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Abstract—This paper studies optimal decoding for a special
case of the deletion channel, referred by the t-deletion channel,
which deletes exactly t symbols of the transmitted word uni-
formly at random. The goal of the paper is to understand how
such an optimal decoder operates in order to minimize the ex-
pected normalized distance. A full characterization of a decoder
for this setup is given for a channel that deletes one or two sym-
bols. For t = 1 it is shown that when the code is the entire space,
the decoder is the lazy decoder which simply returns the channel
output. Similarly, for t = 2 it is shown that the decoder acts as
the lazy decoder in almost all cases and when the longest run is
significantly long, it prolongs the longest run by one symbol.

I. INTRODUCTION

Codes correcting insertions/deletions recently attracted
considerable attention due to their relevance to the special
error behavior in DNA-based data storage [4], [25], [28],
[33], [35], [36], [48], [49]. These codes are relevant for other
applications in communication models. For example, inser-
tions/deletions happen during the synchronization of files and
symbols of data streams [39] or due to over-sampling and
under-sampling at the receiver side [14]. The algebraic con-
cepts of codes correcting insertions/deletions date back to the
1960s when Varshamov and Tenengolts designed a class of bi-
nary codes, nowadays called VT codes [45]. These codes were
originally designed to correct a single asymmetric error and
later were proven to correct a single insertion/deletion [29].
Extensions for multiple deletions were recently proposed in
several studies; see e.g. [5], [18], [40], [41]. However, while
codes correcting substitution errors were widely studied and
efficient capacity achieving codes are used conventionally,
much less is known for codes correcting insertions/deletions.
More than that, even the deletion channel capacity is far from
being solved [7], [9], [10], [12], [31], [32], [34].

There are two main models which are studied for deletion
errors. While in the first one, the goal is to correct a fixed num-
ber of deletions in the worst case, for the second one, which
corresponds to the channel capacity of the deletion channel,
one seeks to construct codes which correct a fraction of dele-
tions with high probability [6], [9], [11], [13], [15], [17], [26],
[27], [32], [44], [46]. This paper considers a combination of
these two models. In this channel, referred as the t-deletion
channel, t symbols of the transmitted word are deleted uni-
formly at random. Consider the case of t = 1, i.e., one of the
n transmitted symbols is deleted, each with the same probabil-
ity. In case the transmitted word belongs to a single-deletion-
correcting code then clearly it is possible to successfully de-
code the transmitted word. However, if such error correction
capability is not guaranteed in the worst case, two approaches
can be of interest. In the first, one may output a list of all possi-
ble transmitted words, that is, list decoding for deletion errors
as was studied recently in several works; see e.g. [20]–[24],
[26], [30], [47]. The second one, which is taken in the present
work, seeks to output a word that minimizes the decoding error
probability. This channel was also studied in several previous
works. In [19], the author studied the maximal length of words
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that can be uniquely reconstructed using a sufficient number
of channel outputs of the t-deletion channel and calculated this
maximal length explicitly for n− t 6 6. In [2], the goal was
to study the entropy of the set of all possible channel input
words, given a corrupted word from a channel that deletes ei-
ther one or two symbols. The minimum and maximum values
of this entropy value were explored. Another variation of this
channel was studied in [1]. More related problems to the setup
considered in this paper were studied in [8], [37], [38], [42],
[43] where the goal is to reconstruct a message from several
noisy copies, while each one is transmitted through a deletion
channel. However, the problem studied in this paper assumes
only a single channel and a special case of the deletion channel
which deletes a fixed number of symbols.

Mathematically speaking, assume S is a channel that is char-
acterized by a conditional probability PrS{y rec. |x trans.},
for every pair (x, y) ∈ (Σ∗q)

2. A decoder for a code C with
respect to the channel S is a function D : Σ∗q → C. Its av-
erage decoding failure probability is the probability that the
decoder output is not the transmitted word. The maximum-
likelihood (ML) decoder for C with respect to S, denoted by
DML, outputs a codeword c ∈ C that maximizes the proba-
bility PrS{y rec. |c trans.}. This decoder minimizes the aver-
age decoding failure probability and thus it outputs only code-
words. However, if one seeks to minimize the expected nor-
malized distance, where the distance function depends upon
the channel of interest, then the decoder should consider non-
codewords as well. The goal of this work is to study the ML∗
decoder, which outputs words that minimize the expected nor-
malized distance for the t-deletion channel.

The rest of the paper is organized as follows. Section II
presents the formal definition of channel transmission and
maximum likelihood decoding in order to minimize the ex-
pected normalized distance. This section introduces also the
t-deletion channel. Section III studies the 1-deletion channel.
It introduces two types of decoders. The first one, referred
as the embedding number decoder, maximizes the so-called
embedding number between the channel output and all pos-
sible codewords. The second one is called the lazy decoder
and it simply returns the channel output. The main result of
this section states that if the code is the entire space then the
ML∗ decoder is the lazy decoder. Similarly, Section IV stud-
ies the 2-deletion channel where it is shown that in almost all
cases the ML∗ decoder should act as the lazy decoder and in
the rest of the cases it returns a length-(n− 1) word which
maximizes the embedding number. Due to the lack of space
some of the proofs are omitted from this paper, however they
can be found in the extended version of the paper [3].

II. DEFINITIONS AND PRELIMINARIES

Denote by Σq = {0, . . . , q− 1} the alphabet of size q and
Σ∗q ,

⋃∞̀
=0 Σ

`
q. The length of x ∈ Σn is denoted by |x| = n.

The Levenshtein distance between two words x, y ∈ Σ∗q , de-
noted by dL(x, y), is the minimum number of insertions and
deletions required to transform x into y, and dH(x, y) denotes
the Hamming distance between x and y, when |x| = |y|. For a
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word x ∈ Σ∗q and a set of indices I ⊆ [|x|], the word xI is the
projection of x on the indices of I which is the subsequence of
x received by the symbols in the entries of I. For two words
x, y ∈ Σ∗q , the number of times that y can be received as a
subsequence of x is called the embedding number of y in x [2],
[16], [42], defined by Emb(x; y) = |{I ⊆ [|x|] | xI = y}|.
Note that if y is not a subsequence of x then Emb(x; y) = 0.

The radius-r insertion ball of a word x ∈ Σ∗q , denoted by
Ir(x), is the set of all supersequences of x of length |x|+ r.
From [29] it is known that Ir(x) = ∑

r
i=0 (

|x|+r
i ). Similarily,

the radius-r deletion ball of a word x ∈ Σ∗q , denoted by Dr(x),
is the set of all subsequences of x of length |x| − r.

We consider a channel S that is characterized by a condi-
tional probability PrS, defined by PrS{y rec. |x trans.}, for
all (x, y) ∈ (Σ∗q)

2. Note that the lengths of the input and out-
put words may not be the same as we consider deletions in
this work. A decoder for a code C with respect to the chan-
nel S is a function D : Σ∗q → C. Its average decoding failure

probability is defined by Pfail(S, C ,D) = ∑c∈C Pfail(c)
|C| , where

Pfail(c) = ∑
y:D(y) 6=c

PrS{y rec. |c trans.}.

We will mostly be interested in the expected normalized dis-
tance which is the average normalized distance between the
transmitted word and the decoder’s output. The distance will
depend upon the channel. For example, for the BSC one should
consider the Hamming distance, while for insertion/deletion
channels, the Levenshtein distance will be of interest. Hence,
for a channel S, distance function d, and a decoder D, we let
Perr(S, C ,D, d) = ∑c∈C Perr(c,d)

|C| , where

Perr(c, d) = ∑
y:D(y) 6=c

d(D(y), c)
|c| · PrS{y rec. |c trans.}.

The maximum-likelihood (ML) decoder for C with respect
to a channel S, denoted by DML, outputs a codeword c ∈ C
that maximizes the probability PrS{y rec. |c trans.}. That is,
for y ∈ Σ∗q , DML(y) = arg maxc∈C {PrS{y rec. |c trans.}}.
It is well known that for the BSC, the ML decoder chooses
the closest codeword with respect to the Hamming distance.

Note that channels which introduce deletions or insertions
change the sequence’s length. If the goal is to minimize the
average decoding failure probability then clearly the decoder’s
output should be a codeword as there is no point in outputting
a non-codeword. However, if one seeks to minimize the aver-
age decoding error probability, then the decoder should con-
sider non-codewords as well. Therefore, we present here the
ML∗ decoder, which is an alternative definition of the ML
decoder that takes into account non-codewords and in partic-
ular words with different length than the code length. The
maximum-likelihood∗ (ML∗) decoder for C with respect to a
channel S, denoted by DML∗ , should output words that mini-
mize the expected normalized distance Perr(S, C ,D, d):

Perr(S, C ,D, d) =
1
|C| ∑

c∈C
Perr(c, d)

=
1
|C| ∑

c∈C
∑

y:D(y) 6=c

d(D(y), c)
|c| · PrS{y rec. |c trans.}

(a)
=

1
|C| ∑

y∈Σ∗q
∑

c:D(y) 6=c

d(D(y), c)
|c| PrS{y rec. |c trans.},

where in (a) we switched the summation order, while taking
into account all possible channel’s outputs. For every y ∈ Σ∗q ,

denote the value ∑c:D(y) 6=c
d(D(y),c)
|c| PrS{y rec. |c trans.} by

fy(D(y)) and if D(y) is some arbitrary value x, this value
is denoted by fy(x). Thus, the ML∗ decoder is defined as

DML∗(y) = argmin
x∈Σ∗q
{ fy(x)}.

In this paper we study the ML∗ decoder for a special case
of the deletion channel that is denoted by t-Del and is re-
ferred as the t-deletion channel. In this channel, defined also
in [19], exactly t symbols of the transmitted word are deleted.
The t symbols are selected randomly and independently out
of the (n

t) options to delete t out of the n symbols, where
n is the word length. Note that it may happen that different
deletion patterns will still result with the same output. In this
work, whenever the set arg minx∈Σ∗q{ fy(x)} contains more
than one word, we assume that DML∗(y) returns a word of
minimum length. Section III is dedicated to the case of t = 1,
while in Section IV the t = 2 case is solved. In both cases
we provide a full characterization of the ML∗ decoder and
its expected normalized distance when the code is Σn

2 . In the
analysis to follow in this paper, when the channel being dis-
cussed is clear from the context, the conditional probability
PrS{y rec. |c trans.} will be denoted by p(y|c).

III. THE 1-DELETION CHANNEL

In this section we consider the 1-deletion channel which
deletes one symbol randomly. Given a single-deletion-
correcting code, any channel output can be easily decoded,
and therefore for the rest of this section we assume that the
given code is not a single-deletion-correcting code. We start
by examining two types of decoders for this channel. The
first decoder, referred as the embedding number decoder and
denoted by DEN , returns for a channel output y the word
DEN(y) which is a codeword in the code C that maximizes
the embedding number of y in DEN(y). That is,

DEN(y) = arg max
c∈C

{Emb(c; y)},

where, for now, if there is more than one such a word, the
decoder chooses one of them arbitrarily. The second de-
coder, referred as the lazy decoder, is denoted by DLazy. For
a channel output y, DLazy simply returns y as the output,
i.e., DLazy(y) = y. Note that the lazy decoder does not re-
turn a codeword. Additionally, dL(DLazy(y), c) = 1 since
y ∈ D1(c) and hence, the average decoding error probability
of the lazy decoder is 1

n , when n is the code length.
In the main result of this section, presented in Theorem 7,

we prove for S = 1-Del and C = Σn
2 , that DLazy performs at

least as good as any other decoder, and hence DLazy = DML∗ .
For the rest of this section it is assumed that C ⊆ Σn

2 and
S = 1-Del. The following lemma states that DLazy is prefer-
able over any other decoder that outputs words of length n− 1.
Lemma 1. Let D : Σn−1

2 → Σn−1
2 be a general decoder that

preserves the length of the channel output. Then,

Perr(1-Del, C ,D, dL) > Perr(1-Del, C ,DLazy, dL) = 1/n,

and for C = Σn
2 equality is obtained if and only if D = DLazy.

Next, we discuss decoders that return only words of length
n and for the rest of this section it is assumed that C = Σn

2 .
Note that a decoder that prolongs an arbitrary run of maximal
length within its input word is equivalent to the embedding
number decoder. This observation holds since their embedding
numbers are equal. Therefore, we can define the embedding
number decoder to be the decoder that, given a channel output
y ∈ Σn−1

2 , prolongs the first run of maximal length in y by
one. A decoder D that prolongs one of the runs of maximal
length in y by one is said to be equivalent to the embedding
number decoder, and is denoted by D ≡ DEN.

Lemma 2. For every c ∈ C = Σn
2 , the decoder DEN satisfies

Perr(c, dL) =
2
n
· ∑

y∈D1(c)

Emb(c; y)
n

· I{DEN(y) 6= c}.

For y ∈ D1(c), we get DEN(y) = c if and only if the
deletion occurred within the run which is corresponding to the
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first run of maximal length in y. Hence, the embedding num-
ber decoder will fail at least for any deletion occurring out-
side of the first run of maximal length in c. This observation
will be used in the proof of the Lemma 3. Before present-
ing this proof, one more definition is introduced. For a word
x ∈ Σn

2 , we denote by τ(x) the length of its maximal run.
For example τ(00111010) = 3 and τ(01010101) = 1. For
a code C ⊆ Σn

2 , we denote by τ(C) the average length of
the maximal runs of its codewords. That is, τ(C) = ∑c∈C τ(c)

|C| .
Furthermore, if N(r), for 1 6 r 6 n denotes the number of
codewords in C in which the length of their maximal run is r,
then τ(C) = ∑

n
r=1 r·N(r)
|C| . We are now ready to present a lower

bound on the average decoding error probability of DEN .
Lemma 3. The average decoding error probability of the em-
bedding number decoder DEN satisfies

Perr(1-Del, C = Σn
2 ,DEN, dL) >

2
n
·
(

1− τ(C)
n

)
.

Proof: Let Cr ⊆ C be the subset of codewords with max-
imal run of length r, and let its size be denoted by N(r).
For any c ∈ C, any deletion outside of the first run of max-
imal length will result in a decoding failure. The summation
∑y∈D1(c)

Emb(c;y)
n · I{DEN(y) 6= c} is equivalent to counting

the indices in c in which a deletion will result in a decod-
ing failure. Hence, by Lemma 2 we get that for every c ∈ Cr,
Perr(c, dL) >

2
n ·

n−r
n , which implies,

Perr(1-Del, C ,DEN , dL) = ∑
c∈C

Perr(c, dL)

|C| =
1
|C|

n

∑
r=1

∑
c∈Cr

Perr(c, dL)

>
1
|C|

n

∑
r=1

∑
c∈Cr

2
n
· n− r

n
=

1
|C|

2
n

n

∑
r=1

N(r)
(

1− r
n

)
=

2
n

(
1− 1

n
∑

n
r=1 r · N(r)
|C|

)
=

2
n
·
(

1− τ(C)
n

)
.

The next lemma states that DEN is preferable over any other
decoder that outputs a word of length n.
Lemma 4. Let D : Σn−1

2 → Σn
2 be a general decoder that pro-

longs the input length by one. It follows that

Perr(1-Del, Σn
2 ,D, dL) > Perr(1-Del, Σn

2 ,DEN, dL), (1)

and equality is obtained if and only if D ≡ DEN.

By Lemma 3 and since the average length of the longest
run of words in Σn

2 is at most 2 log2(n) [3], the lazy decoder
is strictly preferable over the embedding number decoder.
Lemma 5. For all n > 17 it holds that

Perr(1-Del, Σn
2 ,DEN, dL) > Perr(1-Del, Σn

2 ,DLazy, dL).

For the rest of this section we assume that n > 17. The next
lemma states that DLazy is preferable over a hybrid decoder,
which returns words of length either n− 1 or n.

Lemma 6. LetD : Σn−1
2 → Σn−1

2 ∪Σn
2 be a decoder that either

preserves the word length or prolongs it by one symbol. Then,

Perr(1-Del, Σn
2 ,D, dL) > Perr(1-Del, Σn

2 ,DLazy, dL).

Proof: Since |D(y)| = n, it holds that

Perr(1-Del, Σn
2 ,D, dL) =

1
|C| ∑

y∈Σn−1
2

∑
c∈I1(y)

dL(D(y), c)
|c| p(y|c)

>
2

n|C| ∑
y∈Σn−1

2
|D(y)|=n

(
∑

c∈I1(y)
p(y|c)− p(y|D(y))

)

+
1

n|C| ∑
y∈Σn−1

2
|D(y)|=n−1

∑
c∈I1(y)

p(y|c). (2)

We show that for y ∈ Σn−1
2 such that |D(y)| = n it holds

2 ∑
c∈I1(y)

p(y|c)− 2p(y|D(y)) > ∑
c∈I1(y)

p(y|c). (3)

This is proved by verifying that

2 ∑
c∈I1(y)

p(y|c)− 2p(y|D(y))−∑
c∈I1(y)

p(y|c) = ∑
c∈I1(y)

p(y|c)− 2p(y|D(y))

(a)
= ∑

c∈I1(y)
c 6=D(y)

p(y|c) + p(y|D(y))− 2p(y|D(y))

(b)
> ∑

c∈I1(y)
c 6=D(y)

1
n
− p(y|D(y))

(c)
> 1− p(y|D(y)) > 0,

where in (a) we split I1(y) into two parts when D(y) ∈ I1(y),
and note that this equality holds also when D(y) /∈ I1(y). (b)
holds since p(y|c) > 1/n when c ∈ I1(y). Lastly, (c) holds
since |I1(y) \ {D(y)}| is at least n since |I1(y)| = n + 1.

Lastly, combining (2) and (3) and remembering that
dL(c,DLazy(y)) = 1 we have that

Perr(1-Del, Σn
2 ,D, dL) > Perr(1-Del, (Σ2)

n,DLazy, dL).

Finally, it is shown that the lazy decoder is at least as good
as any other type of decoder that returns words of any length.
In particular, it is superior to any decoder that returns words
of shorter length and therefore it is the ML∗ decoder.

Theorem 7. For any decoder D : Σn−1
2 → Σ∗2,

Perr(1-Del, Σn
2 ,D, dL) > Perr(1-Del, Σn

2 ,DLazy, dL).

Thus, for the 1-Del channel with Σn
2 , the ML∗ decoder isDLazy.

Proof: Let D : Σn−1
2 → Σ∗2 . By Lemma 6, the theorem

holds for any hybrid decoder and therefore we can assume
that D is not a hybrid decoder. Hence, there exists at least one
channel output y′, such that, D(y′) is neither of length n, nor
of length n− 1. We consider the following two cases.
Case 1: |D(y′)| 6= n + 1. Thus, dL(D(y′), c) > 2 and the
inequality can be proved using similar arguments to Lemma 6.
Case 2: |D(y′)| = n+ 1. If D(y′) is not the alternating word,
then |D1(D(y′))| 6 n, i.e., there are at most n words of length
n that have distance 1 from D(y′). Since |I1(y′)| = n + 1,
there is at least one word c ∈ I1(y′) such that dL(D(y′), c) >
1. Using this observation we derive that

Perr(1-Del, Σn
2 ,D, dL) =

1
|C| ∑

y∈Σn−1
2

∑
c∈I1(y)

dL(D(y), c)
|c| p(y|c)

>
1

n|C| ∑
y∈Σn−1

2
|D(y)|=n−1

∑
c∈I1(y)

p(y|c) + 1
|C| ∑

y∈Σn−1
2

|D(y)|=n

∑
c∈I1(y)

dL(D(y), c)
|c| p(y|c)

+
1
|C| ∑

y∈Σn−1
2

|D(y)|=n+1

∑
c∈I1(y)

dL(D(y), c)
|c| p(y|c)

(a)
>

1
n|C| ∑

y∈Σn−1
2

∑
c∈I1(y)

p(y|c)= 1
n

,

where the last inequality results from the words y′, c which
satisfy dL(D(y′), c) > 1. That is, it is concluded that

Perr(1-Del, Σn
2 ,D, dL) >

1
n
= Perr(1-Del, Σn

2 ,DLazy, dL).

Note that, for the special case where D(y′) is the alternating
sequence of length n + 1, |I1(y′)| = |D1(D(y′))| = n + 1,
which implies that inequality (a) is a weak inequality.

Since DLazy minimizes the average decoding error probabil-
ity when C = Σn

2 , and since the ML∗ decoder returns a word
of minimal length, it follows that DLazy is the ML∗ decoder
for the 1-deletion channel.
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IV. THE 2-DELETION CHANNEL

In this section we consider the case of the 2-deletion chan-
nel when the code is the entire space, i.e., C = Σn

2 . In this
setup, exactly two symbols are selected randomly and deleted
from the transmitted word x ∈ Σn

2 . We construct a decoder that
is based on DLazy and on a variant of DEN and prove that it
minimizes the average decoding error probability. That is, we
explicitly find the ML∗ decoder for the 2-deletion channel.

Before we continue, two more families of decoders are in-
troduced. The maximum likelihood* of length m, denoted by
Dm

ML∗ , is the decoder that for any given channel output y re-
turns a word x of length m that minimizes fy(x). That is,

Dm
ML∗(y) = argmin

x∈Σm
2

{ fy(x)}.

The embedding number decoder of length m, denoted by Dm
EN ,

is the decoder that for any given channel output y returns a
word x of length m that maximizes the embedding number of
y in x. That is, for m > |y|,

Dm
EN(y) = arg max

x∈Σm
2

{Emb(x; y)}.

Similarly to the analysis of the 1-Del channel in Section III,
any embedding number decoder prolongs existing runs in the
word y. It can be shown that any embedding number decoder
of length m > |y| prolongs at least one of the longest runs
in y by at least one symbol. For simplicity, we assume that
in the case where there are two or more longest runs in y,
Dm

EN for m > |y| necessarily chooses to prolong the first ones.
Moreover, if there is more than one option that maximizes the
embedding number, Dm

EN will choose the one that prolongs
the least number of runs.

In the rest of this section we prove several properties on
the ML∗ decoder for a single 2-deletion channel and lastly in
Theorem 14 we construct this decoder explicitly. Unless spec-
ified otherwise, we assume that DML∗ returns a word with
minimum length that minimizes fy(D(y)).

Lemma 8. For any channel output y ∈ Σn−2
2 , it holds that

n− 2 6 |DML∗(y)| 6 n + 1.

For any channel output y ∈ Σn−2
2 , Lemma 8 implies that

|DML∗(y)| ∈ {n− 2,n− 1, n, n + 1}. The following lemma
states that Dn

EN is the ML∗ decoder of length n.

Lemma 9. For all n > 3, it holds that Dn
ML∗ = D

n
EN.

Let ρ(y) = k be the number of runs in a channel output y,
and let r j denote the length of the j-th run in y. Additionally,
let the i-th, the i′-th run be the first two longest runs in y such
that ri > ri′ . It can be verfied that if ri > 2ri′ , then Dn

EN
prolongs the i-th run by two symbols. Otherwise, it prolongs
the i-th and the i′-th run, each by one symbol [3]. It can be
also shown that Dn−2

EN = DLazy and that Dn−1
EN prolongs the

i-th run of y by one symbol. This leads to the next lemma.

Lemma 10. For all n > 3, it holds that

Dn−2
ML∗ = DLazy, Dn−1

ML∗ = D
n−1
EN .

The next lemma eliminates outputting words of length n + 1.

Lemma 11. Let y ∈ Σn−2
2 be a channel output. For any decoder

D, such that D(y) is a supersequence of y and |D(y)| = n +
1, it holds that fy(D(y)) > fy(Dn−1

EN (y)).

Proof: Note that it is enough to prove that

∑
c∈I2(y)

Emb(c; y)
(

dL(D(y), c)− dL(Dn−1
EN (y), c)

)
> 0. (4)

Let ρ(y) = k be the number of runs in y, r j be the length
of the j-th run for 1 6 j 6 k, and assume that the i-th run of y
is the first longest run of y. For a transmitted word c, it holds
that dL(Dn−1

EN (y), c) ∈ {1, 3}, and dL(D(y), c) ∈ {1, 3, 5}.
Recall that I1(Dn−1

EN (y)) ⊆ I2(y). D(y) is a supersequence
of y, and hence D(y) is obtained from y by prolonging exist-
ing runs or by creating new runs in y. Hence, for every word
c ∈ I2(y) such that c /∈ I1(Dn−1

EN (y)) ∪ D1(D(y)), it holds
that dL(D(y), c) > 3 while dL(Dn−1

EN (y), c) = 3. Addition-
ally, any c ∈ I2(y) such that c ∈ I1(Dn−1

EN (y)) ∩ D1(D(y)),
satisfies dL(Dn−1

EN (y), c) = dL(D(y), c) = 1. Hence, for
these words it holds that dL(D(y), c)− dL(Dn−1

EN (y), c) > 0
and they can be eliminated from inequality (4). To complete
the proof, the words c ∈ I2(y) such that c ∈ I1(Dn−1

EN (y)),
c /∈ D1(D(y)) and the words c ∈ I2(y) such that
c /∈ I1(Dn−1

EN (y)), c ∈ D1(D(y)) should be considered.
For words in the first case it holds that dL(Dn−1

EN (y), c) = 1
and dL(D(y), c) > 3, while for words in the latter case,
dL(Dn−1

EN (y), c) = 3 and dL(D(y), c) > 1. Hence,

∑
c∈I2(y)

Emb(c; y)
(

dL(D(y), c)− dL(Dn−1
EN (y), c)

)
> 2 ∑

c∈I2(y)
c∈I1(Dn−1

EN (y))
c/∈D1(D(y))

Emb(c; y)− 2 ∑
c∈I2(y)

c/∈I1(Dn−1
EN (y))

c∈D1(D(y))

Emb(c; y).

Denote by Diff the right hand side of the last inequality.
We first assume that D(y) is obtained from y by prolong-

ing the i-th run by exactly one symbol. Let c ∈ I2(y) and
consider the cases mentioned above.
Case 1: c ∈ I1(Dn−1

EN (y)) and c /∈ D1(D(y)). Re-
call that both decoders return supersequences of y. By
the assumption D(y) is obtained from y by prolong-
ing the i-th run by one symbol and then performing
two more insertions to the obtained word. Since c ∈
I1(Dn−1

EN (y)), c must be obtained from y by prolong-
ing the i-th run and performing one more insertion.
c /∈ D1(D(y)), and therefore the number of such words equals
to |I1(Dn−1

EN (y))| − |I2(y) ∩ I1(Dn−1
EN (y)) ∩ D1(D(y))|.

Note that the size of the right intersection is at most 2,
since the words in the this intersection are the words that
are obtained from y by prolonging the i-th run by one
symbol and then performing one of the two other inser-
tions performed to receive D(y). Hence, there are at least
|I1(Dn−1

EN (y))| − 2 = n− 1 such words in this case and for
each of them Emb(c; y) > ri + 1. Recall that these words
satisfy d(Dn−1

EN (y), c) = 1 and d(D(y), c) > 3.
Case 2: c /∈ I1(Dn−1

EN (y)) and c ∈ D1(D(y)). By the as-
sumption, D prolongs the i-th run by one symbol and per-
forms two more insertions into the obtained word and Dn−1

EN
prolongs the i-th run by one symbol. Hence, the words c ∈
I2(y) such that c /∈ I1(Dn−1

EN (y)) and c ∈ D1(D(y)) can
not be obtained from y by prolonging the i-th run. Therefore,
it implies that c is the unique word obtained from D(y) by
deleting the symbol that was inserted to the i-th run of y. It
holds that Emb(c; y) 6 (ri + 1)2, dL(Dn−1

EN (y), c) = 3 and
dL(D(y), c) = 1. Since ri is the length of the i-th run of y,
ri 6 |y| = n− 2. Thus, Diff > 2(ri + 1)2 − 2(ri + 1)2 > 0.

Second, assume that D(y) is obtained from y by pro-
longing the i-th run by at least two symbols. It holds that
(D1(D(y)) ∩ I2(y)) ⊆ I1(Dn−1

EN (y)), which implies that
|{c : c ∈ I2(y) ∩ D1(D(y)), c /∈ I1(Dn−1

EN (y))}| = 0, and
therefore, Diff > 0.

Lastly, assume that D(y) is obtained from y by three in-
sertions such that neither of these insertions prolongs the i-th
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run. It holds that, |I2(y) ∩ I1(Dn−1
EN (y)) ∩ D1(D(y))| = 0.

Therefore the number of words c ∈ I2(y) such that c ∈
I1(Dn−1

EN (y)) and c /∈ D1(D(y)) equals to |I1(Dn−1
EN (y))| =

n + 1. For any such word c it holds that Emb(c; y) > ri + 1.
Furthermore, |D1(D(y))| equals to the number of runs in
D(y) [29] and any c ∈ D1(D(y)) ∩ I2(y) is obtained
from D(y) by deleting one symbol of the three insertions
to y in order to obtain D(y). Hence, there are at most
three such words, and each is obtained by deleting one of
the three inserted symbols. Let c be one of those words. If
the two remaining symbols belong to the same run, then
Emb(c; y) = (m

2 ) where m is the length of this run in c
and m 6 ri + 2. In this case consider the word c′ that is
obtained by prolonging the i-th run of y by two symbols.
It holds that, Emb(c′; y) = (ri+2

2 ) > (m
2 ) = Emb(c; y).

Otherwise, Emb(c; y) = m1m2 where m1 and m2 are the
lengths of the runs that include the remaining inserted sym-
bols and m1, m2 6 ri + 1. Let c′ be the word that is obtained
from y by prolonging the i-th run and the run of length
max{m1 − 1, m2 − 1} that is prolonged by D. In this case,
Emb(c′; y) = m1(ri + 1) > m1m2 = Emb(c; y). Note that
there is at most one such word c that is obtained by prolong-
ing the same run with two symbols, which implies that there
is always a selection of words c′ such that Diff > 0.

We proved that for any decoder D such that D(y) is a
supersequence y and |D(y)| = n + 1, Diff > 0, and thus,
fy(D(y))− fy(Dn−1

EN (y)) > 0.
Additionally, we show in [3] that for any channel output

y ∈ Σn−2
2 , when |D(y)| = n, fy(DLazy(y)) 6 fy(D(y))

and therefore DML∗(y) cannot be a word of length n.
Lemma 11 states that Dn−1

EN is preferable over any decoder
that returns only words of length n + 1 and therefore an
immediate conclusion is given in the following corollary.

Corollary 12. The ML∗ decoder for the 2-deletion channel, re-
turns words of length either n− 2 or n− 1.

In the following result we define a condition on the length
of the longest run in y to decide whether prolonging it by
one symbol can minimize the average decoding error prob-
ability. This result proves Theorem 14 which determines the
ML∗ decoder for the case of a single 2-deletion channel.

Lemma 13. Let y ∈ Σn−2
2 be a channel output, such that the

number of runs in y is ρ(y) = k, and the first longest run in y
is the i-th run. Denote by r j the length of the j-th run in y for
1 6 j 6 k. It holds that fy(Dn−1

EN (y)) > fy(DLazy(y)) if and
only if 2n2 − 4nri − 6n + r2

i + 3ri + k + 1 > 0.

Proof: The decoder Dn−1
EN prolongs the i-th run of y by

one symbol. Thus, the Levenshtein distance between Dn−1
EN (y)

and the transmitted word c can be either 1 or 3, and hence,

fy(Dn−1
EN (y))− fy(DLazy(y)) = ∑

c∈I2(y)
dL(Dn−1

EN (y),c)=3

p(y|c)
n

− ∑
c∈I2(y)

dL(Dn−1
EN (y),c)=1

p(y|c)
n

.

Denote
Sum3 , ∑

c∈I2(y)
dL(Dn−1

EN (y),c)=3

p(y|c), Sum1 , ∑
c∈I2(y)

dL(Dn−1
EN (y),c)=1

p(y|c).

Let us prove that 2n2 − 4nri − 6n + r2
i + 3ri + k + 1 > 0

is a necessary and sufficient condition for the inequality
Sum3 > Sum1 to hold. First, we count the number of words
c ∈ I2(y) such that dL(Dn−1

EN (y), c) = 1. Each such c is a
supersequence of Dn−1

EN (y) and therefore c can be obtained
from y only by one of the three following options. The first
option is by prolonging the i-th run and the j-th of y for

j 6= i, each by one symbol. The number of such words is
k− 1. The second option is by prolonging the i-th run in y by
one symbol and creating a new run in y. The number of op-
tions to create a new run in y is n− k + 1 and therefore, there
are n − k + 1 such words. The third option is by prolong-
ing the i-th run by two symbols and there is only one such
a word. Hence, the total number of words c ∈ I2(y) such
that dL(Dn−1

EN (y), c) = 1 is n + 1 = |I1(Dn−1
EN (y))|. Among

them, the k − 1 words that are obtained by the first option
have an embedding number of Emb(c; y) = (ri + 1)(r j + 1).
Similarly the n− k + 1 words that are obtained from y using
the second option satisfy Emb(c; y) = ri + 1. Lastly, for the
word c that is obtained by prolonging the i-th run of y by
two symbols, it holds that Emb(c; y) = (ri+2

2 ). Hence,

Sum1 = ∑
c∈I2(y)

dL(Dn−1
EN (y),c)=1

p(y|c) =
(ri+2

2 )

(n
2)

+∑
16 j6k

j 6=i

(ri + 1)(r j + 1)
(n

2)
+

n−k+1

∑
j=1

(ri + 1)
(n

2)

=
(2n− ri

2 − 1) · (ri + 1)
(n

2)
=

(4n− ri − 2) · (ri + 1)
n · (n− 1)

,

Next, let us evaluate the summation Sum3. Note that if
dL(Dn−1

EN (y), c) = 3 then c is not in a supersequence of
Dn−1

EN (y), and hence c /∈ I1(Dn−1
EN (y)). The words that con-

tribute to the summation Sum3 can be divided into three
different types of words c ∈ I2(y).
Case 1: Let C1 ⊆ I2(y) be the set of words that includes
additional run(s) that do not appear in y. Such additional runs
can be either one run of length 2, or two runs of length 1 each.
The number of words such that the length of the new run is
two is n − k, and the number of words with two additional
runs is (n−k

2 ). Additionally, for c ∈ C1, Emb(c; y) = 1, which

implies, ∑c∈C1
p(y|c) = |C1 |

(n
2)

=
(n− k)(n− k + 1)

n(n− 1)
.

Case 2: Let C2 ⊆ I2(y) be the set of words that are obtained
from y by prolonging the j-th run and by creating a new run in
y. By using similar arguments as in the previous case it can be

shown that, ∑c∈C2
p(y|c) = 2(n− k + 1)

n(n− 1)
(n− ri + k− 3).

Case 3: Let C3 ⊆ I2(y) be the set of words that are ob-
tained from y by prolonging one or two existing runs in y
(other than the i-th run). It can be shown that ∑c∈C3

p(y|c) =
(n− ri + k− 3)(n− ri + k− 2)

n(n− 1)
.

Thus, Sum3 =
4n2 − 4nri − 8n + r2

i + 3ri + 2k
n(n− 1)

, and

Sum3 − Sum1 > 0 if and only if
2n2 − 4nri − 6n + r2

i + 3ri + k + 1 > 0.
Using this result we can explicitly define the ML∗ decoder

DML∗ . This decoder works as follows. For each word y it
calculates ρ(y) = k and ri and then checks if

2n2 − 4nri − 6n + r2
i + 3ri + k + 1 > 0. (5)

If (5) holds, the decoder works as DLazy. Otherwise, it acts
like Dn−1

EN and prolongs the first longest run by one. This result
is summarized in the following theorem.

Theorem 14. The ML∗ decoder DML∗ for the 2-Del channel
performs as the lazy decoder if inequality (5) holds and other-
wise as the embedding number decoder of length n− 1, i.e.,

DML∗(y) =

{
DLazy(y) inequality (5) holds ,
Dn−1

EN (y) otherwise.

By Theorem 14 if DML∗(y) = Dn−1
EN (y) then (5) does not

hold, and it can be shown that ri > (2 −
√

2)n ≈ 0.586n.
Thus, in almost all cases DML∗(y) = DLazy(y).

1851



REFERENCES

[1] M. Abroshan, R. Venkataramanan, L. Dolecek, and A. G. i Fàbregas.
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