
Segmented Reverse Concatenation: A New
Approach to Constrained ECC

Ryan Gabrys,∗‡, Paul H. Siegel,∗ and Eitan Yaakobi†

∗University of California San Diego, La Jolla, CA 92093
†Technion — Israel Institute of Technology, Haifa, Israel 3200003

‡Naval Information Warfare Center, San Diego, CA 92152
ryan.gabrys@gmail.com, psiegel@ucsd.edu, yaakobi@cs.technion.ac.il

Abstract—In this work, a new coding scheme called segmented
reverse concatenation is described, which generates constrained
codes that can also correct a prescribed number of errors.
Our codes are based upon the generalized reverse concatenation
method; however, the key difference between our scheme and
prior art is that in our scheme the redundancy symbols of the
code are able to be partitioned into disjoint segments, each of
which requires only a single parity bit to maintain the minimum
distance of the code. We consider three potential applications
of the new technique, and it is shown that in all three cases our
approach improves upon prior art. Our scheme can be applied to
many setups, although it is particularly well-suited for scenarios
where the constrained encoder has a high information rate.

I. INTRODUCTION

Constrained codes are used in almost all modern storage
systems today. Traditional data encoders typically translate
some sequence of information bits into codewords that not only
comply with the underlying storage medium, but also provide
data redundancy to ensure that the information sequence can
be recovered if errors occur. In this context, a good code is
one which achieves a high information rate while satisfying
the coding constraint and having a large minimum distance.

This problem has been studied in various contexts for over
40 years in works such as [2], [3], [4], [5], [6], [7], and [12],
to name a few. One of the principal challenges one encounters
when constructing constrained error-correcting codebooks is
how to efficiently combine an encoder for the constrained
code with the encoder for the error-correcting code (ECC).
Traditionally, the ECC encoder and the constrained encoder
are concatenated by first passing the information sequence
through the ECC encoder followed by the constrained encoder
[7]. The primary drawback of this approach is that for long
block lengths, it may suffer from high error-propagation, and
as a result, traditional schemes usually relied on codes with
relatively short block lengths [5].

Another approach, known as reverse concatenation, inverts
the order of the ECC encoder and constrained encoder as
described in the previous paragraph. Under this setup, an
information sequence is first passed through the constrained
encoder and additional redundancy symbols are then computed
from the output of the constrained encoder for the purposes
of error-correction [2], [4], [6]. One of the drawbacks to this

E. Yaakobi acknowledges support from the Center for Memory and Record-
ing Research at UCSD. This work is also funded by the United States-Israel
BSF grant 2018048.

approach, and one which will be explained in more detail in
the next section, is that the design of the redundancy symbols
is oftentimes accomplished via brute force methods, which do
not scale well as the block length (or the number of errors one
wishes to correct) increases.

In this work, we propose a new coding scheme, which we
call segmented reverse concatenation, to address this issue.
Our approach is a special case of the reverse concatenation
method. As before, we begin by first passing our information
sequence through a constrained encoder. Then we compute a
block of redundancy symbols from the output of this con-
strained encoder. The key difference between our approach
and the traditional reverse concatenation method is that in our
approach the block of redundancy symbols is next segmented
into a sequence of sub-blocks, referred as segments. As a final
step, each segment is passed through the constrained encoder
and each segment is further protected by an additional parity
symbol. It will be shown in Section III that the result is a
constrained error-correcting codebook.

This paper is organized as follows. In Section II, we provide
more details on our construction and we introduce some
tools that will be used for the remainder of the paper. In
Section III, the correctness of the construction is proven. In
Section IV, we discuss three applications of our technique and
we highlight some cases where it improves upon current art.
In particular, to the best of our knowledge, our approach can
be used to generate the best-known error-correcting WOM-
codes, error-correcting balanced codes, and error-correcting
run-length limited codes. Due to space limitations, many of
the proofs for this paper are omitted as well as discussions on
efficient decoding algorithms. The full version is available [8].

II. BACKGROUND AND PRELIMINARIES

In this section, we first review a well-known method, which
has been used in the past to generate constrained error-
correcting codes, known as reverse concatenation [7]. After-
wards, we discuss our approach and review classical Goppa
codes, which will be used in the next section to describe our
construction.

A. Reverse Concatenation

The basic idea behind the traditional reverse concatenation
method is to make the difficult problem of designing codes
that simultaneously satisfy both a minimum distance and a

ISITA2020, Kapolei, Hawai'i, USA, October 24-27, 2020

Copyright (C) 2020 by IEICE 254

coding constraint necessary for only a small portion of the
codeword. The first key ingredient in these constructions is the
use of systematic ECCs. This family of codes allows one to
mostly focus on designing an efficient encoder for the coding
constraint, which is usually an easier problem.

Let E : {0, 1}∗ → {0, 1}∗ be an invertible encoder whose
image is a set of vectors that satisfy the coding constraint
(but without any guarantees on the minimum distance). For
our discussion, we assume that given a binary vector v of
length N , the output E (v) is a vector of length aN where
a ≥ 1 is minimal and that the code has the fewest possible
number of redundant bits. We also assume that the encoder
E has polynomial time encoding/decoding complexity with
respect to the length of the output sequence. Suppose that
R : {0, 1}N → {0, 1}tdlogNe is a systematic encoder for
a t-error-correcting code where for any two distinct vectors
z1, z2 ∈ {0, 1}N , the minimum Hamming distance between
(z1, R(z1)) and (z2, R(z2)) is at least 2t+ 1. For simplicity,
we assume that the number of redundancy bits is tdlogNe;
however, the technique can be extended to accommodate any
systematic t-error-correcting code.

Using the maps defined in the previous paragraph suppose
we start with an information vector u ∈ {0, 1}k and from this,
we generate the redundancy bits R(E (u))) ∈ {0, 1}tdlog ake.
Given the map f : {0, 1}tdlog ake → {0, 1}tdlog ake+r, which
will be defined shortly, a code produced according to the
reverse concatenation method will have codewords of the
following form:(

E (u), f(R(E (u)))
)
∈ {0, 1}ak+tdlog ake+r.

In order to make this approach work, one still needs to design
the map f so that f(R(E (u))) satisfies the coding constraint1

and it belongs to a code with minimum Hamming distance
2t + 1. For the case where t is a constant with respect to
ak, the map f can be designed efficiently using brute force
methods in polynomial time with respect to the length of the
output sequence.

The trouble with the reverse concatenation method is two-
fold. First, it may be difficult to derive tight upper/lower bounds
on the redundancy |f(R(E (u)))|, and in general the quantity
|f(R(E (u)))| depends on the results of a brute force search.
Another potential issue with the reverse concatenation method
is that it does not scale well as t increases. Even for the case
where t = O(log k) (or where t is larger), the design of f
can no longer be accomplished in polynomial-time using brute
force methods.

B. Our Approach

For our approach, suppose we wish to encode the informa-
tion vector u ∈ {0, 1}k and z = E (u). The high level idea
behind our approach, and which will be explained in more
detail in Section III, is to partition the data from z = R(E (u))
into t segments where each segment is protected using only a

1Specifically, we need for the vector
(
E (u), f(R(E (u)))

)
to satisfy the

coding constraint, but we make the relaxing assumption that the coding
constraint is satisfied if each of the vectors E (u) and f(R(E (u))) satisfy
the coding constraint.

single parity bit. To apply this technique, we begin by first
computing a set of t redundancy segments based on the vector
z as follows {

r1(z), r2(z), . . . , rt(z)

}
,

where for any i ∈ [t], ri(z) has length approximately log |z| =
dlog ake, and the length of z is ak. We use E to form the
constrained redundancy segments:(

ρ1(z), . . . , ρt(z)

)
=

(
E (r1(z)), . . . ,E (rt(z))

)
.

Then, for i ∈ [t], let P (ρi(z)) =
∑|ρi(z)|
j=1 ρi(z)j mod 2 denote

the parity of the vector ρi(z). Finally, we form our codeword
x as follows:

x =

(
z, ρ1(z), P (ρ1(z)), . . . , ρt(z), P (ρt(z))

)
∈ {0, 1}n.

(1)

We refer to the constructed codebooks as segmented reverse
concatenation codes or t-SRC codes. It will be proven in
Theorem 1 that a t-SRC code has minimum distance 2t + 1.
Notice from (1) that n ≈ ak + at log (ak) + t where we
have dropped the ceiling function for notational ease. We
will show in Section IV that this result can be used to
generate code constructions for many existing and well-studied
setups which include: (i) Error-correcting (EC) WOM-codes,
(ii) EC balanced codes, and (iii) EC run-length limited codes.
Although we consider these three setups in detail, we believe
that there may be many other areas where this construction
can be useful as well. As mentioned earlier, our approach
enjoys the benefit that it does not rely on brute force search
methods. Furthermore, the number of redundant bits is at most
approximately ak + at log (ak) + t − k irrespective of the
particular coding constraint where t ≤ O(

√
n).

C. Background on Goppa Codes

The primary tool used in our construction is Goppa codes,
which we briefly review now. In the following exposition, we
adopt the notation from [1]. Let m be a positive integer and
suppose R = {α1, α2, . . . , αt} ⊆ F2m . Define

g(ξ) = (ξ− α1) · (ξ− α2) · · · (ξ− αt) ∈ F2m [ξ] (2)

to be a polynomial over F2m of degree t with the indeterminate
ξ. Let L = {γ1, . . . , γ|L|} ⊆ F2m \ R. Then, the Goppa code
C(L,R) of length |L| over F2 is the code whose coordinates
are indexed by elements of L where

C(L,R) =
{
x = (xγ1 , . . . , xγ|L|) ∈ F|L|2 :

|L|∑
i=1

xγi
ξ− γi

≡ 0 mod g(ξ)
}
. (3)

We state a well-known result which can be found in [1]. For
shorthand, let d(C) denote the minimum Hamming distance for
the code C.

Lemma 1. (cf., [1]) Let R ⊂ F2m be the set of roots of
g(ξ) that are contained in F2m . Let L ⊆ F2m \ R. Then,
d(C(L,R)) ≥ 2|R|+ 1.

ISITA2020, Kapolei, Hawai'i, USA, October 24-27, 2020

Copyright (C) 2020 by IEICE 255

Next, we state an implication of the previous lemma which
will be used in our construction.

Lemma 2. Let R1, R2 ⊂ F2m be two disjoint subsets and
suppose that L ⊆ F2m \

(
R1 ∪R2

)
. Then,

1) d
(
C(L,R1)

)
≥ 2|R1|+ 1,

2) d
(
C(L,R2)

)
≥ 2|R2|+ 1, and

3) d
(
C(L,R1 ∪R2)

)
≥ 2(|R1|+ |R2|) + 1.

According to (2), the types of Goppa polynomials g(ξ) we
will be interested in can be written as a product of linear terms
over F2m . For a vector x = (xγ1 , xγ2 , . . . , xγ|L|) ∈ F|L|2 , we
associate fx,L(ξ) with x where

fx,L(ξ) =

|L|∑
i=1

xγi
ξ− γi

∈ F2m [ξ]. (4)

When the set L is clear from the context, we will omit it
from our notation and refer to fx,L(ξ) as fx(ξ). Using this
interpretation, since fx,L(ξ) mod (ξ − αi) ≡ 0 if and only if
fx,L(αi) = 0, we have

C(L,R) =
{
x ∈ F|L|2 : ∀α ∈ R, fx,L(α) = 0

}
.

Consider the following set which is closely related to
C(L,R). Now suppose that R = {α1, . . . , αt} ⊆ F2m and
also that V = (Vα1 , . . . , Vαt) ∈ Ft2m . Then we will use the set
R as a set of evaluation points and V as a set of evaluation
values to define the following set

C(L,R,V) =
{
x ∈ F|L|2 : ∀α ∈ R, fx,L(α) = Vα

}
. (5)

Since the vectors from C(L,R,V) are contained in a coset of
C(L,R), the following corollary is straightforward.

Corollary 1. The code C(L,R,V) has minimum distance
2|R|+ 1.

It also follows from the results in [1] that there exists a
polynomial time (with complexity at most |L|3) decoder for the
code C(L,R,V). For the vector V = (Vα1 , Vα2 , . . . , Vαt) ∈
Ft2m which is indexed by the elements in R, and a subset
R′ ⊆ R, let VR′ be the result of removing components of V
that are not indexed by elements from R′. For example if V =
(Vα1

, Vα2
, Vα3

) and R′ = {α1, α3}, then VR′ = (Vα1
, Vα3

).
The next corollary follows immediately from the same logic
as Lemma 2.

Corollary 2. Suppose R = R1∪R2 ⊆ F2m where R1∩R2 = ∅
and let L = F2m \R, |R| = t, V ∈ Ft2m . Then,

1) d
(
C(L,R1,VR1)

)
≥ 2|R1|+ 1,

2) d
(
C(L,R2,VR2

)
)
≥ 2|R2|+ 1, and

3) d
(
C(L,R,V

)
≥ 2(|R1|+ |R2|) + 1.

Furthermore for each of these three codes, there exists an
efficient polynomial time decoder that has complexity at most
O(|L|3).

III. CONSTRUCTION OF SRC CODES

We now discuss our SRC construction in more detail and
then we show that the resulting code has the desired minimum
distance properties. Let R = {α1, α2, . . . , αt} ⊆ F2m , and let

L = {γ1, . . . , γ|L|} ⊆ F2m \R.

Let u ∈ Fk2 be a sequence of k information bits. For a vector
z = E (u) ∈ {0, 1}|L| (where |L| = ak), we define the
redundancy segment ri(z) for i ∈ [t] as follows:

ri(z) = fz,L(αi) ∈ F2m ,

We will sometimes refer to elements of F2m also as binary
vectors from Fm2 according to some fixed basis function. Let
ρi(z) = E (fz(αi)) (where we drop the L subscript from f to
avoid clutter) and let Pi = P (ρi(z)). A t-segmented reverse
concatenated code of length n = ak + at log (ak) + t and
evaluation point set R is

SRC(n,R) =

{
x ∈ Fn2 : u ∈ Fk2 , z = E (u),

x =

(
z, ρ1(z), P1, . . . , ρt(z), Pt

)}
. (6)

For two vectors x,y, let d(x,y) denote their Hamming dis-
tance. The next lemma is the key result which will be used to
prove the minimum distance of our t-SRC codes.

Lemma 3. Suppose z1 6= z2 where z1, z2 ∈ F|L|2 . Let e =

bd(z1,z2)−1
2 c. Then,∣∣∣{α ∈ R : fz1

(α) 6= fz2
(α)
}∣∣∣ ≥ t− e.

Proof. Consider the vector d = z1 + z2 ∈ F|L|2 . Let Z ⊆ R
be such that for any α ∈ Z, fz1(α) = fz2(α) and index d
so that d = (dγ1 , . . . , dγ|L|). Due to linearity, it follows that
if fz1

(α) = fz2
(α), then fd(α) = 0, so that α is a root of

fd(ξ). From Lemma 2, it follows that d belongs to a code
with minimum Hamming distance 2|Z|+1, and since d is non-
zero, we have d(z1, z2) ≥ 2|Z| + 1. Since e = bd(z1,z2)−1

2 c,
it follows that e ≥ |Z|. Since |R| = t, it follows that

∣∣∣{α ∈
R : fz1

(α) 6= fz2
(α)
}∣∣∣ = t − |Z| ≥ t − e, which completes

the proof. �

We use the previous lemma to prove the following, where
SRC(n,R) refers to the set defined in (6).

Theorem 1. For any n and t ≤ O(n1/2), d(SRC(n,R)) ≥
2t+ 1.

Proof. Let x = (z1, ρ1(z1), P1, . . . , ρt(z1), Pt), y =
(z2, ρ1(z2), P

′
1, . . . , ρt(z2), P

′
t) be two distinct vectors from

SRC(n,R). Assume that e = bd(z1,z2)−1
2 c. Then, according

to Lemma 3,
∣∣∣{α ∈ R : fz1

(α) 6= fz2
(α)
}∣∣∣ ≥ t−e. Since E is

an invertible mapping, it follows that for every αi ∈ R where
fz1

(αi) 6= fz2
(αi), ρi(z1) 6= ρi(z2). For every i ∈ [t] we have

d
(
(ρi(z1), Pi), (ρi(z2), P

′
i)
)
≥ 2 when fz1

(αi) 6= fz2
(αi), so

that d(x,y) ≥ 2e+ 1 + 2(t− e) = 2t+ 1, as desired. �

Assuming E has a polynomial-time encoding algorithm, it is
straightforward to verify from (6), that SRC(n,R) also has a
polynomial-time encoding algorithm. A discussion of efficient
decoding algorithms can be found in the longer version of this
work [8].

ISITA2020, Kapolei, Hawai'i, USA, October 24-27, 2020

Copyright (C) 2020 by IEICE 256

Note that in our construction of SRC codes we only guar-
antee that each individual segment satisfies the constraint,
which does not necessarily imply the entire vector satisfies the
constraint. However, as we shall see in the next section, for
many well-studied constraints, it is still possible to guarantee
that the entire vector satisfies the constraint by adding a small
number of additional redundant bits.

IV. APPLICATIONS OF SRC CODES

In this section we present a few applications of SRC codes.

A. WOM-Codes

An [n, k, t] WOM code C(E ,D) is a coding scheme consist-
ing of n binary cells and is defined by an encoding map E and
a decoding map D. The WOM code guarantees any t writes
of k-bit message while the cells can only change their value
irreversibly from zero to one. If the WOM code can also correct
e errors, then it is called an [n, k, t] e-error-correcting WOM
code. Several constructions of error-correcting WOM codes
were presented in [12], which take advantage of BCH-like
cyclic ECCs. For example, for triple-error-correcting WOM
codes, the idea was to encode the three syndromes which
correspond to the three roots of the ECC using another WOM
code such that during decoding, these three roots will be used
to correct at most three errors. However, this set of three
roots had to satisfy the property that each root generates a
single ECC and every pair of roots generates a double ECC.
This property was called a strong ECC. Strong ECCs were
found in [12] only for at most triple error correction codes and
thus the construction of multiple-error-correcting WOM codes
required a larger number of cells.

Using Goppa codes and their properties stated in Lemma 2
and Corollary 2 we are able to construct e-error-correcting
WOM codes as follows. Let R = {α1, α2, . . . , αe} ⊆ F2m , and
let L = {γ1, . . . , γ|L|} ⊆ F2m \ R. We use two WOM codes.
The first one C1(E1,D1) is an [n, k, t] WOM code that is used
to encode the information bits on each write. The second one
C2(E2,D2) is an [n0, dlog(n)e, t] WOM code that is used to
encode each of the e segments on each write. In the encoding
part we receive a message u of k bits that is encoded into
n cells based upon u and the current memory state of the n
cells. Denote the n encoded bits to the cells by z ∈ Fn2 . Next
we generate the e redundancy segments ri(z) for i ∈ [e] by
ri(z) = fz(αi) ∈ F2m , where m = dlog(n)e. Then, each of
the e segments is encoded using the WOM code C2(E2,D2) in
order to receive the WOM encoded segment which we denote
by ρi(z). Lastly, we use one more cell for each segment to
encode the parity Pi = P (ρi(z)).

The number of cells which one has to use for this con-
struction will be n+ e(n0 + t). This construction significantly
improves upon the construction of multiple (more than three)-
error-correcting WOM codes from [12]. For example, the
number of cells required by the construction from Theorem
14 in [12] is at least de/2en where n is the number of
cells of a triple-error-correcting WOM codes. Note that in our
construction the number of cells is significantly smaller than

2n for all constant values of e.

B. Balanced Codes

A balanced codebook of length n (where n is even) is
one where each codeword in the codebook has n

2 ones. The
best known construction in terms of redundancy for an error-
correcting balanced code with an efficient encoder/decoder can
be found in [3]. We summarize their result in the following
theorem.

Theorem 2. (cf., [3]) For t ≥ 1, there exists a family of t-
error-correcting balanced codes with at most (t+1) log n+1
bits of redundancy.

In the following, we show the existence of t-error-correcting
balanced codes with roughly (t+ 1

2) logn+2t+2 log (t log n)+
2 redundant bits. This represents an improvement in the re-
dundancy of roughly 1

2 log n bits for the case where t is a
constant with respect to n. The complexity of our encoder is
linear whereas our decoder has complexity which is polynomial
with respect to n, since the decoder for our code relies on the
decoder of an underlying Goppa code. One of the attractive
features of our approach is that like [3], it does not require
searching for a short balanced code.

To describe the construction, we need some tools that have
been shown to exist from prior art. To begin, we require the
use of a balanced encoder EB : FN2 → FN+rB(N)

2 , where
rB(N) = 1

2 logN + O(1) and O(1) denotes a constant at
most equal to two for N large enough [11]. The input to EB is
an information vector of length N and the output is a balanced
vector of length N + rB(N) which has an equal number of
zeros and ones. An encoder can be constructed by inverting
the role of the encoder/decoder of a classical arithmetic coding
scheme and it has been shown that the resulting scheme has
linear encoding complexity [11].

Let Z : FN2 → FN+1
2 be such that Z(v) = (0,v) so that

Z(v) is simply the result of inserting a zero into the first
position of the output vector. Clearly, for any v′ ∈ FN2 , v′ 6= v,
we have

Z(v) /∈
{
Z(v′),Z(v′)

}
, (7)

where (Z(v)) denotes the complement of Z(v). This property
follows immediately since the first bit of Z(v) is always equal
to zero and Z(v) = Z(v′) if and only if v = v′.

Our scheme also makes use of a well-known technique by
Knuth [9]. Suppose v is a binary vector of length N , and
suppose σj(v) is the result of inverting (or flipping) the first
j bits of v. Then there exists an index bK(v) ∈ [N] such that
σbK(v)(v) is balanced [9].

Our construction works by first using the encoder EB to
encode the information vector u ∈ Fk2 and we denote the output
of the encoder as z = EB(u) where z is a balanced vector.
Next we generate our evaluations fz(α1), fz(α2), . . . , fz(αt),
and we pass each of these evaluations through Z to obtain
Z(fz(α1)),Z(fz(α2)), . . . ,Z(fz(αt)). Recall that we can
represent the output of the function fz using m bits according
to (4) where m = log(k + rB(k) + t),

ISITA2020, Kapolei, Hawai'i, USA, October 24-27, 2020

Copyright (C) 2020 by IEICE 257

and so Z(fz(αi)) ∈ Fm+1
2 . Let Pi be the same as be-

fore where Pi = P
(
Z(fz(αi))

)
∈ F2 is the parity of

the vector Z(fz(αi)). Note that at this point we cannot
simply append the information R(z) to z where R(z) =(
Z(fz(α1)), P1, . . . ,Z(fz(αt)), Pt

)
∈ Ft(m+2)

2 since the re-
sulting vector may not be balanced. In order to ensure our
codewords are balanced, the idea is to use Knuth’s technique
(and in particular the function bK) to maintain the balancing
property. As will be detailed in the proof of Theorem 3
(available at [8]), despite the fact that we are flipping the bits in
R(z) according to Knuth’s technique, the resulting code will
still maintain its minimum distance.

Our construction proceeds as follows. Let u ∈ Fk2 be
an information sequence and suppose z = EB(u) and let
fz(α1), fz(α2), . . . , fz(αt), P1, . . . , Pt and R(z) be as de-
fined in the previous paragraph. Suppose bK

(
R(z)

)
= `

where ` ∈ [t(m + 2)]. Let B : [t(m + 2)] → Fdlog t(m+2)e
2

be an invertible function which gives the binary image.
Then our error-correcting balanced code is defined:

CB(n, t) :=

{
x ∈ Fn2 : u ∈ Fk2 , z = EB(u), (8)

x =
(
z, σ`(R(z)), B(`), B(`), P`, P`

)}
,

where in the previous equation P` = P (B(`)) ∈ F2.
Note that since |z| = k + rB(k), |R(z)| = t(m + 2),
|B(`)| = dlog t(m + 2)e, and m = log(|z| + t), it follows
that n = k + rB(k) + t(m + 2) + 2dlog t(m + 2)e + 2.
Since the number of information bits is k, it follows that the
code CB(n, t) has (t+ 1

2) logn+2 log logn+O(1) redundant
bits when t = O(1). It is straightforward to verify x is
balanced since z, σ`(R(z)), (B(`), B(`)), and (P`, P`) are
each balanced. We are now have the following result.

Theorem 3. Suppose m + 1 is odd. Then the code CB(n, t)
is a t-error-correcting balanced code.
C. Run-Length Limited Codes

In the following, we consider the design of a special type
of error-correcting run-length limited codebook. We will be
interested in the setup where our codewords do not include
runs of ones of length L. For shorthand, we will refer to such
codes as t-error-correcting L-RLL codes or t-error-correcting
RLL codes when the meaning of L is clear. Motivated by
applications in DNA storage [10], we will be interested in the
setup where L = O(log n).

In [10], the authors describe a linear-time encoding/decoding
algorithm for an L-RLL code where L = dlog ne + 1. The
codes from [10] require only a single bit of redundancy. In
the following, we introduce a family of t-error-correcting RLL
codes that require t log n + t + 2 bits of redundancy where
L = 2(1 + log n). Our codes have linear-time encoding com-
plexity and polynomial-time decoding complexity. We compare
this approach with an application of the traditional reverse
concatenation method and we show that for the case where t is
a constant, our codes require approximately O(log logn) less
bits of redundancy than the traditional reverse concatenation

method. Furthermore, our approach, unlike traditional reverse
concatenation, does not require searching for a short error-
correcting RLL code.

We need some notation and existing results to describe our
code construction. Let ELY : FN2 → FN+1

2 be the encoder from
[10] which takes as input an arbitrary data vector of length N
and it outputs a sequence of length N+1 that does not contain
the substring 1dlogNe+1.

Our t-error correcting RLL code CRL(n, t) is defined

CRL(n, t) :=
{
x ∈ Fn2 : u ∈ Fk2 , z = ELY (u), (9)

x =
(
z, 0, fz(α1), P1, . . . , fz(αt), Pt

)
.

As in the previous subsection, we assume that fz(αi) ∈ Fm2
can be expressed using m bits where m = log (k + 1 + t) <
log n and that Pi = P (fz(αi)).

Theorem 4. Suppose m is an even integer. The code CRL(n, t)
is a t-error-correcting L-RLL code for L = 2m+ 1.

Next, we consider a construction for a t-error-correcting L-
RLL code using the traditional reverse concatenation method.
The code is constructed by applying the encoder ELY on the
systematic portion of the systematic ECC. Next we need to
generate a codeword to encode t log n bits of information from
the non-systematic portion of the ECC and the codeword is
taken from a short L-RLL code which also has minimum
distance 2t+1. As mentioned before, such a code is oftentimes
generated using a brute-force search. The redundancy of the
resulting construction is at least 1 + t log n + t log(t log n))
which in many instances is more than the redundancy required
for CRL(n, t). In addition, our construction enjoys the benefit
of not requiring a short error-correcting RLL code.

REFERENCES
[1] E. Berklekamp, “Goppa codes,” IEEE Transactions on Information The-

ory, vol. 19, no. 5, pp. 590-592, 1973.
[2] W.G. Bliss, “Circuitry for performing error correction calculations on

baseband encoded data to eliminate error propagation,” IBM Tech. Discl.
Bull., vol. 23, pp. 4633-4634, 1981.

[3] Y.M. Chee, H.M. Kiah, and H. Wei, “Efficient and explicit balanced primer
codes,” IEEE Symposium on Information Theory, Paris, 2019.

[4] J. Fan and R. Calderbank, “A modified concatenated coding scheme with
applications to magnetic data storage,” IEEE Trans. on Inform. Theory,
vol. 44, no. 4, pp. 1565-1574, 1998.

[5] K.A.S. Immink, “A practical method for approaching the channel capacity
of constrained channels,” IEEE Trans. Inform. Theory, vol. 43, no. 5, pp.
1389-1399, 1997.

[6] M. Mansuripur, “Enumerative modulation coding with arbitrary constraints
and post-modulation error correction coding and data storage systems,”
Proc. SPIE, vol. 1499, pp. 72-86, 1991.

[7] B.H. Marcus, R.M. Roth,and P.H. Siegel, An introduction to coding for
constrained systems, 2001.

[8] R. Gabrys, P.H. Siegel, and E. Yaakobi, “Segmented reverse concatenation:
a new approach to constrained ecc,” available on arXiv.

[9] D.E. Knuth, “Efficient balanced codes,” IEEE Transactions on Information
Theory, vol. 32, no. 1, pp. 51-53, 1986.

[10] M. Levy and E. Yaakobi, “Mutually uncorrelated codes for DNA stor-
age,” IEEE Transactions on Information Theory, vol. 6, no. 65, 2019.

[11] T. V. Ramabadran, “A coding scheme for m-out-of-n codes,” IEEE
Transactions on Communications, vol. 38, no. 8, pp. 1156-1163, 1990.

[12] E. Yaakobi, P.H. Siegel, A. Vardy, J.K. Wolf, “Multiple error-correcting
WOM-codes,” vol. 58, no. 4, pp. 2220-2230, 2012.

ISITA2020, Kapolei, Hawai'i, USA, October 24-27, 2020

Copyright (C) 2020 by IEICE 258

