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Abstract—A sequence s = (s1, . . . , sn) is called a (b, h)-
constrained de Bruijn sequence if all substrings of length h
starting within b consecutive positions are distinct. A set of
(b, h)-constrained de Bruijn sequences is called a (b, h)-constrained
de Bruijn code. A (b, h)-constrained de Bruijn sequence was
constructed and used as a component of a code correcting multiple
limited-shift-errors in racetrack memories. In this work, we show
that a (b, h)-constrained de Bruijn code can correct deletions and
sticky-insertions and also can determine the locations of these
errors in an `-symbol read channel. We also show that it is possible
to use sequences from a (b, h)-constrained de Bruijn code to
construct a code correcting shift-errors in racetrack memories. As
a consequence, we improve the rates on previous known codes.

It is shown in this work that a (b, h)-constrained de Bruijn code
is a constrained code avoiding a set of specific patterns. Finally,
we present some techniques to compute the maximum asymptotic
rate and find some efficient encoding/decoding algorithms for (b, h)-
constrained de Bruijn codes.

I. INTRODUCTION

A de Bruijn sequence is a cyclic sequence with the property
that each possible h-tuple over an alphabet of size q, appears
exactly once as a substring of h consecutive elements in the se-
quence [6]. This makes it possible to determine the exact location
of any length h substring in the sequence. These sequences have
many applications and are well-studied with many explicit con-
structions [8], [9], [13]. Recently, a generalization of de Bruijn
sequences, called (b, h)-constrained (originally (b, h)-bounded)
de Bruijn sequences, were introduced [4]. A (b, h)-constrained de
Bruijn sequence is a (noncyclic) sequence with the property that
all substrings of length h starting in b consecutive positions are
distinct. Hence, the exact starting position of any length h sub-
string, can be determined, assuming that this position is in a given
segment of length b. In a previous work [4], such a constrained
de Bruijn sequence (called a bounded de Bruijn sequence) serves
as a marker at specific positions of all codewords and is essen-
tial in correcting shift-errors in racetrack memories [4]. Although
there is some abuse of terminology, we prefer to continue and
use the name of de Bruijn for our sequences and related codes.
In the current work, instead of a single sequence, we study the
construction of a set of such constrained de Bruijn sequences.
As a consequence, we improve the rates of the previous known
racetrack codes. Furthermore, this code can correct deletions and
sticky-insertions and it can also determine the locations of these
errors in the `-symbol read channel.

Symbol-pair read channel and its generalization, `-symbol read
channel, have been presented and investigated recently [2], [18].
In this channel, each ` bits are read together as an `-tuple. In
contrast to the channel where each bit is read individually, this
channel has some natural redundancies that help to correct possi-
ble errors. In the current literature, only substitution errors have
been studied for the `-symbol read channel. In this work, we
correct synchronization errors in the `-symbol read channel (de-
fined in Section IV). An example of an `-symbol read channel,
where synchronization errors can occur, is a racetrack memory
with several extra heads. These synchronization errors in the race-
track memory channel are shift errors.

Racetrack memory is an emerging non-volatile memory tech-
nology which has attracted significant attention in recent years
due to its promising ultra-high storage density and low power
consumption [14], [15]. It is composed of domains, also known
as cells, which can be used to store information. The reading
mechanism is operated by many read ports, called heads. All
these heads are designed to be at fixed positions. These heads
are normally distributed uniformly, but we may add extra (`−1)
heads in consecutive positions [3], [4], [19]. Hence, ` consecutive
bits are read together using these extra heads. These consecutive
heads form an `-symbol read channel. To read the information,
all domains have to be shifted together. However, this shift oper-
ation might not work perfectly and thus some shift-errors (called
position errors in [19]) might occur. Two types of shift-errors
in racetrack memory are under-shift and over-shift which can be
modelled as sticky-insertion and deletion, respectively.

To combat these shift-errors using a single head, Vahid et
al. [16] recently studied codes correcting two deletions and
insertions. We also can use other classical codes correcting dele-
tions and/or sticky-insertions [1], [7], [11]. But, it is difficult to
construct these codes with high rate. However, leveraging the
special feature of racetrack memory of having multiple heads,
there are a few coding schemes to combat shift-errors [3],
[4], [19]. In [4], a construction of asymptotically optimal
codes correcting any number of under-shifts (sticky-insertions)
and multiple limited-over-shifts (burst of deletions of limited
length) using several extra heads has been proposed. In this
construction, a (b, h)-constrained de Bruijn sequence is an im-
portant component. In the current work, we show how to use a
(b, h)-constrained de Bruijn code in order to improve the rate of
the previous result from [4].

In view of these applications, in this work we study enumera-
tion and constructions of constrained de Bruijn codes. We demon-
strate that these codes are constrained codes and use this prop-
erty for enumeration techniques and for providing efficient en-
coding/decoding algorithms of some codes while maximizing the
rate. For lack of space, the complete details of some proofs will
be presented only in the full version of this paper.

II. NOTATIONS AND DEFINITIONS

Let Fq denote the q-ary finite field and [n] denote the set
{1, 2, . . . , n}. For each sequence u = (u1, . . . , un) ∈ Fn

q , let
u[i1, i2] = (ui1 , ui1+1, . . . , ui2) ∈ Fi2−i1+1

q , 1 6 i1 6 i2 6 n,
denote a substring of u whose length is i2 − i1 + 1. In case
i1 = i2 = i, we denote the substring u[i, i] by u[i] to spec-
ify the i-th symbol ui of the sequence u. A q-ary code C of
length n is a set of q-ary sequences of length n, that is C ⊆ Fn

q .
For each code C of length n, we define the rate of the code C
to be R(C) = logq(|C|)/n, and the redundancy of the code C to
be r(C) = n− logq(|C|), where |C| is the size of the code C.

Let F be a set of sequences over Fq . A sequence u is said to
avoid F or F-avoiding if no sequence in F is a substring of u.
We denote the set of all q-ary sequences of length n which
avoid F by A(n;F). A set of F-avoiding sequences of length n
is called an F-avoiding code of length n and is denoted by
C(n;F), i.e., C(n;F) ⊆ A(n;F).
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Definition 1.
• A sequence s = (s1, . . . , sn) over Fq is called a (b, h)-

constrained de Bruijn sequence if s[i, i + h − 1] 6=
s[j, j + h − 1] for all i, j ∈ [n − h + 1] such that
|i− j| 6 b− 1.

• A set of (b, h)-constrained de Bruijn sequences of length n
is called a (b, h)-constrained de Bruijn code. The set of all
(b, h)-constrained de Bruijn sequences of length n is denoted
by CDB(n, b, h).

Next, we introduce some constrained codes which are closely
related to constrained de Bruijn codes.

Definition 2.
• A sequence s = (s1, s2, . . . , sn) ∈ Fn

q is a period p se-
quence if it satisfies si = si+p for all 1 6 i 6 n− p.

• A sequence s ∈ Fn
q is called an m-limited length, period

p sequence if any period p subsequence of s has length at
most m.

• A set of m-limited length, period p sequences from Fn
q is

called an m-limited length, period p code. The set of all
such m-limited length, period p sequences is denoted by
CLP (n,m, p).

The first lemma is a straightforward observation.

Lemma 3. IfF is the set of all period p sequences of lengthm+1,
then CLP (n, i, p) is an F-avoiding code for each 1 6 i 6 m.

The code CLP (n,m, p) was introduced and studied recently [3]
and was used in coding for racetrack memories.

III. CONSTRAINED DE BRUIJN CODES

Let Fp,p+h be the set of all period p sequences of length
p+h for any given 1 6 p 6 b−1 and let F = ∪b−1p=1Fp,p+h. The
following result implies a strong relation between constrained
de Bruijn codes, limited length, period codes, and F-avoiding
codes.

Theorem 4. For all given admissible n, b, h, and any code
C ⊂ Fn

q , the following three statements are equivalent
1) C is a subset of A(n;F).
2) C is a subset of CDB(n, b, h).
3) C is a subset of

⋂b−1
i=1 CLP (n, i+ h− 1, i).

Proof: First, we prove that if C is a subset of A(n;F) then
C is a subset of CDB(n, b, h). Let c = (c1, c2, . . . , cn) be any
codeword in C ⊆ A(n;F), and assume the contrary that c 6∈
CDB(n, b, h). Hence, there exist integers i, j ∈ [n− h+ 1] such
that p = j − i ∈ [b− 1] and c[i, i+ h− 1] = c[j, j + h− 1]. It
implies that c[i, j+h−1] = (ci, ci+1, . . . , cj+h−1) is a sequence
with period p and length p+ h. Therefore c[i, j + h− 1] ∈ F , a
contradiction since c ∈ C ⊆ A(n;F). Thus, C ⊆ CDB(n, b, h).

Second, we prove the claim that if C is a subset of
CDB(n, b, h) then C is a subset of

⋂b−1
i=1 CLP (n, i + h − 1, i).

Let c = (c1, c2, . . . , cn) be any codeword in C ⊆ CDB(n, b, h),
and assume the contrary that c 6∈

⋂b−1
i=1 CLP (n, i + h − 1, i).

Hence, there exists p ∈ [b−1] such that c 6∈ CLP (n, p+h−1, p).
Therefore, c contains a period p subsequence of length p + h.
Let c[i, i + p + h − 1] be such a period p subsequence. Hence,
c[i, i + h − 1] = c[i + p, i + p + h − 1], a contradiction since
c ∈ CDB(n, b, h). Thus, C ⊆

⋂b−1
i=1 CLP (n, i+ h− 1, i).

Finally, if C ⊆
⋂b−1

i=1 CLP (n, i+ h− 1, i), then by Lemma 3
we have that C ⊆ A(n;F).

Corollary 5. For all given admissible n, b, h,

CDB(n, b, h) =

b−1⋂
i=1

CLP (n, i+ h− 1, i) = A(n;F).

We define the maximum asymptotic rate of (b, h)-constrained de
Bruijn codes to be RDB(b, h) = lim supn→∞

log |CDB(n,b,h)|
n .1

We observe that the asymptotic rate RDB(b, h) is 1 only if h
tends to infinity. In this case, we are interested in the redundancy
of the code.

Theorem 6. For all q, n, b, and h,

|CDB(n, b, h)| > qn

(
1− (b− 1)n ·

(
1

q

)h
)
.

In particular, for h > dlogq n+ logq(b− 1)e+ 1, the redundancy
of CDB(n, b, h) is at most a single bit.

Proof: By Corollary 5, CDB(n, b, h) =
⋂b−1

i=1 CLP (n, i +
h− 1, i), which implies

|CDB(n, b, h)| = qn−|CDB(n, b, h)
c| > qn−

b−1∑
i=1

|CLP (n, i+h−1, i)c|,

(1)

where Ac denotes the complement of the set A. The number of
words in CLP (n, i+ h− 1, i)c is upper bounded by

| (CLP (n, i+ h− 1, i))c | 6 (n−i−h+1)·qi·qn−(i+h) < qn·n·
(
1

q

)h

.

Hence,
b−1∑
i=1

| (CLP (n, i+ h− 1, i))
c | 6 (b− 1) · qn · n ·

(
1

q

)h

,

and therefore using (1) we have,

|CDB(n, b, h)| > qn

(
1− (b− 1) · n ·

(
1

q

)h
)
.

In particular, for h > dlogq n+ logq(b− 1)e+ 1, we obtain

|CDB(n, b, h)| > (q − 1) · qn−1.
Thus, the redundancy of CDB(n, b, h) is at most a single bit.

To encode the (b, h)-constrained de Bruijn code efficiently
with only a single bit of redundancy, we may use the sequence
replacement techniques [17].

For any h, we observe that b 6 2h and RDB(b, h) < 1.
To determine exactly the maximum asymptotic rates of (b, h)-
constrained de Bruijn codes, we may use the well-known
Perron-Frobenius theory [12]. When b and h are given, taking
the de Bruijn graph, we can build a finite directed graph with
labelled edges such that paths in the graph generate exactly all
(b, h)-constrained de Bruijn sequences. An example for the case
(b, h) = (3, 3) is shown in Fig. 1. Its adjacency matrix is

AG =



0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0
1 1 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 1 1
0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0


1The lim sup can indeed be replaced by a proper lim [12].
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Fig. 1: Labelled graph G of the (3, 3)-constrained de Bruijn code.

Its largest eigenvalue is λ ≈ 1.73459. So, the capacity of this
constrained system, which is the maximum asymptotic rate of
(3, 3)-constrained de Bruijn code, is log λ = 0.7946.

Similary, we can compute the maximum asymptotic rates of
(b, h)-constrained de Bruijn codes for some values of b, h and
tabulate these results in Table I.

TABLE I: The maximum asymptotic rates of (b, h)-constrained
de Bruijn codes.

h = 2 h = 3 h = 4 h = 5 h = 6
b = 2 0.6942 0.8791 0.9468 0.9752 0.9881
b = 3 0.4056 0.7946 0.9146 0.9614 0.9817
b = 4 0 0.634 0.860 0.939 0.965

To encode efficiently binary (b, h)-constrained de Bruijn codes
which attain the maximum asymptotic rate, we may build finite
state encoders [12]. The related algorithms and the analysis of
their complexity can be found in [12].

Although Perron-Frobenius theory should be sufficient to
compute the maximum asymptotic rates of (b, h)-constrained de
Bruijn codes for any given pair (b, h), it is more complicated to
compute the rates when these values are very large.

Next we present a technique to compute the maximum asymp-
totic rate of constrained de Bruijn codes explicitly for all h.

Theorem 7. For any positive integer h > 1, the maximum asymp-
totic rate of (3, h)-constrained de Bruijn code is log2 λ where λ
is the largest root of the following equation: x2h−1 = x2h−3 +
2x2h−4 + · · ·+ (h− 2)xh + (h− 1)xh−1 + (h− 1)xh−2 + (h−
2)xh−3 + · · ·+ 2x+ 1.

Proof: Recall that Fp,p+h is the set of all period p se-
quences of length p + h. Let F1 = F1,h+1 ∪ F2,h+2, i.e., F1

contains the all-zero word of length h + 1, the all-one word of
length h+ 1, and the two words of length h+ 2 which have in
each two consecutive positions the patterns 01 or 10. By Corol-
lary 5, CDB(n, 3, h) = A(n,F1), i.e. binary (3, h)-constrained
de Bruijn code of length n is an F1-avoiding code of length n.

Let F2 by the set which contains the all-zero word of length h
and the all-one word of length h+1. We define the D-morphism
defined first in [10], D : Bn 7→ Bn−1, B = {0, 1}, where
D(x) = D(x1, x2, . . . , xn) = y = (y2, . . . , yn), with yi = xi +
xi−1, 2 6 i 6 n. It was proved in [10] that the mapping D
is a 2 to 1 mapping. Furthermore, x ∈ A(n;F1) if and only if
y ∈ A(n − 1;F2). Hence, |A(n;F1)| = 2|A(n − 1;F2)|. This
implies that

lim
n→∞

log |A(n;F2)|
n

= lim
n→∞

log |A(n;F1)|
n

.

Hence, A(n;F1) and A(n;F2) have the same maximum asymp-
totic rate.

To continue the proof of the theorem, we now compute the
maximum asymptotic rate of A(n;F2). Let A0(n;F2) be the set
of all F2-avoiding words of length n which start with a zero. Let
A1(n;F2) be the set of all F2-avoiding words of length n which
start with a one. It is easy to verify that the asymptotic rates of
A(n;F2), A0(n;F2), A1(n;F2) are the same. Let

Φ1 : A0(n;F2) 7→ ∪h−1i=1 A1(n− i;F2)

be the mapping such that, for each x = (0, x2, . . . , xn) ∈
A0(n;F2) we have that Φ1(x) = (xi+1, . . . , xn) ∈ A1(n −
i;F2), where i is the smallest index that xi+1 = 1. Since
A0(n;F2) avoids the all-zero sequence of length h, it follows
that the mapping Φ1 is a well-defined bijection. Therefore,

|A0(n;F2)| =
h−1∑
i=1

|A1(n− i;F2)|. (2)

Similarly, we can define the bijection
Φ2 : A1(n;F2) 7→ ∪hi=1A0(n− i;F2)

and obtain the equality

|A1(n;F2)| =
h∑

i=1

|A0(n− i;F2)|. (3)

From (2) and (3), we obtain

|A0(n;F2)| =
h−1∑
i=1

|A1(n− i;F2)| =
h−1∑
i=1

h∑
j=1

|A0(n− i− j;F2)|

=

h∑
`=2

(`− 1)|A0(n− `;F2)|+
h−1∑
`=1

`|A0(n− 2h+ `;F2)|

= |A0(n− 2;F2)|+ 2|A0(n− 3;F2)|+ · · ·
+ (h− 1)|A0(n− h;F2)|+ (h− 1)|A0(n− h− 1;F2)|+
+ (h− 2)|A0(n− h− 2;F2)|+ · · ·+ |A0(n− 2h+ 1;F2)|.

It is again easy to verify that the maximum asymptotic rates
of A0(n − `;F2) for all 2 6 ` 6 2h − 1 are equal. Let λn
be this maximum asymptotic rate. The recursive formula can be
solved now for λ and the maximum asymptotic rate of A0(n;F2)
will be log2 λ, where λ is computed as the largest root of the
polynomial x2h−1 = x2h−3 + 2x2h−4 + · · ·+ (h− 2)xh + (h−
1)xh−1 + (h− 1)xh−2 + (h− 2)xh−3 + · · ·+ 2x+ 1.

Using the above recursive formulas in Equations (2) and (3),
we can compute the exact size of A(n;F2) efficiently. Hence,
we can rank/unrank all words in A(n;F2) efficiently using enu-
merative technique [5].

IV. THE `-SYMBOL READ CHANNEL WITH
SYNCHRONIZATION ERRORS

In this section, we show that (b, h)-constrained de Bruijn codes
can correct synchronization errors such as deletions and sticky-
insertions in the `-symbol read channel [2], [18].
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Definition 8. Let x = (x1, x2, . . . , xn) ∈ Fn
q be a q-ary sequence

of length n. In the `-symbol read channel, if x is the stored infor-
mation then the corresponding `-symbol read sequence of x is

π`(x) = ((x1, . . . , x`), (x2, . . . , x`+1), . . . , (xn, . . . , xn+`−1)),

where xi for i > n can be any value.

In this channel, when we receive the `-symbol read sequence
π`(x) correctly, it is easy to get the stored sequence x. How-
ever, several types of errors, such as substitution errors and syn-
chronization errors, can occur. Here, we focus on the `-symbol
read channel with synchronization errors which are deletions and
sticky-insertions. A sticky-insertion is the error event when an
`-tuple (xi, . . . , xi+`−1) is repeated. A deletion is the error event
when an `-tuple is deleted. A burst of deletions of length at most b
is an error when at most b consecutive `-tuples are deleted.

Example 1. Let x = (0, 1, 0, 0, 1, 0, 0, 0) be a stored se-
quence. When ` = 2, the 2-symbol read sequence of x is
π2(x) = ((0, 1), (1, 0), (0, 0), (0, 1), (1, 0), (0, 0), (0, 0), (0, ∗))
where ∗ can be any value. If there is a sticky-insertion at
location i = 2 and a burst of deletions of length 2 at lo-
cations 6 and 7, we obtain the 2-symbol read sequence
π2(y) = ((0, 1), (1, 0), (1, 0), (0, 0), (0, 1), (1, 0), (0, ∗)). 2

The goal of this section is to construct codes correcting sticky-
insertions and bursts of deletions in the `-symbol read channel. In
this channel, it is assumed that the first `-tuple is read correctly2.

Theorem 9. Let b and h be two positive integers such that
2h > b > 2. Let h + b − 2 = `. The code CDB(n, b, h) can cor-
rect any number of sticky-insertions and any number of bursts of
deletions of length at most b− 2 in the `-symbol read channel.

Proof: Let c = (c1, c2, . . . , cn) be a stored sequence and
π`(y) = ((y1,1, . . . , y1,`), (y2,1, . . . , y2,`), . . . , (yk,1, . . . , yk,`))
be a received `-symbol read sequence. Recall that the first `-tuple
is always correct, that is (y1,1, . . . , y1,`) = (c1, . . . , c`). We now
consider the second `-tuple (y2,1, . . . , y2,`). If the second `-tuple
is not correct, the error can be only a sticky insertion or a burst
of deletions of length at most b − 2. Hence, there are b possi-
bilities for the second `-tuple. That is, there exists 1 6 i 6 b
such that (y2,1, . . . , y2,`) = c[i, i + ` − 1]. Hence, there exists
1 6 i 6 b such that (y2,1, . . . , y2,h) = c[i, i+h−1] since h 6 `.
Furthermore, c[i, i+ h− 1] 6= c[j, j + h− 1] for all 1 6 i, j 6 b
such that i 6= j since c ∈ CDB(q, b, h). Hence, there is exactly
one index i0 ∈ [b] for which (y2,1, . . . , y2,h) = c[i0, i0 + h− 1]
and thus (y2,1, . . . , y2,`) = c[i0, i0 + `− 1].

The index i0 is determined as follows. We note that
c[i, i+ h− 1] = (y1,i, . . . , y1,i+h−1) for all 1 6 i 6 b− 1 since
(c1, . . . , c`) = (y1,1, . . . , y1,`). If c[i, i+h−1] 6= (y2,1, . . . , y2,h)
for all 1 6 i 6 b − 1 then i0 = b. Otherwise, i0 is the unique
index in [b− 1] such that c[i0, i0 + h− 1] = (y2,1, . . . , y2,h).

If i0 = 1, then the error is a sticky-insertion. To correct
this error, it is only required to remove the repeated `-tuple. If
i0 = 2, then there is no error and the second tuple is correct. If
3 6 i0 6 b, then there is a burst of deletions of length i0 − 2.
To correct this error, we add (i0 − 2) `-tuples c[j, j + `− 1] for
j = 2, . . . , i0 − 1. So, we not only determine the location of
synchronization error but also correct this error to get the first i0
`-tuples as well as the first i0 + `− 1 symbols exactly. We now

2This requirement is needed since the first bit is read only once. In case the
`-symbol read sequence is defined cyclically this assumption is not necessary.

consider the (i0 + 1)-st tuple which is (y3,1, . . . , y3,`) and repeat
the same procedure to determine the error locations and types
and correct them. The process will end when i0 > n − ` + 1,
that is, when all n symbols are obtained correctly.

From the above proof, we can derive an efficient decoding
algorithm to recover the stored sequence x in Θ(n) time, for all
fixed b and h.

V. RACETRACK MEMORIES WITH EXTRA HEADS

In this section, we will show the application of (b, h)-
constrained de Bruijn codes in the construction of codes
correcting shift-errors in racetrack memory. Let us review the
model of racetrack memories with extra heads and previous
results [4].

Let N,n,m be three positive integers such that N = n ·m. A
racetrack memory comprises of N cells and m heads which are
distributed uniformly. Each head will read a segment of n cells.
For example, in Fig. 2, a racetrack memory contains 15 data cells
and three heads are placed initially at the positions of cells c1,1,
c2,1, and c3,1, respectively. Each head reads a data segment of
length 5.

In general, if c = (c1, c2, . . . , cN ) is the stored data then the
output of the i-th head is ci = (ci,1, . . . , ci,n) where ci,j =
c(i−1)·n+j for 1 6 i 6 m and 1 6 j 6 n. Hence, the output
matrix from all m heads (without error) is:

c1

c2

...
cm

 =


c1,1 c1,2 . . . c1,n
c2,1 c2,2 . . . c2,n

...
...

. . .
...

cm,1 cm,2 . . . cm,n

 .

It is shown that when an under-shift occurs, one column in
the above matrix is repeated. When an over-shift occurs, one or
a few consecutive columns in the matrix are deleted. Our goal
is to combat these shift-errors in racetrack memories. Several
constructions of codes correcting multiple bursts of deletions of
length at most b and multiple sticky-insertions have been pro-
posed in [4] to correct these shift-errors. Another approach which
has been proposed in [4] is to add some extra heads such that it
is possible to construct a code with better rate.

We now focus on the model with some consecutive extra heads
next to the first head. For example, in Fig. 2, there are two extra
heads next to the first head. We assume in this section that there
are `−1 extra heads. Since there are two types of heads, we call
the ` − 1 extra heads secondary heads, while the first m heads
are the primary heads. Hence, there are ` heads which read the
first data segment together, the first primary head and all ` − 1
secondary heads. For 2 6 i 6 m, each other primary head will
read one data segment individually. So, the output from the last
(m− 1) primary heads is c[n+ 1, N ] = (c2, . . . , cm), where c2

...
cm

 =

 c2,1 c2,2 . . . c2,n−1 c2,n
...

...
. . .

...
...

cm,1 cm,2 . . . cm,n−1 cm,n

 .

This matrix can be viewed as a q2-ary word of length n where
each column is a symbol in the alphabet of size q2 = 2m−1. In
particular, let the map Φm−1 : {0, 1}m−1 7→ Fq2 be any bijection.
For each column ĉj = (c2,j , . . . , cm,j), Φm−1(ĉj) = vj ∈ Fq2 ,
and together Φ(c[n+ 1, N ]) = v = (v1, . . . , vn) ∈ Fn

q2 .
The output from all ` heads in the first segment is
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⇓ ⇓
c1,1 c1,2 c1,3 c1,4 c1,5 c2,1 c2,2 c2,3 c2,4 c2,5 c3,1 c3,2 c3,3 c3,4 c3,5︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

1st data segment 2nd data segment 3rd data segment

Fig. 2: Racetrack memory with two extra heads


c1,1

c1,2

...
c1,`

 =


c1,1 c1,2 . . . c1,n−1 c1,n
c1,2 c1,3 . . . c1,n ∗

...
...

. . .
...

...
c1,` c1,`+1 . . . ∗ ∗

 .

In fact, this is the `-symbol read sequence π`(c[1, n]) of the first
data segment c[1, n] = (c1,1, . . . , c1,n).

Under this setup, there exists a construction of codes correct-
ing any number of sticky-insertions and multiple bursts of dele-
tions where the first data segment can determine the locations of
the synchronization errors and the last (m − 1) data segments
can correct multiple erasures [4, Construction 12]. Therefore,
the first data segment is chosen as a fixed constrained de Bruijn
sequence and the last (m − 1) data segments are chosen from
all words in some erasure-correcting-code. In that construction,
the first data segment is used only to determine the locations of
the synchronization errors and does not store any information.
This construction is improved by showing that it is possible to
choose the first data segment from all sequences from a con-
strained de Bruijn code. When there are synchronization errors,
we can recover the sequence and also determine the locations
of the synchronization errors. Thus, it is possible to store infor-
mation in the first segment and thereby improve the rate of the
codes from [4, Construction 12].

Construction 10. Let m,n, b, h, ` be positive integers such that
h + b − 2 = `, CDB(n, b, h) be a binary (b, h)-constrained de
Bruijn code, and c1 = c[1, n] = (c1,1, . . . , c1,n) ∈ CDB(n, b, h).
Let Cq2(n, t) be a q2-ary t-erasure-correcting code of length n,
where t = (b − 2) · t1 and q2 = 2m−1, and let c[n + 1, N ] =
(c2, . . . , cm); where v = (v1, . . . , vn) ∈ Cq2(n, t) (see the re-
lated definition of v). Define

CRM (N, t1, b−2)
def
= {(α1, α2) : α1 ∈ c[1, n], α2 ∈ c[n+1, N ]}.

The code CRM (N, t1, b − 2) can correct any number of sticky-
insertions and t1 bursts of deletions of length at most b − 2 using
`− 1 extra heads.

Construction 10 improves upon Construction 12 in [4]. In the
first data segment, any word from the constrained de Bruijn code
can be stored instead of choosing the fixed constrained de Bruijn
sequence. From Theorem 9, we can recover the stored sequence
in the first data segment when there are sticky-insertions and
bursts of deletions of length at most b−2 and also determine the
locations of these errors. In the output from the last m−1 heads,
all sticky-insertions can be corrected easily and all deletions be-
come erasures since we know the locations of these errors. There
are at most t = t1 · (b− 2) erasures. The code Cq2(n, t) can cor-
rect these errors and this way recover the original sequence v.
So, the code CRM (N, t1, b− 2) can correct all sticky-insertions
and at most t1 bursts of deletions of length at most b − 2 to
recover the stored sequence c.

The size of this code is

|CRM (N, t1, b− 2)| = |CDB(n, b, h)| · |Cq2(n, t)|.

Theorem 11. Consider a racetrack memory comprising of
N = m · n cells and m primary heads which are distributed
uniformly. Using ` − 1 extra secondary heads, it is possible to
construct a code CRM (N, t1, b − 2) correcting a combination
of any number of sticky-insertions and t1 bursts of deletions of
length at most b− 2 such that its asymptotic rate satisfies

lim
N→∞

log |CRM (N, t1, b− 2)|
N

>
m− 1

m
·(1−δ−ε)+

RDB(b, h)

m

where `− b+ 2 = h, t1 · (b− 2) = δ · n and 1 > δ, ε > 0.

Compared to the previous result in [4, Theorem 3], we can con-
struct a code with higher rate using a few more extra heads.
For example, in the case b = h = 3, according to the results
from Section III we get that RDB(3, 3) ≈ 0.7946. So, using two
more extra heads, the asymptotic rate of these codes is 0.7946/m
higher than the asymptotic rate of the codes from [4].
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