
Double and Triple Node-Erasure-Correcting
Codes over Graphs

Lev Yohananov
Dept. of Computer Science

Technion-Israel Institute of Technology
Haifa 3200009, Israel

Email: levyohananov@campus.technion.ac.il

Yuval Efron
Dept. of Computer Science

Technion-Israel Institute of Technology
Haifa 3200009, Israel

Email: szxrtde@cs.technion.ac.il

Eitan Yaakobi
Dept. of Computer Science

Technion-Israel Institute of Technology
Haifa 3200009, Israel

Email: yaakobi@cs.technion.ac.il

Abstract—In this paper we study array-based codes over
graphs for correcting multiple node failures. These codes have
applications to neural networks, associative memories, and dis-
tributed storage systems. We assume that the information is
stored on the edges of a complete undirected graph and a node
failure is the event where all the edges in the neighborhood of
a given node have been erased. A code over graphs is called
ρ-node-erasure-correcting if it allows to reconstruct the erased
edges upon the failure of any ρ nodes or less. We present a bi-
nary optimal construction for double-node-erasure correction
together with an efficient decoding algorithm, when the num-
ber of nodes is a prime number. Furthermore, we extend this
construction for triple-node-erasure-correcting codes when the
number of nodes is a prime number and two is a primitive el-
ement in Zn. These codes are at most a single bit away from
optimality.

I. INTRODUCTION

Networks and distributed storage systems are usually rep-
resented as graphs with the information stored in the nodes
(vertices) of the graph. In our recent work [17]–[19], we have
introduced a new model which assumes that the information is
stored on the edges. This setup is motivated by several infor-
mation systems. For example, in neural networks, the neural
units are connected via links which store and transmit infor-
mation between the neural units [8]. Similarly, in associative
memories, the information is stored by associations between
different data items [15]. Furthermore, representing informa-
tion in a graph can model a distributed storage system [6]
while every two nodes can be connected by a link that repre-
sents the information that is shared by the nodes, e.g., a node
may refer to a user and an edge to a file which is shared
between two users, and the self-loops are the user’s files.

In [17]–[19], we introduced the notion of codes over
graphs, which is a class of codes storing the information
on the edges of a complete undirected graph (including
self-loops). Thus, each codeword is a labeled graph with n
nodes (vertices) and each of the (n+1

2) edges stores a sym-
bol over an alphabet Σ. A node failure is the event where all
the edges incident with a given node have been erased, and
a code over graphs is called ρ-node-erasure-correcting if it
allows to reconstruct the contents of the erased edges upon
the failure of any ρ nodes or less. In case every node corre-
sponds to a user, a node failure implies that the user’s files
and those which are shared with the other users are erased.

The information stored in a complete undirected graph can
be represented by an n× n symmetric array and a failure of
the ith node corresponds to the erasure of the ith row and
ith column in the array. Hence, this problem is translated
to the problem of correcting symmetric crisscross erasures
in square symmetric arrays [11]. By the Singleton bound,
the number of redundancy edges (i.e., redundancy symbols
in the array) of every ρ-node-erasure-correcting code must be

at least nρ− (ρ2), and a code meeting this bound will be re-
ferred as optimal. While the construction of optimal codes is
easily accomplished by MDS codes, their alphabet size must
be at least the order of n2, and the task of constructing op-
timal (or close to optimal) codes over graphs over smaller
alphabets remains an intriguing problem.

A natural approach to address this problem is by using the
wide existing knowledge on array code constructions such as
[2], [10]–[14]. However, the setup of codes over graphs dif-
fers from that of classical array codes in two respects. First,
the arrays are symmetric, and, secondly, a failure of the ith
node in the graph corresponds to the failure of the ith row
and the ith column (for the same i) in the array. Most existing
constructions of array codes are not designed for symmetric
arrays, and they do not support this special row–column fail-
ure model. However, it is still possible to use existing code
constructions and modify them to the special structure of the
above erasure model in graphs, as was done in [17], [19].
More specifically, based upon product codes [1], [7], a con-
struction of optimal codes whose alphabet size grows only
linearly with n has been proposed. Additionally, using rank-
metric codes [11]–[13], binary codes over graphs were de-
signed, however they are relatively close—yet do not attain—
the Singleton bound. In [17], [18], a construction of optimal
binary codes for two node failures was also presented based
upon ideas from EVENODD codes [2].

Another approach for handling symmetric crisscross
erasures (in symmetric arrays) is by using symmetric rank-
metric codes. In [12], Schmidt presented a construction of
linear [n× n, k, d] symmetric binary array codes with mini-
mum rank d, where k = n(n−d+2)/2 if n−d is even, and
k = (n+1)(n−d+1)/2 otherwise. Such codes can correct
any d − 1 column or row erasures. Hence, it is possible to
use these codes to derive ρ-node-failure-correcting codes
while setting d = 2ρ+1, as the ρ node failures translate into
the erasure of ρ columns and ρ rows. However, the redun-
dancy of these codes is (ρ2) symbols away from the Singleton
bound for symmetric crisscross erasures (e.g., for ρ = 2,
their redundancy is 2n while the Singleton lower bound is
2n− 1).

In this paper we carry an algebraic approach such as the
one presented in [5] in order to propose new constructions
of binary codes over graphs. In Section II, we formally de-
fine codes over graphs and review several basic properties
from [17], [19] that will be used in the paper. In Section III,
we present our optimal binary construction for two-node fail-
ures. This construction is simpler than our optimal construc-
tion from [17], [19]. Then, in Section IV, we extend this
construction for the three-node failures case. This new con-
struction is only at most a single bit away from the Single-
ton bound, thereby outperforming the construction obtained

1582978-1-5386-9291-2/19/$31.00 ©2019 IEEE ISIT 2019

from [12]. Lastly, Section V concludes the paper. Due to the
lack of space some or part of the proofs in the paper are
omitted, while they can be found in the long version fo the
paper [16].

II. DEFINITIONS AND PRELIMINARIES

For a positive integer n, the set {0, 1, . . . , n− 1} will be
denoted by [n] and for a prime power q, Fq is the finite field
of size q. A linear code of length n and dimension k over Fq
will be denoted by [n, k]q or [n, k, d]q, where d denotes its
minimum distance. In the rest of this section, we follow the
definitions of our previous work [17] for codes over graphs.

A graph will be denoted by G = (Vn, E), where Vn =
{v0, v1, . . . , vn−1} is its set of n nodes (vertices) and E ⊆
Vn×Vn is its edge set. In this paper, we only study complete
undirected graphs with self-loops, and in this case, the edge
set of an undirected graph G over an alphabet Σ is defined by
E = {(vi , v j) | (vi , v j) ∈ Vn × Vn, i > j}, with a labeling
function L : Vn×Vn → Σ. By a slight abuse of notation, ev-
ery undirected edge in the graph will be denoted by 〈vi , v j〉
where the order in this pair does not matter, that is, the no-
tation 〈vi , v j〉 is identical to the notation 〈v j, vi〉, and thus
there are (n+1

2) edges. We will use the notation G = (Vn, L)
for such graphs. For the rest of the paper, whenever we refer
to a graph we refer to an undirected graph.

The labeling matrix of an undirected graph G = (Vn, L)
is an n × n symmetric matrix over Σ denoted by AG =
[ai, j]

n−1,n−1
i=0, j=0 , where ai, j = L〈vi , v j〉. We also use the

lower-triangle-labeling matrix of G to be the n× n matrix
A′G = [a′i, j]

n−1,n−1
i=0, j=0 such that a′i, j = ai, j if i > j and other-

wise a′i, j = 0. The zero graph will be denoted by G0 where
for all i, j ∈ [n], ai, j = 0.

Let Σ be a ring and G1 and G2 be two graphs over Σ with
the same node set V. The operator “ + ” between G1 and
G2 over Σ, is defined by G1 + G2 = G3, where G3 is the
unique graph satisfying AG1 + AG2 = AG3 . Similarly, the
operator “ · ” between G1 and an element α ∈ Σ, is denoted
by α · G1 = G3, where G3 is the unique graph satisfying
α · AG1 = AG3 .

A code over graphs over Σ of length n and size M is a set
of graphs C = {Gi = (Vn, Li)|i ∈ [M]} over Σ, and it will
be denoted by (n, M)Σ. In case that Σ = {0, 1}, we simply
use the notation (n, M). The dimension of a code over graphs
C is k = log|Σ| M and the redundancy is r = (n+1

2)− k. A
code over graphs C over a ring Σ will be called linear and
will be denoted by U -[n, k]Σ if for every G1, G2 ∈ C and
α,β ∈ Σ, αG1 +βG2 ∈ C.

The neighborhood edge set of the ith node of an undirected
graph G = (Vn, L) is defined by Ni = {〈vi , v j〉 | j ∈ [n]},
and it corresponds to the ith column and the ith row in the
labeling matrix AG. The node failure of the ith node is the
event in which all the edges in the neighborhood set of the
ith node, i.e. Ni, are erased. We will also denote this edge
set by Fi and refer to it by the failure set of the ith node. A
code over graphs is called a ρ-node-erasure-correcting code
if it can correct any failure of at most ρ nodes.

As discussed in [17]–[19], according to the Singleton
bound, the minimum redundancy r of any ρ-node-erasure-
correcting code of length n, satisfies

r >
(

n + 1
2

)
−
(

n− ρ+ 1
2

)
= nρ−

(
ρ

2

)
, (1)

and a code over graphs which satisfies this inequality with
equality is called optimal. It was also observed in [17]–[19]
that for all n and ρ, an optimal ρ-node-erasure-correcting code
exists over a field of size at least Θ(n2), and thus the goal is
to construct such codes over smaller fields, and ideally over
the binary field.

We conclude this section with reviewing the definition of
a distance metric over graphs from [19] and its connection
to construct codes correcting node failures. Let G = (Vn, L)
be a graph and let E be a set of all nonzero labeled edges of
G, i.e., E = {e ∈ Vn ×Vn | L(e) 6= 0}. A vertex cover W
of G is a subset of Vn such that for each 〈vi , v j〉 ∈ E either
vi ∈W or v j ∈W. The graph weight of G is defined by

w(G) = min
W is a vertex cover of G

{|W|},

and the graph distance between two graphs G1, G2 will be de-
noted by d(G1, G2) where it holds that d(G1, G2) = w(G1−
G2). It was proved in [19] that this graph distance is a met-
ric. The minimum distance of a code over graphs C, denoted
by d(C), is the minimum graph distance between any two
distinct graphs in C, that is

d(C) = min
G1 6=G2 G1 ,G2∈C

{d(G1, G2)},

and in case the code is linear d(C) = minG∈C ,G 6=G0{w(G)}.
Lastly, we state the following theorem from [19] that estab-
lishes the connection between the graph distance and the
node-erasure-correction capability.
Theorem 1. A linear code over graphs C is a ρ-node-erasure-
correcting code if and only if its minimum distance satisfies
d(C) > ρ+ 1.

Let n > 2 be a prime number. Denote by Rn the ring
of polynomials of degree at most n− 1 over F2. It is well
known that Rn is isomorphic to the ring of all polynomi-
als in F2[x] modulo xn − 1. Denote by Mn(x) ∈ Rn the
polynomial Mn(x) = ∑

n−1
`=0 x` over F2, where it holds that

Mn(x)(x + 1) = xn − 1 as a multiplication of polynomials
over F2[x]. To avoid confusion in the sequel, since we are us-
ing only polynomials over F2, the notation x` + 1 for all ` ∈
[n], will refer to a polynomial in Rn and for ` = n, we will
use the notation xn − 1. It is well known that for all ` ∈ [n]
it holds that gcd(x` + 1, xn − 1) = xgcd(`,n) + 1 = x + 1,
and since Mn(x)(x + 1) = xn − 1 it can be verified that

gcd(x` + 1, Mn(x)) = 1. (2)

Notice also that when 2 is primitive in Zn, the polynomial
Mn(x) is irreducible [4]. The last important and well known
property we will use for polynomials over F2 is that for all
k = 2 j, j ∈ N it holds that 1 + xsk = (1 + xs)k. Throughout
the paper, the notation 〈a〉n will be used to denote the value
of (a mod n) and the operator “ ≡ ” is defined to be an
equality modulo xn − 1.

III. OPTIMAL BINARY
DOUBLE-NODE-ERASURE-CORRECTING CODES

In this section we present a family of optimal binary linear
double-node-erasure-correcting codes with n nodes, where n
is a prime number. Remember that for i ∈ [n] the ith neigh-
borhood set of the ith node is Ni = {〈vi , v j〉 | j ∈ [n]}. Let
n > 2 be a prime number and let G = (Vn, L) be a graph
with n vertices. For h ∈ [n] we define the neighborhood of
the hth node without itself self-loop by

Sh =
{
〈vh, v`〉 | ` ∈ [n], h 6= `

}
. (3)

1583

We also define for m ∈ [n], the mth diagonal set by

Dm = {〈vk, v`〉|k, ` ∈ [n], 〈k + `〉n = m}. (4)

An important observation is that Dm contains only a single
self-loop which is the edge 〈v〈m·2−1〉n

, v〈m·2−1〉n〉.
We introduce one more useful notation for graphs. Let G =

(Vn, L) be a graph. For i ∈ [n] we denote the neighborhood-
polynomials of G to be a′i(x) = ei,0 + ei,1x + ei,2x2 + · · ·+
ei,n−1xn−1, where for i, j ∈ [n], ei, j = ai, j = L〈vi , v j〉.
We also denote the neighborhood-polynomial without self-
loops of G to be ai(x) = a′i(x)− ei,ixi. We are now ready
to present the construction of optimal double-node-erasure-
correcting codes.

Construction 1 Let n > 2 be a prime number. The code
over graphs C2 is defined as follows,

C2 =

{
G = (Vn, L)

∣∣∣∣∣ (a) ∑〈vi ,v j〉∈Sh
ei, j = 0, h ∈ [n]

(b) ∑〈vi ,v j〉∈Dm ei, j = 0, m ∈ [n]

}
.

Note that for any graph G over the binary field, it holds that

∑
h∈[n]

∑
〈vi ,v j〉∈Sh

ei, j =
n−1

∑
h=0

n−1

∑
`=0
` 6=h

eh,` = 2
n−1

∑
h=0

h−1

∑
`=0

eh,` = 0. (5)

Therefore the code C2 has at most 2n− 1 linearly indepen-
dent constraints which implies that its redundancy is at most
2n− 1. Since we will prove in Theorem 2 that C2 is a double-
node-correcting codes, according to the Singleton bound we
get that the redundancy of the code C2 is exactly 2n− 1, and
thus it is an optimal code.

According to Theorem 1, in order to prove that C2 is a
double-node-erasure-correcting code, we need to show that
d(C2) > 3, that is, for every G ∈ C2, w(G) > 3. This will
be proved in the next theorem.

Theorem 2. For all prime number n, the code C2 is an optimal
double-node-erasure-correcting code.

Proof: Assume in the contrary that d(C2) 6 2 and let
G ∈ C2, G 6= G0 be a nonzero graph such that w(G) = 2 (a
similar proof will hold in case w(G) = 1). Since w(G) =
2, the graph G has a vertex cover of size 2, that is, all its
nonzero edges are confined to the neighborhoods Ni , N j of
some two nodes vi , v j. By symmetry of the graph, it suffices
to prove the above property for the case where the two nodes
are v0, vi for some i 6= 0. During the proof, we assume that
ai(x), for i ∈ [n] are the neighborhood polynomials of the
graph G. We first prove the following two claims.

Claim 3. The following properties hold on the graph G:
(a) For all h ∈ [n] \ {0, i}, eh,0 + eh,i = 0.
(b) For all h ∈ [n] \ {i}, e0,h + ei,〈h−i〉n = 0.
(c) e0,i = 0.

Proof:

(b) For h ∈ [n] \ {i}, the set Dh\
{
〈v0, vh〉, 〈vi , v〈h−i〉n〉

}
will be denoted by D′h. Therefore, we have that

0 = ∑
〈v` ,v〈h−`〉n 〉∈Dh

e`,〈h−`〉n

= ∑
〈v` ,v〈h−`〉n 〉∈D′h

e`,〈h−`〉n + e0,h + ei,〈h−i〉n ,

and since es,` = 0 for all 〈vs, v`〉 ∈ D′h, we get that
e0,h + ei,〈h−i〉n = 0.

Claim 4. The following properties hold on the graph G:
(a) For all h ∈ [n], ah(1) = 0.
(b) a0(x) + ai(x) = 0.
(c) a0(x) + ai(x)xi ≡ e0,0 + ei,ix2i.

Proof:

(c) a0(x) + ai(x)xi = e0,0 + ei,ix2i +
n−1

∑
`=0

e0,`x` +
n−1

∑
`=0

ei,`x`+i

≡ e0,0 + ei,ix2i +
n−1

∑
`=0

e0,`x` +
n−1

∑
`=0

ei,〈`−i〉n x`

≡ e0,0 + ei,ix2i +
n−1

∑
`=0

(
e0,` + ei,〈`−i〉n

)
x`

(a)
≡ e0,0 + ei,ix2i +

(
e0,i + ei,0

)
xi ≡ e0,0 + ei,ix2i ,

where Step (a) holds since by Claim 3(b) for all ` ∈ [n] \ {i},
e0,` + ei,〈`−i〉n = 0.

The summation of the equations from Claims 4(b) and 4(c)
results with ai(x)(1+ xi) ≡ e0,0 + ei,ix2i . It holds that e0,0 =
ei,i by applying x = 1 in the last equation. Assume that
e0,0 = ei,i = 1, so we get that ai(x)(1+ xi) ≡ 1+ x2i . Since
1+ x2i = (1+ xi)2, it holds that (1+ xi)(1+ xi + ai(x)) ≡
0. Denote by p(x) the polynomial p(x) = 1 + xi + ai(x),
and since p(1) = 0, it holds that 1+ x|p(x). As stated in (2),
it holds that gcd(xi + 1, Mn(x)) = 1, and since

(1 + xi)p(x) = (xn − 1)s(x) = Mn(x)(x + 1)s(x)

for some polynomial s(x) over F2, we deduce that
Mn(x)|p(x). Therefore we get that xn − 1|p(x), however
p(x) ∈ Rn, and so we deduce that p(x) = 0, that is,
ai(x) = 1 + xi. This results with a contradiction since the
coefficient of xi in ai(x) is 0. Thus e0,0 = ei,i = 0 and
ai(x)(1+ xi) ≡ 0. Notice that ai(x) ∈ Rn and by Claim 4(a)
it also holds ai(1) = 0. Since gcd(xi + 1, Mn(x)) = 1, we
derive that xn − 1|ai(x) and since ai(x) ∈ Rn, we imme-
diately get that ai(x) = 0. Finally, from Claim 4(b) we get
also that a0(x) = 0 and together we get that G = G0, which
is a contradiction. This completes the proof.

Note that whenever two nodes fail, the number of unknown
variables is 2n− 1, and so a naive decoding solution for the
code C2 is to solve the linear equation system of 2n− 1 con-
straints with the 2n− 1 variables. However, the complexity
of such a solution will be O(nω), where it is only known
that 2 6ω 6 2.37286 as it requires the inversion of a (2n−
1)× (2n− 1) matrix [9]. In [16] we present a decoding al-
gorithm for C2 of time complexity Θ(n2). That is, we prove
the following theorem.
Theorem 5. There exists an efficient decoding procedure to the
code C2 given any two node failures. Its complexity is Θ(n2),
where n is the number of nodes.

Clearly, this time complexity is optimal since the complexity
of the input size of the graph is Θ(n2).

IV. BINARY TRIPLE-NODE-ERASURE-CORRECTING
CODES

In this section we present a construction of binary triple-
node-erasure-correcting codes for undirected graphs. Let n >
5 be a prime number such that 2 is a primitive number in Zn.

1584

Let G = (Vn, L) be a graph with n vertices. We will use in
this construction the edge sets Sh, Dm for h ∈ [n], m ∈ [n]
which were defined in (3),(4), respectively. In addition, for
s ∈ [n] we define the edge set

Ts = {〈vk, v`〉|k, ` ∈ [n], 〈k + 2`〉n = s, k 6= `}.

Example 1. In Fig. 1 we present the sets Ts, s ∈ [11] of a
graph G = (V11, L) on its labeling matrix AG, and its lower-
triangle-labeling matrix A′G.

◊ ⧖ ⋇ ♡ ∎ ♠ ● ‡ ∴ ⍣

♠ ‡ ∴ ⍣ □ ◊ ⧖ ⋇ ♡ ∎

◊ ⧖ ♡ ∎ ♠ ● ‡ ∴ ⍣ □

● ‡ ∴ □ ◊ ⧖ ⋇ ♡ ∎ ♠

⧖ ⋇ ♡ ∎ ● ‡ ∴ ⍣ □ ◊

‡ ∴ ⍣ □ ◊ ⋇ ♡ ∎ ♠ ●

⋇ ♡ ∎ ♠ ● ‡ ⍣ □ ◊ ⧖

∴ ⍣ □ ◊ ⧖ ⋇ ♡ ♠ ● ‡

♡ ∎ ♠ ● ‡ ∴ ⍣ □ ⧖ ⋇

⍣ □ ◊ ⧖ ⋇ ♡ ∎ ♠ ● ∴

∎ ♠ ● ‡ ∴ ⍣ □ ◊ ⧖ ⋇

(a) Slope-Two-Diagonal-Parity Con-
straints on AG

♠ ◊

◊ ⧖ ⧖ ‡

● ⋇ ‡ ∴ ∴ ♡

⧖ ♡ ⋇ ⍣ ♡ ∎ ∎ □

‡ ∎ ∴ □ ⍣ ♠ □ ◊ ◊ ●

⋇ ♠ ♡ ◊ ∎ ● ♠ ⧖ ● ‡ ‡ ⋇

∴ ● ⍣ ⧖ □ ‡ ◊ ⋇ ⧖ ∴ ⋇ ♡ ♡ ⍣

♡ ‡ ∎ ⋇ ♠ ∴ ● ♡ ‡ ⍣ ∴ ∎ ⍣ □ □ ♠

⍣ ∴ □ ♡ ◊ ⍣ ⧖ ∎ ⋇ □ ♡ ♠ ∎ ◊ ♠ ● ● ⧖

∎ ⍣ ♠ ∎ ● □ ‡ ♠ ∴ ◊ ⍣ ● □ ⧖ ◊ ‡ ⧖ ⋇ ⋇ ∴

(b) Slope-Two-Diagonal-Parity Con-
straints on A′G

Fig. 1. The slope-two-diagonal constraints over undirected graphs, repre-
sented on the labeling matrix and the lower-triangle-labeling matrix.

We are now ready to show the following construction.
Construction 2 For all prime number n > 5 where 2 is prim-
itive in Zn, let C3 be the following code:

C3 =

G = (Vn, L)

∣∣∣∣∣∣∣
(a) ∑〈vi ,v j〉∈Sh

ei, j = 0, h ∈ [n]
(b) ∑〈vi ,v j〉∈Dm ei, j = 0, m ∈ [n]
(c) ∑〈vi ,v j〉∈Ts ei, j = 0, s ∈ [n]

 .

Note that the code C3 is a subcode of the code C2 and for
any graph G over the binary field, by (5) there are only n−
1 independent constraints (a) in Construction 2, and by the
same principle,

∑
s∈[n]

∑
〈vi ,v j〉∈Ts

ei, j =
n−1

∑
s=0

n−1

∑
`=0

` 6=〈3−1s〉n

e〈s−2`〉n ,` = 2
n−1

∑
h=0

h−1

∑
`=0

eh,` = 0.

Therefore the code C3 has at most 3n− 2 linearly indepen-
dent constraints which implies that its redundancy is not
greater than 3n− 2. Since we will prove in Theorem 6 that
C3 is a triple-node-correcting codes, according to the Sin-
gleton bound we get that the code redundancy is at most
a single bit away from optimality. Our main result in this
section is showing the following theorem.
Theorem 6. For all prime number n > 5 such that 2 is primi-
tive in Zn, the code C3 is a triple-node-erasure-correcting code.
It is at most a single bit away from optimality.

Proof: Assume on the contrary that there is a graph G =
(Vn, L) ∈ C3 where w(G) 6 3. We prove here only the case
that w(G) = 3 since the case of w(G) 6 2 holds according to
Theorem 2. By the symmetry of Construction 2, it is sufficient
to assume that a vertex cover W of G is W = {v0, vi , v j}
for distinct i, j ∈ [n] \ {0}, while all other cases hold by
relabeling the indices 0, i, j. We will show that G = G0.

Denote by Hi, j = {i, j, 〈2i〉n, 〈2 j〉n, 〈2i + j〉n, 〈2 j + i〉n}.
For all ` ∈ [n] denote by hi, j(`) the sum

hi, j(`) = e0,` + ei,〈`−2i〉n + e j,〈`−2 j〉n
+ e0,〈2−1`〉n + ei,〈2−1(`−i)〉n + e j,〈2−1(`− j)〉n .

The next claim presents several useful properties.

Claim 7.The following properties hold on the graph G:
(a) For all ` ∈ [n] \ {0, i, j}, e0,` + ei,` + e j,` = 0.
(b) For all `∈[n]\{i, j, 〈i+ j〉n}, e0,`+ei,〈`−i〉n+e j,〈`− j〉n =0.
(c) e0,i + e j,〈i− j〉n = e0, j + ei,〈 j−i〉n = e j,i + e0,〈i+ j〉n = 0.
(d) For all ` ∈ [n] \ Hi, j, it holds that hi, j(`) = 0.

(e) It holds that

∑
`∈Hi, j

hi, j(`)x`

≡ ei,0(xi + x2i) + e j,0(x j + x2 j) + e j,i(x2i+ j + xi+2 j).

Proof: Remember that for s, ` ∈ [n] \ {0, i, j}, es,` = 0.

(d) For all ` ∈ [n], let B` be the following edge set

B` = {〈v0, v`〉, 〈vi , v〈`−2i〉n〉, 〈v j, v〈`−2 j〉n〉, (6)

〈v0, v〈2−1`〉n〉, 〈vi , v〈2−1(`−i)〉n〉, 〈v j, v〈2−1(`− j)〉n〉}.

It can be readily verified that for ` /∈ {0, 〈3i〉n, 〈3 j〉n} ∪
Hi, j, |B`| = 6. For all s ∈ {0, i, j} and for all ` ∈
[n] \ {0, 〈3i〉n, 〈3 j〉n} it holds that s 6= 〈`− 2s〉n and
therefore, if 〈vs, v〈`−2s〉n〉 ∈ B` then 〈vs, v〈`−2s〉n〉 ∈ T`,
i.e., B` ⊆ T`. Therefore, by the definition of the diago-
nal constraint (c) in Construction 2 we deduce that for
all ` /∈ {0, 〈3i〉n, 〈3 j〉n} ∪ Hi, j,

0 = ∑
〈vk ,vm〉∈T`

ek,m = ∑
〈vk ,vm〉∈B`

ek,m = hi, j(`).

Moreover, for ` = 0, 〈v0, v`〉 = 〈v0, v〈2−1`〉n〉 =
〈v0, v0〉, and therefore |B0| = 5. It can be similarly
verified that |B〈3i〉n | = |B〈3 j〉n | = 5. Notice that for all
s ∈ {0, i, j}, ` ∈ {0, 〈3i〉n, 〈3 j〉n}, if 〈vs, v〈`−2s〉n〉 ∈
B` then it holds that 〈vs, v〈`−2s〉n〉 ∈ T` ∪ {〈vs, vs〉},
i.e., B` ⊆ T` ∪ {〈vs, vs〉}. Therefore again, by the defi-
nition of the diagonal constraint (c) in Construction 2
we deduce that for all ` ∈ {0, 〈3i〉n, 〈3 j〉n},

0 = ∑
〈vk ,vm〉∈T`∪{〈v〈3−1`〉n ,v〈3−1`〉n 〉}

ek,m + e〈3−1`〉n ,〈3−1`〉n

= ∑
〈vk ,vm〉∈B`

ek,m + e〈3−1`〉n ,〈3−1`〉n = hi, j(`).

(e) For all ` ∈ Hi, j let B` be the edge set from (6). Similarly
to the proof of (d) it can be verified that for all ` ∈ Hi, j,
|B`| = 5, and the edge set B` consists of all the edges
incident to at least one of the nodes v0, vi and v j in T`,
i.e., B` ⊆ T`. Therefore we deduce that for ` ∈ {i, j},

e`,0 = ∑
〈vk ,vm〉∈T`

ek,m + e`,0 = ∑
〈vk ,vm〉∈B`

ek,m + e`,0 = hi, j(`),

and the coefficient of the monomial xi , x j in the polyno-
mial ∑`∈Hi, j

hi, j(`)x` is ei,0, e j,0, respectively. The proof
that the coefficient of x2i , x2 j, x2i+ j, x2 j+i in this poly-
nomial is ei,0, e j,0, e j,i , e j,i is similar, respectively.

Let a0(x), ai(x) and a j(x) be the neighborhood polyno-
mials without self-loops of G. The following lemma presents
a few equalities that will be used to decode the values of
a0(x), ai(x) and a j(x).

Lemma 8. The following properties hold:

(a) a0(x) + ai(x) + a j(x)
= ei,0(1 + xi) + e j,0(1 + x j) + e j,i(xi + x j).

(b) a0(x) + ai(x)xi + a j(x)x j

≡ e0,0 + ei,ix2i + e j, jx2 j + ei,0xi + e j,0x j + e j,ixi+ j.
(c) a0(x)+ai(x)x2i+a j(x)x2 j+a2

0(x)+a2
i (x)xi+a2

j (x)x j

≡ ei,0(xi + x2i) + e j,0(x j + x2 j) + e j,i(x2i+ j + xi+2 j).

Proof:

1585

(c) According to the neighborhood-polynomials definition
we can write

a0(x)+ ai(x)x2i + a j(x)x2 j+ a2
0(x)+ a2

i (x)xi + a2
j (x)x j

= e0,0 + ei,ix3i + e j, jx3 j

+
n−1

∑
`=0

e0,`x` +
n−1

∑
`=0

ei,`x`+2i +
n−1

∑
`=0

e j,`x`+2 j

+ e0,0 + ei,ix3i + e j, jx3 j

+
n−1

∑
`=0

e0,`x2` +
n−1

∑
`=0

ei,`x2`+i +
n−1

∑
`=0

e j,`x2`+ j

≡
n−1

∑
`=0

e0,`x` +
n−1

∑
`=0

ei,〈`−2i〉n x` +
n−1

∑
`=0

e j,〈`−2 j〉n x`

+
n−1

∑
`=0

e0,〈2−1`〉n x` +
n−1

∑
`=0

ei,〈2−1(`−i)〉n x`

+
n−1

∑
`=0

e j,〈2−1(`− j)〉n x` ≡
n−1

∑
`=0

hi, j(`)x`
(a)
≡ ∑

`∈Hi, j

hi, j(`)x`

(b)
≡ ei,0(xi + x2i) + e j,0(x j + x2 j) + e j,i(x2i+ j + xi+2 j),

where Step (a) holds since by Claim 7(d) for all ` ∈
[n] \ Hi, j the coefficient of x` is zero, and Step (b) is a
direct result of Claim 7(e).

Notice that by setting x = 1 in the equation of Lemma 8(b)
we get that

e0,0 + ei,i + e j, j + ei,0 + e j,0 + e j,i = 0. (7)

Using the result of Lemma 8 we get the next equalities.

Lemma 9. The following equations hold
(a) a j(x)(1 + xi) + a2

j (x) ≡ e j, j(1 + x j)(xi + x j).
(b) ai(x)(1 + x j) + a2

i (x) ≡ ei,i(1 + xi)(xi + x j).
(c) a0(x)(xi + x j) + a2

0(x) ≡ e0,0(1 + xi)(1 + x j).

Our next step is showing that the value of at least one of
the self-loops e j, j, ei,i or e0,0 is zero. For this goal, we show
another important claim where its proof is omitted.

Lemma 10. It holds e0,0 + ei,i + e j, j = e j,0 + e j,0 + e j,i = 0.

By Lemma 10, we know that at least one of the self-loops
e j, j, ei,i or e0,0 is zero, and our next step is showing that one
of the polynomials a0(x), ai(x) or a j(x) is zero. We assume
that e j, j is zero, while the proof of the other two cases will be
similar based upon Lemma 9(b) and 9(c). By Lemma 9(a), we
get that a j(x)[1+ xi + a j(x)] ≡ 0. Denote by p(x) the poly-
nomial p(x) = 1 + xi + a j(x) which is clearly in Rn. Since
Mn(x) is irreducible, either Mn(x)|a j(x) or Mn(x)|p(x).
Since 1 + x|a j(x) and 1 + x|p(x) it is possible to derive that
either a j(x) = 0 or p(x) = 0. We will show that p(x) 6= 0
which will lead to the fact that a j(x) = 0. Assume on a
contrary that p(x) = 0. Therefore we deduce that a j(x) =

1 + xi and thus e j,i = e j,0 = 1. Notice that in this case, by
Lemma 10 we have that ei,0 = 0. By Lemma 8(a) we deduce
that

a0(x) + ai(x) + 1 + xi = a0(x) + ai(x) + a j(x)

= ei,0(1 + xi) + e j,0(1 + x j) + e j,i(xi + x j)

= (1 + x j) + (xi + x j) = 1 + xi ,

and therefore a0(x) + ai(x) = 0. Again, by Lemma 10 we
know that e0,0 + ei,i + e j, j = 0 and therefore, since e j, j = 0,
we get that ei,i = e0,0. By Lemma 8(b) we deduce that

a0(x) + ai(x)xi + (1 + xi)x j = a0(x) + ai(x)xi + a j(x)x j

≡ e0,0 + ei,ix2i + e j, jx2 j + ei,0xi + e j,0x j + e j,ixi+ j

≡ e0,0 + ei,ix2i + x j + xi+ j ≡ e0,0 + ei,ix2i + (1 + xi)x j,

and therefore a0(x) + ai(x)xi ≡ e0,0 + ei,ix2i. As we showed
in the proof of Theorem 2, since the conditions of Claim 4
hold, we deduce also here that a0(x) = ai(x) = 0, and there-
fore we get a contradiction since e j,i = e j,0 = 1. Therefore,
it holds a j(x) = 0 and since C3 is a sub code of C2, we again
get that a0(x) = ai(x) = 0, which concludes the proof.

V. CONCLUSION

In this paper we continued our research on codes over
graphs from [17], [18]. We presented an optimal binary
construction for codes correcting a failure of two nodes to-
gether with a decoding procedure that is complexity optimal.
We then extended this construction for triple-node-erasure-
correcting codes which are at most a single bit away from
optimality with respect to the Singleton bound.

ACKNOWLEDGMENTS

The authors would like to thank Gil Kupfer for his contri-
bution to the result of Lemma 10.

REFERENCES

[1] N. Abramson, “Cascade decoding of cyclic product codes,” IEEE Trans.
Communication Technology, vol. 16, no. 3, pp. 398–402, Jun. 1968.

[2] M. Blaum, J. Brady, J. Bruck, and J. Menon, “EVENODD: An efficient
scheme for tolerating double disk failures in RAID architectures,” IEEE
Trans. Computers, vol. 44, no. 2, pp. 192–202, Feb. 1995.

[3] M. Blaum, J. Bruck, and A. Vardy, “MDS array codes with independent
parity symbols,” IEEE Trans. Inf. Theory, vol. 42, no. 2, pp. 529–542,
Mar. 1996.

[4] M. Blaum, J.L. Hafner, and S. Hetzler, “Partial-MDS codes and their
application to RAID type of architectures,” IEEE Trans. Inf. Theory, vol.
59, no. 7, pp. 4510–4519, Mar. 2013.

[5] M. Blaum and R.M. Roth, “New array codes for multiple phased burst
correction,” IEEE Trans. Inf. Theory, vol. 39, no. 1, pp. 66–77, Jan. 1993.

[6] A.G. Dimakis, P.B. Godfrey, Y. Wu, M.J. Wainwright, and K. Ramchan-
dran, “Network coding for distributed storage systems,” IEEE Trans. Inf.
Theory, vol. 56, no. 9, pp. 4539–4551, Sep. 2010.

[7] P. Elias, “Error free coding,” IRE Trans. of the IRE Professional Group
on Inf. Theory, vol. 4, no. 4, pp. 29–37, Sep. 1954.

[8] J. Hopfield, Neurocomputing: foundations of research, MIT Press Cam-
bridge, MA, USA, pp. 457–464, 1988.

[9] F. Le Gall, “Powers of tensors and fast matrix multiplication,” Proc. 39th
Int. Symp. on Symbolic and Algebraic Computation, pp. 296–303, 2014.

[10] P. MCorbett, R. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong,
and S. Sankar, “Row-diagonal parity for double disk failure correction,”
Proc. 3rd USENIX Symp. on File and Storage Technologies, pp. 1–14,
San Francisco, CA, USA, Apr. 2004.

[11] R.M. Roth, “Maximum-rank array codes and their application to criss-
cross error correction,” IEEE Trans. Inf. Theory, vol. 37, no. 2, pp. 328–
336, Mar. 1991.

[12] K.-U. Schmidt, “Symmetric bilinear forms over finite fields of even
characteristic,” J. of Combinatorial Theory, Series A, vol. 117, no. 8,
pp. 1011–1026, May 2010.

[13] K.-U. Schmidt, “Symmetric bilinear forms over finite fields with appli-
cations to coding theory,” J. of Algebraic Combinatorics, vol. 42, no. 2,
pp. 635–679, Sep. 2015.

[14] I. Tamo, Z. Wang, and J. Bruck, “Zigzag codes: MDS array codes with
optimal rebuilding,” IEEE Trans. Inf. Theory, vol. 59, no. 3, pp. 1597–
1616, Mar. 2013.

[15] E. Yaakobi and J. Bruck, “On the uncertainty of information retrieval
in associative memories,” Proc. IEEE Int. Symp. Inf. Theory, vol. 45, no.
6, pp. 106–110, Cambridge, MA, USA, Jul. 2012.

[16] L. Yohananov, Y. Efron, and E. Yaakobi, “Double and triple node-
erasure-correcting codes over graphs,” arXiv:1812.00485v2, Dec. 2018.

[17] L. Yohananov and E. Yaakobi, “Codes for graph erasures,” Proc. IEEE
Int. Symp. Inf. Theory, pp. 844–848, Aachen, Germany, Jul. 2017.

[18] L. Yohananov and E. Yaakobi, “Codes for erasures over directed
graphs,” Proc. IEEE Int. Inf. Theory Workshop, pp. 116–120, Kaohsi-
ung, Taiwan, Nov. 2017.

[19] L. Yohananov and E. Yaakobi, “Codes for graph erasures,” submitted
to IEEE Trans. Inf. Theory, 2018.

1586

