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Abstract—In this work, we study a special case of the recon-
struction problem in order to combat position errors in racetrack
memories. In these memories, the information is stored in mag-
netic cells that can be sensed by shifting them under read heads.
However, since this shifting operation is not error free, recent
work has been dedicated towards correcting these so-called po-
sition errors, which manifest themselves as deletions and sticky
insertions. A deletion is the event where the cells are over-shifted,
and a sticky insertion occurs when the cells are not shifted.

We first present a code construction that uses two heads to
correct two deletions with at most log2(log2 n) + 4 redundant
bits. This result improves upon a recent one that requires roughly
log2 n redundant bits. We then extend this construction to correct
d deletions using d heads with at most log2(log2 n)+ c redundant
bits. Lastly, we extend our results and derive codes for the classical
reconstruction problem by Levenshtein over the insertion/deletion
channel.

I. INTRODUCTION

Racetrack memory is an emerging non-volatile memory tech-
nology which has attracted significant attention in recent years
due to its promising ultra-high storage density and low power
consumption [13], [16]. The basic information storage element
in a racetrack memory is called a domain, also known as a cell.
The magnetization direction of each domain is programmed to
store binary information. The reading mechanism is operated
by a read port, called a head. Since all heads are fixed, each
domain is shifted to its closest head to be read, by a shift op-
eration. Since the shifting operation is not always accurate,
it introduces errors, called position errors. The two kinds of
position errors, caused by over-shifting and under-shifting the
cells, can be modeled as deletions and sticky insertions, respec-
tively [3], [18].

One natural approach to combat position errors in race-
track memories is to use classical insertion/deletion-correcting
codes. These codes are required in a model that each cell
is read by only a single head [17]. Although there are
several known deletion-correcting codes [1], [7], [9] and
sticky-insertion-correcting codes [5], [8], [12], only a little is
known on codes correcting a combination of deletions and
sticky insertions. Furtheremore, these codes may require a
large number of redundant bits. For example, even for the eas-
iest case of correcting a single sticky insertion, such a code
requires at least log2(n) − 1 bits of redundancy, where n is
the code length [5].

Another approach to tackle this problem is to leverage the
special feature of racetrack memories, where multiple heads
are used to read the information. Under this model, each cell

of the stored word is read by multiple heads and a decoder re-
ceives multiple erroneous versions of the stored word. In fact,
this model falls under the general framework of the reconstruc-
tion problem by Levenshtein [10], [11]. When over-shifts occur,
that is, bits of the stored word are deleted in the outputs from
all heads, Levenshtein presented efficient reconstruction algo-
rithms to recover the stored word for the uncoded case, that is
for all possible words [10], [11]. Recently, extensions for codes
correcting a single deletion were studied in [6] and for inser-
tions in [14]. Unfortunately, these algorithms require a large
number of distinct noisy versions of the stored word.

The main difference between the model studied here and
the one by Levenshtein is that for multiple heads in a racetrack
memory, the position errors are correlated and depend upon the
locations and distance between the different heads. For exam-
ple, if two heads are t positions apart and the i-th bit is deleted
in the first head then the (i+ t)-th bit is deleted in the second
head. Leveraging this special feature, several coding schemes
were recently presented in [2], [3]. These schemes used the po-
sitions of the heads together with a coding constraint that uses
at most a single bit of redundancy in order to guarantee that the
heads’ outputs are all different, for the case of a single over-
shift. Moreover, efficient reconstruction algorithms to recover
the stored word using a small number of heads were presented.
Before we give an overview of these results, we introduce some
necessary notations and terminology.

A. Notations

Let F2 denote the binary finite field. A binary word of length
n over the alphabet F2 is a vector u ∈ Fn

2 . For each word
u = (u1, . . . , un) ∈ Fn

2 , a subvector of the word u is a vector
u[i1, i2] = (ui1 , ui1+1, . . . , ui2) ∈ Fi2−i1+1

2 , where 1 6 i1 6
i2 6 n. In case i1 = i2 = i, we denote the subvector u[i, i] by
u[i] to specify the i-th bit ui of the vector u. For two vectors
u = (u1, . . . , un) ∈ Fn

2 and v = (v1, . . . , vm) ∈ Fm
2 , the con-

catenation of u and v is the vector (u1, . . . , un, v1, . . . , vm) ∈
Fn+m
2 , which is denoted by u ◦ v.
A length-m vector v = (v1, . . . , vm) ∈ Fm

2 is said to have
period ` if vi = vi+` for all 1 6 i 6 m− `. For a vector u ∈
Fn
2 , we denote by L(u, `) the length of its longest subvector

which has period `. Hence, L(u, 1) is the length of the longest
run in u.

A binary code of length n is a subset C ⊆ Fn
2 . Each element

of C is called a codeword. For each code C of length n, we
define the rate of the code C to be R(C) = log(|C|)/n and the
redundancy of the code C to be r(C) = n − log(|C|), where
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Fig. 1: Racetrack memory with twelve data domains and two heads

|C| is the size of the code C and the log here and in the rest
of the paper is taken according to base 2.

For a length-n word u ∈ Fn
2 and i ∈ [n], let u(δi) be the

vector obtained by a deletion of the i-th bit in the vector u.
That is, u(δi) = (u1, . . . , ui−1, ui+1, . . . , un). For a set ∆ ⊆
{δi : i ∈ [n]}, we denote by u(∆) the vector of length n −
|∆| obtained from u after deleting all the bits specified by the
locations in the set ∆.

A racetrack memory comprises n cells, each of which can
store a single bit, and d heads, which are fixed. For example, in
Fig. 1, a racetrack memory contains twelve data cells and two
heads which are two positions apart. Let c = (c1, c2, . . . , cn) ∈
Fn
2 be a word stored in a racetrack memory where the i-th cell

stores the bit ci. We assume that there are two heads of fixed
distance t and a shift operation is required for the heads to
read all bits. Under this setup, if the first head reads the i-th
bit ci then the second head, which is t positions away, reads
the (i+ t)-th bit ci+t and the output in each head is the stored
word c if there is no error. However, a shift operation might
not work perfectly. Let us consider an event where an over-shift
occurs and every head skips the following bit. For example,
when an over-shift occurs at the i-th position and the bit ci is
not read in the first head, then the bit ci+t is not read in the
second head. In this case, the output in the first head is c(δi) =
(c1, . . . , ci−1, ci+1, . . . , cn) and the output in the second head
is c(δi+t) = (c1, . . . , ci+t−1, ci+t+1, . . . , cn).

Example 1. Let u = (0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1) ∈ F12
2 be

the word stored in the memory, and assume that there are two
heads which are positioned t = 2 positions apart. Assume that
a deletion occurs at position 3 in the first head, then a deletion
also occurs at position 5 in the second head. Hence, the outputs
from the two heads are:

Head 1: u(δ3) = (0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1),

Head 2: u(δ5) = (0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1).

2

Similarly to over-shifts, when an under-shift occurs, each
head reads the same bit again. In this case, if an under-shift
occurs at position i in the first head, then the outputs in the
two heads are:

Head 1: u(δi) = (c1, . . . , ci, ci, . . . , cn),

Head 2: u(δi+t) = (c1, . . . , ci+t, ci+t, . . . , cn).

In a racetrack memory, shift errors are also known as position
errors. Our objective is to reconstruct the stored codeword from
the erroneous outputs from all heads or, in other word, to cor-
rect positions errors. If there are many distinct outputs, we can
use some known reconstruction algorithms to recover the stored
word. However, in racetrack memory, the number of heads is

limited and different heads may have the same output if the dis-
tance between their locations t is small and the stored word has
a long run. In the worst case, where there is a single head or all
heads have the same output, the only approach to correct the
position errors is by using a code which is capable of correcting
deletions and sticky insertions. This approach requires a large
number of redundancy bits. Given h heads, our goal is to de-
sign codes correcting at most d deletions using h heads. Such
a code is called an h-head d-deletion-correcting code. Simi-
larly, we also define h-head d-sticky-insertion-correcting code.
In the following, we seek to design codes with the minimum
number of redundant bits.

In this paper, we study h-head d-deletion-correcting codes,
while focusing on the special case of h = 2. The extended
results on two-head d-deletion-correcting codes and h-head d-
sticky-insertion-correcting codes will be presented in the ex-
tended version of this paper. An extension of our work with
connection to the reconstruction problem by Levenshtein is dis-
cussed in Section III.

B. Previous Results

The problem of correcting position errors in a racetrack
memory was recently studied in [3] and codes correcting
position errors were presented. In particular, two-head single-
deletion-correcting codes and (d+1)-head d-deletion-correcting
codes were constructed as follows.

Construction 1. [3] For all t 6 n, let C1(n, 1, t) be a code of
length n such that the length of the longest run of every code-
word is at most t. That is, C1(n, 1, t) = {c ∈ Fn

2 | L(c, 1) 6 t}.
Then, C1(n, 1, t) is a two-head single-deletion-correcting code,
when the distance between the two heads is at least t.

Construction 2. [3] Given n, d, t, let

C2(n,6 d, t) = {c ∈ Σn
2 | L(c, `) 6 t, for all ` 6 d}.

Then, C2(n,6 d, t) is a (d + 1)-head d-deletion-correcting
code, when the distance between every two consecutive heads is
at least T (d) = t

((
d
2

)
+ 1
)

+ 7d−d3

6 .

Note that C2(n,6 1, t) = C1(n, 1, t). The codes in Construc-
tions 1 and 2 can be seen as special families of constrained
codes. In particular, the code C1(n, 1, t) is equivalent to a (d, k)
run-length limited (RLL) constrained codes for d = 0 and k =
t− 1. While it is known that for every fixed t the rate of these
codes is strictly less than 1, according to the following proposi-
tion, the redundancy of these codes will actually be very small
when t is a function of the length n.

Proposition 3. [3] For all n, d, t,

|C2(n,6 d, t)| > 2n

(
1− n ·

(
1

2

)t−d
)
.



As an immediate result from Proposition 3, the redundancy of
the code C2(n,6 d, t) for t = dlog(n)e + d + 1 is at most
a single bit. Furthermore, h-head d-deletion-correcting codes
have been investigated in general. The following is the result
in the case h = d.

Theorem 4. [3] For all d > 2, there exists a d-head d-deletion-
correcting code with most dlog(n + 1)e + 1 redundancy bits,
when the distance between every two consecutive heads is at
least

((
d
2

)
+ 1
)
dlog(n)e+ d3+5d+3

3 .

Our first goal in this paper is to improve the redundancy in
Theorem 4. Then, we show how to use our code for the general
reconstruction problem over the deletion channel. Some of the
proofs in the paper are omitted due to the lack of space.

C. Main Results

Our first contribution is a family of two-head double-
deletion-correcting codes, which will be presented in Con-
struction 9. We analyze the size of this code in Proposition 11
in order to obtain the following result, which improves upon
the result in Theorem 4 for two deletions with respect to the
number of redundancy bits.

Theorem 5. There exists a two-head double-deletion-correcting
code with redundancy of at most log log n+ 4 bits when the dis-
tance between the two heads is at least 2(dlog(n)e+ 2).

A decoding algorithm of the above code can be derived from
the proof of Lemma 10. Next, we leverage this result to con-
struct d-head d-deletion-correcting codes for d > 2.

Theorem 6. There exists a d-head d-deletion-correcting
code with at most log log n + c redundancy bits, where
c = log(d(d − 1) + 2), when the distance between every two
consecutive heads is at least((

d

2

)
+ 1

)
dlog ne+

d3 + 5d+ 3

3
.

Finally, we extend our result to the general reconstruction prob-
lem by Levenshtein [10], [11].

Theorem 7. There exists a code with at most log log n + 4 re-
dundancy bits that can reconstruct each codeword in this code
using two distinct erroneous versions produced by a single dele-
tion channel.

Lastly, we note that our techniques can be extended also for
codes correcting sticky insertions and this part will be presented
in the extended version of this paper.

II. CODE CONSTRUCTIONS

The main goal in this section is to construct a two-head
double-deletion-correcting code, which improves upon the re-
sult in Theorem 4. Our construction uses the family of shifted
Varshamov-Tenengolts (SVT) codes, which were first presented
in [15] for codes correcting bursts of deletions.

Construction 8. [15] Given positive integers n, P and integers
0 6 a < P, b ∈ {0, 1}, let the shifted Varshamov-Tenengolts
(SVT) code be:

SV Ta,b(n, P )=
{
x∈ Fn

2 :

n∑
i=1

ixi≡ a (modP ),

n∑
i=1

xi≡ b (mod2)
}
.

It was shown in [15] that the SVT code SV Ta,b(n, P ) can cor-
rect a single deletion if the position of the deletion is known
to within at most P consecutive positions [15]. In this sec-
tion, SVT codes are used as one of the component codes in a
two-head double-deletion-correcting code.

Construction 9. Let n, P, d, t1 be positive integers and 0 6 a <
P, 0 6 b < 2. Let

C3(n, a, b, P, d, t1) = C2(n,6 d, t1) ∩ SV Ta,b(n, P ),

where the code C2(n,6 d, t1), SV Ta,b(n, P ) is constructed as
in Construction 2, Construction 8, respectively.

The following proposition shows the correctness of the above
construction.

Lemma 10. The code C3(n, a, b, P, 2, t1) is a two-head double-
deletion-correcting code when the distance between the two
heads is at least t = 2(t1 − 1) and P = 3t1 − 5.

Proof: Let c = (c1, . . . , cn) ∈ C3(n, a, b, P, 2, t1) be the
stored codeword and t = 2(t1 − 1) be the distance between
the two heads. Assume that the two deletions occurred in the
first head are in positions i1, i2, where i1 < i2. Hence the two
deletions in the second head are in positions i1 + t and i2 + t.
The outputs from the two heads are:

c1 = (c1, . . . , ci1−1, ci1+1, . . . , ci2−1, ci2+1, . . . , cn),

c2 = (c1, . . . , ci1+t−1, ci1+t+1, . . . , ci2+t−1, ci2+t+1, . . . , cn).

We prove that it is possible to correct these two deletions by
explicitly showing the decoding procedure. This will be done
in the following three steps:

1) Step 1: Correct the first deletion in the first head by re-
constructing (as shown in [3]).

2) Step 2: Estimate the location of the second deletion in the
first head to within some P consecutive positions.

3) Step 3: Use the decoder of the SVT code to recover the
stored codeword.

In Step 1, we simply repeat the arguments in [3] to show how
to correct the first deletion in the first head. We repeat these
steps for the completeness of the proof and since we need this
analysis for Steps 2 and 3.

First, we show that

c(δi1 , δi2)[1, i1 + t− 1] 6= c(δi1+t, δi2+t)[1, i1 + t− 1].

Assume to the contrary that there is equality. Then, we distin-
guish between the following two cases:
• Case 1.1: If i2 − i1 > t1 + 1 then the two subvectors

c1[1, i1 + t1−1] = (c1, . . . , ci1−1, ci1+1, ci1+2, . . . , ci1+t1),

c2[1, i1 + t1−1] = (c1, . . . , ci1−1, ci1 , ci1+1, . . . , ci1+t1−1)



are identical, and thus the subvector (ci1 , . . . , , ci1+t1)
forms a run of length t1 + 1, in contradiction to the
construction of the code C2(n,6 2, t1).

• Case 1.2: If i2 − i1 6 t1 then i1 + t = i1 + 2t1 − 2 >
i2 + t1 − 2. Then, the following two subvectors

c1[i1, i2 + t1−3] = (ci1+1, . . . , ci2−1, ci2+1, . . . , ci2+t1−1),

c2[i1, i2 + t1−3] = (ci1 , . . . , ci2−2, ci2−1, . . . , ci2+t1−3)

are identical, which implies that (ci2−1, ci2 , . . . , ci2+t1−1)
is a subvector of length t1 +1 with period 2, again in con-
tradiction to the construction of the code C2(n,6 2, t1).

Thus,

c(δi1 , δi2)[1, i1 + t− 1] 6= c(δi1+t, δi2+t)[1, i1 + t− 1].

Moreover,

c(δi1 , δi2)[1, i1 − 1] = c(δi1+t, δi2+t)[1, i1 − 1].

Hence, there exists j1 which is the leftmost index such that
c(δi1 , δi2) and c(δi1+t, δi2+t) differ and i1 6 j1 6 i1 + t− 1.
To correct the first deletion in the first head, we concatenate
the first j1 bits in c(δi1+t, δi2+t) and the last n − j1 − 1 bits
in c(δi1 , δi2), that is,

c(δi1+t, δi2+t)[1, j1] ◦ c(δi1 , δi2)[j1, n− 2].

Now, there are two cases to consider.
• Case 2.1: If j1 < i2 − 1 then c(δi1 , δi2)[j1, n −

2] = (cj1+1, . . . , ci2−1, ci2+1, . . . , cn) and further-
more c(δi1+t, δi2+t)[1, j1] = (c1, . . . , cj1). Thus,
c(δi1+t, δi2+t)[1, j1] ◦ c(δi1 , δi2)[j1, n− 2] = c(δi2).

• Case 2.2: If j1 > i2 − 1 then c(δi1 , δi2)[j1, n − 2] =
(cj1+2, . . . , cn) and c(δi1+t, δi2+t)[1, j1] = (c1, . . . , cj1).
Thus, c(δi1+t, δi2+t)[1, j1] ◦ c(δi1 , δi2)[j1, n − 2] =
c(δj1+1). Furthermore, (ci2−1, ci2 , . . . , cj1 , cj1+1) is a
subvector of length j1 − i2 + 3 with period 2. Hence,
j1− i2 + 3 6 t1, which provides that j1 + 1 6 i2 + t1− 2.

Therefore, in both cases we can write

c(δi1+t, δi2+t)[1, j1] ◦ c(δi1 , δi2)[j1, n− 2] = c(δi2+k1),

where 0 6 k1 6 t1 − 2. In other words, by concatenating
c(δi1+t, δi2+t)[1, j1] and c(δi1 , δi2)[j1, n − 2], we obtain the
vector c(δi2+k1

) which is also obtained from the vector c by
deleting the bit in location i2 + k1, where 0 6 k1 6 t1 − 2.

Next, in Step 2, we estimate the location i2 of the second
deletion in the first head and thus estimate the value of i2 +
k1. Let r be the reverse vector of c, that is, r = ←−c or ri =
cn+1−i for all 1 6 i 6 n. Let r1, r2 be the reverse vector
of c1, c2, respectively. Then, r1 = r(δn+1−i2 , δn+1−i1) and
r2 = r(δn+1−i2−t, δn+1−i1−t). Applying the same arguments
as in Step 1, there exists j2 which is the leftmost index that
r1 and r2 differ and n + 1 − i2 − t 6 j2 6 n − i2. Hence,
n + 1 − j2 − t 6 i2 6 n − j2 and thus n + 1 − j2 − t 6
i2 +k1 6 n− j2 + t1−2 since 0 6 k1 6 t1−2. Therefore, we
can estimate the location of the deletion i2 + k1 in a segment
of length 3t1 − 5 from n+ 1− j2 − t to n− j2 + t1 − 2.

In the last step, we simply choose P = 3t1 − 5 and use
the decoder of the code SV Ta,b(n, P ) with the input c(δi2+k1

)
obtained in Step 1, and the range of positions for its deletion
in order to recover the stored codeword c.

Next we compute the size and redundancy of the code
C3(n, a, b, P, 2, t1), and thus obtain the result in Theorem 5.

Proposition 11. For all n, t1 and P = (3t1 − 5), there exist 0 6
a < P, b ∈ {0, 1} such that the size of the code constructed in
Construction 9 satisfies

|C3(n, a, b, P, 2, t1)| > 2n

2(3t1 − 5)

(
1− n ·

(
1

2

)t1−2
)
. (1)

In particular, for t1 = dlog(n)e + 3 the redundancy of the code
C3(n, a, b, P, 2, t1) is at most log log n+ 4 bits.

Proof: Note that C2(n,6 2, t1) > 2n ·
(

1− n ·
(
1
2

)t1−2)
from Proposition 3. We consider all 2P cosets of the SVT code
SV Ta,b(n, P ) which form a partition of the space Fn

2 . Then,
according to the pigeonhole principle with P = (3t1−5) there
exist 0 6 a < P, b ∈ {0, 1} such that

C3(n, a, b, P, 2, t1) >
2n

2(3t1 − 5)

(
1− n ·

(
1

2

)t1−2
)
.

Therefore, for t1 = dlog(n)e + 3, the redundancy is at most
log(4P ) 6 log log n+ 4 bits.

From the proof of Lemma 10, it is possible to use two out-
puts to correct the first deletion in the first output if there are
only two deletions in each output. The result can be generalized
to the case there are d deletions in each output as follows.

Lemma 12. [Lemma 17, [4]] Let d and t1 be two positive inte-
gers such that t1 > d and let t = dt1 − d(d + 1)/2 + 1. For
h = 1, 2 let ∆h = {δih,1

, . . . , δih,d
} be two sets of deletion po-

sitions, such that for all 1 6 ` 6 d,

i2,` − i1,` > t = dt1 − d(d+ 1)/2 + 1. (2)

Assume c ∈ C2(n,6 d, t1) and the two vectors c(∆1) and
c(∆2) are given. Then, it is possible to correct the first deletion
in the first vector c(∆1) and obtain the vector c(∆′1), where
∆′1 = {δi′1,2 , . . . , δi′1,d} and for 2 6 ` 6 d,

i1,` 6 i′1,` 6 i1,` + (d− 1)t1 − d(d− 1)/2 + 1. (3)

In case there are d heads and ∆h = {δih,1
, . . . , δih,d

} is the
positions set of d deletions in the h-th head for 1 6 h 6 d, we
consider d − 1 pairs of outputs {c(∆i), c(∆i+1)} for 1 6 i 6
d− 1. From Lemma 12, we can correct the first deletion in the
first d− 1 heads to obtain d− 1 vectors. Repeating this proce-
dure d−2 times, we can correct d−2 deletions and obtain two
vectors with two deletions in each vector. Now, we use Lemma
10 to correct these two deletions to recover the original vector.
We omit the details and state the following result instead.

Theorem 13. The code C3(n, a, b, P, d, t1) is a d-head d-
deletion-correcting code if the distance between any two heads
is at least t > T (d), where P = T (d) + t1 − 3 and

T (d) = t1

((
d

2

)
+ 1

)
+

7d− d3

6
.

By choosing t1 = dlog ne+d+1, the code C3(n, a, b, P, d, t1)
requires at most 2 + logP 6 log log n+ c bits of redundancy,
where c = log(d(d− 1) + 2) and n is large enough. Hence, we



conclude that our code is a d-head d-deletion-correcting code
with at most log log n+ log(d(d− 1) + 2) bits of redundancy,
when the distance between consecutive heads is at least((

d

2

)
+ 1

)
dlog ne+

d3 + 5d+ 3

3
.

Thus, we establish the result in Theorem 6.

III. CONNECTIONS TO THE RECONSTRUCTION PROBLEM

In this section, we investigate a problem of correcting shift-
errors in racetrack memories. With the special feature of having
multiple heads in racetrack memories, we obtain multiple out-
puts. However, each of them has multiple deletions due to shift
errors in racetrack memories. Hence, this problem is closely
related to the Levenshtein’s reconstruction problem [10], [11].
Thus far, our main contribution is the construction of the code
correcting two deletions using two erroneous outputs in race-
track memories. We note that in our model, the deletions in dif-
ferent outputs are correlated, depend on the distance between
two heads. This fact does not hold in general case of Leven-
shtein’s problem. Fortunately, our constructed code still works
in general case of the classical reconstruction problem if there
is only single deletion.

Theorem 14. Given a word c ∈ C3(n, a, b, P, 2, t1), using only
two distinct noisy versions (produced by a single deletion chan-
nel), we can reconstruct the word c exactly.

Proof: Let c = (c1, . . . , cn) be a stored codeword
and c1, c2 be two received vectors. Let ci (respectively
cj) be a deleted bit in c1 (respectively c2). That is, c1 =
(c1, . . . , ci−1, ci+1, . . . , cn) and c2 = (c1, . . . , cj−1, cj+1, . . . , cn).

The theorem is proved by showing an explicit decoding pro-
cedure, which is described in Algorithm 1. It is possible to

Algorithm 1 decode(c1, c2)

Input: c1, c2 ∈ Fn−1
2 .

Output: c ∈ Fn
2 .

1. j1 ← leftmost index that c1 6= c2;
2. j2 ← rightmost index that c1 6= c2;
3. c∗1 ← c1[1, j1 − 1] ◦ {c2[j1]} ◦ c1[j1, n− 1];
4. c∗2 ← c2[1, j2 − 1] ◦ {c1[j2]} ◦ c2[j2, n− 1];
5.
if c∗1 6= c∗2 then

return c = c1[1, j2 − 1] ◦ {c2[j2]} ◦ c1[j2, n− 1];
6.
if c∗1 = c∗2 and c∗1 6∈ C3(n, a, b, P, 2, t1) then

return c = c1[1, j2 − 1] ◦ {c2[j2]} ◦ c1[j2, n− 1];
7.
if c∗1 = c∗2 and c∗1 ∈ C3(n, a, b, P, 2, t1) then

return c = c∗1;

show that Algorithm 1 can successfully reconstruct the stored
word c with linear complexity.

From Proposition 11, we know that the redundancy of the
code C3(n, a, b, P, 2, t1) is at most log log n+4 bits. Hence, we
can obtain the result in Theorem 7. The details of this section
can be found in our full paper [4].

IV. CONCLUSION

In this work, we studied coding techniques to combat
shift-errors (position errors) in racetrack memories. These
errors were modeled as deletions and sticky insertions. Lever-
aging the special feature of having multiple read ports in
racetrack memories, constrained codes have been proposed
to reconstruct the stored codeword from multiple erroneous
outputs. In this work, we combine constrained codes with
SVT codes to design a new code correcting these position
errors with a fewer number redundancy bits, compared to
previous known results. We also analyze the connection be-
tween this problem and the classical reconstruction problem
by Levenshtein to show that our code is useful for the classi-
cal reconstruction problem. Our techniques can be generalized
for d-head d-sticky-insertion-correcting codes.
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