define f−1 = x = (x1, . . . , xn) ∈ Σn2
such that (x2i−1, x2i) = (0, 0) if fi = 0, (x2i−1, x2i) = (0, 1)
if fi = 1 and (x2i−1, x2i) = (1, 1) if fi = 2. Let C(n, `, δ) be
the set of all vectors x = f−1 defined above where f ∈ F .
So, |C(n, `, δ)| = |F| = 3n1−`1 . Moreover, we can see that
C(n, `, δ) is a binary (`, δ)-transverse-read code. Therefore,
A(n, `, δ) > 3n1−`1 and thus R(`, δ) > log2 3

2 .

In conclusion, we obtain R(`, δ = 2) = log2 3
2 ≈ 0.7925 and

the theorem is proven.
The results in Theorem 5 can be extended in the following the-
orem for arbitrary values of ` and δ, where ` is a multiple of δ.
The proof follows similar arguments as in the proof of Theorem
5 and is thus omitted.

Theorem 6. If ` is a multiple of δ, then

R(`, δ) =
log2(δ + 1)

δ
.

Next, we continue with δ = 2 and odd values of `. The result
in Theorem 5 gives us a lower bound on the maximal asymp-
totic rate of (`, δ)-transverse-read codes for δ = 2. We state the
result formally in the following theorem.

Theorem 7. For all ` > δ > 1 it holds that

R(`, δ = 2) >
log2 3

2
≈ 0.7925.

Proof: To prove the theorem, we present a construc-
tion of an (`, δ)-transverse-read code. Let k = (n − `)/2 and
u = (u1, . . . , uk) ∈ Σk3 be a ternary vector of length k. Let
g(u) = c = (c1, . . . , cn) ∈ Σn2 be such that c1 = · · · = c` = 0

and for 1 6 i 6 k, (c`+2i−1, c`+2i) = (0, 0) if ui = 0,
(c`+2i−1, c`+2i) = (0, 1) if ui = 1 , and (c`+2i−1, c`+2i) =
(1, 1) if ui = 2. Let C(n, `, δ = 2) = {g(u) : u ∈ Σk3}.
It is possible to show that if u 6= v then g(u) 6= g(v) for
any u,v ∈ Σk3 . Hence, |C(n, `, δ = 2)| = |Σk3 | = 3k. More-
over, if g(u) 6= g(v) then TR`,δ=2(g(u)) 6= TR`,δ(g(v)).
Thus, the code C(n, `, δ = 2) constructed above is a (`, δ)-
transverse-read code. Hence, A(n, `, δ = 2) > 3k and thus
R(`, δ = 2) 6 log2 3

2 ≈ 0.7925 for any ` > δ = 2.

From the above proof of Theorem 7, we can find a construction
of an (`, δ = 2)-transverse-read code with efficient encoding
algorithms. Similarly, we can extend the result in Theorem 7
for arbitrary values of ` and δ where ` > δ. We first present a
simple construction of a binary (`, δ)-transverse-read code.

Construction 8. Let k = n−`
δ and u = (u1, . . . , uk) ∈ Σkδ+1 be

a (δ + 1)-ary vector of length k. Let g(u) = c = (c1, . . . , cn) ∈
Σn2 be such that ci = 0 for 1 6 i 6 ` and for 1 6 i 6 k,
c[`+δ(i−1)+1;δ] is a subvector of length δ such that its first δ − j
entries are 0 and its last j entries are 1 if ui = j. Let C(n, `, δ) =
{g(u) : u ∈ Σkδ+1}.

It is possible to show that the code C(n, `, δ) constructed
above is a binary (`, δ)-transverse-read code since for any
u,v ∈ C(n, `, δ), it holds that g(u) 6= g(v), and thus
TR`,δ(u) 6= TR`,δ(v). Moreover, |C(n, `, δ)| = |Σkδ+1| =
(δ + 1)k. So, A(n, `, δ) > (δ + 1)k. Therefore, we obtain the
following result on the lower bound of the maximal asymptotic
rate of (`, δ)-transverse-read codes.

Theorem 9. If ` and δ are two integers such that ` > δ > 1 then

R(`, δ) >
log2(δ + 1)

δ
.

Note that Construction 8 also provides binary (`, δ)-transverse-
read codes with an efficient encoding algorithm.

In the rest of this section, we present a technique to find the
asymptotic rates of (`, δ)-transverse-read codes exactly, given
` > δ > 1. To find the asymptotic rate of the above codes,
we first prove that these codes are equivalent to a class of con-
strained codes avoiding some specific patterns and a class of
regular languages. Then, we can use some known techniques
in constrained codes and regular languages using finite state
machines to compute the maximal asymptotic rates. We first
consider the case ` = 3 and δ = 2. We recall that A(n, `, δ) =
|TR(k, `, δ)| where TR(k, `, δ) is the set of all valid (`, δ)-
transverse-read vectors of length k+1. Let u = (u1, . . . , uk) ∈
TR(k, ` = 3, δ = 2) ⊆ Σk+1

4 be a valid (` = 3, δ = 2)-
transverse-read vector. So, there exists a vector x ∈ Σn2 such
that TR`,δ(x) = u. Then, for each 1 6 i 6 k, ui = x2i−1 +
x2i+x2i+1 ∈ {0, 1, 2, 3}. We can view ui as a path from x2i−1
to x2i+1. Here, x2i−1 is called a starting point of ui and x2i+1

is called an ending point of ui. So, a starting point of ui is also
an ending point of ui−1. We observe that TR(k, ` = 3, δ = 2)
is a regular language. It is recognized by a non-deterministic
state machine as in Figure 1, where node j is the state that the
ending point of ui−1 is x2i−1 = j for j = 1, 2. If x2i−1 = 0
and the ending point of ui is x2i+1 = 0, then ui = 0 or ui = 1.
Hence, from the state 0, if we write ui = 0 or ui = 1 then we
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Fig. 1: Non-deterministic finite state transition diagram ` =
3, δ = 2
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Fig. 2: Deterministic finite state transition diagram ` = 3, δ = 2

may still stay in the same state 0. If x2i−1 = 0 and the ending
point of ui is x2i+1 = 1, then ui = 1 or ui = 2. Hence, from
the state 0, if we write ui = 1 or ui = 2 then we may move
to the new state 1. We also note that, from state 0, if we write
ui = 1, we may stay in the same state or move to the new state.
Hence, the state machine in Figure 1 is a non-deterministic fi-
nite state machine. We note that, for any regular language which
can be recognized by a non-deterministic finite state machine, it
can be expressed by a deterministic state machine. In this case,
the regular language TR(k, `, δ) is recognized by a determinis-
tic finite state machine as in Figure 2. In this diagram, we have
a new node “*” which is the state that x2i−1 can be 0 or 1. The
adjacency matrix of this deterministic diagram is:

AG =

1 1 1
1 2 1
1 1 1


So, using the well-known Perron-Frobenius theory [16], we can
find exactly the maximal asymptotic rate of (` = 3, δ = 2)-
transverse-read codes which is (log2 λ)/2 = 0.8858 where λ =
3.4142 is the largest real eigenvalue of AG.

Besides that, TR(k, `, δ), which can be expressed by the state
machine in Figure 2, is also a constrained system. We state the
following result.

Theorem 10. We consider the following set

F = {(3, (1, 2)i, 0), (3, (1, 2)i, 1, 3), (0, (2, 1)i, 3), (0, (2, 1i), 2, 0)}.

A valid (` = 3, δ = 2)-transverse-read code is a constrained
code avoiding all patterns in F .

Theorem 10 can be proven by showing that both of the above
codes have the same finite state transition diagram as in Figure
2.

Furthermore, it is possible to extend the above results for
other values of ` > δ > 1. For example, when ` = 5 and
δ = 2, we can build a non-deterministic finite state machine of
(` = 5, δ = 2) as in Figure 3. In this diagram, each node is
a state that a length-3 substring is started by the correspond-
ing length-3 substring. If a length-5 string starts by (0,0,0) and
its weight is 1, it may end by (0,1,0) or (0,0,1). If its weight

010

000

011 001110 100

111

101

0 1

2 1

5

4 3

4

Fig. 3: Non-deterministic finite state transition diagram ` =
5, δ = 2.

is 0, it must end by (0,0,0) and if its weight is 2, it must end
by (0,1,1). Similar, we can build a non-deterministic finite state
machine. For simplicity, in Figure 3, we only label all edges
to go out from nodes (0,0,0) and (1,1,1). Once we have a non-
deterministic finite state machine, we can build a deterministic
finite state machine and compute the maximal asymptotic rate
of transverse-read codes. Several numerical results were com-
puted and tabulated in Table I.

TABLE I: The maximal asymptotic rates of (`, δ)-transverse-
read codes.

` = 3 ` = 4 ` = 5 ` = 6 ` = 7 ` = 8
δ = 2 0.8857 0.7925 0.9258 0.7925 0.9361 0.7925

From the results in Table I, we see that 0.936 = TR`=7,δ=2 >
TR`=5,δ=2 > TR`=3,δ=2 > TR`=2,δ=2 = 0.795. So, using
our scheme, even if the number of shift-operations is reduced
by to 50%, we can still achieve information rates of at least
0.936. Since the asymptotic rates of (`, δ = 2)-transverse-read
codes increase when ` is odd and increasing, we are interested
in finding the maximal asymptotic rates R(`, δ = 2) for odd `.

Furthermore, since we can build a deterministic finite state
machine of any (`, δ)-transverse-read code, it is possible to con-
struct this code with efficient encoding/decoding algorithms us-
ing well-known finite state splitting algorithms [16]. In the fol-
lowing section, we will study the ability of correcting shift-
errors and substitution-errors of these codes.
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IV. TRANSVERSE-READ CODES CORRECTING ERRORS

In this section, we discuss the ability of detect and correct er-
rors of transverse-read codes. There are two types of errors we
consider under this model: shift-errors and substitution errors.
Shift-errors, which may occur when all domains are shifted, can
be modeled as sticky-insertions or deletions. Normally, we may
need to use some classical deletion correcting codes or use mul-
tiple heads to correct these errors. In this work, we show that
some transverse-read codes have special properties that are use-
ful for correcting these shift-errors. Let us consider a vector x =
(x1, x2, x3, x4, x5) = (0, 0, 1, 1, 0) and its transverse-read vec-
tor TR2,1(x) = (x1+x2, x2+x3, x3+x4, x4+x5) = (0, 1, 2, 1).
Once an over-shift occurs, a symbol in TR2,1(x) is deleted and
we may obtain an invalid word. For example, an over-shift oc-
curs in the second position and the symbol x2 + x3 = 1 is
deleted, so we obtain the word (0, 2, 1). However, the word
(0, 2, 1) is not a valid (2,1)-transverse-read vector since 0 can
not be followed by 2. Hence, we can detect and locate a single
deletion in this case. Based on this simple observation, we are
able to design a code correcting t deletions, where there are no
consecutive deletions, with at most t log(n) + o(log n) bits of
redundancy. For simplicity, we first present the result for t = 1.

Theorem 11. Let C1 ⊆ Σn2 be a binary code correcting a sin-
gle sticky-deletion1. The code C1 can correct a single deletion in
the (2,1)-transverse-read code. That is, if a deletion occurs in a
transverse-read vector TR2,1(c) where c ∈ C1, we can recover
the original word c.

Proof: Let c = (c1, c2, . . . , cn) ∈ C1 be the stored word.
Thus u = TR2,1(c) = ((c1 + c2), (c2 + c3), . . . , (cn−1 + cn)),
where ui = ci + ci+1, is its (2,1)-transverse-read vector. We
observe that in a valid (2,1)-transverse-read vector, the run
of 1’s has odd length if it is bounded by two different sym-
bols, that is (0, 1, . . . , 1, 2) or (2, 1, . . . , 1, 0), and the run of
1’s has even length if it is bounded by the same symbol, that
is (0, 1, . . . , 1, 0) or (2, 1, . . . , 1, 2). Hence, if a symbol 1 is
deleted in the valid (2,1)-transverse-read vector, we can detect
and locate the error and thus correct it. We now consider the
case that the symbol 0 or 2 is deleted. Note that if ui = 0
then ci = ci+1 = 0 and if ui = 2 then ci = ci+1 = 1. Hence,
if the symbol 0 or 2 is deleted in the transverse-read vector
u, a sticky-deletion occurs in the stored word c. Since c ∈ C1
which can correct a single sticky-deletion, we can correct the
error and recover the original word c. Hence, in any case, we
can recover the stored word c. Therefore, the code C1 can
correct a single deletion in a (2,1)-transverse-read code.

It is known that correcting a sticky-deletion is easier than
correcting a deletion. Hence, the transverse-read code is help-
ful in correcting a deletion (shift-error). It is interesting that
we also can extend the result for transverse-read codes which
correct multiple deletions.

Theorem 12. Given t > 1, let Ct be a code of length n correct-
ing t sticky-deletions. If there are at most t deletions in a (2,1)-
transverse-read vector TR2,1(c) where c ∈ Ct such that there

1A sticky deletion is a deletion which shortens a run of length at least two
by one.

do not exist two-consecutive deletions then we can recover the
original word c.

Proof: Let us sketch the main idea of the proof of this
theorem. To prove the theorem, we only need to follow the ar-
gument in the proof of Theorem 11. If the symbol 1 is deleted
in the transverse-read vector TR2,1(c), we can detect and cor-
rect this error immediately. If the symbol 0 or 2 is deleted in
the transverse-read vector, we see that a sticky-deletion occurs
in the original word c. Then, we use a decoder of the code
Ct, which can correct multiple sticky-deletion, to correct these
errors.
So far, we showed that our scheme of using (`, δ)-transverse-
read codes is helpful to correct shift-errors for ` = 2 and δ = 1.
The main idea is to use codes correcting sticky-deletion to cor-
rect deletions, using some special properties of (2,1)-transverse-
read codes. This idea is presented in [17] for codes correcting
deletions in symbol-pair read channel. We note that the best
known results on codes correcting t deletions require at least
8t log n + o(t log n) bits of redundancy while it is possible to
correct t sticky-deletions using only t log n + o(log n) bits of
redundancy, given some constant t. Hence, in our scheme for
` = 2 and δ = 1, it is easier to correct shift-errors. The results
for other values of ` and δ are interesting as well and will be
studied in the full version of this work.

Besides that, a substitution error occurs when there is a mis-
take in transverse read and a symbol is read wrongly. For ex-
ample, x = (0, 0, 1, 1, 0) and TR2,1(x) = (0, 1, 2, 1). If a third
symbol in the transverse-read vector TR2,1(x) is wrong then
we obtain the vector (0, 1, 0, 1) which is invalid. Moreover, we
can locate an error in the pattern (0, 1, 0). It is helpful to cor-
rect a substitution error with large magnitude. For a substitu-
tion error with small magnitude, we propose to study a coding
scheme to combine our transverse-read codes with the well-
known limited-magnitude error correcting code [15]. We also
can show that our scheme for ` = 2 and δ = 1 is helpful to
correct a single limited magnitude error. These schemes will be
discussed in the full version of our work.

V. CONCLUSION AND DISCUSSION

In this work, we proposed a new scheme of reading infor-
mation in domain wall memories to reduce the number of shift-
operations while still achieving high information rates. We intro-
duce a new family of codes, called (`, δ)-transverse-read codes
and study their properties, maximal asymptotic rates and pro-
posed constructions. Furthermore, we also show that our scheme
of using these transverse-read codes is helpful to correct shift-
errors in domain wall memories. In the full version of our work,
we also present some encoding/decoding algorithms in details.
The ability of transverse-read codes in correcting substitution-
errors will be studied in our future work. Furthermore, we are
also interested in finding the maximal asymptotic rates of (`, δ)-
transverse-read codes for other values of ` and δ.
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