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Abstract—Private Information Retrieval (PIR) array codes
were introduced by Fazeli et al. (2015) to reduce the storage
overhead in designing PIR protocols. Blackburn and Etzion
(2017) introduced the (virtual server) rate to quantify the storage
overhead of the codes, and when s > 2 (here, 1

s
is the proportion

of the database storing in one server), they gave a general
construction of PIR array codes with the highest rate known
so far. In this paper, we generalize their construction and reduce
the number of servers, while maintaining the rate. In order to
give PIR array codes with significantly fewer servers, we also
construct classes of codes with a smaller rate s

2s−1
.

I. INTRODUCTION

Chor et al. introduced private information retrieval (PIR)
protocols to preserve the privacy of users when users retrieve
information from a database stored on distributed servers [5].
Recently, Fazelli et al. [6], [7] borrowed coding techniques
from distributed storage and showed that their proposed codes
can be combined with known PIR protocols to reduce the
storage overhead, while preserving privacy and maintaining
low communication complexity [6], [7]. Specifically, suppose
that the database is partitioned into p parts. A PIR code is a
linear code where these p items are encoded into a set of m
servers such that each item has k disjoint recovery sets.

PIR codes were studied in [1], [3], [4], [6], [7], [9]–[11]
with the objective of minimizing the number of servers, and
thus the storage overhead, given fixed values of p and k. Most
of the work about PIR codes in [1], [6], [7], [9] was restricted
to the case that each server stores only one symbol, which
is a linear combination of the p items in the database. In [7],
Fazeli et al. also introduced PIR array codes where each server
may store t symbols, with t > 1. They then showed that it
is possible to reduce the number of servers, and thus storage
overhead, using PIR array codes.

In [3], [4], Blackburn and Etzion studied the virtual server
rate of PIR array codes which is the ratio k/m. For any
positive integers t ≥ 2 and d = p− t, they provided an upper
bound for the virtual server rate, that is, k

m ≤
(2d+1)t+d2

(t+d)(2d+1) .
Their constructions of PIR array codes were considered in
two cases, separated by a rational number s = p

t , where 1
s

denotes the proportion of the database stored in one server. For
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1 < s ≤ 2, they obtained optimal codes reaching the above
bound. For s > 2, they also gave a general construction of
PIR array codes [4, Construction 4] and proved that the codes
constructed were asymptotically optimal. In other words, their
virtual server rate tends to the upper bound s+1

2s when t→∞.
Following the same model, PIR array codes were also

studied by Zhang et al. with the objective of increasing the
virtual server rate [11]. When t > d2−d with d = p−t, Zhang
et al. constructed PIR array codes with the smallest number
of servers with optimal rate. When s > 2, they improved
the upper bound of virtual server rate to d2+2t2+3td+2t

2(t+d)(d+t+1) . For
the lower bound, they gave a construction of codes with
fewer servers by slightly sacrificing the rate. They also proved
that the codes constructed have rate less than that in [4,
Construction 4], but larger than ts+t−1

2ts .
In this paper, we generalize the Blackburn and Etzion’s

construction on PIR array codes to reduce the number of
servers, while keeping the rate. We also show that it is possible
to reduce the number of servers of codes from [4, Construc-
tion 4] with the generalization. Especially, when s = 3, we
obtain a class of PIR array codes with 8t2+5t+1

t

(
3t
t−1
)

servers,
which is significantly fewer than 8t2+5t+1

2t2

(
2t
t−1
)(

3t
t−1
)

and(
3t
t

)(
2t−1
t−1
)
+
(

3t
t−1
)
22t servers from [4], [11] respectively. Our

codes achieve the same rate as [4, Construction 4], however the
number of servers may still be too large for real applications,
especially when t is extremely large. Thus, we also construct
classes of codes with significantly fewer servers and a smaller
rate s

2s−1 when s is small.
The paper is organized as follows. In Section II, we in-

troduce some basic definitions and results as well as the
motivation of our work. In Section III, we show the details of
the construction of PIR array codes with p = st for s > 2 and
the comparisons. In Section IV, we show the constructions of
PIR array codes with rate s

2s−1 when s is small, and conclude
the paper in Section V.

II. PRELIMINARIES

In this section, we define formally PIR array codes and
some other useful definitions. The motivation for our work
and overview on previous results will be given as well. For
integers a ≤ b, let [a, b] = {a, a+1, . . . , b} and for b ≥ 1, let
[b] = [1, b].
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A. Definitions

In a PIR array code, the database is partitioned into p parts,
xi, i ∈ [p], where each part is encoded as a single item. All the
items of the database are encoded into a two dimensional array,
where each column represents the encoded symbols stored in
one of the servers. The formal definition of these codes is
given as follows.

Definition 1 Given positive integers t,m, p and k, a [t×m, p]
k-PIR array code is a t×m array, where each entry is a linear
combination of the p items {x1, . . . , xp} over a certain field F.
Furthermore, for every i ∈ [p], there exist k pairwise disjoint
subsets of columns (called recovering sets) such that the i-th
item xi can be retrieved, by reading encoded symbols from
each column, one copy from each subset.

Assume each server stores at most t symbols. For each
j ∈ [m], let y1,j , y2,j , . . . , yt,j be the encoded symbols stored
in the j-th server, where each yi,j , i ∈ [t], j ∈ [m] is a
linear combination of x1, x2, . . . , xp. We usually write the
code as the matrix C =

(
y1|y2| · · · |ym

)
, where yj =

(y1,j , y2,j , . . . , yt,j)
T , j ∈ [m]. Let C =

(
y1|y2| · · · |ym1

)
and C′ =

(
y′1|y′2| · · · |y′m2

)
be two codes, we define the

concatenation of C and C′ to be the code
(
C|C′

)
=(

y1|y2| · · · |ym1
|y′1|y′2| · · · |y′m2

)
.

The entries of the array which are equal to one item of the
database (that is, not a linear combination of more than one
item) are called singletons. Otherwise, we call them sums. In
particular, if a symbol is just a summation of i items, we call
it a sum of size i.

B. Known Results and the Motivation

PIR array codes were first introduced in [6], [7] to reduce
storage overhead of private information retrieval protocol.
Plenty of bounds and constructions for one-dimensional PIR
code, that is, t = 1, were well studied in [1], [6], [7], [9]. In
this paper, we only focus on the case when t > 1, in which
each server may store more than one symbol.

In [3], [4], PIR array codes were studied with the intention
of maximizing the (virtual server) rate, which is defined to
be the ratio k

m to quantify the storage overhead. For any fixed
positive integer t and rational number s, let g(s, t) be the
largest virtual server rate of any [t ×m, p = st] k-PIR array
code. Another important parameter of PIR array code is the
smallest possible number of servers m, denoted as M(s, t, k),
given t, k and s = p

t . As pointed in [4], these parameters are
closely connected. That is,

g(s =
p

t
, t) = max

k≥1

{
k

M(s, t, k)

}
= max

{
k

m
: there is a [t×m, p] k-PIR array code

}
.

For any integer t ≥ 2, explicit bound of g(s, t) and
constructions of optimal PIR array codes reaching the bound
when 1 < s ≤ 2 were given in [3], [4], [11]. Since we mainly
focus on the case when s > 2 in this paper, we will not

give all the details here. The interested readers may refer to
the references therein. When s > 2, the authors also gave a
general construction as below.

Construction 1 [4, Construction 4] Let s > 1 and t > 1
be integers and p = st. Let ξ1, ξ2, . . . , ξs be positive integers
such that(

p− t
(r − 1)t+ 1

)
ξr =

(
p− t
rt

)
ξr+1 for r ∈ [2, s− 1],

(s− 1)ξ1 =

(
p− t
t

)
ξ2.

(1)

There are s types of servers: types T1,T2, . . . ,Ts.
(i) Servers of type T1 have only singletons. Each t-subset

of {xi : i ∈ [p]} occurs ξ1 times as the entries of a type
T1 server, so there are ξ1

(
p
t

)
servers of type T1.

(ii) Servers of type Tr with r ∈ [2, s] store t− 1 singletons
together with a sum of size of (r − 1)t + 1. Each
possible disjoint pair of a (t−1)-subset (which forms the
singletons), and an ((r− 1)t+1)-subset (which forms a
sum) of {xi : i ∈ [p]}, occurs exactly ξr times. So there
are ξr

(
p
t−1
)(

p−t+1
(r−1)t+1

)
servers of type Tr.

The parameters of codes obtained from Construction 1 are
formulated in the following theorem.

Theorem 2 [4, Theorem 8] Let p, t, s and ξ1, ξ2, . . . , ξs be
integers defined as in Construction 1. There exists a [t×m, p]
k-PIR array code with k = b+ c and k/m = (b+ c)/(b+2c)
where

b = ξ1

(
p− 1

t− 1

)
+
∑

r∈[2,s]

ξr

(
p− 1

t− 2

)(
p− t+ 1

(r − 1)t+ 1

)
and

c =
∑

r∈[s−1]

ξr+1

(
p− 1

t− 1

)(
p− t

rt

)
.

The rate of the code is (β + γ)/(β + 2γ) where

β = ξ1(p− t+ 1) +
∑

r∈[2,s]

(t− 1)ξr

(
p− t+ 1

(r − 1)t+ 1

)
and

γ = (p− t+ 1)
∑

r∈[s−1]

ξr+1

(
p− t

rt

)
.

Construction 1 was also extended to the case when s is a
rational number in [4, Construction 5]. In [11], a construction
of PIR array codes with fewer servers was also provided by
sacrificing slightly the rate. For the completeness of compari-
son, we also present their construction here.

Construction 2 [11] Given any t, s > 2 and p = st.
(i) Firstly, take all t-subsets of {xi : i ∈ [p]}, each

appearing
(
p−t−1
t−1

)
times as the entries of a server, which

contains only singletons.
(ii) A server with t− 1 singletons and a sum of size j out of

the remaining p− t+ 1 items is called a server of type
j. Secondly, take all those servers of types t+ 1, t+ 2,
. . . , p− t+ 1, each appearing exactly once.
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Theorem 3 [11, Theorem 16] Given any t, s > 2 and
p = st, there exists a [t × m, p] k-PIR array code with
k = p+t

2p

(
p
t

)(
p−t−1
t−1

)
+ p+t−1

2p

(
p
t−1
)∑

t+1≤j≤p−t+1

(
p−t+1
j

)
and m =

(
p
t

)(
p−t−1
t−1

)
+
(
p
t−1
)∑

t+1≤j≤p−t+1

(
p−t+1
j

)
.

In [11], the authors also showed that the rate of the code
in Theorem 3 is less than that from Theorem 2, but larger
than ts+t−1

2ts . Therefore, the codes from these two constructions
are all asymptotically optimal when t → ∞ because of the
following upper bound.

Theorem 4 [4, Theorem 3] For each rational number s > 1,
g(s) = limt→∞g(s, t) ≤ s+1

2s . There is no t such that g(s, t) =
s+1
2s .

C. Main Results and Our Contributions

In this paper, we will give a generalization of Blackburn
and Etzion’s construction for PIR array codes when s > 2
to reduce the number of servers, while keeping the rate. We
will only focus on the case when s is an integer. By giving
examples for comparison, we show that it is possible to reduce
the number of servers of codes from [4, Construction 4] by
the generalization. Especially, when s = 3, we obtain a class
of code with 8t2+5t+1

t

(
3t
t−1
)

servers, which are much fewer
than 8t2+5t+1

2t2

(
2t
t−1
)(

3t
t−1
)

and
(
3t
t

)(
2t−1
t−1
)
+
(

3t
t−1
)
22t from [4],

[11] respectively. In the end, to construct PIR array codes with
significantly fewer servers, we will also give classes of codes
with a smaller rate s

2s−1 when s is small.

III. A GENERALIZATION OF BLACKBURN-ETZION
CONSTRUCTION FOR PIR ARRAY CODES WHEN s > 2

In this section, we will give our main construction and show
the improvement compared to Construction 1. We only focus
on the case when s = p/t > 2 is an integer.

A. The Main Construction

We first let αr for r ∈ [s−1] be some s−1 positive integers
that satisfy the following s− 2 equations:

αr−1

(
p

(r − 1)t+ 1

)
= αr

(
p

rt

)
for r ∈ [2, s− 1]. (2)

For any given t and s, we will give a general construction
of [t ×m, p = st] k-PIR array codes in which m and k are
functions of αr, r ∈ [s−1] satisfying (2). And we will provide
explicit choices of the values of αr’s later.

Now, we define some multisets Tr, r ∈ [2, s] and Sr, r ∈
[s− 1] whose elements are subsets of [p]. More precisely, we
define that
• Tr for any r ∈ [2, s], consists of all the ((r − 1)t + 1)-

subsets of [p], each appearing αr−1 times, and
• Sr for any r ∈ [s− 1] consists of all the (rt)-subsets of

[p], each appearing αr times.
Therefore, we see that |Tr| = αr−1

(
p

(r−1)t+1

)
for r ∈ [2, s]

and |Sr| = αr
(
p
rt

)
for r ∈ [s − 1], and according to (2),

|Tr| = |Sr| for all r ∈ [2, s− 1].

For each r ∈ [2, s− 1], we construct a bipartite graph Gr =
(Tr,Sr, E) such that the disjoint sets of vertices are Tr and
Sr, and there is an edge e ∈ E between T ∈ Tr and S ∈ Sr
if and only if T ⊆ S. It is well known that if a bipartite
graph is regular, it has a perfect matching, which is a set of
edges containing all the vertices of the graph exactly once. For
example, it can be derived from Hall’s theorem in [8]. Since
each bipartite graph Gr is regular, it has a perfect matching.
We are now ready to present our main construction.

Construction 3 For any integers t ≥ 2, s ≥ 3, assume Tr,
for r ∈ [2, s] and αr, Sr, for r ∈ [s−1] are defined as above.
We construct the code C =

(
C1|C2| · · · |Cs

)
, in which Cr for

r ∈ [s] are defined as below:
(i) Each column of C1 corresponds to an element S ∈ S1,

and consists of t singletons {xi : i ∈ S}.
(ii) For each r ∈ [2, s − 1], we construct the code Cr

according to the perfect matching of the bipartite graph
Gr. For any edge (T, S) in the perfect matching of Gr
with T ∈ Tr and S ∈ Sr, we construct a column of
Cr by storing the sum

∑
i∈T xi and t− 1 singletons xj ,

j ∈ S \ T .
(iii) Each column of Cs corresponds to an element T ∈ Ts,

and consists of the sum
∑
i∈T xi and t − 1 singletons

xj , j ∈ [p] \ T .

We can see that in the code C, each server in Cr, r ∈ [s]
stores t symbols, and |C1| = α1

(
p
t

)
, |Cr| = αr−1

(
p

(r−1)t+1

)
for r ∈ [2, s]. We present the parameters of codes obtained
from Construction 3 in the following theorem.

Theorem 5 The code C is a [t×m, p = st] k-PIR array code,
where

m = α1

(
p

t

)
+
∑

r∈[2,s]

αr−1

(
p

(r − 1)t+ 1

)
,

k = m−
∑

r∈[s−1]

αr

(
p− 1

rt

)
.

Proof: The value of m is straightforward from the con-
struction. Because of the symmetry of xi, i ∈ [p], we only
need to check that x1 has k recovering sets.

Each server that contains x1 as a singleton forms a recov-
ering set. Furthermore, for each r ∈ [2, s], the servers in
Cr that contain x1 in a sum and the servers in Cr−1 that
do not contain x1 also form recovering sets. More precisely,
for any ((r−1)t)-subset {xi1 , xi2 , · · · , xi(r−1)t

} that does not
contain x1, there exist αr−1 servers in Cr that contain the sum
x1 + xi1 + · · ·+ xi(r−1)t

, and there also exist αr−1 servers in
Cr−1 that contain all the (r−1)t items {xi1 , xi2 , · · · , xi(r−1)t

}
either as a singleton or in a sum, but not x1, and thus they
form αr−1 recovering sets. This is to say, any server that either
contains x1 as a singleton or in a sum provides exactly one
recovering set of x1.

Note that, the number of servers in Cr, r ∈ [s − 1] that
neither contain x1 in a sum nor as a singleton is αr

(
p−1
rt

)
.

Therefore, we have k = m−
∑
r∈[s−1] αr

(
p−1
rt

)
.
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B. The Connection with Construction 1

In this part, we show that Construction 3 is indeed a
generalization of Construction 1. We denote the PIR array
code obtained from Construction 1 by T, then we have:

Proposition 6 For any positive integers t ≥ 2, s ≥ 3 and
ξ1, ξ2, . . . , ξs satisfying (1), the code T can be obtained from
Construction 3 by taking

αr = ξr+1

(
p− rt− 1

t− 1

)
for r ∈ [s− 1]. (3)

Proof: At first, we can check that given any ξr’s, r ∈ [s]
satisfying (1), the αr’s, r ∈ [s−1] obtained from (3) also sat-
isfy (2). Now, we show how to obtain T from Construction 3.

In Construction 3, for r ∈ [2, s− 1], we define the multiset

Sr ={S1 ∪ S2 : S1 and S2 are all possible disjoint pairs of
a (t− 1)-subset and an ((r − 1)t+ 1)-subset of [p],
and each pair appears ξr times}.

Then for each S ∈ Sr, |S| = rt, and each (rt)-subset of [p]
appears exactly

(
rt
t−1
)
ξr times in Sr. Take Tr to be the multiset

containing all the ((r−1)t+1)-subsets S2 ∈ S ∈ Sr. Finally,
Cr in C corresponds to servers of type Tr in T for r ∈ [s]
respectively, and αr =

(
rt
t−1
)
ξr = ξr+1

(
p−rt−1
t−1

)
.

It was pointed in [4] that for any fixed s, t, the rate of T does
not depend on the choices of ξr’s, since all possible solutions
of {ξr : r ∈ [s]} are all equal up to a scalar multiple. The
codes from Construction 3 also have this property.

Corollary 7 For any fixed s, t, the PIR array codes obtained
from Construction 3 have the same rate as the codes from
Construction 1, and therefore they are asymptotically optimal
as t→∞.

Proof: By (2), any two distinct choices of {αr : r ∈
[s − 1]} only differ by a rational factor. Thus, the rate of C
in Theorem 5 does not depend on the choice of αr’s. Since
there is a choice of αr’s that gives the code T, the rate of C
is always the same as T for given s and t.

C. The Choices of αr’s

In this subsection, we present several choices of the values
of αr’s, and show that there exist some parameters of codes
that cannot be achieved by Construction 1.

Firstly, by (2) we have αr−1
(

p
(r−1)t+1

)
= αr

(
p
rt

)
for

r ∈ [2, s − 1], that is, αr−1

αr
=

( p
rt)

( p
(r−1)t+1)

=
(p−rt+t−1

t−1 )
( rt
t−1)

, and

therefore, the first choice is to take

α1 =
∏

i∈[2,s−1]

(
p− it+ t− 1

t− 1

)
,

αr =
∏
i∈[2,r]

(
it

t− 1

) ∏
j∈[r+1,s−1]

(
p− jt+ t− 1

t− 1

)
for any r ∈ [2, s− 1].

(4)

It is straightforward to check that this choice of αr’s satisfy
(2). Actually, the codes obtained from this choice of αr’s can
also be obtained from Construction 1 because

(
p−rt−1
t−1

)
| αr

for r ∈ [s − 1] and we can get corresponding ξr by Proposi-
tion 6.

Note that if αr’s r ∈ [s − 1] have some common divisor,
we can always divide them by the common divisor to get
smaller αr’s, and thus smaller k and m. Since we are interested
in smaller αr’s, we divide the αr’s in (4) by the common

divisor

∏
i∈[b s

2c+1,s−1] (
p−it+t−1

t−1 )∏
j∈[2,d s

2e](jt−t+1) and get the formulas in (5).

In the following examples, we will show that it is possible to
reduce the number of servers of codes from Construction 1 by
Construction 3.

Example 8 When s = 3, in [4], the authors took
(ξ1, ξ2, ξ3) = (

(
2t−1
t−1
)
, 1,
(

2t
t−1
)
) to get a [t × m, 3t] k-PIR

array code with k = 16t2+7t+1
24t2+15t+3m and

m = ξ1

(
3t

t

)
+ ξ2

(
3t

t− 1

)(
2t+ 1

t+ 1

)
+ ξ3

(
3t

t− 1

)

=
8t2 + 5t+ 1

2t2

(
2t

t− 1

)(
3t

t− 1

)
.

Since α1

α2
=
(
3t
2t

)
/
(

3t
t+1

)
= t+1

2t , we can take (α1, α2) = (t+
1, 2t), and get a [t×m, 3t] k-PIR array code by Construction 3
with the same rate and

m = α1

(3t
t

)
+ α1

( 3t

t+ 1

)
+ α2

( 3t

2t+ 1

)
=

8t2 + 5t+ 1

t

( 3t

t− 1

)
.

We can see when t = 2, a [2×129, 6] 79-PIR array code can
be obtained from both constructions, but when t > 2, the codes
obtained from the second construction cannot be achieved by
the first one.

Example 9 When (s, t) = (4, 2), it was shown in [4] that, by
taking (ξ1, ξ2, ξ3, ξ4) = (15, 3, 4, 24), a [2×2124, 8] 1221-PIR
array code was obtained. By (5), we can take (α1, α2, α3) =
(15, 12, 24) and get the same parameters of code as in [4].
However, since αi’s have a common divisor three, we can
further take (α1, α2, α3) = (5, 4, 8) and get a [2 × 708, 8]
407-PIR array code by Theorem 5. Note that, 407 and 708
are coprime, and thus are the smallest k and m of [2×m, 8]
k-PIR array codes that reach the same rate.

From Examples 8 and 9, we can see that when s is odd,
it is possible to reduce the value of k and m in Construc-
tion 1 significantly. However, when s is even, Construction 3
maybe cannot reduce k and m significantly. This is because
when s is odd by Proposition 6, if Constructions 1 and 3
coincide, then α s−1

2
= ξ s+1

2

( s+1
2 t−1
t−1

)
. But by (5), we have

α s−1
2

=
∏
i∈[2, s−1

2 ]
(
it
t−1
)∏

u∈[2, s+1
2 ](ut− t+ 1), which may

not contain all the factors in
( s+1

2 t−1
t−1

)
.
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αr =
∏
i∈[2,r]

(
it

t− 1

) ∏
j∈[r+1,b s

2c]

(
p− jt+ t− 1

t− 1

) ∏
u∈[2,d s

2e]
(ut− t+ 1) for any r ∈

[⌊s
2

⌋]
,

αr =
∏

i∈[2,s−r]

(
it

t− 1

) ∏
j∈[d s

2e+1,r]

(
jt

t− 1

) ∏
u∈[2,s−r]

(ut− t+ 1)
∏

v∈[s−r+1,d s
2e]

(vt) for any r ∈
[⌊s

2

⌋
+ 1, s− 1

]
.

(5)

IV. CLASSES OF PIR ARRAY CODES WITH RATE s
2s−1

In Section III, we generalized Blackburn and Etzion’s
construction to reduce the number of servers while keeping
the rate. However, the number of servers may still be large for
real applications. For example, when (s, t) = (3, 2), we get
a [2 × m, 6] k-PIR array code with (k,m) = (79, 129) (see
Example 8), which are the smallest k and m of codes that
reach the same rate. Thus, it will be interesting to construct
PIR array codes with significantly fewer servers by decreasing
the rate by a small value. This is our main target in this section.

For any integers t ≥ 2, a class of [t×m, p = t(t+1)] k-PIR
array codes with k =

(
p
t

)
, m =

(
p
t

)
+
(
p
t+1

)
/t was given in

[7, Theorem 20]. The codes have only two types of servers:
servers with t singletons, and servers with t sums of size t+1.
We give a generalization of this construction first.

Construction 4 For any integers s, t with s ≤ t+1 and p =
st, we construct the code C as follows.

(i) Take all t-subsets of {xi : i ∈ [p]}, each appearing(
t

t−s+1

)
times as the entries of a server, which contains

only singletons.
(ii) All the s-subsets of [p] can be separated into

(
p−1
s−1
)

partitions of all the elements in [p]1. For each partition
B, there exist exactly

(
p−s
t−s+1

)
servers consisting of the t

sums {
∑
i∈B xi : B ∈ B}.

Theorem 10 For any integers s, t with s ≤ t+1, the code C
is a [t×m, p = st] k-PIR array code, where k =

(
t

t−s+1

)(
p
t

)
,

m =
(

t
t−s+1

)(
p
t

)
+
(
p−s
t−s+1

)(
p−1
s−1
)

and rate k/m = s
2s−1 .

Theorem 10 can also be proved with the existence of perfect
matching of regular bipartite graphs as in Theorem 5. However
the proof is omitted here due to the lack of space. Now, we
show a simple technique to obtain codes with large item sets
from small ones.

Proposition 11 For any integers s, t with s ≤ t+1, let t0 be
an integer such that s ≤ t0 + 1 and t0 | t. Then there exists
a [t ×m, p = st] k-PIR array code with k =

(
t0

t0−s+1

)(
st0
t0

)
,

m =
(

t0
t0−s+1

)(
st0
t0

)
+
(
st0−s
t0−s+1

)(
st0−1
s−1

)
and rate k/m = s

2s−1 .

Proof: Let C1,C2, · · · ,Ct/t0 be the t/t0 copies of the
[t0 ×m, st0] k-PIR array code from Theorem 10 on disjoint

item sets. Then the code

 C1

...
Ct/t0

 is the desired code.

1The partitions of all the s-subsets of [p] are also called a 1-factorization,
and exist if and only if s | p, which was proved in [2].

Example 12 Take s = 3 and t0 ∈ {2, 3} in Proposition 11.
Then for any t ≡ 0 (mod 2), we obtain a [t× 25, 3t] 15-PIR
array code; for any t ≡ 0 (mod 3), we also obtain a [t ×
420, 3t] 252-PIR array code. However, the rate 3

5 may be a bit
small compared to the upper bound 2

3 from Theorem 4. Thus,
finding constructions of PIR array codes with both reasonable
number of servers and good rate will still be an interesting
goal in our future work.

In particular, taking t0 = s−1 in Proposition 11, we obtain
a [t ×m, p = st] k-PIR array code with k =

(
s(s−1)
s−1

)
, m =(

s(s−1)
s−1

)
+
(
s(s−1)−1
s−1

)
and rate s

2s−1 when t ≡ 0 (mod s−1).

V. CONCLUSION

In this paper, we gave a generalization of PIR array codes
constructed by Blackburn and Etzion in [3], [4] for p = st
when s > 2 is an integer, and obtained PIR array codes with
the same rate but fewer servers. To further decrease the number
of servers, we also gave classes of codes with rate s

2s−1 .
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