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Abstract—In this work, we propose and study a new class
of non-binary rewriting codes, called write `-step-up memo-
ries (W`M) codes. From an information-theoretic point of view,
this coding scheme is a generalization of non-binary write-once
memories (WOM) codes. From a practical point of view, this
coding scheme can be used not only to increase the lifetime of
flash memories but also mitigate their over-shooting problem.
We first provide an exact formula for the capacity region and
the maximum sum-rate of W`M codes. Lastly, we present sev-
eral explicit constructions of high-rate W`M codes with efficient
encoding/decoding algorithms.

I. INTRODUCTION

Write-once memory (WOM) is a binary information storage
medium where the state of each cell can be changed from 0 to
1 but not vice versa. In 1982, Rivest and Shamir [1] studied a
coding scheme to reuse write-once memory which is known in
literature as WOM codes. Later, Fiat and Shamir [2] studied a
coding scheme for generalized write-once memory where each
cell has q levels that can only be increased. This coding scheme
is called non-binary WOM codes. In the 1980’s and 1990’s, a
few different models of WOM codes were studied due to its
beauty from an information-theoretical point of view and its
applications in punch cards and optical disks [2]–[6]. Further-
more, there are several versions of WOM codes, including write
uni-directional memory [7], write isolated memory [8], and de-
fective channel [9], [10]. Recently, WOM codes have gained
significant attention thanks to their applications in flash mem-
ories [11]–[17].

Flash memory, invented in 1984 by Masuoka [18], has be-
come a popular non-volatile storage technology due to its high
capacity, low power consumption, and low cost. However, flash
memory still faces several major challenges such as limited
lifetime and noisy programming. The fundamental data storage
element in flash memories is a floating-gate (FG) transistor,
known as a cell. In a single level cell (SLC), each cell has
two levels and thus is able to store a single bit, and in a mul-
tilevel cell (MLC), each cell has q > 2 levels and is able to
store log2 q bits. While it is possible to increase a cell level by
injecting an appropriate charge amount into the cell, it is im-
possible to decrease a cell level without first erasing a whole
block of cells. This erasure operation is not only expensive in
terms of time but also reduces the lifetime of flash memories.
Each block of cells in a flash memory can be erased a limited
number of times. To improve the lifetime of flash memory, it is
possible to use WOM codes to write multiple messages before
the whole block is erased.
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On top the limited lifetime of flash memory, it is also chal-
lenging to precisely program the cells. One of the main obsta-
cles in achieving accurate programming is over-shooting. When
a large amount of charge is injected into a cell, it may be over
charged than necessary and thus an error occurs. One approach
to overcome this difficulty is by using coding schemes such
as asymmetric error-correcting codes [19] and rank-modulation
codes [20].

The goal of this paper is to initiate the study of a coding
scheme which combats both limited-endurance and overshoot-
ing in flash memory. One approach to meet this challenge is by
using error-correcting codes together with WOM codes as was
studied in [12], [21], [22]. However, in order to directly reduce
the over-shooting problem, this work proposes to use a gen-
eralization of non-binary WOM codes where each cell has q
levels that can only be increased by at most some ` < q levels.
These codes are called write `-step-up memories (W`M) codes.
Similarly to WOM codes, there are four models of W`M codes
which depend upon whether the encoder and the decoder are
informed or uninformed with the previous state of the mem-
ory [3] and each model can be investigated in two cases: ε-error
and zero-error. In this paper, we focus on the more practical
model where the encoder is informed and the decoder is unin-
formed for the zero-error case. Although this paper is the first
to study W`M codes, there are several closely related mod-
els such as codes for endurance-limited memories (ELM) [23]
and write-constrained memories (WCM) codes [24]. Results on
the exact capacity region and the maximum sum-rate of W`M
codes in some cases can be accomplished using known tech-
niques. However, we are not aware of any explicit construction
of high-rate W`M codes in the literature. Before we present
these results, we introduce some necessary notations and defi-
nitions.

A. Notations and Definitions
In this section, we define W`M codes formally and present

several related definitions that will be used throughout the pa-
per. For a positive integer a, the set {0, . . . , a − 1} is defined
by [a]. A vector c ∈ [q]n will be called a cell-state vector.
The complement of a binary vector c is denoted by c. That
is c + c = 1, where 1 is the all ones vector. For two vectors
x = (x1, . . . , xn) and y = (y1, . . . , yn), x > y if and only
if xi > yi for all 1 6 i 6 n. The vector c = max{x,y}
is defined by ci = max{xi, yi} for all 1 6 i 6 n. A vector
p = (p1, . . . , pn) is called a probability vector if 0 6 pi 6 1
for all 1 6 i 6 n and

∑n
i=1 pi = 1. Unless stated other-

wise, all logarithms in this paper are taken according to base
2. For each probability vector p, we define the entropy function
H(p) = −

∑n
i=1 pi log pi. When n = 2 and p = (1−p, p), the
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entropy function is h(p) = −p log p − (1 − p) log(1 − p). We
first recall the definition of non-binary WOM codes.

Definition 1. An [n, t;M1, . . . ,Mt]q q-ary t-write WOM code
is a coding scheme comprising of q-ary cells and is defined by t
pairs of encoding and decoding maps Ej and Dj for 1 6 j 6 t.
For the map Ej , its image is Im(Ej) for 1 6 j 6 t. By defini-
tion, Im(E0) = {(0, . . . , 0)}. For 1 6 j 6 t, the encoding and
decoding maps are defined as follows.
(1)

Ej : [Mj ]× Im(Ej−1) 7→ [q − 1]n,

such that for all (m, c) ∈ [Mj ] × Im(Ej−1) it holds that
Ej(m, c) > c.

(2)
Dj : Im(Ej) 7→ [Mj ],

such thatDj(Ej(m, c))=m for all (m, c)∈ [Mj ]× [q−1]n.

Next, q-ary t-write W`M codes are defined.

Definition 2. An [n, t, `;M1, . . . ,Mt]q q-ary t-write W`M code
is a coding scheme comprising of q-ary cells and is defined by t
pairs of encoding and decoding maps Ej and Dj for 1 6 j 6 t.
For the map Ej , its image is Im(Ej) for 1 6 j 6 t. By defini-
tion, Im(E0) = {(0, . . . , 0)}. For 1 6 j 6 t, the encoding and
decoding maps are defined as follows.
(1)

Ej : [Mj ]× Im(Ej−1) 7→ [q − 1]n,

such that for all (m, c) ∈ [Mj ] × Im(Ej−1) it holds that
c′ = (c′1, . . . , c

′
n) = Ej(m, c), where c′i − ci ∈ [`] for all

1 6 i 6 n.
(2)

Dj : Im(Ej) 7→ [Mj ],

such thatDj(Ej(m, c))=m for all (m, c)∈ [Mj ]× [q−1]n.

The following definitions apply both for WOM and W`M
codes. The rate on the j-th write is the ratio between the
number of written bits and the number of cells, that is,
Rj =

logMj

n . The sum-rate is the sum of all rates on t writes,
that is, Rsum =

∑t
j=1Rj . In q-ary t-writes W`M code, a rate

tuple (R1, . . . , Rt) is said to be achievable if for any ε > 0,
there exists an [n, t, `;M1, . . . ,Mt]q q-ary t-write W`M code
such that Rj − ε 6 logMj

n for all 1 6 j 6 t. The capacity re-
gion of q-ary t-writes W`M is the set of all achievable rate
tuples and is denoted by Cq,t,`, and the maximum sum-rate is
denoted by Rq,t,`.

From the definitions above, we observe that WOM codes are
a special case of W`M codes when ` = q − 1. There are sev-
eral more known families of codes in the literature which are
closely related to W`M code and are reviewed next.

B. Related Work
First, we recall that the proposed W`M codes are a gener-

alization of non-binary WOM codes where every increase in
cell level is at most some value `. Gabrys et al. [25] studied
a relevant model where every cell level increase is at least `.
W`M codes are also closely related to the recently studied en-
durance limited (ELM) codes [23]. In ELM, each cell has two
states which can be changed at most some b times. For every
cell, its count-vector is a vector which indicates the number of
times each cell changed its state. When a cell changes its state

in ELM, the corresponding coordinate in the count-vector is in-
creased by one. Hence, this count-vector is similar to a word
in W`M code for ` = 1. Yet, these codes are still not iden-
tical and furthermore the count-vector is not always available
in ELM. There are a few different models in ELM which de-
pend upon whether the encoder and decoder are informed or
uninformed. For the formal definitions of these models, we re-
fer to the reference [23]. Let CEIA:DI

t,q−1 and CEIA:DU
t,q−1 be the

capacity region of (q − 1)-change t-write ELM codes in the
EIA : DI and EIA : DU model, respectively. According to
these definitions, we can already obtain the following result on
the capacity region of q-ary t-write W`M code with ` = 1.

Proposition 3. CEIA:DI
t,q−1 ⊆ Cq,t,1 ⊆ CEIA:DU

t,q−1 .

Furthermore, it is known from [23] that CEIA:DI
t,q−1 =

CEIA:DU
t,q−1 = Ĉt,q−1, where the region Ĉt,q−1 is defined

recursively as follows.
Ĉt,q−1=

{
(R1, . . . , Rt)|R1 6 h(p), p ∈ [0, 1],

for 2 6 j 6 t, Rj 6 p ·R′j + (1− p) ·R′′j ,

(R′2, . . . , R
′
t) ∈ Ĉt−1,q−2 and (R′′2 , . . . , R

′′
t )∈Ĉt−1,q−1

}
,

where Ĉt,0 = ∅, and for all q − 1 > t > 1, we set Ĉt,q−1 =

Ĉt,t = [0, 1]t. Therefore, for q-ary t-write W`M when ` = 1,
the capacity region is Cq,t,1 = Ĉt,q−1 and the maximum sum-
rate is Rq,t,1 = log

∑q−1
i=0

(
t
i

)
, [23].

Recently, Kobayashi et al. [24] studied a coding scheme for
write-constrained memories (WCM) which is a WOM code
with costs on the state-transitions. In this coding scheme, each
cell-state transition from level i to level j has a cost, denoted
by c(i → j). Using this notation, if we assign c(i → j) = 1
for j − i ∈ [`] and c(i → j) = ∞ otherwise, then we can ob-
tain W`M codes. The work of [24] extended the results of Fu
and Vinck [6] to obtain the capacity region of WCM codes.
However, it is not possible to explicitly derive the capacity re-
gion Cq,t,` using the expression from [24] and constructing
explicit capacity-achieving codes still remains an interesting
challenge which is addressed in the paper.

II. THE CAPACITY OF q-ARY W`M
In this section, we present the capacity region and the maxi-

mum sum-rate of W`M codes. The following rate tuples region
is defined recursively,

Ĉq,t,` =
{
(R1, . . . , Rt)|p = (p0, . . . , p`) is a probability vector

R1 6 h(p), for 2 6 j 6 t, Rj 6
∑̀
i=0

pi ·Ri
j ,

(Ri
2, . . . , R

i
t) ∈ Ĉt−1,q−1−i,` for 0 6 i 6 `

}
.

The next theorem establishes our result on the capacity of
W`M. The proof will appear in the long version of the paper.

Theorem 4. For all q, t, `, Cq,t,` = Ĉq,t,`.

According to the result in Theorem 4, the maximum sum-
rate of q-ary t-write W`M codes is derived. For all t, q, and `,
let

B(q, t, `) =
∑

(i1,...,i`):
∑`

j=1 j·ij6q−1

(
t

(t−
∑`

j=1 ij), i1, . . . , i`

)
.
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Theorem 5. For all t, q, and `,Rq,t,` = logB(q, t, `).

Proof: Let Bq,t,` be the set of all length-t vectors in [`+1]t

such that their Lee-weight is at most q − 1, that is,

Bq,t,` =

{
x = (x1, . . . , xt)|0 6 xi 6 ` and

t∑
i=0

xi 6 q − 1

}
.

The size of the set Bq,t,` is

|Bq,t,`| = B(q, t, `) =
∑

(i1,...,i`):
∑`

j=1 j·ij6q−1

(
t

(t−
∑`

j=1 ij), i1, . . . , i`

)
.

To prove the theorem, we first show that Rq,t,` 6 logB(q, t, `)
by using the size of Bq,t,`. Let C be an [n, t, `;M1, . . . ,Mt]q
q-ary t-write W`M code. For any vector of t messages
(m1, . . . ,mt) ∈ [M1]× · · · × [Mt] that is written to the mem-
ory using the code C, we assign a t×n matrix Am1,...,mt such
that every row in the matrix is the increase in the levels of
all n cells. Note that every entry in the array is an integer in
[`+1]. Moreover, the sum of all entries in each column of the
array is at most q − 1 since the highest level of each cell is
q − 1. Hence, every column in Am1,...,mt is a vector in Bq,t,`.
Hence, there are at most B(q, t, `)n distinct possible arrays,
so we deduce that Rq,t,` 6 logB(q, t, `).

Next, it is shown that this upper bound is tight, that is, there
is a W`M code whose sum-rate achieves the upper bound. The
proof holds by induction. It is straightforward to verify that it
holds for t = 1. Assume that it holds for t− 1 and its correct-
ness will be proved for t. From Theorem 4 and the induction
assumption, there exists a W`M code of sum-rate approaching

t∑
j=1

Rj = h(p) +

t∑
j=1

∑̀
i=0

pi ·Ri
j

=
∑̀
i=0

(pi · log 1/pi) +
∑̀
i=0

pi · Rq−i,t−1,`

=
∑̀
i=0

pi · (log 1/pi + logB(q − 1− i, t− 1, `)).

By choosing

pi =
B(q − i, t− 1, `)

B(q, t, `)

we get

(log 1/pi + logB(q − i, t− 1, `)) = logB(q, t, `)

for all 0 6 i 6 `. Hence,
t∑

j=1

Rj =
∑̀
i=0

pi · logB(q, t, `) = logB(q, t, `),

and the theorem is proven.

Remark 1. q-ary WOM codes could be viewed as a special case
of q-ary W`M codes when ` = q − 1. However, when ` = 1,
each time the cells are updated in W`M, we only write a binary
vector. In the case ` = 1, we observe that the maximum sum-
rate of q-ary t-write W`M codes is Rq,t,1 ≈ (q− 1) log(t+1)
when t� q. Comparing to the maximum sum-rate of binary t-
write WOM codes, which is log(t+1), Rq,t,1 is (q− 1) times
larger. Furthermore, the maximum sum-rate of q-ary t-write
WOM codes is log

(
q−1+t
q−1

)
. We observe that log

(
q−1+t
q−1

)
≈

(q − 1) log(t+ q − 1) ≈ Rq,t,1 when q is given and t tends to
infinity.

III. CONSTRUCTIONS

In this section, we present constructions of q-ary t-write
W`M codes. We study here the case of q = 3, t = 3 and ` = 1,
while the extension to other parameters is left for future work.
The weight of a binary vector x = (x1, . . . , xn) ∈ [2]n is de-
fined to be w(x) =

∑n
i=1 xi and its support set is denoted by

supp(x).
Let us first remind the definition of the convergence rate of

rewriting codes, as was defined in [17]. The convergence rate
of a construction of rewriting codes is the minimum length n(ε)
in order to be ε-close to a rate tuple (R1, . . . , Rt) or a sum-rate
R. More specifically, it is said that a construction approaches
the rate tuple or sum-rate with polynomial, exponential rate if
n(ε) is polynomial, exponential in 1/ε, respectively.

Next, a special family of two-write binary WOM code, called
high-weight two-write binary WOM code, is presented and will
be used in our construction.

Definition 6. An [n, 2;M1,M2]2 (w1, w2)-high-weight two-
write binary WOM code is a coding scheme comprising of n
binary bits. It consists of two pairs of encoding and decoding
maps (E1,D1) and (E2,D2) which are defined as follows:
(1) E1 : [M1] 7→ [2]n and D1 : Im(Eq,1) 7→ [M1] such that

for all m1 ∈ [M1], it holds that E1(m1) = c ∈ [2]n and
w(c) = w1. Furthermore, D1(E1(m1)) = m1.

(2) E2 : [M2] × Im(E1) 7→ [2]n and D2 : Im(E2) 7→ [M2]
such that for all (m2, c) ∈ [M2] × Im(E1), it holds that
E2(m2, c) = c′ > c and w(c′) > w2. Furthermore,
D2(E2(m2, c)) = m2.

In a similar way, (w1, w2)-constant-weight two-write binary
WOM codes are defined if on the second write, w(c′) = w2.
Without the weight constraint on the two writes, we obtain the
classical two-write binary WOM codes.

For w1 = (1 − p1) · n and w2 = (1 − p1p2) · n, where
0 6 p1, p2 6 1, it is possible to show that a rate tuple (R1, R2),
where R1 = h(p1) and R2 = p1 · h(p2), is achievable. For ex-
ample, a deterministic construction of these codes can be ob-
tained using Shpilka’s techniques [14], however with exponen-
tial convergence rate. This technique can also be extended for
constant-weight two-write binary WOM codes with the same
convergence rate.

High-weight two-write binary WOM codes will be an im-
portant component code in the following construction of three-
write ternary W`M code with ` = 1.

Construction 7. Given p1, p2 ∈ [0, 1], assume the following
codes exist:
• Let C1(p1) be an [n, 2,M1,p1

,M2,p1
]2 two-write binary

WOM code such that on the first write w(c) = p1 · n. The
two pairs of encoding/decoding maps are (E1,p1

,D1,p1
)

and (E2,p1
,D2,p1

).
• Let C2(p1, p2) be an [n, 2,Mhr

1,p2
,Mhr

2,p2
]2 (w1, w2)-high-

weight two-write binary WOM code such that w1 = (1 −
p1) · n and w2 = (1 − p1p2) · n. The two pairs of encod-
ing/decoding maps are (Ehr1,p2

,Dhr
1,p2

) and (Ehr2,p2
,Dhr

2,p2
).

The proposed [n, 3, 1;M1,M2,M3]3 three-write ternary
W`M code is defined using the three pairs of encoding/decoding
maps as follows.
• First write: The idea is to encode a message as a codeword

of length n with weight w1 = p1 · n. Hence, the pair of en-
coder/decoder on the first write of three-write ternary W`M
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code is the same as the pair of encoder/decoder on the first
write of two-write binary WOM code. That is, (E1,D1) =
(E1,p1 ,D1,p1). So,M1 =M1,p1 and the rate isR1 = h(p1).

• Second write: Let c1 = (c1,1, c1,2, . . . , c1,n) be the
cell-state vector after the first write and c1 = c′1 =
(c′1,1, . . . , c

′
1,n) be its complement.

Let M2 = M2,p1
· Mhr

2,p2
. For each m2 ∈ [M2], we can

determine the unique pair (m2,p1 ,m
′
2,p2

) such thatm2,p1 ∈
[M2, p1] and m′2,p2

∈ [Mhr
2,p2

]. Now, we are ready to define
the encoder

E2 : [M2]× Im(E1)→ [3]n

on the second write. For each (m2, c1) ∈ [M2] × Im(E1),
we can determine E2(m2, c1) = c2 = (c2,1, c2,2, . . . , c2,n)
in two steps as follows.

– Step 1: Let c1 be the input to the encoder E2,p1 of
the two-write binary WOM code C1(p1). For each
m2,p1

∈ [M2, p1], we obtain E2,p1
(m2,p1

, c) = x =
(x1, . . . , xn).
For 1 6 i 6 n, if c1,i = 0 then c2,i = xi.

– Step 2: Let c′1 be the input of the encoder Ehr2,p2
of

(w1, w2)-high-weight two-write binary WOM code
C2(p1, p2). For each m′2,p2

∈ [Mhr
2,p2

], we obtain
Ehr2,p2

(m′2,p2
, c′1) = y′ = (y′1, . . . , y

′
n) ∈ [2]n. We de-

termine the vector y = (y1, . . . , yn) ∈ [3]n as follows.
For all 1 6 i 6 n, yi = 0 if c′1,i = y′i = 1, yi = 2 if
c′1,i = y′i = 0, and yi = 1 otherwise.
For 1 6 i 6 n, if c1,i = 1 then c2,i = yi.

We define the decoder

D2 : Im(E2)→ [M2]

on the second write as follows.
For each c2 = (c2,1, . . . , c2,n) ∈ Im(E2), we can deter-
mine y′ = (y′1, . . . , y

′
n) ∈ [2]n such that y′i = 0 if and

only if c2,i = 2. Using the decoder Dhr
2,p2

of the (w1, w2)-
high-weight two-write binary WOM code C2(p1, p2), we
obtain Dhr

2,p2
(y′) = m′2,p2

. Furthermore, we also can de-
termine x = (x1, . . . , xn) ∈ [2]n such that xi = 0 if and
only if c2,i = 0. Using the decoder D2,p1

of the two-write
binary WOM code C1(p1), we obtain D2,p1

(x) = m2,p1
.

From m′2,p2
and m2,p1 , we can determine the unique m2,

and decode by D2(c2) = m2.
• Third write: Let c2 = (c2,1, . . . , c2,n) be the cell-state

vector after the second write. We define the binary vec-
tor c′2 = (c′2,1, c

′
2,2, . . . , c

′
2,n) ∈ [2]n such that c′2,i = 1 if

and only if c2,i = 2. On the third write, we determine the
encoder

E3 : [M3]× Im(E2)→ [3]n

as follows. Let p1,2 = p1 · p2. Let E2,p1,2
be the en-

coder on the second write of the two-write binary
WOM code C1(p1,2). For each m3 ∈ [M3], we obtain
E2,p1,2

(m3, c
′
2) = z = (z1, . . . , zn). So E3(m3, c2) =

c3 = (c3,1, . . . , c3,n) can be defined such that c3,i = 1
if zi = 0, c3,i = 0 if c2,i = 0 and zi = 1, and c3,i = 2
otherwise.
The corresponding decoder

D3 : Im(E3)→ [M3]

on the third write can be defined as follows. For each
c3 ∈ Im(E3), we determine z = (z1, . . . , zn) ∈ [2]n such
that zi = 0 if and only if c3,i = 1. Using the decoder

D2,p1,2 of the two-write binary WOM code C1(p1,2), we
obtain D3(c3) = D2,p1,2

(z) = m3.

We observe that Construction 7 uses two-write binary WOM
codes and high-weight two-write binary WOM codes as im-
portant component codes. An interesting question, which is ad-
dressed next, is whether this construction can provide codes
achieving the maximum sum-rate.

Theorem 8. If there exists an explicit construction of (w1, w2)-
high-weight two-write binary WOM codes which achieve
the rate-tuple (R1, R2) = (h(p1), p1h(p2)) for any given
w1 = (1 − p1) · n and w2 = (1 − p1p2) · n, then there ex-
ists an explicit construction of three-write ternary W`M codes
which achieves the rate-tuple (R′1, R

′
2, R

′
3) = (h(p1), 1 − p1 +

p1h(p2), 1 − p1p2). In particular, there exists an explicit con-
struction of three-write ternary W`M codes for ` = 1 which
achieves the maximum sum-rateR3,3,1 = log 7.

Proof: We note that there exists an explicit construction
of two-write binary WOM codes which achieves the rate-tuple
(h(p1), 1 − p1) for any given p1 ∈ [0, 1/2] [17]. Assume that
there exists an explicit construction of (w1, w2)-high-weight
two-write binary WOM codes which achieves the rate-tuple
(h(p1), p1h(p2)). In Construction 7, the rate on the first write
R′1 = h(p1). On Step 1, Step 2 of the second write the rate is

R2,1 =
logM2,p1

n = 1−p1, R2,2 =
logMhr

2,p2

n = p1h(p2), respec-
tively. So, the rate on the second write is R′2 = R2,1 +R2,2 =
1−p1+p1h(p2). On the third write, the rate is R′3 = 1−p1p2.
Hence, the constructed three-write ternary W`M codes achieve
the rate-tuple (R′1, R

′
2, R

′
3) = (h(p1), 1 − p1 + p1h(p2), 1 −

p1p2), and sum-rate Rsum = R1 + R2 + R3 = h(p1) + 1 −
p1 + p1h(p2) + 1− p1p2. For p1 = 3/7 and p2 = 1/3 we get
the maximum sum-rate R3,3,1 = log 7.

Lastly, we observe that in all three writes of the W`M codes
from Construction 7, every step is explicit and is based on two
component codes, two-write binary WOM codes and (w1, w2)-
high-weight two-write binary WOM codes. Therefore, the the-
orem is proven.

It is now possible to conclude with the following corollary.

Corollary 9. There exists an explicit construction of three-write
ternary W`M codes for ` = 1 which achieves the maximum
sum-rateR3,3,1 = log 7.

The convergence rate of the codes achieving the maximum
sum-rate in Corollary 9 is exponential. This follows since they
require the construction of (w1, w2)-high-weight two-write bi-
nary WOM codes and our best construction is based on the
techniques from [14], which also have exponential convergence
rate. In fact, it is possible to directly construct W`M codes by
the techniques from [14] with exponential convergence rate.
However, Construction 7 is beneficial since we believe that find-
ing high-weight two-write binary WOM codes with polynomial
convergence rate will be an easier task, and furthermore it en-
ables us to present practical W`M codes of short block length
but yet achieve high sum-rate. This will be accomplished by
explicit constructions of (w1, w2)-high-weight two-write binary
WOM codes.

To do so, we need the following definition from [26], [27].

Definition 10. For n, t and w with t+w 6 n, an (n, t, w)- low-
power cooling (LPC) code C of size M is defined as a collection
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of code sets {C1, C2, . . . , CM}, where C1, C2, . . . , CM are dis-
joint subsets of {u ∈ [2]n : w(u) 6 w} satisfying the following
property: for any set S ⊆ [n] of size |S| = t and for i ∈ [M ],
there exists a vector u ∈ Ci with supp(u) ∩ S = ∅.

From this definition, we obtain the following result. The proof
is derived from the definitions of low-power cooling codes and
(w1, w2)-high-weight two-write binary WOM code. We omit
the details of the proof due to the lack of space.

Theorem 11. Given n,w1, w2 such that w1 < w2 < n, if there
exists an (n,w1, n − w2)-LPC code of size M , then there ex-
ists an [n, 2;M1,M2]2 (w1, w2)-high-weight two-write binary
WOM code such that M1 =

(
n
w1

)
and M2 =M .

Recently, LPC codes have been investigated and a few ex-
plicit constructions of LPC codes were presented in [26], [27].
We use one of these families of LPC codes to construct an
explicit high-weight two-write binary WOM code and thus an
explicit three-write ternary W`M code with ` = 1. Following
is an example of asymptotically optimal LPC codes.

Example 1. [26, Corollary 18] Fix τ 6 0.687 and ω =
(1 − τ)/2. Then there exists a family of (n,w1, w2)-
LPC codes Cn such that w1 = bτnc, w2 = bωnc, and
limn→∞(log |Cn|)/n = 1 − τ . In other words, the rate of the
codes converges to 1− τ . 2

From Theorem 11 and Example 1, we obtain the following.

Corollary 12. For all 0 6 p1 6 0.687, there exists a family of
[n, 2,M1,M2]2 (w1, w2)-high-weight two-write binary WOM
codes for w1 = p1n and w2 = (n − w1)/2, which achieves
sum-rate R = h(p1) + 1 − p1 with polynomial convergence
rate.

If we choose the above [n, 2,M1,M2]2 (w1, w2)-high-weight
two-write binary WOM codes as a component code in Con-
struction 7 with p1 = 2 −

√
2 ≈ 0.5858 then the sum-rate of

our constructed three-write ternary W`M codes with ` = 1 ap-
proaches h(p1) + (1− p1) + p1 +1− (1− p1)/2 ≈ 2.772. We
conclude our result in the following corollary.

Corollary 13. There exists an explicit construction of three-
write ternary W`M codes of sum-rate approaching 2.772 with
polynomial convergence rate.

As part of our future work, we will extend our technique in
Construction 7 to construct q-ary t-write W`M code for all
q, t, and `. Furthermore, these ideas can be leveraged in order
to construct the classical q-ary t-write WOM codes achieving
maximum sum-rate in general for all q and t. Namely, we es-
tablished the following theorem.

Theorem 14. If there exists an explicit construction of constant-
weight two-write binary WOM code which achieves the rate-
tuple (h(p1), p1h(p2)) for any given parameter p1, p2 ∈ [0, 1]
then there exists an explicit construction of q-ary t-write WOM
code which achieves the maximum sum-rate.

Hence, the problem of finding non-binary WOM codes which
achieve the maximum sum-rate with polynomial convergence
rate can be reduced to the problem of finding constant-weight
two-write binary WOM codes with the same property. Due to
the lack of space, these results will be discussed in the full
version of this work.
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