
Reconstruction of Sequences in DNA Storage
Maria Abu Sini

Technion - Israel Institute of Technology
Haifa 3200009, Israel

maria.as@cs.technion.ac.il

Eitan Yaakobi
Technion - Israel Institute of Technology

Haifa 3200009, Israel
yaakobi@cs.technion.ac.il

Abstract—The sequence reconstruction problem corresponds to
a model in which a sequence from some code is transmitted over
several noisy channels. The channels are almost independent as it
is only required that their outputs are different. The main prob-
lem under this paradigm is to determine the minimum number of
channels required to reconstruct the transmitted sequence. This
problem is equivalent to finding the maximum intersection size
between two balls of any possible two inputs, where the balls
are all possible channel outputs. Motivated by the error behav-
ior in the DNA storage channel, this work extends this study to
the case where the channels are prone to substitutions, insertions,
and deletions. For the case of only substitutions, we also present
a decoder of optimal complexity, which improves upon a recent
construction of such a decoder. Lastly, it is also studied how the
decoder is simplified in case there are more channels than the
minimum required number.

I. INTRODUCTION

As a result of the constant increase in the information gen-
erated these days and since energy conservation has become
an important issue, the storage community is actively search-
ing for an innovative medium to store archival data, which
composes most of the existing data in the world. One promis-
ing solution to fulfill these requirements is the application of
DNA molecules to store digital information [3]. DNA is an
attractive solution for large-scale archival storage systems due
to its unique attributes of durability, endurance, and extremely
high density. Thanks to recent outstanding advancements
in biotechnological applications, it is now possible to store
archival data in synthetic DNA, and read it using sequencing
techniques. Several experiments have been conducted dur-
ing the past decade. The first ones are the implementations
of Church et al. and Goldman et al.; the first managed to re-
cover 643 KB [2] while the second recovered 739 KB [4].
However, due to errors occurring at the stages of synthesis
and sequencing, in both of these experiments, parts of the
data were lost. More experiments and examples can be found
in [5], [6], [8], [14], [19]–[21].

DNA synthesis refers to the process of artificially gener-
ating DNA strands that can store any digital data and DNA
sequencing is the process of reading these strands back. Cur-
rent synthesis technology does not generate a single strand of a
requested sequence, but thousands to millions copies for each
strand. All of these copies are stored in a DNA pool and a por-
tion of them will be sequenced when retrieving the informa-
tion. Moreover, sequencing is usually preceded by PCR (poly-
merase chain reaction) amplification which generates copies
of a strand. As a result, when sequencing DNA strands, each
DNA strand is read many times. First, because thousands of
copies were synthesized, and second, because of the copies
that were duplicated using PCR.

Since the processes of synthesis and sequencing are prone
to errors, at the end of the sequencing process, there are many
noisy copies of every strand that we intended to store. Since
these copies cannot be easily differentiated, clustering algo-
rithms are needed in order to distribute the noisy copies into
several sets, such that each set consists of copies that are es-
timated to originate from the same sequence. Clustering algo-

rithm and coding techniques were recently studied in [7], [15],
[17]. In this paper, we assume that clustering is already done
and thus we focus on the reconstruction step aiming to output
the original strand or a strand with minimum number of er-
rors. Thus, the sequencing’s output followed by clustering is a
set of clusters. Each cluster consists of sequencing reads that
are estimated to be noisy copies of a specific strand, and the
copies in this cluster are used in order to recover the original
strand. The problem of using a set of erroneous sequences in
order to recover the correct one falls under the definition of
the reconstruction problem that was introduced by Levenshtein
in [11], [12], and is the main topic of this paper.

The reconstruction model studied by Levenshtein and later
by others is combinatorial. It is assumed that the information
is a codeword in some code and it has several noisy copies.
Then, the goal is to find the minimum number of noisy copies
that guarantees unique decoding in the worst case. This num-
ber has to be larger than the largest intersection of two balls
of any two codewords in the code, where the ball is the set of
all noisy copies that can be received. Levenshtein studied the
cases of substitution errors, the Johnson graphs, and several
more general metric distances. Levenshtein’s results for dele-
tions and insertions in [12] were extended in [16] for insertions
and in [9] for deletions. In [18], the connection between the
reconstruction problem and associative memories was studied.

The rest of the paper is organized as follows. Section II
presents the formal definition of the reconstruction problem.
Motivated by the error behavior in DNA-based storage [10],
we extend this problem to the case of substitutions, insertions,
and deletions. In Section III, we take first steps in exploring
this extension and study the case of single substitution and
single insertion. Next, in Section IV, a decoding algorithm
to the reconstruction problem with substitution errors of opti-
mal complexity is presented. Lastly, in Section V, it is studied
how the decoding algorithms can be simplified in case there
are more copies than the minimum one that was studied by
Levenshtein. Due to the lack of space, some of the proofs in
the paper are omitted.

II. DEFINITIONS AND PRELIMINARIES

In this section we review the reconstruction problem which
was first proposed by Levenshtein [11], [12]. Let V be the
space of all possible words. Assume that there are several iden-
tical channels, such that for a transmitted word w ∈ V, the
output of every channel is some word in the error ball sur-
rounding w and denoted by B(w). Furthermore, assume that
all channels’ outputs are distinct. In this study it is assumed
that the errors can be of several types and do not necessarily
correspond to a specific distance metric; thus we keep the def-
inition of the error ball as general as possible. For example,
motivated by DNA-based storage systems, it will be assumed
that every channel is prone to combinations of substitutions,
deletions, and insertions. Then, the goal is to find the mini-
mum number of channels needed so that the transmitted word
can be determined definitely, i.e., in the worst case.

290978-1-5386-9291-2/19/$31.00 ©2019 IEEE ISIT 2019

Assume the transmitted word w belongs to some code C ⊆
V. The problem of finding the largest intersection

max
w1 ,w2∈C ,w1 6=w2

{|B(w1) ∩ B(w2)|}, (1)

was first initiated and studied by Levenshtein [11], [12] and
is referred here as the reconstruction problem. Levenshtein
proved that the required minimum number of channels for the
existence of successful decoder in the worst case has to be
strictly larger than the value in (1).

In case the channels are prone only to substitutions, then
Levenshtein has solved in [11] the problem for any length-n
code C ⊆ {0, 1}n of minimum Hamming distance d. In other
words, let BS

t (w) be the radius-t ball resulting from at most
t substitutions to a word w, then Levenshtein found the value

NS
n (t, d) , max

w1 ,w2∈C ,w1 6=w2

{
|BS

t (w1) ∩ BS
t (w2)|

}
,

where C is any length-n code of minimum Hamming distance
d. Since this value does not depend on the specific choice of
the code C, but only on its minimum Hamming distance, it
was shown in [11] that
NS

n (t, d) = max
w1 ,w2∈{0,1}n ,dH(w1 ,w2)>d

{
|BS

t (w1) ∩ BS
t (w2)|

}
,

=
t−d d

2 e

∑
i=0

(
n− d

i

) t−i

∑
h=d−t+i

(
d
h

)
.

This problem is naturally extended for deletions and in-
sertions. Here we use the edit distance between two words
w1, w2 ∈ {0, 1}n which is half of the minimum number of
insertions and deletions required to convert w1 to w2. Fur-
thermore, let BI

t (w), BD
t (w) be the radius-t ball that results

from t insertions, deletions, to the word w, respectively. Then,
the reconstruction problem in this case translates to finding

ND
n (t, d) , max

w1 ,w2∈{0,1}n ,dE(w1 ,w2)>d

{
|BD

t (w1) ∩ BD
t (w2)|

}
,

N I
n(t, d) , max

w1 ,w2∈{0,1}n ,dE(w1 ,w2)d

{
|BI

t (w1) ∩ BI
t (w2)|

}
.

The values of ND
n (t, 1) and N I

n(t, 1) were found by Leven-
shtein in [12]. Later, his results were extended in [16] for de-
termining the value of N I

n(t, d) for all d and t and in [9] for
the value ND

n (t, 2) for all t.
These results are applicable for DNA-based storage systems.

Each cluster may be used to recover the original strand as it
consists of erroneous sequences of the same strand. Thus, we
may consider the noisy copies of a cluster as channels in which
the strand is transmitted. Under the restriction that each clus-
ter suffers from only one type of errors, the results from [9],
[11], [12], [16] determine the minimum size of a cluster that
guarantees successful decoding for almost all cases. However,
these results do not consider combinations of errors that can
occur in DNA-based storage systems [10]. Therefore, this pa-
per expands existing results and takes first steps in order to
find the minimum number of channels required for decoding
in the presence of combinations of errors.

For a word w ∈ {0, 1}n, the ball Bt1 ,t2 ,t3(w) is the set of
all possible words which result from at most t1 substitutions
and exactly t2 deletions and t3 insertions to w. The following
problem formulates the reconstruction problem for the case of
substitutions, deletions, and insertions.

Problem 1. Given a code C ⊆ {0, 1}n, and t1, t2, t3 ∈ N, find
the value of

max
w1 ,w2∈C ,w1 6=w2

{|Bt1 ,t2 ,t3(w1) ∩ Bt1 ,t2 ,t3(w2)|}. (2)

For C = {0, 1}n the value in (2) is denoted by Nn(t1, t2, t3).
Before we proceed to study Problem 1, we note that, to the

best of our knowledge, finding the size of the ball Bt1 ,t2 ,t3(w)
has not been studied before and it is a challenging problem by
itself. It is well-known that the deletions balls are not regular,
that is, the size of the deletion ball BD

t (w) depends on the
choice of the word w, where the substitutions and insertions
balls are regular. Hence, while it is possible to see that the
case of single-deletion and single-substitution is not regular, it
was surprising to find out that the single-insertion and single-
substitution case is not regular either, as will be shown next.

For a word w ∈ {0, 1}n, its number of runs is denoted by
r(w), and its runs-profile is the length-r(w) vector `(w) =
(`1, . . . , `r(w)), which specifies the length of each of the r(w)
runs in w. The runs-profile determines the word w up to its
complement.

Theorem 2. Let w ∈ {0, 1}n be a word with runs-profile vec-
tor `(w) = (`1, . . . , `r(w)). The following properties hold:

1) The single-deletion single-substitution ball size of w is

|B1,1,0(w)| = (n− 3)r(w) + 4,

for r(w) > 2 and |B1,1,0(w)| = n if r(w) = 1.
2) The single-insertion single-substitution ball size of w is

|B1,0,1(w)| = (n + 2)2 − 2−
r(w)

∑
i=1

`i(`i + 5)
2

.

Proof: We prove the first part of the lemma for the single-
deletion single-substitution case. In case r(w) = 1, 2 the prop-
erty can be verified, so it is assumed for the rest of the proof
that r(w) > 3. Notice also that there is no difference if there
is first a deletion and then a substitution or the opposite, so
we consider the first case. For i, 1 6 i 6 r(w), let wi be the
word that results from the deletion of a bit in the i-th run of
w. Thus, it holds that

B1,1,0(w) =
⋃

w′∈B0,1,0(w)

B1,0,0(w′) =
⋃

16i6r(w)

B1,0,0(wi).

The size of B1,1,0(w) is determined by the following cases.
1) For 1 6 i 6 r(w), |B1,0,0(wi)| = n.
2) For 2 6 i 6 r(w), dH(wi−1, wi) = 1 and thus
|B1,0,0(wi−1) ∩ B1,0,0(wi)| = 2.

3) For 3 6 i 6 r(w), dH(wi−2, wi) = 2 and thus
|B1,0,0(wi−1) ∩ B1,0,0(wi)| = 2.

4) For 3 6 i 6 r(w), |B1,0,0(wi−2) ∩ B1,0,0(wi−1) ∩
B1,0,0(wi)| = 1.

5) For all 3 6 j and j + 1 6 i 6 r(w), dH(wi− j, wi) > 3
and thus |B1,0,0(wi− j) ∩ B1,0,0(wi)| = 0.

Finally, the size of the ball B1,1,0(w) is calculated according
to the inclusion-exclusion principle to be

|B1,1,0(w)| = r(w) · n− (2r(w)− 3) · 2 + (r(w)− 2) · 1
= (n− 3)r(w) + 4.

According to Theorem 2, it follows that the maximum size
of the single-substitution single-insertion ball is n2 + n + 2,
which is achieved only for the alternating words, that is,
0101 · · · or 1010 · · · . Similarly, the maximum size of the
single-substitution single-deletion ball is n2 − 3n + 4.

The method from Theorem 2 for finding the size of the ball
B1,1,0(w) uses the observation that for all 1 6 i1 < i2 6
r(w), it holds that dH(wi1 , wi2) = i2 − i1, and then the size
of the ball is calculated according to the inclusion-exclusion
principle. This method can be used also to find the size of the
set Bt1 ,1,0(w) for other values of t1, however even for t1 = 2
this calculation becomes significantly cumbersome.

291

III. THE SINGLE-SUBSTITUTION SINGLE-INSERTION CASE

In this section we make first steps towards studying Prob-
lem 1 and the value Nn(t1, t2, t3). Our focus here will be
on the case study of Nn(1, 0, 1), in which we show that
Nn(1, 0, 1) = n2

4 + O(n). While the largest intersection in
the case of only substitution, deletions, or insertions, was re-
ceived for words which differ on any single bit or variations
of the alternating words, here we notice a special behavior
where the largest intersection is received for words which dif-
fer in their middle bit. Namely, the following lemma assures
this lower bound on Nn(1, 0, 1).

Lemma 3. For 4 6 n even, Nn(1, 0, 1) > n2

4 + 3n + 1.

Proof: This result follows from the intersection of the
balls of the words w1 = 0

n−2
2 10

n−2
2 and w2 = 0

n−1
2 01

n−2
2 ,

while the notation bm for b ∈ {0, 1} and a positive integer m
corresponds to the concatenation of the bit b m times. Thus,
it can be proved that

|B1,0,1(w1) ∩ B1,0,1(w2)| =
n2

4
+ 3n + 1.

Theorem 4. It holds that Nn(1, 0, 1) = n2

4 + O(n).

Proof: We consider the intersection B1,0,1(w) ∩
B1,0,1(w′) of two words w, w′ ∈ {0, 1}n such that
dH(w, w′) > 2, while the case of dH(w, w′) = 1 can be
handled similarly. Let i, i + ` − 1 be the first, last index in
which w and w′ differ, respectively. It holds that

B1,0,1(w) ∩ B1,0,1(w′) =
⋃

z∈B0,0,1(w),z′∈B0,0,1(w′)

B1,0,0(z) ∩ B1,0,0(z′).

In order to bound the size |B1,0,1(w) ∩ B1,0,1(w′)| from
above, we bound the size of B1,0,0(z) ∩ B1,0,0(z′) for all
z ∈ B0,0,1(w) and z′ ∈ B0,0,1(w′). Let z(α, m1), z′(β, m2)
be the word that results from inserting the bit α,β ∈ {0, 1}
right before the m1-th, m2-th value in w, w′ (or at the end
for m1 = n + 1, m2 = n + 1), respectively. We study the
intersection size

|B1,0,0(z(α, m1)) ∩ B1,0,0(z′(β, m2))|

for all possible values of α,β, m1, m2. Since we study in-
tersections of at most a single substitution, we only need to
consider the cases in which dH(z(α, m1), z′(β, m2)) 6 2.
For shorthand, in the following cases z, z′ refers to
z(α, m1), z′(β, m2), respectively.

1) m1, m2 ∈ [1, i] or m1, m2 ∈ [i + `, n + 1] or m1, m2 ∈
[i + 1, i + `− 1]. If m1 6= m2 then dH(z, z′) 6 2 only
if α and β are inserted to the same run and are equal
to the bits in the run. Otherwise, m1 = m2 and in this
case dH(z, z′) 6 2 only if α = β. In both cases the
number of options for z and z′ that satisfy dH(z, z′) 6 2
is O(n) which implies that the total number of words in
B1,0,1(w) ∩ B1,0,1(w′) of this form in O(n).

2) m1 ∈ [1, i], m2 ∈ [i + 1, i + ` − 1]. We observe that
dH(z, z′) 6 2, only if α is inserted to one of the two
runs that precede wi and one of the followings holds:
• α = w′m1

and β = wm2−1. Since α is inserted to
a limited number of runs and is equal to w′m1

, then
there are at most three possible options for z. There
are at most ` possible options for z′. Each pair of
z and z′ is of Hamming distance at least 1. Thus,
|B1,0,0(z) ∩ B1,0,0(z′)| 6 2.

• α 6=w′m1
and β= wm2−1. In this case z and z′ that

satisfy dH(z, z′) 6 2 differ only in the pairs of bits
α, w′m1

and wi+`−1, w′i+`−1.
• α= w′m1

and β 6= wm2−1. In this case z and z′ that
satisfy dH(z, z′) 6 2 differ only in the pairs of bits
β, wm2−1 and wi+`−1, w′i+`−1.

The number of words that can be generated in
B1,0,1(w) ∩ B1,0,1(w′) in the first, second, third case
is O(n), O(i), O(`), respectively. The cases of m1 ∈
[i + 1, i + `− 1], m2 ∈ [1, i], m1 ∈ [i + `, n + 1], m2 ∈
[i + 1, i + ` − 1], and m1 ∈ [i + 1, i + ` − 1], m2 ∈
[i + `, n + 1] are proved in a similar way so the
total number of words that can be generated in
B1,0,1(w) ∩ B1,0,1(w′) in all of these cases is O(n).

3) m1 ∈ [1, i], m2 ∈ [i + `, n+ 1]. It holds that dH(z, z′) 6
2 only if α is inserted in one of the three runs that pre-
cede wi, and β is inserted in one of the three following
w′i+`−1. Therefore, if α = w′m1

or β = wm2−1, then the
number of generated words in B1,0,1(w) ∩ B1,0,1(w′) is
O(n). Next, assume α 6= w′m1

, β 6= wm2−1. Assume also
m1 < i and m2 > i + ` as for m1 = i or m2 = i + `− 1,
O(n) words can be generated. We observe that for such
α,β, m1 and m2, that satisfy dH(z, z′) = 2, two words
can be found in B1,0,0(z) ∩ B1,0,0(z′) where for the first
one, denoted by y1, α is in the m1-th position and β
is in the m2-th position, while for the other, denoted by
y2, wm1 in the m1-th position and wm2−1 in the m2-th
position. y1 was not included in the previous cases
while y2, as illustrated in the table below, was included,
specifically by z1, z′2 that result from inserting α = wm1
before wm1 , β = wi+`−2 before w′i+`−1, respectively.
Thus, such insertions generate (i + 2)(n− (i + `− 1) +
2) + O(n) words in B1,0,1(w) ∩ B1,0,1(w′). Note that
in case wi+` 6= wi+`−1 or wi−1 6= w′i then at most
O(n) words are generated in B1,0,1(w) ∩ B1,0,1(w′).
Index z z′ y1 y2 z1 z′2

1 w1 w1 w1 w1 w1 w1
2 w2 w2 w2 w2 w2 w2
...

...
...

...
...

...
...

m1 α wm1 α wm1 α=wm1 wm1

m1+1 wm1 wm1+1 wm1 wm1 wm1 wm1+1
...

...
...

...
...

...
...

i wi−1 w′i wi−1 wi−1 wi−1 w′i
i+1 wi w′i+1 wi wi wi w′i+1

...
...

...
...

...
...

...
i+`−1 wi+`−2 w′i+`−1 wi+`−2 wi+`−2 wi+`−2 β=wi+ −̀2

i+` wi+`−1 wi+` wi+`−1 wi+`−1 wi+`−1 w′i+`−1
...

...
...

...
...

...
...

m2 wm2−1 β β wm2−1 wm2−1 wm2−1
...

...
...

...
...

...
...

n wn−1 wn−1 t wn−1 wn−1 wn−1 wn−1
n+1 wn wn wn wn wn wn

4) m1 ∈ [i+ `, n+ 1], m2 ∈ [1, i]. By the same analysis of case
3 it can be proved that for w, w′ such that wi+` = w′i+`−1
and wi−1 = wi at most (i + 2)(n− (i + `− 1) + 2) + O(n)
words are generated and for other cases of w, w′, only
O(n) words are generated.

To conclude, only one of the fourth and fifth cases can generate
(i + 2)(n− (i + `− 1) + 2) words in B1,0,1(w)∩ B1,0,1(w′)
and all other cases O(n), which confirms the lemma.

292

IV. DECODER FOR SUBSTITUTION ERRORS

In this section, it is studied how to construct a decoder for
the reconstruction problem in the substitutions case with op-
timal complexity. Since NS

n (t, d) + 1 = Θ(nt−d d
2 e), the order

of magnitude of the number of bits in any subset Y ⊆ BS
t (x)

of size NS
n (t, d) + 1 is Θ(nt−d d

2 e+1). Hence, the complex-
ity order of any decoder is at least this value, and a decoder
achieving this complexity will be called optimal. A decoder for
this problem was presented in [18] for all d and t, however its
complexity is Θ(n2t−d), and only the case where d = 3 has
been improved in [18] to have an optimal decoder, i.e., with
complexity Θ(nt−1). In this section we show how to construct
an optimal decoder for all d and t. For the rest of the paper
it is assumed that d and t are fixed positive integer, n is large
enough, and t > (d− 1)/2 + 1 (the case t = (d− 1)/2 + 1
has been solved in [18]). Furthermore, since for every odd d,
NS

n (t, d) = NS
n (t, d + 1) [18], it is also assumed that d is an

odd integer. For shorthand, NS
n (t, d) + 1 is denoted by Nt,d.

A set Y = {y1, . . . , yN} ⊆ {0, 1}n is said to be decoded
according to the majority algorithm with threshold τ and we
denote z = majτ (Y), where z is the algorithm’s output word,
if the following holds: For all 1 6 i 6 n, let

mi,0 = |{ j : j ∈ [N], y j,i = 0}|, mi,1 = |{ j : j ∈ [N], y j,i = 1}|.

If |mi,0 − mi,1| 6 τ then, zi =?. Otherwise, if mi,0 > mi,1
then zi = 0 and if mi,0 < mi,1 then zi = 1.

For a code C ⊆ {0, 1}n of minimum Hamming distance d,
we assume that it has a complete decoder DC that can suc-
cessfully correct at most d−1

2 errors. If the number of errors is
greater than this value there is no guarantee on the decoder’s
success.

In the algorithm, the following value τt,d will be used for
the threshold of the majority algorithm

τt,d ,
4

d + 1

t− d+1
2

∑
i=0

(
n− d+1

2
i

)
+

d− 3
d + 1

Nt,d.

It is possible to verify that τt,d < Nt,d. For an integer t and a
code C ⊆ {0, 1}n of minimum Hamming distance d, we define
an algorithm that recovers the transmitted codeword denoted
by c using a subset Y ⊆ BS

t (c) of size Nt,d.

Algorithm 5. The input to the decoder is a set of all Nt,d chan-
nel outputs Y = {y1, . . . , yNt,d

} ⊆ BS
t (c) for some c ∈ C and

it returns an estimation ĉ on c.
Step 1. z = majτt,d

(Y).
Step 2. S = {i : i ∈ [n], zi =?}.
Step 3. Z = {u ∈ {0, 1}n : ui = zi for all i /∈ S}.
Step 4. For all u ∈ Z, ĉ = DC(u). If Y ⊆ Bt(ĉ), output ĉ.

The correctness of the algorithm is proved using the next
two lemmas. For 1 6 i 6 n, let ei be ei = |{y ∈ Y : yi 6= ci}|,
i.e. the number of words in Y in which there is an error in the
i-th position. It holds that, zi =? if Nt,d−τt,d

2 6 ei 6
Nt,d+τt,d

2 ,
and zi is in error if ei >

τt,d+Nt,d
2 .

Lemma 6. There are at most d−1
2 errors in the word z in Step 1.

Proof: Assume in contrary that there is a set Y such that
the word z generated in Step 1 contains at least d+1

2 errors.
Assume without loss of generality that the first d+1

2 bits are
erroneous bits. As specified above, for 1 6 i 6 d+1

2

ei>
Nt,d + τt,d

2
+1=

2
d + 1

t− d+1
2

∑
i=0

(
n− d+1

2
i

)
+

d− 1
d + 1

Nt,d+1.

Therefore,
d+1

2

∑
i=1

ei >
t− d+1

2

∑
i=0

(
n− d+1

2
i

)
+

d− 1
2

Nt,d +
d + 1

2

>
t− d+1

2

∑
i=0

(
n− d+1

2
i

)
+

d− 1
2

Nt,d

=
d+1

2

t− d+1
2

∑
i=0

(
n−d+1

2
i

)
+

d−1
2

Nt,d−
t− d+1

2

∑
i=0

(
n− d+1

2
i

) .

On the other hand, there are at most ∑
t− d+1

2
i=0 (

n− d+1
2

i) words
in Y that can have erroneous values in all of the first d+1

2

positions. The other Nt,d − ∑
t− d+1

2
i=0 (

n− d+1
2

i) words can have
at most d−1

2 errors in the first d+1
2 positions. Therefore, the

number of errors in these d+1
2 positions is upper bounded by

d+1
2

∑
i=1

ei6
d+1

2

t− d+1
2

∑
i=0

(
n−d+1

2
i

)
+

d−1
2

Nt,d−
t− d+1

2

∑
i=0

(
n− d+1

2
i

),

which results with a contradiction.

Lemma 7. For n large enough it holds that |S| 6 t ·
(

d+3
2

)
.

Proof: Since in each of the Nt,d words in Y there are
at most t errors, the total number of errors in all of the Nt,d
words is bounded by tNt,d. Since every erasure requires at least
Nt,d−τt,d

2 errors in the copies of this bit, the maximum number
of erasures in z is upper bounded by tNt,d

Nt,d−τt,d
2

= 2t Nt,d
Nt,d−τt,d

.

The value Nt,d satisfies

Nt,d =
t− d+1

2

∑
i=0

(
n− d

i

) t−i

∑
h=d−t+i

(
d
h

)
+ 1

=

(
d + 1

d+1
2

)(
n− d

t− d+1
2

)
+Θ(nt− d+1

2 −1),

and for n large enough we have that Nt,d > d+3
2 ∑

t− d+1
2

i=0 (
n− d+1

2
i).

This implies that
Nt,d

Nt,d − τt,d
=

Nt,d

4
d+1

(
Nt,d − ∑

t− d+1
2

i=0 (
n− d+1

2
i)

) 6
d + 3

4
,

and thus |S| 6 t ·
(

d+3
2

)
.

Lastly, we conclude with the following theorem.

Theorem 8. The output ĉ of Algorithm 5 is the word c. The
algorithm’s complexity is Θ(nt− d+1

2 +1) and hence it is optimal.

Proof: From Lemma 6, since there are at most d−1
2 errors

in the word z of Step 1, one of the 2|S| words in the set Z of
Step 3 contains at most d−1

2 errors. Thus, the decoding of this
word in Step 4 will give the correct word c. We use here the
result of Lemma 16 from [18], in which ĉ = c if and only if
Y ⊆ Bt(ĉ).

The complexity of Step 1 is Θ(Nt,d) = Θ(nt− d+1
2 +1). Ac-

cording to Lemma 7, the size of the sets S and Z is constant
with respect to n. Thus, the decoding in Step 4 is invoked a
constant number of times and the complexity of the condition
in this step is Θ(nt− d+1

2 +1). Together, we conclude that the al-
gorithm’s complexity is Θ(nt− d+1

2 +1). We assumed here that
the complexity of the decoder DC is O(nt− d+1

2 +1).

293

V. EXTENSIONS FOR THE DECODER

Typically, the number of reads for each strand in DNA-based
storage system is different from the value found by Leven-
shtein and can not be directly controlled. Therefore, we study
the case in which there are more reads than the minimum
required one and show how to take advantage of them to con-
struct a simpler decoder.

The simplest decoding algorithm one can think of is the
majority decoder in which every bit is decoded by the major-
ity of its copies, that is, z = majτ (Y) for τ = 0. Note that in
case the size of Y is even, the algorithm outputs the erasure
symbol ? for bits having the same number of one and zero es-
timations. In fact, this is the decoding algorithm Levenshtein
presented for the case of d = 1 and any t, so the number of
channels is NS

n (t, 1)+ 1. This number of channels is necessary
for the success of the majority decoder even if the transmitted
word belongs to a code of any minimum Hamming distance
d > 1. However, in this case the majority decoder only needs
to output a word with at most some k 6 b d−1

2 c errors, as these
errors can be corrected by any decoder of the code. In the fol-
lowing theorem we present bounds on the required minimum
number of channels such that the majority decoder outputs a
word with at most k errors.

Theorem 9. For 4 6 k < t, n ∈ N large enough, a word w ∈
{0, 1}n, and a set Y ⊆ Bt(w), if the size of Y is larger than

2
t

∑
j=d k+1

2 e

(
k

j− 1

) t− j

∑
i=0

(
n− k− 1

i

)
+

2

⌈
k+1

2

⌉
− 1

k−2
⌈

k+1
2

⌉
+3

t

∑
j=d k+1

2 e

((
k

j−1

)
−
(

k
j

)) t− j

∑
i=0

(
n−k−1

i

)
then the number of erasures and errors in maj0(Y) is at most k.
Moreover, there exists a set Y ⊆ Bt(w) of size

2
t

∑
j=d k+1

2 e

(
k

j−1

) t− j

∑
i=0

(
n−k−1

i

)
−2

k + 1

k−2
⌈

k+1
2

⌉
+3

(
k⌈

k+1
2

⌉
−2

)

2

⌈

k+1
2

⌉
− 1

k−2
⌈

k+1
2

⌉
+ 3

t

∑
j=d k+1

2 e

((
k

j−1

)
−
(

k
j

)) t− j

∑
i=0

(
n−k−1

i

)

such that there are at least k + 1 erasures and errors in maj0(Y).
As a direct result of Theorem 9, if d is odd, then for

k = d−1
2 , we get that the number of channels is Θ(nt−d d+1

4 e),
while the minimum number of channels by Levenshtein is
Nn(d, t) + 1 = Θ(nt− d−1

2). That is, the degree of n in the
number of channels increases by d−1

2 − d
d+1

4 e = b d−3
4 c.

However, the majority decoder does not have to be applied
with τ = 0, and as was done in Section IV it is possible to
change the decoder’s threshold τ . According to this approach
the goal is to output a word with at most k1 errors and k2
erasures for any k1 and k2 such that 2k1 + k2 6 d− 1. Then
this word can be successfully decoded using the decoder of
the code. We demonstrate this approach for d = 3.

The authors of [18] have suggested a decoder for a code
with minimum distance 3 that is based on two steps and two
thresholds, τ1 and τ2 where τ1 < τ2, and requires only the
minimum number of channels, NS

n (3, t) + 1. The first step of
their algorithm checks if z1 = majτ1

(Y) has some erasures,
and if so then z2 = majτ2

(Y) is computed. It was proved that

if the word z1 has no erasures then it suffers from at most a
single error. However, in case z2 is computed then it might
have at most 8t erasures, for n large enough. In order to deal
with the erasures, all codewords that match on the erasures are
examined aiming to find the one that contains the set Y in its
ball. However, this approach increases the complexity of the
decoder since it requires checking all possible codewords and
for each one going over all of the words in Y.

However, if there are at least N = 32 ∑
t−3
i=0 (

n−3
i)+ 13(n−3

t−2)
channels, then the algorithm from [18] can be applied
with thresholds τ1 = 4 ∑

t−3
i=0 (

n−3
i) + (n−3

t−2) and τ2 =

8 ∑
t−3
i=0 (

n−3
i) + 3(n−3

t−2) to ensure that the generated word has
at most a single error or at most two erasures, which can
then be corrected by the decoder of the code. This approach
presents the tradeoff between the number of channels and the
decoder’s complexity by taking advantage of the large num-
ber of channels to improve the performance. Furthermore,
in this case the order of the number of channels does not
increase since for n large enough N ≈ 13

6 Nn(3, t).

REFERENCES

[1] J. Bornholt, R. Lopez, D. M. Carmean, L. Ceze, G. Seelig, and K.
Strauss, “A DNA-based archival storage system,” ASPLOS, pp. 637–649,
Atlanta, GA, Apr. 2016.

[2] G. M. Church, Y. Gao, and S. Kosuri, “Next-generation digital informa-
tion storage in DNA,” Science, vol. 337, no. 6102, pp. 1628–1628, Sep.
2012.

[3] R. Feynman, “There’s plenty of room at the bottom,” Engineering and
Science, California Institute of Technology, vol. 23, pp. 22–36, 1960.

[4] N. Goldman, P. Bertone, S. Chen, C. Dessimoz, E. M. LeProust, B.
Sipos, and E. Birney, “Towards practical, high-capacity, low-maintenance
information storage in synthesized DNA,” Nature, vol. 494, no. 7435,
pp. 77–80, 2013.

[5] M. Blawat, K. Gaedke, I. Hütter, X.-M. Chen, B. Turczyk, S. Inverso,
B.W. Pruitt, and G.M. Church, “Forward error correction for DNA data
storage,” Int. Conf. on Comp. Science, vol. 80, pp. 1011–1022, 2016.

[6] J. Bornholt, R. Lopez, D. M. Carmean, L. Ceze, G. Seelig, and K.
Strauss, “A DNA-based archival storage system,” Proc. of the Twenty-
First Int. Conf. on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pp. 637–649, Atlanta, GA, Apr. 2016.

[7] Y.M. Chee, H.M. Kiah, and H. Wei, “Efficient and explicit balanced
primer codes,” https://arxiv.org/abs/1901.01023, 2019.

[8] Y. Erlich and D. Zielinski, “DNA fountain enables a robust and efficient
storage architecture,” Science, vol. 355, no. 6328, pp. 950–954, 2017.

[9] R. Gabrys and E. Yaakobi, “Sequence reconstruction over the deletion
channel,” IEEE Trans. on Inform. Theory, vol. 64, no. 4, pp. 2924–2931,
Apr. 2018.

[10] R. Heckel, G. Mikutis, and R.N. Grass, “A characterization of the DNA
data storage channel,” arxiv.org/pdf/1803.03322.pdf, 2018.

[11] V. I. Levenshtein, “Efficient reconstruction of sequences,” IEEE Trans.
on Inform. Theory, vol. 47, no. 1, pp. 2–22, Jan. 2001.

[12] V. I. Levenshtein, “Efficient reconstruction of sequences from their sub-
sequences or supersequences,” Journal of Combin. Theory, Ser. A, vol.
93, no. 2, pp. 310–332, 2001.

[13] M. Levy and E. Yaakobi, “Mutually uncorrelated codes for DNA stor-
age,” to appear IEEE Trans. Inform. Theory.

[14] L. Organick et al. “Scaling up DNA data storage and random access
retrieval,” bioRxiv, Mar. 2017.

[15] C. Rashtchian, K. Makarychev, M. Racz, S. Ang, D. Jevdjic, S. Yekhanin,
L. Ceze, and K. Strauss, “Clustering billions of reads for DNA data stor-
age,” NIPS, 2017.

[16] F. Sala, R. Gabrys, C. Schoeny, and L. Dolecek, “Exact reconstruction
from insertions in synchronization codes,” IEEE Trans. on Inform. The-
ory, vol. 63, no. 4, pp. 2428–2445, Jan. 2017.

[17] T. Shinkar, E. Yaakobi, A. Lenz, and A. Wachter-Zeh, “Clustering cor-
recting codes,” to appear IEEE Int. Symp. Inf. Theory, Paris, France, Jul.
2019.

[18] E. Yaakobi and J. Bruck, “On the uncertainty of information retrieval
in associative memories,” IEEE Trans. on Inform. Theory, vol. 65, no. 4,
pp. 2155–2165, Apr. 2019.

[19] S. H. T. Yazdi, R. Gabrys, and O. Milenkovic, “Portable and error-free
DNA-based data storage,” Cold Spring Harbor Labs Journals, 2016.

[20] S. H. T. Yazdi, H. M. Kiah, E. Garcia-Ruiz, J. Ma, H. Zhao, and O.
Milenkovic, “DNA-based storage: Trends and methods,” IEEE Trans.
Mol., Bio. and Multi-Scale Comm., vol. 1, no. 3, pp. 230–248, 2015.

[21] S. M. H. T. Yazdi, Y. Yuan, J. Ma, H. Zhao, and O. Milenkovic, “A
rewritable, random-access DNA-based storage system,” Nature Scientific
Reports, vol. 5, no. 14138, Aug. 2015.

294

