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Abstract—A private proximity retrieval (PPR) scheme is a pro-
tocol which allows a user to retrieve the identities of all records
in a database that are within some distance r from the user’s
record x. The user’s privacy at each server is given by the frac-
tion of the record x that is kept private. The distortion of a PPR
scheme measures how accurately the user can calculate the identi-
ties of the desired files. We assume that each server stores a copy
of the database. This paper studies protocols that offer trade-offs
between perfect privacy and low computational complexity and
storage.

In this paper, this study is initiated. The work focuses on the
case when the records are binary vectors together with the Ham-
ming distance. In particular, for a given privacy level, we investi-
gate the minimum number of servers that guarantee a prescribed
distortion value. The collusions of pairs of servers as well as other
distance measures are investigated.

I. INTRODUCTION

The growing amount of available information, which mostly
resides in the web and on the cloud, has made information
retrieval (IR) one of the more important computing tasks. In
fact, web search has become the standard source of informa-
tion search and in general, IR refers to information access in
order to obtain data, in any form, from any available information
resources. However, this form of communication also poses a
risk to the user privacy, since the servers can monitor the user’s
requests in order to deduce important information on the user
and his interests. Therefore, an important aspect of IR is hiding
the information the user is searching for.

Private information retrieval (PIR) is one of the well-known
problems that provide privacy to user’s requests. This problem
was introduced by Chor et al. in [5]. PIR protocols make it pos-
sible to retrieve a data item from a database without disclosing
any information about the identity of the item being retrieved.
This problem has attracted considerable attention since its in-
ception, see e.g. [6], [22]. The classic PIR model of [5] views
the database as a collection of bits and assumes that the user
wishes to retrieve the ith bit without revealing any information
about the index i. This problem has received recently significant
attention from an information-theoretic perspective, wherein the
database consists of large records and the goal is to minimize
the number of bits that are downloaded from the servers [2].
Since then, extensions of this model for several more setups
have been rigorously studied; see e.g. [1], [7], [9], [18]–[20]
and references therein.
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PIR protocols have been rigorously studied mostly for the
basic IR problem when the user knows which data records are
stored in the database (but not their content) and simply asks for
the content of one of them. However, the user may be interested
in other forms of information from the database rather than just
asking for a particular record. The recently-introduced problem
of private computation is a generalization of PIR which allows a
user to compute an arbitrary function of a database, without re-
vealing the identity of the function to the database. This problem
has been studied for linear functions in [12], [15], [18] and for
polynomial functions in [8], [17]. Many open questions about
private computation remain, especially for non-linear functions,
one of which is the topic of this paper.

Another important IR problem is that of proximity search-
ing. One example of proximity searching is the K-nearest
neighbor search (K-NNS), where the goal is to find the K
elements from the database that minimize the distance to a
given query [3], [11]. Proximity searching has several appli-
cations, among them are classification, searching for similar
objects in multimedia databases, searching for similar doc-
uments in information retrieval, similar biological sequences
in computational biology, and more. While proximity search-
ing has been well-studied in the literature, to the best of our
knowledge, there are no existing solutions which offer both
proximity searching and privacy simultaneously. The assump-
tion in proximity searching algorithms is that there is only
a single server which stores the database. However, modern
data storage systems are stored across several servers in a dis-
tributed manner, and thus we can take advantage of this setup
in order to provide privacy for proximity retrieval.

In our setup of the problem we assume the user has a record
and is interested in knowing the identities of the records in the
database that are close to his record, according to some dis-
tance measure. This setup can fit to the case when the records
stored in the database are attributes of different users. Given the
user’s attribute, he is only interested to know the users which
have similar attributes to his according to some distance mea-
sure between the attributes. For example, a record may be a
user’s location and the database may consist of the locations of
agents. In this context, the user seeks to determine the identity
of the agents nearest to him, without necessarily knowing their
exact location, while minimizing the amount of information that
is exposed to the servers about his location. This example is re-
lated to the private proximity testing problem in which two users
seek to determine whether they are close to each other, with-
out revealing any information about each other’s location [13],
[14], [16]. Yet another example assumes that each record is a
file (song, movie, DNA sequence etc.), and the user is inter-
ested in determining the records which are similar to his. There
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are several more related problems to private proximity retrieval
such as private keyword search [10], [21] and private search [4].

A. Setup

Let V be a finite set, assume an M -file database X =
{x1, . . . , xM} ⊆ V , where the xi are i.i.d. samples of a random
variable X , is stored on N different non-colluding servers. Let
d be a metric on V , d : V ×V → R>0. For v ∈ V , B(v, r) is its
ball of radius r, that is, the set B(v, r) , {y ∈ V | d(v, y) 6 r}.
The user has a record x ∈ V chosen from X and seeks to
know the identity of every record in B(x, r) ∩ X , i.e., the
identity of every record in the database similar to his, which is
given by the set I(x, r) , {m ∈ {1, . . . ,M}| xm ∈ B(x, r)}.

As opposed to the classical PIR problem, our solutions do not
provide full privacy, but only partial privacy which will depend
on the accuracy of calculating the set I(x, r).

Definition 1. Given the above setup, a private proximity
retrieval (PPR) scheme consists of three algorithms.

1) A randomized algorithm Q that forms N queries,
q1, . . . , qN , depending on X , M , the user’s record x, and
the search radius r.

2) An algorithm A that calculates answers An, for n ∈ [N ],
given a query qn generated by the algorithm Q, and the
database X .

3) An algorithmR, that calculates an approximation Î(x, r) of
the set I(x, r), given X , x, r, the set of queries q1, . . . , qN ,
and the corresponding answers A1, . . . , AN .

The user’s privacy at server n is defined, roughly speaking, to
be the uncertainty in X after the server sees the query qn, rel-
ative to the entropy of X . That is,

Pn =
H(X|qn)
H(X)

.

While the goal in our schemes is to accurately calculate the set
I(x, r), i.e., Î(x, r) = I(x, r), it may happen that it is only pos-
sible to approximately calculate the set, i.e., I(x, r) ( Î(x, r).
The distortion of a PPR scheme is the smallest integer ε s.t.
Î(x, r) ⊆ I(x+ ε, r), in other words, Î(x, r) contains an index
of at least one element of distance r+ ε from x (where we now
assume X to be uniform on V or at least all elements of V to
have a positive probability).

Remark 1. It is possible to define a lower and an upper distor-
tion ε1, ε2, via I(x, r − ε1) ⊆ Î(x, r) ⊆ I(x, r + ε2) where ε1
and ε2 are minimal. We reinterpret the approximation Î(x, r)
as a solution to the search around x with radius r′ := r − ε1.
Then

I(x, r′) ⊆ Î(x, r′) ⊆ I(x, r′ + ε1 + ε2),

and it is therefore sufficient to study schemes that have lower
distortion 0 and upper distortion ε = ε1 + ε2.

We denote by H(·) the binary entropy function. For
a discrete random variable Y supported on a set Y , we
define its entropy by H(Y ) = EY

[
log2

(
1

Pr(y)

)]
=

−
∑
y∈Y Pr(y) log2(Pr(y)). It will always be clear from

context whether the function H(·) is taking a scalar or a ran-
dom variable as its argument. For a positive integer n, the set
{1, 2, . . . , n} is denoted by [n].

II. BASIC PROPERTIES AND CONSTRUCTIONS OF PRIVATE
PROXIMITY RETRIEVAL SCHEMES

A. A Simple Error-Free Scheme for the Hamming Space

The main part of the current work concentrates on the case
of V = FL2 , d is the Hamming distance on FL2 , and the random
variable X equal to the uniform distribution on FL2 , and this is
the case to which we now specify unless stated explicitly other-
wise. For two vectors u and v of the same length, the Hamming
distance between u and v is denoted by dH(u, v) and the Ham-
ming weight of u is denoted by wH(u). The support of u will be
denoted by supp(u). For s > 0, let Ws be the set of all vectors
of weight exactly s in FL2 , i.e., Ws = {y ∈ FL2 | wH(y) = s}.
The following lemma will motivate our first example.

Lemma 2. For all r, s, L such that r + 2s + 1 6 L, and x ∈
FL2 , it holds that B(x, r) =

⋂
z∈Ws

B(x + z, r + s), and hence
I(x, r) =

⋂
z∈Ws

I(x+ z, r + s).

Example 1. Lemma 2 suggests a PPR scheme for retrieving
I(x, r). Assign each vector z ∈ Ws to one server at random
and send the query qz = (x + z, r + s). The server computes
the set Az = I(x+ z, r + s), and sends it as its response back
to the user. Finally, the user computes the intersection of all
responses and therefore the set I(x, r), by Lemma 2. Hence
this scheme has distortion ε = 0. We discuss the privacy at
each server in more generality in the next section. 2

B. A General PPR Scheme and Some Basic Properties

While the PPR scheme described in Example 1 using the set
Ws has the advantage of being easy to describe, the number of
servers is

(
L
s

)
, which even for small values of L is unreasonable.

Our general strategy for improving on this construction will be
to consider subsets Z ⊆ Ws which satisfy, or approximately
satisfy, the equation of Lemma 2, but for which |Z| � |Ws|.
We formalize the studied family of PPR schemes in the follow-
ing definition.

Definition 3. Given a search radius r, a parameter s, and a set of
query vectors Z ⊆ Ws of sizeN , the PPR scheme PPR(r, s, Z)
is defined to consist of the following algorithms:

1) The algorithm Q applies a uniform random permutation of
[L] to the coordinates of all vectors zn ∈ Z, and then sends
the query qn = (x + zn, r + s) to server n = 1, . . . , N ,
where x is the user’s record.

2) The algorithm A computes

An = I(x+zn, r+s) = {m ∈ [M ] | d(x+zn, xm) 6 r+s}.

3) The algorithmR computes

Î(x, r) =
⋂

n∈[N ]

An =
⋂
zn∈Z

I(x+ zn, r + s).

The matrix M ∈ FN×L2 whose rows are the vectors z ∈ Z is
referred to as the query matrix.

Proposition 4. For the PPR scheme PPR(r, s, Z), the privacy at

any server n ∈ [N ] satisfies Pn =
log2 (

L
s)

L . In particular, if σ =
s/L is constant with respect to L, then Pn → H(σ) as L→∞.

Let P = Pn for the PPR scheme PPR(r, s, Z), which by
Proposition 4 is independent of n. It is not hard to show that
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P < H(σ), thus approximating P ≈ H(σ) for large L slightly
overestimates the privacy level. Nevertheless, to maximize pri-
vacy, one wants σ to be as close as possible to 1/2, so that
H(σ) ≈ 1. Using the scheme constructions which we will out-
line in the next few sections, we can obtain H(σ) > 1− δ for
any δ > 0 and search radius r = 0. On the other hand, it will
be shown in the sequel that it is impossible to attain privacy of
exactly 1 for any PPR scheme of the form PPR(r, s, Z).

Apart from its role in the above brief analysis of the pri-
vacy of PPR(r, s, Z), the random coordinate permutation used
by the algorithm Q is largely immaterial to the analysis of the
scheme, and in what follows we will largely ignore it. To be-
gin our analysis of the family PPR(r, s, Z) of PPR schemes,
we state several elementary but useful lemmas.

In case s > (L− r)/2 we have the following negative result
on the distortion value.

Lemma 5. If s > (L − r)/2, then ε = L − r for any choice of
query vectors Z ⊆ Ws.

Proof: Let 1 be the all ones vector, and z ∈ Ws. We see
that d(x + 1, x + z) = d(1, z) = L − s 6 r + s. Hence x +
1 ∈

⋂
z∈Ws

B(z, r+ s) and the distortion for any PPR(r, s, Z)
scheme is maximal, i.e., ε = L− r.

By Lemma 5, the PPR scheme PPR(r, s, Z) has non-trivial
distortion only when s 6 (L − r − 1)/2, or equivalently, σ 6
1
2 −

r+1
2L . Hence H(σ) < 1 for any such scheme as long as we

insist on non-trivial distortion, that is, we will always fall short
of perfect privacy. On the other hand, by Proposition 4, we need
s to be a sizable fraction of L to achieve a good privacy level.
For the rest of the paper, we assume that s 6 (L − r − 1)/2.
We will repeatedly use the following two lemmas to compute
the distortion of a PPR(r, s, Z) scheme.

Lemma 6. For y, z ∈ FL2 and r > 0, dH(z, y) 6 wH(z) + r if
and only if wH(y)−r

2 6 | supp(y) ∩ supp(z)|.

Lemma 7. For any set Z ⊆ Ws the distortion ε is even.
Proof: Suppose there exists a vector y ∈

⋂
z∈Z B(z, r +

s) with weight wH(y) = r + δ where δ is a positive odd inte-
ger. By Lemma 6, we have δ/2 6 | supp(y) ∩ supp(z)| for all
z ∈ Z, and since the right-hand side is an integer, it follows that
(δ + 1)/2 6 | supp(y) ∩ supp(z)|. Now consider a vector y′ of
weight wH(y′) = r + δ + 1 given by adding a single 1 to y in
any coordinate not in supp(y). We have

wH(y′)−r
2

=
δ+1

2
6 | supp(y)∩supp(z)|6 | supp(y′)∩supp(z)|

for all z ∈ Z, which by Lemma 6 shows that y′ ∈
⋂
z∈Z B(z, r+

s). Thus there exists a vector y′ ∈
⋂
z∈Z B(z, r+s) with weight

r + δ + 1, and hence ε is even.

C. Lower Bounds on the Number of Servers

Every set Z ⊆ Ws gives us a PPR scheme PPR(r, s, Z)
and according to Proposition 4 the privacy at each server of

this scheme is P =
log2 (

L
s)

L . Thus, for a given distortion value
ε we try to find a set Z of minimal size that guarantees this
distortion level. This motivates us to study the following design
problem.

Definition 8. Let L, s, r, and ε be positive integers such that
ε, s, r 6 L. LetN(L, s, r, ε) be the minimal value ofN such that
there exists a set of query vectors Z ⊆ Ws of size N satisfying

B(0, r) ⊆
⋂
z∈Z

B(z, r + s) ⊆ B(0, r + ε).

Clearly N(L, s, r, ε) 6
(
L
s

)
for s 6 (L − r − 1)/2, since by

Lemma 2 taking Z =Ws satisfies the above with the left-hand
inclusion an equality. Our goal in this section is to prove lower
bounds on the value of N(L, s, r, ε).

Lemma 9. Suppose that |Z| = 2, so Z = {z1, z2} ⊆ Ws. Then
the distortion of PPR(r, s, Z) satisfies 2s 6 ε. In particular if
s > ε/2 + 1 then N(L, s, r, ε) > 3.

Proof: Let y ∈ FL2 be a vector of Hamming weight 2s + r
such that supp(z1) ∪ supp(z2) ⊆ supp(y). Then, dH(y, z1) =
dH(y, z2) = s+ r, and hence y ∈ B(z1, r + s) ∩ B(z2, r + s).
Therefore ε > 2s and the result follows.

Lemma 10. Let Z ⊆ Ws be any set of query vectors of size
|Z| = N such that PPR(r, s, Z) has distortion ε. Suppose that
there exists a subset S ⊆ [L] such that | supp(z) ∩ S| > ε/2 + 1
for all z ∈ Z. Then, it holds that |S| > r + ε+ 2.

Proof: Assume to the contrary that |S| 6 r + ε+ 2, and let
y is a vector with wH(y) = r + ε + 2 such that S ⊆ supp(y).
By construction, we have | supp(y)∩ supp(z)| > ε/2+ 1 for all
z ∈ Z. Thus, by Lemma 6 we have y ∈

⋂
z∈Z B(z, r + s). But

this contradicts the assumption that Z has distortion ε.

Thus effective lower bounds on N(L, s, r, ε) will come from
constructing small sets S which intersect the support of every
z ∈ Z in at least ε/2 + 1 coordinates. The following theorem
does exactly that by recursively finding columns of large weight
in the query matrix M and repeatedly applying Lemma 10.
Theorem 11. Suppose that s > ε/2 + 1. Then the quantity
N(L, s, r, ε) is lower bounded by

N(L, s, r, ε) > max
k=0,...,r+ε+1

{⌊
r + 2 + ε− k
ε/2 + (1− σ)k

⌋
+ 1

}
.

III. UPPER BOUNDS ON THE NUMBER OF SERVERS

In this section we derive upper bounds on the value of
N(L, s, r, ε) by explicitly constructing query matrices. Our first
construction uses matrices of fixed row and column weight and
achieves the following result.

Theorem 12.
1) If σ 6 1

r+3 then N(L, r, s, ε) =
⌊

r
ε/2+1

⌋
+ 3.

2) If σ< ε/2+1
r+ε+2 , τ , thenN(L, s, r, ε)6

⌊
1
τ

⌈(
1
σ−

1
τ

)−1⌉⌋
+1.

For the rest of this section we focus on the case ε = 0 and for
shorthand, we denote the value of N(L, s, r, 0) by N(L, s, r). In
order to accomplish this task, a new family of codes, called anti-
covering codes, is presented which will be used as a building
block on the construction of sets Z that achieve zero distortion.

Given L, s, r we say that a length-L code C is an (r, s)L
anti-covering code if

1) C ⊆ Ws,
2) for any length-L vector v such that wH(v) > r, there exists

a codeword z ∈ C such that dH(v, z) > r + s.
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Fig. 1: The lower bound on N(L, s, r, ε) from Theorem 11 for
r = 0, 4, 8, 12 and ε = 0, 2 as a function of the asymptotic
privacy level H(σ), where σ = s/L.

For all L, s, r we denote by CA(L, s, r) the minimum size of
any (r, s)L anti-covering code. We see that for all L, s, r, it
holds that N(L, s, r) = CA(L, s, r), and based upon this rela-
tion we present our main construction of anti-covering codes in
the next theorem. This construction provides an upper bound
on the value of N(L, s, r).

Theorem 13. For all 2 6 C 6 r + 2 and L
r+3 6 s 6 L−r−3+C

C

such that s is a multiple of A =
⌈
Csd r+3−C

C e
L−Cs

⌉
it holds that

N(L, s, r)6C

(
A+
⌈
r+3−C
C

⌉
A

)
=C

(⌈Csd r+3−C
C e

L−Cs

⌉
+
⌈
r+3−C
C

⌉⌈
Csd r+3−C

C e
L−Cs

⌉ )
.

Proof Sketch: We sketch the proof for the case when C =
2 and r is odd. In this case it holds that A = d s(r+1)

L−2s e and we
assume that s is a multiple of A. First we generate 2A+ r+1
disjoint subsets of the set [L], each of size s

A (note that (2A+
r+1) · sA 6 L). We denote these sets by S1, S2, . . . , S2A+r+1,
and they are further partitioned into two families of sets S1 =
{S1, . . . , SA+ r+1

2
},S2 = {SA+ r+1

2 +1, . . . , S2A+r+1}. Next we
define a set of N vectors z1, z2, . . . , zN as follows. For every
1 6 i1 < i2 < · · · < iA 6 A + r+1

2 , we let zi1,i2,...,iA be a
vector whose support set is Si1 ∪Si2 ∪ · · · ∪SiA . Similarly, for
every A+ r+1

2 + 1 6 i1 < i2 < · · · < iA 6 2A+ r + 1 we let
zi1,i2,...,iA be a vector whose support set is Si1∪Si2∪· · ·∪SiA .
Hence, the number of vectors is N = 2

(A+ r+1
2

A

)
. The rest of

the proof follows by proving that C = {z1, z2, . . . , zN} is an
(r, s)L anti-covering code. The first property clearly holds and
the second one is verified by proving that for any vector v of
Hamming weight greater than r there exists z ∈ C such that
dH(v, z) > r + s.

While the condition in Theorem 13 requires that s is a multi-
ple A, for L large enough and σ = s/L this condition is negli-
gible so it is possible to conclude with the following corollary.

Corollary 14. For all constant σ = s/L < 0.5, it holds that

N(L, σL, r) 6 min
26C<1/σ

C
(⌈ Cσ

1−Cσ
⌈
r+3−C
C

⌉⌉
+
⌈
r+3−C
C

⌉⌈
Cσ

1−Cσ
⌈
r+3−C
C

⌉⌉ ) ,

and for r large enough

N(L, s = σL, r) . min
26C<1/σ

{
C

( 1
1−Cσ ·

r
C

Cσ
1−Cσ ·

r
C

)}
.

IV. SERVER COLLUSIONS

Previous sections assumed that the servers do not communi-
cate with each other in an attempt to deduce more information
about the user’s vector of interest x. In this section, we analyze
the privacy loss from pairs of servers colluding to determine the
record x, and construct a scheme which is particularly resistant
to pairwise server collusion.

In general, we let T ⊆ [N ] be a subset of servers of size t.
The privacy with respect to T = {j1, . . . , jt} is given by

PT =
H(X|qj1 , . . . , qjt)

H(X)
=
H(X|qj1 , . . . , qjt)

L
.

In this section, we study the case of two-server collusions. Re-
member that in our PPR scheme PPR(r, s, Z), when a server
receives a request z, it is possible to deduce that the user’s
record x is any vector which is of distance s from z, that is,
any vector in S(x+ z, r) = {y ∈ FL2 | dH(x+ z, y) = r}. The
next lemma determines the privacy level based upon the size of
the intersection of the support sets of their queries.

Lemma 15. Let (x+ z1, r+ s) and (x+ z2, r+ s) be queries re-
ceived by two colluding servers T = {j1, j2}, where wH(z1) =
wH(z2) = s and | supp(z1)∩supp(z1)| = t. The privacy at these

servers is PT =
log (2(s−t)

s−t )(L−2(s−t)
t )

L . In particular, if σ = s/L,
β = t/s and γ = 1 − β are constants with respect to L, then
PT → 2σγ + (1− 2σγ)H((σβ)/(1− 2σγ)) as L→∞.

Given a fixed number of servers N and a column weight
c < N we build the set Z as a matrix containing all vectors
of length N and weight c as columns. We see that L =

(
N
c

)
and s =

(
N−1
c−1
)
. Hence σ = c/N and any two rows of Z share

a support of size t =
(
N−2
c−2
)

leading to β = (c − 1)/(N − 1).
Applying Lemma 15 shows that when L approaches infinity,
the privacy when two servers collude is

P = 2
c(N − c)

N(N−1)
+

(
1−2

c(N − c)

N(N−1)

)
H

(
c(c− 1)

N(N−1)−2c(N−c)

)
.

V. GENERALIZATION TO OTHER METRICS

The definitions for a private private proximity retrieval
scheme given in Sections I are general for any type of database
and any metric defined on it. Fortunately, other results can be
generalized to other metrics and in particular to metrics which
are based on distance regular graphs (DRG metrics in short).
A metric is called a DRG metric if for any v1, v2 ∈ V such
that d(v1, v2) = k, the number of vertices v ∈ V such that
d(u1, v) = i and d(u2, v) = j is a constant cijk independent
of the choice of u1 and u2. The diameter of the metric, de-
noted by L, is the maximum distance between two elements
in V . Furthermore, let r be the proximity’s radius and s the
search’s radius parameters for the scheme. An immediate re-
sult from this definition is the following result which will be
used in the sequel. It holds for DRG metric as well as other
important metrics like the L1 metric.
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Lemma 16. If d(u1, u2) = k for some u1, u2 ∈ V , then there
exists a vertex v ∈ V such that d(u1, v) = L and d(u2, v) =
L− k.

Lemma 16 does not hold for all metrics and it is essential
for generalizing the proof of Lemma 2 which motivated our
approach. For an element x ∈ V , letWx

s denote the set of words
in V of distance s from x, i.e. Wx

s , {z : d(z, x) = s}.
Lemma 17. For all r, s, L such that L > r + 2s+ 1 and x ∈ V ,
we have

B(x, r) =
⋂

z∈Wx
s

B(z, r + s).

There are many DRG metrics, but the most important and
interesting ones, which can be used for the private proximity
scheme, are the Hamming scheme (over any finite field), the
Johnson scheme, and the Grassmann scheme.

The Johnson scheme J(n,L) consists of all L-subsets of an
n-set. The Johnson distance dJ(x, y) between two L-subsets x
and y is defined by, dJ(x, y) , |x \ y|.

The Grassmann scheme Gq(n,L) consists of all L-subspaces
of an n-space over Fq . The Grassmann distance dG(x, y) be-
tween two L-subspaces x and y is defined by, dG(x, y) , L−
dim(x ∩ y).

For L, r, s, let us denote by Nd(L, r, s) the minimum size
of a set D ⊆ Wx

s such that B(x, r) =
⋂
z∈D B(z, r + s), in a

scheme with distance measure d.
Lemma 18. If L > s(r+3) and d is the Hamming distance, then
Nd(L, r, s) = r + 3.

Lemma 19. If L > s(2r + 3) and d is the Johnson distance or
the Grassmann distance, then Nd(L, r, s) = 2r + 3.

VI. COMPARISON WITH PARALLEL WORK

In this section we compare our scheme with both a trivial
scheme, analogous to the trivial scheme in private information
retrieval of downloading the entire database, and the scheme of
Chen et al. [4].

We compare the three strategies with respect to the achieved
privacy level P , the required storage, the upload cost, and the
download cost. For the present scheme, we only consider the
case where ε = 0, since the other two schemes assume this
condition.

In the trivial scheme, the user uses a single server which is
storing the entire database X . The user simply retrieves the in-
dices of the files in B(z, r) ∩ X for every z ∈ FL2 . In other
words, the user sends 2L queries to a single server, each of
which is a bit string of length L.

The private search scheme of [4] applies not only for balls
in Hamming space, but any set of subsets of a given set. In this
scheme, every server stores 2L vectors of length M . The PIR
scheme requires the user to upload a binary vector of length
2L to each server, and each server responds by transmitting a
vector of length M . For the analysis done in [4] we must have
M � 2L. That is, the database contains an enormous amount
of identical files.

We compare these two schemes with our scheme in Table I.
In summary, our scheme loses to that of [4] in terms of privacy
and download rate, but saves in terms of storage and upload
cost. The download cost, that is, the total amount of downloaded
data for both schemes, is approximately equal. Note lastly that
if L is especially small, then the user is likely better off simply
using the trivial scheme.

Trivial Scheme [4] this work

Privacy P 1 1 ≈ H(s/L)

Storage ML NM2L NML

Upload
Cost

L2L N2L NL

Download
Cost

log2(M) · |X |
r∑

i=0

(L
i

)
NM N log2(M) ·Az

TABLE I: A comparison of the basic performance metrics of
three Private Search schemes, where Az =

∑
z∈FL

2
|B(x+z, r+

s) ∩ X |.
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