
Criss-Cross Deletion Correcting Codes
Rawad Bitar, Ilia Smagloy, Lorenz Welter, Antonia Wachter-Zeh, and Eitan Yaakobi

Abstract—This paper studies the problem of construct-
ing codes correcting deletions in arrays. Under this model,
it is assumed that an n × n array can experience deletions
of rows and columns. These deletion errors are referred to
as (tr , tc)-criss-cross deletions if tr rows and tc columns are
deleted, while a code correcting these deletion patterns is called
a (tr , tc)-criss-cross deletion correcting code. The definitions for
criss-cross insertions are similar.

Similar to the one-dimensional case, it is first shown that the
problems of correcting criss-cross deletions and criss-cross inser-
tions are equivalent. Then, we mostly investigate the case of (1, 1)-
criss-cross deletions. An asymptotic upper bound on the cardinal-
ity of (1, 1)-criss-cross deletion correcting codes is shown which
assures that the asymptotic redundancy is at least 2n− 2+ 2 log n
bits. Finally, a code construction with an explicit decoding algo-
rithm is presented. The redundancy of the construction is away
from the lower bound by at most 2 log n + 9 + 2 log e bits.

I. INTRODUCTION

The problem of coding for the deletion channel dates back
to the work of Levenshtein and others [1], [2] in the 1960s. It
is well known that the Varshamov-Tenengolts (VT) code [2]
can correct a single deletion, and that this code is nearly op-
timal with respect to the number of redundant bits. Recently,
codes correcting insertions/deletions attract a lot of attention
due to their relevance in many applications such as DNA-based
data storage systems [3] and communication systems [4], [5].

This paper extends the one-dimensional study of deletion
and insertion correction to two dimensions. A (tr, tc)-criss-
cross deletion is the event in which an n × n array experi-
ences a deletion of tr rows and tc columns. A code capable
of correcting all (tr, tc)-criss-cross deletions is referred to as
(tr, tc)-criss-cross deletion correcting code and (tr, tc)-criss-
cross insertion correcting codes are defined similarly.

It is well known that in the one-dimensional case the
size of the single-deletion ball equals the number of runs
in the word. However, the characterization of the number
of arrays that can be received by a (1, 1)-criss-cross dele-
tion is more complicated. We show that for almost all arrays
it holds that all their (1, 1)-criss-cross deletions are differ-
ent. We then use this property in deriving an asymptotic
upper bound on these codes. On the other hand, our con-
struction of such codes heavily depends on the construction
of non-binary single-insertion/deletion correcting codes by
Tenengolts [6]. This is one of the ingredients of our con-
struction. In the one-dimensional case, successful decoding
from deletions in the transmitted word does not necessarily
guarantee that the indices of the deleted symbols are known

RB, LW and AW-Z are with the ECE department at the Technical Univer-
sity of Munich. IS and EY are with the CS department of Technion — Israel
Institute of Technology. Emails: {rawad.bitar, lorenz.welter,antonia.wachter-
zeh}@tum.de, {ilia.smagloy, yaakobi}@cs.technion.ac.il.

This project has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No. 801434) and from the Technical University
of Munich - Institute for Advanced Studies, funded by the German Excel-
lence Initiative and European Union Seventh Framework Programme under
Grant Agreement No. 291763.

since the deletion of symbols from the same run results in the
same output. While this does not impose a constraint in the
one-dimensional case, we had to take this constraint into ac-
count when using non-binary single-deletion correcting codes
as our component codes.

In Section II, we formally define the codes and notations
used in the paper. Section III proves that the correction of criss-
cross deletions and insertions is equivalent. In Section IV, we
give an asymptotic upper bound on the cardinality of (1, 1)-
criss-cross deletion correcting codes. Then, in Section V, we
construct (1, 1)-criss-cross deletion correcting codes. The cor-
rectness of the codes is given by an explicit decoding algo-
rithm. Finally, we analyze the code redundancy and show that
it is at most 2 log n + 9 + 2 log e away from optimality. The
missing proofs in the paper appear in its extended version [7].

II. DEFINITIONS AND PRELIMINARIES

Let Σ , {0, 1} and Σq , {0, . . . , q− 1} be, respectively,
the binary and the q-ary alphabets. We denote by Σn×n the
set of all binary arrays of dimension n× n. For two integers
i, j ∈ N, i 6 j, the set {i, . . . , j} is denoted by [i, j] and the
set {1, . . . , j} is denoted by [j]. For an array X ∈ Σn×n, Xi, j
denotes its entry positioned at the ith row and jth column. We
denote the ith row, jth column of X by Xi,[n], X[n], j, respec-
tively. Similarly, we denote by X[i1 :i2],[j1 : j2] the subarray of X
formed by rows i1 to i2 and their corresponding entries from
columns j1 to j2.

For two positive integers tr, tc 6 n, we define a (tr, tc)-
criss-cross deletion in an array X ∈ Σn×n to be the deletion of
any tr rows and tc columns of X. We denote by Dtr ,tc(X) the
set of all arrays that result from X after a (tr, tc)-criss-cross
deletion. In a similar way we define (tr, tc)-criss-cross inser-
tion and the set Itr ,tc(X) for the insertion case. If tr = tc = t,
we will use the notation of Dt(X), (t)-criss-cross deletion, (t)-
criss-cross insertion, and It(X). Note that the order between
the row and column deletions/insertions does not matter.
Definition 1 ((tr, tc)-criss-cross deletion correcting code)
A (tr, tc)-criss-cross deletion correcting code C is a code
that can correct any (tr, tc)-criss-cross deletion. A (tr, tc)-
criss-cross insertion correcting code is defined similarly.

For clarity of presentation, we refer to a (1, 1)-criss-cross
deletion as a criss-cross deletion and (1, 1)-criss-cross dele-
tion correcting code as a criss-cross deletion correcting code.

In our construction we use Tenengolts’ single-deletion cor-
recting codes [6], which is briefly explained. For a q-ary vec-
tor x = (x1, . . . , xn) we associate its binary signature s =
(s1, . . . , sn−1), where s1 = 1 and si = 1 if and only if xi >
xi−1. Thus, all q-ary vectors of length n can be split into dis-
joint cosets VTn,q(a, b) defined as all vectors x with signature
s satisfying

n

∑
i=1

(i− 1)si ≡ a mod n,
n

∑
i=1

xi ≡ b mod q,

ISITA2020, Kapolei, Hawai'i, USA, October 24-27, 2020

Copyright (C) 2020 by IEICE 304

where 0 6 a 6 n− 1, 0 6 b 6 q− 1. Each coset is a sin-
gle deletion correcting code and there exist a?, b? such that
|VTn,q(a?, b?)| > qn

q·n .

III. EQUIVALENCE BETWEEN INSERTION AND DELETION
CORRECTION

In this section, the following equivalence is shown.
Theorem 1 A code C is a criss-cross deletion correcting code
if and only if it is a criss-cross insertion correcting code.
Note that in the one-dimensional case this property holds over
any alphabet. Thus, the following lemma can be derived by
considering the arrays as one dimensional vectors where each
element is a row/column.
Lemma 2 For an integer m > 0 and two words X ∈ Σm×m,
Y ∈ Σm×m,

D1,0(X) ∩D1,0(Y) 6= ∅ if and only if I1,0(X) ∩ I1,0(Y) 6= ∅
D0,1(X) ∩D0,1(Y) 6= ∅ if and only if I0,1(X) ∩ I0,1(Y) 6= ∅.

Lemma 3 on the other hand, requires a complete proof.

Lemma 3 For an integer m > 0 and arrays X ∈ Σ(m+1)×m,
Y ∈ Σm×(m+1) it holds that

D1,0(X) ∩D0,1(Y) 6= ∅ if and only if I0,1(X) ∩ I1,0(Y) 6= ∅.

Proof: We show the “if” direction while the “only if”
part is proved similarly. That is, we prove that if D1,0(X) ∩
D0,1(Y) 6= ∅ then I0,1(X) ∩ I1,0(Y) 6= ∅. Assume that there
exists D ∈ Σm×m such that D ∈ D1,0(X) ∩D0,1(Y) and by
contradiction assume that I0,1(X) ∩ I1,0(Y) = ∅. Let iR, iC
be the index of the row, column deleted in X, Y in order to
obtain D, respectively. Finally, r denotes the iR

th row of X,
i.e., XiR ,[m], after an insertion of 0 in position iC. Similarly, let
c be the column Y[m],iC after an insertion of 0 in position iR.
Notice that it is also possible to insert 1 in both of the words,
as long as the symbol inserted is the same one.

Notice that from the definition of D, it holds that

Xi, j = Di, j = Yi, j for 1 6 i < iR, 1 6 j < iC ,
Xi+1, j = Di, j = Yi, j for iR 6 i 6 m, 1 6 j < iC ,
Xi, j = Di, j = Yi, j+1 for 1 6 i < iR, iC 6 j 6 m,
Xi+1, j = Di, j = Yi, j+1 for iR 6 i 6 m, iC 6 j 6 m.

(1)

Let Ix be the result of inserting column c at index iC into X.
The array Iy is defined similarly by inserting row r at index
iR in Y. Notice that Ix is a result of inserting a column to
X and thus Ix ∈ I0,1(X). For the same reasons it holds that
Iy ∈ I1,0(Y). We conclude the proof by showing that Ix = Iy.
This will be done by considering the following cases.
• For 1 6 i 6 iR, 1 6 j 6 iC at most one of Ix

i, j, Iy
i, j is

affected by the insertions/deletions. Thus, the proof for
the case i = iR, j < iC is presented and the rest follows
similarly. By definition it holds that Ix

i, j = r j. On the
other hand, Iy

i, j is an inserted symbol into Y defined to
be r j. From these facts it follows that Iy

i, j = r j = Ix
i, j.

• For i = iR, j = iC, it holds that Ix
i, j = ci = 0 = r j = Iy

i, j.
• For i > iR and for j > iC, from the definition of column and

row insertions it follows that Ix
i, j = Xi, j−1, Iy

i, j = Yi−1, j.

I ∈ I1(X) ∩ I1(Y)

X1,0 Y0,1

Lemma 2 Lemma 2X Z

Lemma 3

Lemma 3

Y

X−1,0 Y0,−1

D ∈ D1(X) ∩D1(Y)

Column insertion Row insertion

Row insertion Column insertion Column insertionRow insertion

Row deletion Row insertion Column insertion Column deletion

Column deletion Row deletion

Fig. 1: A flowchart of the proof of Theorem 1.

From (1) we get Xi, j−1 = Di−1, j−1, Yi−1, j = Di−1, j−1.
This results in Ix

i, j =Xi, j−1 =Di−1, j−1 =Yi−1, j = Iy
i, j.

• Cases {i > iR, j 6 iC}, {i 6 iR, j > iC} are proven simi-
larly.

This concludes that for all i, j ∈ [m + 1], Ix
i, j = Iy

i, j, which
assures that Ix = Iy, and hence I0,1(X) ∩ I1,0(Y) 6= ∅, that
contradicts our assumption.

Now the proof for Theorem 1 can be presented.
Proof of Theorem 1: The proof follows by showing that

for any X, Y ∈ Σn×n, D1(X) ∩ D1(Y) = ∅ if and only if
I1(X)∩ I1(Y) = ∅. For the reader’s convenience, a flowchart
of the proof is presented in Fig. 1. We show only the “only
if” part since the “if” part is proved similarly.

Assume that there exists an array D ∈ Σ
(n−1)×(n−1)
q such

that D ∈ D1,1(X) ∩D1,1(Y). Hence, D can be obtained by
deleting a row and then a column from X and by deleting a
column and then a row from Y (note that the order of the
row and column deletions does not matter and can be cho-
sen arbitrarily). Denote the arrays created in the process by
X−1,0, Y0,−1, so the following relation holds.

X Row Del−−−−→ X−1,0 Col Del−−−−→ D,

Y Col Del−−−−→ Y0,−1 Row Del−−−−→ D.

Hence, it holds that D ∈ D1,0(Y0,−1) ∩ D0,1(X−1,0), and
thus, from Lemma 3 there exists an array Z ∈ Σn×n,
such that Z ∈ I0,1(Y0,−1) ∩ I1,0(X−1,0). By definition,
Z ∈ I1,0(X−1,0) is equivalent to X−1,0 ∈ D1,0(Z). But,
it is also known that X−1,0 ∈ D1,0(X), which means that
X−1,0 ∈ D1,0 (Z) ∩ D1,0 (X).

From Lemma 2 it follows that there exists some X1,0 ∈
I1,0(Z)∩ I1,0(X). The same argument holds for Y and define
its result by Y0,1. Next, notice that we can also conclude that
Z ∈ D1,0 (X1,0) ∩ D0,1 (Y0,1), so from Lemma 3 it is
deduced that there exists an array I ∈ I0,1(X1,0)∩ I1,0(Y0,1).

ISITA2020, Kapolei, Hawai'i, USA, October 24-27, 2020

Copyright (C) 2020 by IEICE 305

XL XR

XB

XT

XC

III

I

IV

II

j1 j2

i1

i2 ?

?

Fig. 2: Required pattern for Xi1 , j1 = Xi2 , j2 . Let (i1, j1) 6=
(i2, j2) be the indices of the deleted row and column in two
different criss-cross deletions on the array X. W.l.o.g j1 < j2
and assume i1 < i2 the constraints are: 1) Each row of the
subarrays XT and XB must be a row run of length j2 − j1 + 1
and each column of XL and XR must be a column run of
length i2 − i1 + 1. 2) Each diagonal of the subarray XC must
be a diagonal run. 3) The corner subarrays I, II, III and IV
are outside of the region affected by the criss-cross deletions.
Therefore, no constraints are imposed on those subarrays. The
same holds for Xi1 , j2 and Xi2 , j1 since they are both deleted by
criss-cross deletions. Note that for i1 > i2, all the requirements
remain the same except for XC. In this case, the bottom-left
to top-right diagonals are diagonal runs.

Note that I ∈ I0,1(X1,0) and X1,0 ∈ I1,0(X), which means
that I is obtained by inserting a row and a column to X, i.e.,
I ∈ I1(X). A symmetrical argument holds for Y, which as-
sures that I ∈ I1(X) ∩ I1(Y).

By induction over Theorem 1, Corollary 4 can be proven.
Corollary 4 For all t ∈ [n], a code C is a (t)-criss-cross dele-
tion correcting code iff it is a (t)-criss-cross insertion correct-
ing code.

IV. UPPER BOUND ON THE CARDINALITY

In this section we prove an asymptotic upper bound on the
cardinality of a criss-cross deletion correcting code. Let Xi, j

be the array obtained from X after a deletion of the ith row and
the jth column. Let X ∈ Σn×n and let i1, i2, j1 ∈ [n] be such
that i1 6 i2. We define a column run of length i2 − i1 + 1
as a sequence of identical consecutive bits in a column j1,
i.e., Xi1 , j1 = Xi1+1, j1 = · · · = Xi2 , j1 . We define a row run
similarly. A diagonal run of length δ is a sequence of identical
bits situated on a diagonal of X, i.e., Xi1 , j1 = Xi1+1, j1+1 =
· · · = Xi1+δ−1, j1+δ−1.

Lemma 5 For i1, i2, j1, j2 ∈ [n] such that (i1, j1) 6= (i2, j2)
and n > 3, the equality Xi1 , j1 = Xi2 , j2 holds if and only if
X ∈ Σn×n satisfies the structure depicted in Fig. 2.

Sketch of proof: Notice that for Xi1 , j1 the rows are shifted
up for i > i1 and the columns are shifted to the left for j > j1.
Similarly, this holds for Xi2 , j2 . Therefore, one can check that
Xi1 , j1 = Xi2 , j2 if and only if X satisfies the structure described
in Fig. 2.

An array X ∈ Σn×n is called good if |D1(X)| > n2

2 and X
is called bad otherwise. Denote by Gn,Bn the set of all good
and bad arrays in Σn×n, respectively.

Claim 6 An array X ∈ Σn×n is good if there exists at least n
2

consecutive columns that satisfy: 1) any two adjacent columns
are different; and 2) when restricted to an interval of con-
secutive rows [i1, i2], any two adjacent columns X[i1 :i2], j and
X[i1 :i2], j±1 are neither identical, nor identical up to a single
up or down shift. Any column of those has bn , 1 + 3(n

2)
forbidden choices that violate the imposed conditions.

Proof: According to Lemma 5 (c.f. Fig. 2), if an array
X ∈ Σn×n is bad then there exist n2

2 pairs of i1, i2, j1, j2 ∈ [n]
such that (i1, j1) 6= (i2, j2) and Xi1 , j1 = Xi2 , j2 . Hence, every
two adjacent columns between the jth1 and the jth2 columns sat-
isfy: 1) they are identical in the areas XT and XB; and 2) they
are identical up to a single up or down shift within XC. In ad-
dition, every column j /∈ [j1, j2] has a column run from i1 to
i2 (c.f. areas XL and XR). Hence, if an array X has at least
n
2 consecutive columns that do not satisfy the aforementioned
constraints, then it is necessarily a good array. For a given
column j ∈ [j1, j2], the number of choices of an adjacent
forbidden column is at most bn = 1 + 3(n

2). The forbidden
choices are the column itself; and any other column which is
either identical to j, or identical to j up to a single up or down
shift, between any two indices i1 and i2. There are (n

2) options
to choose the i1, i2 indices.

Lemma 7 For n > 28 it holds that

|Bn| 6
n
2
· 2n2−3n.

Proof: If an array X ∈ Σn×n satisfies the condition from
Claim 6, then it is necessarily a good array. Otherwise, X can
be either a good array or a bad array. Therefore, we can com-
pute an upper bound on the cardinality of bad arrays as

|Bn| 6
n

∑
j= n

2 +1

(
n
j

)
(bn)

j2n·(n− j) 6
n
2

2n(2n2)n2
n2
2 −n

=
n
2

2
n2
2 +n+2n log(n) 6

n
2
· 2n2−3n,

where the last inequality holds for n > 28. The upper bound
can be interpreted as summing over all arrays with at least
n
2 + 1 forbidden columns which can be located at (n

j) different
positions. The other columns can be chosen arbitrarily.
In the following we write f (n) ≈ g(n) or f (n) . g(n) if the
equality or inequality holds for n→ ∞.

Theorem 8 For any criss-cross deletion correcting code C, it
holds that

|C| . 2n2

22n−1 · n2

2

,

thus its asymptotic redundancy is at least 2n− 2 + 2 log n.

Proof: Let CB , C ∩Bn and CG , C ∩Gn. By the sphere
packing bound we have

n2

2
|CG | = ∑

X∈CG
|D1(X)| 6 ∑

X∈C
|D1(X)| 6 2(n−1)2

.

ISITA2020, Kapolei, Hawai'i, USA, October 24-27, 2020

Copyright (C) 2020 by IEICE 306

U ∈ VTn,n(a, b)

V
∈
V
T

n−
1,n (c,d

)

pc

pr

0
1
0
1
0
1
0
1

0
0
0
0
?
?
?

log n

n− log n

1

Fig. 3: The structure of the codewords of our CrissCross
code. U is the binary representation of a q-ary vector u ∈
VTn,q(a, b) with q = n. Each column is viewed as a sym-
bol of the VT code. The last column of U is an alternating
sequence and the second to last column must start with 4 con-
secutive 0’s. V is defined similarly to U where each row is
a symbol of the VT code VTn−1,n(c, d). The alternating se-
quence of U is extended by 1 bit in V. pc is a parity column
consisting of the sum of all columns of its size (and position).
pr is a parity row consisting of the sum of all rows.

Hence, |CG | 6 2(n−1)2

n2
2

. Since |Bn| 6 n
2 2n2−3n, we can write

|C| = |CG |+ |CB | 6 |CG |+ |Bn| 6
2(n−1)2

n2

2

+
n
2

2n2−3n

6
2n2

22n−1 · n2

2

(
1 +

n3

2n+3

)
≈ 2n2

22n−1 · n2

2

.

V. CONSTRUCTION

In this section we present our CrissCross codes that can cor-
rect a criss-cross deletion and state their main properties. For
the rest of this section we assume that a, b, c, d are nonegative
integers such that 0 6 a, b, d 6 n− 1 and 0 6 c 6 n− 2. We
also assume that n is a power of 2 so that log n is an integer,
while the extension for other values of n will be clear from
the context. The main results of this section are summarized
in the following theorem and corollary.

Theorem 9 The CrissCross code Cn(a, b, c, d) (defined in
Construction 1) is a criss-cross deletion correcting code that
has an explicit decoder.

Corollary 10 There exist integers a, b, c, d for which the re-
dundancy of the CrissCross code Cn(a, b, c, d) is at most 2n+
4 log n + 7 + 2 log e bits and is therefore at most 2 log n +
9 + 2 log e bits away from optimality.

We prove Theorem 9 through a detailed explanation of the
code construction in Section V-A. In Section V-B, we show
how the decoding works. We compute an upper bound on the
redundancy in Section V-C, and thus prove Corollary 10. An
intuitive explanation of the proofs is provided in the extended
version of this article [7].

A. The Construction
The CrissCross code C (in Figure 3) can be seen as an in-

tersection of four codes over Σn×n that define the constraints
imposed on the codewords of C. Let ` , log n and we define
W to be the all zero array except for the first `+ 1 bits of the
last column to be the alternating sequence, i.e., W[`+1],n =

[01010101 · · ·]T and Wi, j = 0 otherwise. We denote by X ∈
VTn,q(a, b) the binary representation of a q-ary vector x ∈ Σn

q ,
such that x ∈ VTn,q(a, b).

U (a, b) ,

X;

X[`], j 6= X[`], j+1, j ∈ [n− 1]

X[4],n−1 = [0000]T ,

X[`+1],n = [010101 · · ·]T ,
X[`],[n] ∈ VTn,2`(a, b)

 ,

V(c, d) ,

X;

Xi,[n−`+1:n] 6= Xi+1,[n−`+1:n], i ∈ [n− 1]

X[`+1],n = [0000 · · ·]T ,
X[n−`+1:n],[n−1] ∈ VTn−1,2`(c, d)

 ,

V ′(c, d) ,

{
Y;

Y[`+1],n = [010101 · · ·]T ,
Y⊕W ∈ V(c, d)

}
,

Pc ,

{
X; xi,1 =

n

∑
j=2

xi, j, i = `+ 1, . . . , n− 1

}
,

Pr ,

{
X; xn, j =

n−1

∑
i=1

xi, j, j ∈ [n]

}
.

Construction 1 The CrissCross code Cn(a, b, c, d) is the set
of arrays C ∈ Σn×n that belong to U (a, b)∩ V ′(c, d)∩Pc ∩
Pr.

B. Decoder
In this section, we show how the CrissCross code construc-

tion leverages the structure of a codeword C in Cn(a, b, c, d)
to detect and correct a criss-cross deletion. Formally, we prove
the following lemma.

Lemma 11 The code Cn(a, b, c, d) is a criss-cross deletion
correcting code with an explicit decoder.

Proof: The decoder for Cn(a, b, c, d) receives as input an
(n− 1)× (n− 1) array C̃ resulting from a criss-cross dele-
tion of an array C of Cn(a, b, c, d) and works as follows. The
decoder starts by looking at the first log n× (n− 1) subarray
of C̃ and examining the last column.

Case 1: Assume the last column of C is not deleted. Using
the alternating sequence, the decoder can detect whether or
not there was a row deletion in U and locate its index. This is
done by locating a run of length 2 in the alternating sequence.
The last bit of the alternating sequence falling in V and not
in U ensures that the decoder can detect whether the last row
of U is deleted or not.

Case 1 (a): If there was a row deletion in U, the decoder
uses the non deleted part of pr to recover the deleted row. The
decoder can now use the properties of VTn,n(a, b) to decode
the column deletion in U. Since any two consecutive columns

ISITA2020, Kapolei, Hawai'i, USA, October 24-27, 2020

Copyright (C) 2020 by IEICE 307

in U are different, the decoder can locate the exact position
of the deleted column and recover its value. The position of
the deleted column in U is the same as the deleted column in
the whole array. Using pc, the decoder can now recover the
remaining part of the deleted column.

Case 1 (b): If the deleted row was not in U, the de-
coder uses VTn,n(a, b) to recover the index of the deleted
column and its value within U and uses pc to recover the
value of the deleted column outside of U. Then, the decoder
uses VTn−1,n(c, d) to recover the index of the deleted row.
Again, since any two consecutive rows in V are different the
decoder can recover the exact position of the deleted row. Us-
ing pr, the decoder recovers the value of the deleted row.

Case 2: Now assume that the last column of C is deleted.
By looking at the last column of C′, the decoder knows that
the alternating sequence is missing thanks to the run of 0’s
inserted in the beginning of the second to last column of C.
Note that irrespective of the location of the row deletion, the
last column will have a run of at least three 0’s which can-
not happen in the alternating sequence. Therefore, the decoder
knows that the last column is deleted and starts by looking at
V. Using the parity pc, the decoder recovers the missing part
of the deleted column that is in V but not in U. By construc-
tion, the first log n bits of the last column of V are set to 0.
Thus, the decoder recovers the whole missing column. By us-
ing the property of VTn−1,n(c, d), the decoder recovers the
index of the missing row and uses pr to recover its value. Af-
ter recovering the deleted row the decoder adds the alternating
sequence to U and recovers the whole array C.

C. Redundancy of the Code
In this section we show that there exist a, b, c, d for which

RCn(a,b,c,d) 6 2n + 4 log n + 7 + 2 log e. We do so by com-
puting a lower bound on log |Cn(a, b, c, d)|. To that end we
count the number of n× n binary arrays that satisfy all the
requirements imposed on the codewords C in Cn(a, b, c, d).

Since the constraints imposed on the codes U (a, b) ∩
V ′(c, d), Pc, and Pr are disjoint, we have that

RCn(a,b,c,d) = RU (a,b)∩V ′(c,d) + RPc + RPr

= RU (a,b)∩V ′(c,d) + 2n− log n− 1. (2)

Equation (2) follows from the fact that the n− log n− 1 bits
of pc and the n bits of pr are fixed to predetermined values.

We now compute an upper bound on the redundancy of the
code U (a, b) ∩ V ′(c, d).

Proposition 12 There exists four values a?, b?, c? and d? for
which the redundancy R1 of U (a?, b?)∩V ′(c?, d?) is bounded
from above by

R1 < (2n− 2 log n− 3) log
(

n
n− 1

)
+ 5 log n + 6. (3)

From (2) and (3) we obtain RCn(a,b,c,d) < 2n + 4 log n +
5 + 2 log 2e, where we use the inequalities 2n − 2 log n −
3 < 2n and 2n log

(n
n−1

)
6 2 log 2e = 2 + 2 log e. This

completes the proof of Corollary 10. We conclude this section
with the proof of Proposition 12.

Proof of Proposition 12: We start with counting the num-
ber of arrays that satisfy all the imposed constraints except for

the VT constraints in the codes U (a?, b?) and V ′(c?, d?). To
that end, we define the following three sets over Σn×n.

U⊥ ,
{

X; X[`], j 6= X[`], j+1, j ∈ [n− `− 1]
}

,

V⊥ ,
{

X;
Xi,[n−`+1:n] 6= Xi+1,[n−`+1:n], ` < i < n− 1
X`+1,n ≡ ` mod 2

}
,

S∩ ,

X;

X[`], j 6= X[`], j+1, n− ` 6 j < n,

Xi,[n−`+1:n] 6= Xi+1,[n−`+1:n], i ∈ [`],

X[4],n−1 = [0000]T ,

X[`+1],n = [010101 · · ·]T

 .

Claim 13 The redundancies of U⊥ and V⊥ are given
by RU⊥ = (n − log n − 1) log

(n
n−1

)
and RV⊥ =

(n− log n− 2) log
(n

n−1
)
+ 1, respectively.

The intuition behind Claim 13 is that the first log n bits of
any two consecutive columns of U (last log n bits of any two
consecutive rows of V) must be different.

Claim 14 The redundancy of S∩ is upper bounded by RS∩ <
log n + 5.

The intuition behind Claim 14 is that with at most one bit
of redundancy we can guarantee that every two consecutive
rows and every two consecutive columns of the log n× log n
square are different.

We now count the number of arrays that satisfy the
above requirements and have U ∈ VTn,n(a, b) and
V ∈ VTn−1,n(c, d). Using the same arguments explained in
Section II, we note that the VT constraints partition the set
U⊥ ∩ V⊥ ∩ S∩ into (n3)(n − 1) disjoint cosets. Therefore,
there exist a?, d?, c?, d? for which

|U (a?, b?) ∩ V(c?, d?)| > |U⊥ ∩ V⊥ ∩ S∩|
(n3)(n− 1)

.

In other words, the redundancy R1 of U (a?, b?)∩V(c?, d?) is
bounded from above by R1 < RU⊥∩V⊥∩S∩ + log(n4), where
we use log(n− 1) < log n.

All the constraints in U⊥, V⊥, S∩ are disjoint, thus
RU⊥∩V⊥∩S∩ = RU⊥ + RV⊥ + RS∩ . We substitute the results
from Claim 13 and Claim 14 to obtain the desired result.

REFERENCES

[1] R. R. Varshamov and G. M. Tenengolts, “Codes which correct single
asymmetric errors (in Russian),” Automatika i Telemkhanika, vol. 161,
no. 3, pp. 288–292, 1965.

[2] V.I. Levenshtein, “Binary codes capable of correcting deletions, insertions
and reversals (in Russian),” Doklady Akademii Nauk SSR, vol. 163, no. 4,
pp. 845–848, 1965.

[3] R. Heckel, G. Mikutis, and R. N. Grass, “A Characterization of the
DNA Data Storage Channel,” Scientific Reports, vol. 9, no. 1, p. 9663,
2019. [Online]. Available: https://doi.org/10.1038/s41598-019-45832-6

[4] F. Sala, C. Schoeny, N. Bitouzé, and L. Dolecek, “Synchronizing files
from a large number of insertions and deletions,” IEEE Transactions on
Communications, vol. 64, no. 6, pp. 2258–2273, June 2016.

[5] L. Dolecek and V. Anantharam, “Using Reed–Muller RM (1, m) codes
over channels with synchronization and substitution errors,” IEEE Trans-
actions on Information Theory, vol. 53, no. 4, pp. 1430–1443, April 2007.

[6] G. Tenengolts, “Nonbinary codes, correcting single deletion or insertion
(corresp.),” IEEE Trans. Inf. Theory, vol. 30, no. 5, pp. 766–769, 1984.

[7] R. Bitar, I. Smagloy, L. Welter, A. Wachter-Zeh,
and E. Yaakobi, “Criss-cross deletion correcting codes
(extended version),” preprint, 2020. [Online]. Available:
https://sites.google.com/site/rawadbitar1/documents/CrissCross

ISITA2020, Kapolei, Hawai'i, USA, October 24-27, 2020

Copyright (C) 2020 by IEICE 308

