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Abstract—Private information retrieval (PIR) protocols make it
possible to retrieve a file from a database without disclosing any
information about the identity of the file being retrieved. These
protocols have been rigorously explored from an information-
theoretic perspective in recent years. While existing protocols
strictly impose that no information is leaked on the file’s identity,
this work initiates the study of the tradeoffs that can be achieved
by relaxing the requirement of perfect privacy. In case the user is
willing to leak some information on the identity of the retrieved
file, we study how the PIR rate, as well as the upload cost and
access complexity, can be improved. For the particular case of
replicated servers, we propose two weakly-private information
retrieval schemes based on two recent PIR protocols and a
family of schemes based on partitioning. Lastly, we compare the
performance of the proposed schemes.

I. INTRODUCTION

In 1995 Chor et al. introduced the notion of private in-
formation retrieval (PIR) [1]. A PIR scheme allows a user
to privately retrieve an arbitrary file from a database that is
stored in multiple noncolluding servers without revealing any
information about the requested file index to any server. The
efficiency of a PIR scheme is usually measured in terms of
the communication load, which is the sum of the number
of uploaded and downloaded bits for retrieval of a single
file. It has been extensively studied how it is possible to
reduce the communication load using several copies of the
database [2]-[4]. To achieve a more efficient PIR scheme,
PIR protocols have also been considered jointly with coded
distributed storage systems (DSSs), where the data is encoded
by a linear code to store the files on n servers in a distributed
manner [5], [6].

Recently, there has been a renewed interest to study the
PIR problem from an information-theoretic formulation [5],
[7], [8]. Under this setting, the file size is assumed to be
arbitrarily large, and hence the upload cost can be ignored
compared to the download cost. This then defines the PIR rate
for a PIR scheme, which is equal to the amount of information
retrieved per downloaded symbol. Recently, Sun and Jafar
derived the optimal achievable PIR rate, the so-called PIR
capacity, for the classical PIR model of replicated servers [7],
[9]. Since then, several works have extended the results on
PIR to different setups, e.g., coded DSSs [10]-[12], colluding
servers [9], [12], and different figures of merit such as the
access complexity [13].

The PIR model has also been extended in different inter-
esting directions, for example PIR with side information [14]
and more. All of the aforementioned models impose the strict
requirement of perfect privacy, i.e., no information leakage.
However, this assumption is quite restrictive and may be re-
laxed for practical applications. How to quantify the amount of
sensitive information leaked from different privacy-enhancing
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technologies has been studied massively in the computer sci-
ence society [15]. Therein, many information-theoretic privacy
leakage metrics have been proposed, e.g., mutual information
(MI) and worst-case entropy measures [16].

This paper takes a first step towards another parameter
of the PIR framework, namely the information leakage. In
particular, the goal of this paper is to study the tradeoffs of
the different parameters of PIR protocols, such as the rate,
upload cost, and access complexity, while the user is willing to
leak some information on the identity of the retrieved file. We
refer to such a scenario as weakly-private information retrieval
(WPIR). Although related, our model is different from the
one considered by Toledo et al. [17] in the computer science
literature, where a modified metric based on differential pri-
vacy that relies on a particular scenario between an adversary
and a number of users, is considered. In several scenarios,
leaking part of the information of the retrieved file’s identity
is legitimate as long as there is still enough ambiguity on the
file to meet the privacy requirement specified by the user. For
example, the user may be willing to share with the servers that
the file is a movie (and not a book or other forms of files),
or only the movie’s genre, however the identity of the movie
should be kept private.

The rest of the paper is organized as follows. Section II
presents the notation, definitions, and system model used
throughout the paper. In Section III, a basic solution for WPIR
is presented in which the database is partitioned into several
partitions and the user is willing to expose only the partition
that the requested file belongs to. In Section IV, we propose
a WPIR scheme for replicated databases building upon a PIR
protocol recently introduced in [18] and study its tradeoffs
between different parameters while relaxing the privacy con-
straint. A second WPIR scheme is presented in Section V,
based on the PIR scheme from [12]. Lastly, Section VI presents
numerical results and compares the schemes studied in the
paper with respect to rate, upload cost, and access complexity.

II. PRELIMINARIES
A. Notation

We denote by N the set of all positive integers, [a] 2
{1,2,...,a}, and [a : b] £ {a,a + 1,...,b} for a,b €
{0} UN, a < b. Vectors are denoted by bold letters, random
variables (RVs) (either scalar or vector) by uppercase letters,
and sets by calligraphic uppercase letters, e.g., =, X, and
X, respectively. For a given index set S, we write X
and Ys to represent {X(™:m € S} and {V;: 1 € S},
respectively. X 1 Y means that the two RVs X and Y
are independent. Ex[] denotes expectation over the RV X.
X ~ Bernoulli(p) denotes a Bernoulli-distributed RV with
PriX=1 = p = 1 —Pr[X =0] and X ~ Uniform(S)
a uniformly-distributed RV over the set S. ()7 denotes the
transpose of its argument. The Hamming weight of a binary
vector x is denoted by wn () and the inner product of « and
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y is denoted by (x,y). H(X) represents the entropy X and
I(X;Y) the MI between X and Y. The Galois field with ¢
elements is denoted by GF(q).

B. System Model

We consider a DSS with n noncolluding replicated servers,
each storing M independent files X (1. .., X(™) where each
file X(™) = (Xl(m), . 7X/gm))T, m € [M], can be seen as a
8 x 1 vector over GF(g). Assume that each element of X (™)
is chosen independently and uniformly at random from GF(q).
Thus, in g-ary units, we have H(X (™)) = 8, Vm € [M].

In information retrieval (IR), a user wishes to efficiently
retrieve one of the M files stored in the replicated DSS.
Similar to the detailed mathematical description in [18], we
assume that the requested file index M is a RV and M ~
Uniform([M]). We give the following definition of IR schemes.

Definition 1. An (M, n) IR scheme € for a DSS with n servers
storing M files consists of

o a global random strategy S, whose alphabet is S,

o 1 query-encoding functions ¢, 1 € [n], that generate n
queries Q; = ¢(M,S) with alphabet Q,;, where query
Q) is sent to server I,

e N answer functions ; that return the answers A; =
01(Qq, XM, with alphabet A for all 1 € [n],

o n answer-length functions L;(A;), with range {0} UN,
that define the length of the answers,

o n access-number functions 6;(Q;), with range {0} UN,
that define the number of symbols accessed by Q).

This scheme should satisfy the condition of perfect retrievabil-
ity,

H(X ) | Agpy, Qpuy, M) = 0. ()

Note that a PIR scheme is an (M, n) IR scheme that satisfies
full privacy for all servers, i.e., for every m,m’ € [M] with
m # m/, the condition

Pr[Q; = q|M =m]

holds for all ¢; € Q;, I € [n]. The privacy constraint (2) is
equivalent to the statement that M 1 @Q;. We denote by Ql(m)
the query sent to server [ if file X (™) is requested, which
is a RV with probability mass function (PMF) PQ;m) (q) =
Pr[Q = qi|M =m].

We refer to an (M, n) IR scheme that does not satisfy (2)
as a WPIR scheme, as opposed to a PIR scheme that leaks no
information.

=Pr[Q =q|M=m'T (2

C. Metrics of Information Leakage

We consider both the MI and the worst-case information
leakage (WIL) [16] between M and Q; to define suitable
measures of information leakage for an IR scheme. For the
former, we use the following proposition to motivate the
definition of information leakage for an (M, n) IR scheme.

Proposition 1 (Time-Sharing Principle for the MI Metric).
Consider an (M,n) IR scheme €, where the leakage of the
I-th server is defined as |(M;Q), | € [n] Then, there exists
an (M, n) IR scheme € with leakage p = Zle["] I(M;Qy)
for every server.

Proposition 1 indicates that we can obtain an (M,n) IR
scheme with equal MI leakage at each server by cyclically
shifting the servers’ queries of an existing (M, n) IR scheme
n times.

Hence, to characterize the overall leakage of a given (M, n)
IR scheme ¥ in terms of MI, we consider the information
leakage metric p™M) (%) £ 137, 1(M;Qy).

Definition 2. The WIL of the [-th server is defined as
Worst(M; Q) = H(M) — ming,eco, HM|Q; = q). The
overall WIL of a given (M,n) IR scheme € is then given
as pMWD(€) £ maxepy) "o (M; Q).

D. Download Cost, Rate, Upload Cost, and Access Complexity
of an (M, n) IR Scheme

The download cost of an IR scheme %, denoted by D(%), is
defined as the expected number of downloaded symbols among
all servers for the retrieval of a single file,

D(% ZEQZ Li(A))] Z Z]EQ(W Li(A))).

=1 mlll

Accordingly, the IR rate of an IR scheme % is defined as
R(¥) & DL(K)' The upload cost U(%) of an IR scheme ¥ is
defined as the sum of the entropies of the queries Q.

€)2 Y HQ).
=1

Moreover, the access complexity A(%’) of an IR scheme % is
defined as the expected number of accessed symbols among
all servers for the retrieval of a single file,

=M Z ZJEQm) [00(Q1)]-

m=1 =1

Z Eq,[6:(Q1)]

An achievable 4-tuple of an IR scheme is defined as follows.

Definition 3. Consider a DSS with n noncolluding servers
storing M files. A 4-tuple (R, U, A, p) is said to be achievable
with information leakage metric p) if there exists an (M,n)
IR scheme € such that R(¢) = R, W(%) = U, A(¥) = A,
and pU)(€) = p.

We remark that a PIR scheme is equivalent to an (M, n)
IR scheme with p<') = 0. It was shown in [7] that for n
noncolluding replicated servers and for a given number of files
M, the PIR capacity, denoted by Cnt,rn, 1S Cm,n = (1+1/n+

o4 1/TLM_1)_
III. PARTITION WPIR SCHEME

A simple approach for the construction of WPIR schemes
is to first partition the database into 7 equally-sized partitions,
each consisting of M /7 files!, and then use a given (M/n, n)
IR scheme to retrieve a file from the corresponding partition.
Obviously, the resulting scheme is not a PIR scheme, since the
servers gain the knowledge of which partition the requested file
belongs to. In this section, we pursue this approach to construct
an (M, n) IR scheme building on a given (M /n,n) IR scheme
as a subscheme.

The partition (M,n) IR scheme is formally described as
follows. Assume the requested file X (™) belongs to the j-th
partition, where j € [n)]. Then, the query Q) is constructed as

Ql (Ql7 ) S Ql X [7717 le [n]7 (3)

where @ is the query of an existing (M /1, n) IR scheme €.
The following theorem states the achievable 4-tuple of the
partition scheme.

'While it is not necessary that each partition has an equal number of files,
for simplicity in this paper we make this assumption.
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Theorem 1. Consider a DSS with n noncolluding servers
storing M files, and let € be an (M/n,n) IR scheme with
achievable 4-tuple (R,U, A,ﬁ(')). Then, the 4-tuple

(R(€),U(%), A(%), ) (€))

= (f{ U+n log, 7, 57 ﬁ(‘) + log, 77) (@]

is achievable by the (M, n) partition scheme € constructed
from € as described in (3).

Since a PIR scheme is also an IR scheme, this simple
approach for the construction of WPIR schemes can also be
adapted to use one of the existing (M /7, n) PIR schemes in the
literature as a subscheme. We refer to the partition scheme that
uses a PIR scheme as the underlying subscheme and the query
generation in (3) as a basic scheme and denote it by € (it
gives the 4-tuple as in (4) with 5() = 0). In Section IV-B, we
will present another partition WPIR scheme %’ based on our
proposed IR scheme.

IV. (M, n) SCHEME 1

In [18, Sec. 3.2], a PIR scheme that achieves both the min-
imum upload and download costs was proposed. The queries
Q) of the scheme in [18, Sec. 3.2] are randomly generated
according to a random strategy S = (Si,...,Sm—1) with
independent and identically distributed (i.i.d.) entries accord-
ing to Uniform([0 : n — 1]). In this section, we introduce an
(M, n) WPIR scheme, referred to as Scheme I and denoted
by %1, based on the PIR scheme in [18]. Scheme 1 can be
seen as a generalization of the PIR scheme in [18] where we
lift the perfect privacy condition (2).

For the proposed scheme, we assume the file size to be
B = n—1, and we represent a query by a length-M vector q; =
(@1, qim) € Q C [0:n— 1M, Also, the realization of
S is denoted as a length-(M — 1) vector s = (s1,...,SM—1),
s;€0:n—1], j€ M —1].

Before describing Scheme 1 in detail for the general case,
for simplicity we first present Scheme 1 for the case of M = 2
files and n = 2 servers (i.e., both servers 1 and 2 store X ),
X @) in the following example.

Example 1. We illustrate the (2,2) Scheme I obtained by
adopting a nonuniformly-distributed random strategy S giving
a joint PMF Pq, q.(q1,q2) as

if g1 = (0,0),¢2 = (1,0)
if g1 = (17 1)7q2 = (07 1)7

I-p
PQ<11>’Q;1>(¢I17‘12) =D

0 otherwise,

L-p if ¢ =(0,0),g2 = (0,1),
Pow oo (41,92) = 1P if g1 = (1,1),q2 = (1,0),

0 otherwise.

Files XU and X@ are composed of one stripe each
(B =n—1 = 1). The answers Ay and Ay are given by
(Al (ql)a AQ(qZ)) = (thpl + X(Sf)Q’Xlg;)l + Xlg:??z)’ where
x{™ =0 for all m € [2].

One can easily verify that perfect retrievability is satisfied
for the above (2,2) IR scheme. Its IR rate is a function of p and
is given by R(p) = (p+(1—p)+p)~t = (14+p)~L. Observe that
M 1 Q, which implies that |(M;Q1) = IY™'(M; Q) = 0.

The information leakage is p™M) = %"(’}) and pWb) =
1 —Hp(p) for 0 < p < % where Hy(p) £ —plogyp —
(1 —p)logy (1 — p) is the binary entropy function. From this
derivation, it follows that the (2,2) Scheme 1 achieves perfect
privacy for p = % The IR rate of the (2,2) Scheme 1, R(6}),

HMD

—mime p(WIL)

A Cap

0.65 1 1 1 1 1
0 01 02 03 04 05 06 07 08 09 1

pO) (in bits)

Fig. 1. The IR rate R(¢1) € [%, 1] of the proposed (2,2) Scheme 1, as a
function of p('). The triangle marks the 2-server PIR capacity for M = 2.

is depicted in Fig. 1 as a function of the information leakage
p('). Interestingly, by sacrificing perfect privacy, it is possible
to achieve an IR rate larger than the 2-server PIR capacity
for 2 files. As expected, the IR rate increases with increasing
information leakage.

Now, we describe Scheme 1 for the general case of M files
and n servers. We assume that the user wants to download
file X(™) and has a random strategy S that takes on values
s €[0:n— 1M1 with PMF Ps(s).

1) Query Generation: The query q; € ©Q; sent to the
[-th server, resulting from the query-encoding function ¢y, is
defined as q; = (51,..,Sm—1,Qim>Sms-- -, SM—1), Where
@m = (1L—1- > ieM-1] s;) mod n. It follows that
(ZWE[M] ql,m/) mod n = [ — 1. Note that the PMF of Q,
conditioned on the file index M satisfies P om) (q1) = Ps(s).

2) Answer Construction: The answer function (7 maps the
query g into A; = oi(q, X™M) = X3+ xg
where X{™) = 0 for all m’ € [M]. Further, we see that the
answer-length functions satisfy

0 ifq =0,
1 otherwise.

Li(A;) = { &)

This completes the construction of the (M, n) Scheme 1.
The perfect retrievability of Scheme 1 can be verified by fol-
lowing the same argumentation as in [18, Sec. 3.2]. Moreover,
using (5), the IR rate of the (M, n) Scheme 1, %7, can be
shown to be

n—1
R(61) = 1—Po,(0)+n—1

We also remark that if Scheme 1 uses a random strategy S
with {S]-};‘ifl i.i.d. according to Uniform([0 : n — 1]), then
it satisfies (2) and is equivalent to the PIR capacity-achieving
scheme proposed in [18].

A. (M,2) Scheme 1 With {S;}M !

j=1 LLD. According to
Bernoulli(p)

The following result gives an achievable 4-tuple for
Scheme 1 for the case of 2 servers and a random strategy S =
(S1,.-.,Sm—1) with i.i.d. entries according to Bernoulli(p).

Theorem 2. Consider 0 < p < 3. Then, the 4-tuple
(RhuhAth)),

Ri=(1-(1-pM ' +1)7,

Uy = -0 (M) f(w, p) log, f(w,p),
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A1 = Yo w (o) fw.p),
Png) =U;/2— (M —1)Hp(p), and
pngL) = logy M — mine[o:mj H(M,,),
where f(w,p) £ [(M — w)(1 — pyM=»~1p¥ 4 w(l —
p)M=wp¥=1] /M and M,, has PMF

(1—pyM-w—1pw
) M f(w,p)

ifm' € [M —w],
Py, (m

Sen— fmeM-w+1:M]

is achievable by the (M,2) Scheme 1 with {S; j’\ifl
according to Bernoulli(p).

(1—pyM—w
i.id.

B. Partition Scheme 1: Using Scheme 1 as a Subscheme

In Section III, the concept of adopting an existing (M /1, n)
IR scheme to retrieve a file from a given partition is introduced.
In this section, unlike (3), where the user sends different
queries for different requested files among all partitions, we
use a slightly more sophisticated way to construct a WPIR
scheme by using Scheme 1 as a subscheme for every partition.
We refer to this scheme as partition Scheme 1 and denote it by
&P, In the following, we present the query generation and
the answer construction.

1) Query Generation: We consider the j-th partition, P;,
j € |[n], containing all files of indices (j — 1)M/7] +
1,...,7M/n. Given a requested file with index m = (j —

)M/vy +m' € P;, m’ € [M/n], we consider an (M/n, n)
Scheme 1 as a subscheme for partition P;. The I-th query
q € Q;, 1 € [n], is defined as

q, = (le(jfl)M/'m S1y-+ s Sm/—1,q1,(j—1)M/n+m’>

s 5M/n—1, 01 (n—j)M/n) s

where g ;)M /ntm: = (l -1 72.7'6[’\/1/7/71} Sj) mod n. We
remark that it is possible that the user sends the all-zero query
q; = 0 to request different files among all partitions. In this
way, since the uncertainty on the requested file is increased,
it follows that the leakage of 7" is slightly smaller than the
leakage of the basic scheme. Moreover, the query alphabet size
is not exactly the same for all servers, i.e., we have |Q;1] =
L+n(rM/m7=1 —1) and |Q)| = n-n™M/"L for I € [2: n].
2) Answer Construction: Similar to Scheme 1 in Sec-
tion IV, the answer function (; maps query q; into A; =

Sm/y .-

(g, XM = ngl:l)l Xém, where Xé ) =0 for all
m’ € [M]. Further, we see that L;(A;) satisfies (5).
C. (M, 2) Partition Scheme 1 With {S; }Mﬂ7 Y LLD. Accord-

ing to Bernoulli(1/2)

We focus again on the case of 2 servers. Since the servers
can learn some information from which partition the requested
file belongs to, in order to have a relatively small leakage of
partition Scheme 1, it is reasonable to use Scheme 1 with
{S; }jvl/ln " i.i.d. according to Bernoulli(1/2) as a subscheme
(i.e., a PIR subscheme). We have the following result.
Theorem 3. Let M /7 be a positive integer with n € [M

Then, the 4-tuple (RLP,ULP,ALP,pg")P),

+1/2M/n=1)
- 10g2 77/21\/1/7]71’

~1].

Rip=(141/2+-- -

Ui p= 2[M/77 — 1+ log, 17]

AI,P = M/n7
Ml
"8 = logy 1 — log, n/2M/", and
(WIL)
pip  =logan

is achievable by the (M,2) partition Scheme 1 with the
(M/n,2) Scheme 1 with {S; }M/n ' iid according to
Bernoulli(1/2) as a subscheme.

Let (]i u,A ,0) be the achievable 4-tuple of the (M/n,2)
Scheme 1 with {S; }M/" ' i.i.d. according to Bernoulli(1/2).
It follows that uIP = U + 2logyn — logyn/2M/1—1 <

U(6H) and pi'p’ = log, 1 — logy 1/2M/1 < pMD (gP2sk),

while Ry p, A p, and p(lY\élL) are identical to those of the basic
scheme €% in Section III (see the details in Theorem 1).
Hence, in the numerical results section (see Fig. 2), the results

of € are not presented.

V. CONSTANT-RATE (M, n) SCHEME 2

We propose an alternative WPIR scheme, referred to as
Scheme 2 and denoted by %2, based on the PIR scheme in [12,
Lem. 4]. Scheme 2 is constructed as follows. Assume that 5 =
n—1 and that the user requests file X (™). The random strategy
S takes the form of a vector S = (S1,. .., Ssm) € GF(q)"M
of length BM. The query vector Q; € Q; = GF(q)"M, of
length SM, is obtained as Q; = ¢(m,S) = S + v;, where
the vector v; is deterministic and is completely determined
by m. We refer the reader to [12, Sec. V] for details on the
design of v;. The [-th server responds to its corresponding
query with the answer 4, € A = GF(q) obtained as

= p(Qi X™M) = (@i, (xV,... XV, X)),

For the case where {S]}fi/{ are iid. according to
Uniform(GF(q)), Scheme 2 achieves perfect privacy, and the
scheme boils down to the PIR scheme in [12, Lem. 4].
Furthermore, similar to [12, Thm. 2], it can be shown that
the scheme achieves perfect retrievability (see (1)), and since
its answer-lengths are constant for all possible queries of each
server, the IR rate Ry of %5 is equal to 1 — 1/n, irrespective
of the information leakage p().

A. (M,2) Scheme 2 With {S;}), LLD. According to
Bernoulli(p)

Consider the binary field. We have the following result.
Theorem 4. Consider 0 < p < % Then,
(1/2, Uz, Ay, pf),

Uz = =300, (W) g(w, p) log, g(w, p) + M Hy(p),
Az =300 w() (9(w,p) +hw,p)),
P = Uy/2 — M Hy(p), and
péw'” = logy M — miny,c o) H(MY,),
where g(w,p) £ 31 [(M — w)(1 = pyM=~Tp» ! 4 w(1 -
p)MT et p = h(w, p) £ (1—p)M~*p®, and M|, has PMF
Mo—w—1 wt1
N ifm' € M—w+1:M],
is achievable by the (M,2) Scheme 2 with {S;}M, iid.
according to Bernoulli(p).

the 4-tuple

PM/(

w

In the following subsection, we analyze the (M,2)
Scheme 2 with a uniformly-distributed random strategy S.
Note that similarly to partition Scheme 1 in Section IV-C, we
can also construct a partition scheme by using Scheme 2 as
a subscheme for every partition. Since the analysis is almost
the same as for partition Scheme 1, and the result for the
(M, 2) partition Scheme 2 with {5, } ;24" iid. according to
Bernoulli(1/2) is very close to the result in Theorem 3, we
omit it.
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B. (M, 2) Scheme 2 With S Uniformly Distributed

We consider the (M, 2) Scheme 2 with S uniformly dis-
tributed over all length-M binary vectors of weight w. In
other words, S ~ Uniform(B,, m), where B, m 2 (s ¢
{0, 13M: wy(s) = w}.

Theorem 5. Consider 0 < w < M. Then, the 4-tuple
(1/2,Uz,u, Ay, p5).

u2¢U = lOgZ (11\;[) + y(wa M)7
Agu=1+2w(l—1/M),
pgjﬂ) = (y(w, M) — log, (2}4))/2, and

pgﬁ]‘) = logs M — min{log, (w + 1),logy (M —w + 1)},
where y(w, M) £ log, (M) +logy M — M=% log, (w + 1) —
i logy (M —w + 1), is achievable by the (M, 2) Scheme 2
with S ~ Uniform (B, m).

We remark that the analysis of the (M, 2) Scheme 1 with
S ~ Uniform(B,, m—1) can also be done by following the
same approach as for Theorem 5.2 However, since the resulting
performance is much worse than those of the aforementioned
WPIR schemes for the case of n = 2 servers, we omit the
detailed analysis in this paper.

VI. NUMERICAL RESULTS

We consider the case of 2 servers and compare the achiev-
able 4-tuples (R, U, A, p™MY) for the (M,2) IR schemes
proposed in Sections IV-A, IV-C, V-A, and V-B. For the sake
of illustration, the information leakage p™" is normalized by
log, M bits, while the upload cost and access complexity are
normalized by 2(M —1) and M, respectively. 2(M —1) and M
are the upload cost and access complexity of the PIR capacity-
achieving scheme presented in [18] for the case of 2 servers.
The upload cost 2(M — 1) is optimal among all so-called
decomposable PIR capacity-achieving schemes [18].3

Fig. 2 illustrates the results of different WPIR schemes for
the case of M = 32 files and leakage metric pM). We can
see that Scheme 1 yields the best performance. The IR rate of
Scheme 2 with different S is always equal to 1/2. The results
of different WPIR schemes in terms of leakage metric p('t)
will be provided in the extended version of the paper.

VII. CONCLUSION

We presented the first study of IR schemes with information
leakage, which we refer to as WPIR schemes. We proposed
two WPIR schemes based on two different PIR protocols and
a family of schemes based on partitioning for the case of
replication. By relaxing the perfect privacy requirement, we
showed that the download rate, the upload cost, and the access
complexity can be improved.
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