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Abstract—Cassuto and Blaum recently studied the symbol-pair
channel, a model where every two consecutive symbols are read
together. This special structure of channels is motivated by the
limitations of the reading process in high density data storage
systems, where it is no longer possible to read individual sym-
bols. In this new paradigm, the errors are no longer individual
symbol errors, but rather symbol-pair errors, where at least one
of the symbols is erroneous.

In this work, we study bounds and construction of codes over
the symbol-pair channels. We extend the Johnson bound and
the linear programming bound for this channel and show that
they improve upon existing bounds. We then propose new code
constructions that improve upon existing results that use linear
cyclic codes when the pair distance is between four and ten.

I. INTRODUCTION

High density data storage systems carry a basic limitation
in which the outputs of the reading process are pairs of con-
secutive symbols instead of individual symbols. The symbol-
pair read channel was recently proposed as a model reflecting
this limitation and was first studied in [2] and [3]. In those
papers the authors studied the fundamental questions arising
from pair-symbol readings such as the pair-distance, code con-
structions, decoding of error-correction codes, and bounds on
codes size. These results were later extended in several di-
rections such as cyclic codes, maximum distance separable
(MDS) codes, decoding algorithms, and more.

The results in [2] and [3] were extended in [18] for study-
ing linear cyclic codes and their decoding algorithms to correct
symbol-pair errors. Several more works presented different de-
coding algorithms for arbitrary linear codes [8], [9], [13], [15]–
[17]. The study of MDS codes for the symbol-pair channel was
initiated in [4], and was later extended in several more works
and for other non-binary codes; see e.g. [5], [6], [11], [12],
[14], [19]. Another generalization of the pair-symbol model
was studied in [18] for the b-symbol read channel. Here the
assumption is that every b > 2 consecutive symbols are read
together. This model was further studied for MDS codes in [5],
[12].

Assume the stored word is given by the vector x =
(x0, x1, . . . , xn−1). The pair-read vector is given by

π(x) = ((x0, x1), (x1, x2), . . . , (xn−2, xn−1), (xn−1, x0)).

A symbol-pair error is the event where at least one of the sym-
bols in the read pair is in error. The pair distance between
two words x and y, denoted by dp(x, y), is the Hamming
distance between their pair-read vectors, that is dp(x, y) =

dH(π(x), π(y)). Finally, the minimum pair distance of a code
C is the minimum pair distance between any two different
codewords. Under this paradigm, the ultimate goal is the con-
struction of efficient codes with large minimum pair distance
since this is the appropriate figure of merit to study in order to
correct symbol-pair errors, that is, a code with minimum pair
distance dp permits the correction of at least b dp−1

2 c symbol-
pair errors.

In [18], it was shown that if a linear cyclic code has mini-
mum Hamming distance dH then its minimum pair distance is
at least dp > d3dH/2e. This work presented also decoding al-
gorithms for such codes. On the other hand, bounds on codes
with minimum pair distance were studied in [2], where the
authors extended the sphere packing bound for symbol-pair
errors.

In this work we improve upon existing results and propose
new upper bounds and code constructions of codes for the
symbol-pair read channel. Specifically, we show how to ex-
tend the Johnson bound and the linear programming bound for
this setup and show that the new bounds improve upon the best
previously known bound from [2]. We also study code con-
structions for relatively small minimum pair distance, namely
between four and ten. For these cases we show how to im-
prove the result from [18] that uses cyclic linear codes in order
to receive codes with better redundancy.

The rest of this paper is organized as follows. In Section II,
we review the symbol-pair read channel and list several ba-
sic properties that will be used throughout the paper. In Sec-
tion III, we study bounds on codes correcting symbol-pair er-
rors. Then, in Section IV we present our new code construc-
tions of symbol-pair error-correcting codes, when the mini-
mum pair-distance is between four and ten. Due to the lack
of space, some proofs in the paper are omitted.

II. PRELIMINARIES

Let n ∈ N (the natural numbers, including 0), and de-
note by [n] the set {0, . . . , n− 1}. Let Σ be the binary al-
phabet and denote by Σn the set of all length-n sequences
over Σ. We use Fq to denote the field of size q. For a se-
quence x ∈ Σn denote by wH(x) the Hamming weight of x.
For two sequences x, y ∈ Σn let dH(x, y) denote the Ham-
ming distance between x, y. For a set C ⊆ Σn, denote by
dH(C) , minx,y∈C ,x 6=y{dH(x, y)} the minimum Hamming
distance between any two different sequences in C. We also
denote by 0, 1 ∈ Σn the all zeros and the all ones sequences,
respectively.
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Definition 1. Let π : Σn → (Σ× Σ)n denote the (cyclic) pair
symbol read representation which is defined as follows. For x =
(x0, x1, . . . , xn−1) ∈ Σn,

π(x) , ((x0, x1), (x1, x2), . . . , (xn−2, xn−1), (xn−1, x0)) .

We now define the associated pair-weight and pair-distance.
For a sequence x ∈ Σn, define the pair-weight of x as

wp(x) , wH(π(x)) =
∣∣{ j ∈ [n] : (x j, x j+1) 6= (0, 0)

}∣∣
with coordinates taken modulo n. Similarly, for sequences
x, y ∈ Σn, define the pair-distance as

dp(x, y), dH(π(x), π(y))=
∣∣{j∈ [n] : (x j, x j+1) 6= (y j, y j+1)

}∣∣
with coordinates taken modulo n. For a set C ⊆ Σn we define
dp(C) as the minimum pair-distance between any two differ-
ent codewords,

dp(C) , min
x,y∈C ,x 6=y

{dp(x, y)}.

Note that for a linear code, C, we obtain

dp(C) = min
y∈C ,y 6=0

{dp(0, y)} = min
y∈C ,y 6=0

{wp(y)}. (1)

Example 1. Let Σ be the binary alphabet and let n = 4
and consider the sequences x = (0110), y = (0101) ∈ Σn.
We have that wH(x) = wH(y) = 2, dH(x, y) = 2,
π(x) = ((0, 1), (1, 1), (1, 0), (0, 0)), wp(x) = 3, π(y) =
((0, 1), (1, 0), (0, 1), (1, 0)), wp(y) = 4, dp(x, y) = 3.

We define r(x) , |{i : π(x)i = (0, 1)}| so that r(x) is
equal to the number of occurrences of the symbol (0, 1) in
π(x). It is straightforward to show that r(x) = |{i : π(x)i =
(0, 1)}| = |{i : π(x)i = (1, 0)}|. Note that according to our
definition, the sequence 1 has r(1) = 0. It is known [2] that

wp(x) = wH(x) + r(x). (2)

Moreover, if C is a linear code, from (1), it is straightforward
to verify that

dp(C) = min
y∈C ,y 6=0

{wH(y) + r(y)}. (3)

In this work we focus on bounds and constructions for
codes that, for fixed levels of redundancy, maximize the
pair-distance dp(x, y) for x, y ∈ Σn. We make use of the fol-
lowing lemma from [18] which we include for completeness.

Lemma 2. [18, Lemma 1] Suppose C ⊆ Fn
2 is a cyclic linear

code where dH(C) > d. Then, for any x ∈ C, r(x) > d d
2 e.

As a consequence of Lemma 2, it follows that if C is a
linear cyclic code with minimum Hamming distance dH(C),
then the code C satisfies

dp(C) >
⌈3dH(C)

2

⌉
. (4)

III. UPPER BOUNDS

In this section, we derive a number of new bounds on the
maximum size of a code with a prescribed pair-distance. In
the first subsection, we consider upper bounds for even pair-
distance and then in the following subsection we apply linear
programming techniques.

A. Upper Bounds for Even Pair-Distance

In this subsection, we derive upper bounds for even pair-
distance codes using similar logic as in the Johnson bound
[10, Theorem 2.3.8]. The main result of this subsection ap-
pears in Theorem 3. In order to prove the theorem, we derive
a bound on the maximal size of a code where each codeword
in the code has pair-weight w and the pair-distance between
any two distinct codewords is at least 2w. This result is then
used to prove Theorem 3.

Let n, d, w ∈ N and denote by Ap(n, d, w) the maximal
size of a code where each codeword in the code has pair-
weight w and the pair-distance between any two distinct code-
words is at least d. For the specific case in which d = 2w we
have proved that Ap(n, 2w, w) =

⌊ n
w
⌋
.

We introduce some additional notation and useful results
from [2]. For integers i, j where i 6 j, let [i, j] = {i, i +
1, . . . , j}. For integers n > ` > L, let D(n, `, L) be the num-
ber of sequences x ∈ Σn such that wH(x) = ` and r(x) = L.
It is known [2] that for integers n > ` > L, D(n, `, L) =
n
L (

`−1
L−1)(

n−`−1
L−1 ).

For a sequence x ∈ Σn and for a natural number t ∈ N,
denote by St(x) the radius t sphere around x, i.e., St(x) =
{y : dp(x, y) = t}. In particular, from [2] we have

|St(x)| =
t−1

∑
`=dt/2e

D(n, `, t− `).

Let Bt(x) = {y : dp(x, y) 6 t} be the ball of radius t around
x. Then,

|Bt(x)| = 1 +
t

∑
i=1
|Si(x)|.

Notice from these expressions that the values for |St(x)|
and |Bt(x)| do not depend on x. Consequently, we denote
Sp(n, t) = |St(x)| and Bp(n, t) = |Bt(x)|. Note that for any
fixed t, the order of both Sp(n, t) and Bp(n, t) is Θ(nbt/2c).
Thus, according to the sphere packing bound [2], the redun-
dancy of a code with minimum symbol-pair distance dp is at
least roughly ⌊

dp − 1
4

⌋
log(n). (5)

We may now state the main result of this subsection. Let
Ap(n, d) be the maximal size of a code of length n with
pair-distance d.

Theorem 3. Let n, d ∈ N where d 6 n
4 . Let t ∈ N be such that

d = 2t + 2, then

Ap(n, d) 6
2n

Bp(n, t) + Sp(n,t+1)
b n

t+1 c

.

The proof follows a similar logic as the proof of the John-
son bound [10, Theorem 2.3.8].

Proof: Let C ⊆ Σn be a code of size M with
dp(C) > d where d = 2t + 2. For a sequence x ∈ Σn let
dp(C , x) = minc∈C ,c 6=x{dp(x, c)} and denote N = {x ∈
Σn : dp(C , x) = t + 1}. Clearly,

M · Bp(n, t) + |N | 6 2n. (6)
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Consider the set X =
{
(c, x) ∈ C ×N : dp(c, x) = t + 1

}
.

We first calculate |X |. For any c ∈ C, denote by Xc =
{x ∈ N : (c, x) ∈ X} and note that |X | = ∑c∈C |Xc|.
For a fixed c ∈ C, let x ∈ Σn be any sequence such that
dp(c, x) = t + 1. There are exactly Sp(n, t + 1) such
sequences. Thus, wp(c + x) = t + 1 which means that
dp(C , x) 6 t + 1. We show that for any c′ ∈ C , c′ 6= c, we
have dp(c′, x) > t + 1, which implies dp(C , x) = t + 1. By
the triangle inequality we obtain,

d 6 dp(c, c′) = wp(c + c′) = wp(c + x + c′ + x)
6 wp(c + x) + wp(x + c′) = t + 1 + wp(c′ + x).

This implies that if d = 2t + 2 then wp(c′+ x) = dp(c, x) >
t + 1. Since c′ was arbitrary we obtain dp(C , x) = t + 1.
Therefore, for a fixed c ∈ C, we have that |Xc| = Sp(n, t+ 1)
which implies that

|X | = M · Sp(n, t + 1). (7)

We now fix x ∈ N and consider the set

C ′x =
{

x + c : c ∈ C and dp(x, c) = t + 1
}

.

Note that C ′ is a constant pair-weight code of length n with
codewords of pair-weight t + 1 and minimum pair-distance d.
Therefore, for every choice x ∈ N , |C ′x| 6 Ap(n, 2t + 2, t +
1). This, in turn, implies that

|X | 6 |N | · Ap(n, 2t + 2, t + 1). (8)

Combining the property that Ap(n, 2w, w) =
⌊ n

w
⌋

with (6),
(7) and (8) we obtain

M

(
Bp(n, t) +

Sp(n, t)⌊ n
t+1
⌋ ) 6 M · Bp(n, t) + |N | 6 2n.

Since this is true for every code of size M, it also holds for
Ap(n, d) which gives the result.

B. Linear Programming Upper Bounds

We now consider the application of linear programming
techniques to derive upper bounds on codes under the pair-
distance metric. The approach used here is analogous to the
approach from [7]. First, we introduce a mapping, which we
refer to as T[m1 ,m2 ]

. With additional notations we then estab-
lish the linear programming upper bound.

For a linear code C ⊆ Σn and for i, j ∈ [n + 1], let

Ai, j , {x ∈ C : wH(x) = i, r(x) = j} ,

and denote by ai, j = |Ai, j|. Note that for i < j, Ai, j = ∅,
and so we may consider only the cases where j 6 i. Note
also that |C| = ∑06 j6i6n ai, j. For a code C, we denote by
π(C) = {π(c) : c ∈ C}.

Let m1, m2 ∈ [n + 1] be such that m1 + m2 6 n and let
N = ( n

m1
) · (n−m1

m2
). We introduce a map T[m1 ,m2 ]

:
(
Σ2)n →(

Σ2)N as follows. Let J0, . . . ,JN−1 be all the distinct
ways of choosing m1 positions out of n and then choos-
ing additional m2 positions. For every 0 6 i 6 N − 1 we
think of Ji as a pair Ji = {Ji,1,Ji,2} where Ji,t ⊆ [n],
|Ji,t| = mt for t = 1, 2 and Ji,1 ∩ Ji,2 = ∅. That is,

we think of Ji,1 as all the m1 positions that were cho-
sen in the first round and of Ji,2 as all the m2 positions
that were chosen in the second round. For a sequence z =
((z0,0, z0,1), (z1,0, z1,1), . . . , (zn−1,0, zn−1,1)) ∈

(
Σ2)n we

define T[m1 ,m2 ]
(z) = y where y = (y0, . . . , yN−1) ∈

(
Σ2)N

is defined as follows. For i ∈ [N],

yi =

 ∑
`1∈Ji,1

(z`1 ,0, z`1 ,1) + ∑
`2∈Ji,2

(0, z`2 ,1)

mod 2.

Note that if x = (x0, . . . , xn−1) and T[m1 ,m2 ] (π(x)) = y
where y = (y0, . . . , yN−1), then for i ∈ [N],

yi =

 ∑
`1∈Ji,1

(x`1 ,0, x`1 ,1) + ∑
`2∈Ji,2

(0, x`2 ,1)

mod 2.

We introduce two more notations for the simplicity of writ-
ing. Let m1, m2, n ∈ N be such that n > 0, m1, m2 > 0 and
let j, i ∈ N. We define

Km1 ,m2(n, i, j),4 ∑
s≡t+s′+t′≡u( mod 2)

(
i− j

s

)(
j
t

)
×(

j
u

)(
n− i− j

m1 − s− t− u

)(
i− j− s

s′

)(
j− t

t′

)
×(

n− i− u
m2 − s′ − t′

)
−
(

n
m1

)(
n−m1

m2

)
.

For integers n, m where 0 6 m 6 n, let

Km(n, i),
m

∑
k=0

(−1)k
(

i
k

)(
n− i
m− k

)
.

The next corollary establishes the statement of this bound.

Corollary 4. Suppose C ⊆ Σn with dp(C) > d. Then, |C| is
upper bounded by the following expression

Maximize ∑
16 j6i

ai, j

Subject to: 1) a0,0 = 1
2) ai, j = 0 if i + j < d

3)
n

∑
i=0

Km(n, i)

(
i

∑
j=1

ai, j

)
> 0

0 6 m 6 n

4) Km1 ,m2 (n, 0, 0)a0,0 +
n−1

∑
i=1

i

∑
j=1

Km1 ,m2 (n, i, j)ai, j

+ Km1 ,m2 (n, n, 0)an,0 > 0
0 6 m1 + m2 6 n.

Our results are highlighted in Table I. Each entry consists of
a pair of numbers delimited by a ’/’ where the first number in
the pair represents the result of using our linear programming
bound or the bound from Theorem 3 and the second number
represents the sphere-packing upper bound from [2].
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TABLE I
RESULTS OF COROLLARY 4 AND THEOREM 3 VS. THE SPHERE PACKING BOUND.

n\dp 1 2 3 4 5 6 7 8
2 4 / 4 4 / 4 2 / 4 - - - - -
3 8 / 8 8 / 8 4 / 8 2 / 8 - - - -
4 16 / 16 16 / 16 8 /16 4 / 16 2 / 4 - - -
5 32 / 32 32 / 32 16 / 32 9 / 32 4 / 5 2 / 5 - -
6 64 / 64 64 / 64 32 / 64 21 / 64 8 / 9 4 / 9 2 / 4 -
7 128 / 128 128 / 128 64 / 128 38 / 128 16 / 16 8 / 16 4 / 8 3 / 8

IV. CONSTRUCTIONS FOR SMALL PAIR-DISTANCE

In this section, we present new code constructions for
the pair-symbol channel. Table II compares the sizes of the
best known code constructions for the pair-symbol channel
(in terms of their code lengths) to the sphere-packing upper
bound from [2] and to Theorem 3 where we have highlighted
the contributions of this section by (∗). The fourth column
of the table labeled “Hamming Distance of the Code” is a
lower bound on the Hamming distance of the code whose
size is listed in the third column. As can be seen from Ta-
ble II, our constructions provide codes that improve upon
the state-of-the-art results for the cases where dp = 4, 6, 7,
and 10. Note that the case of dp = 2, 3 are trivial and are
fully solved. Every code has minimum pair distance at least
2, so Ap(n, 2) = 2n and the simple parity code has min-
imum pair distance 3, and this construction is optimal so
Ap(n, 3) = 2n−1. In general, if we were to apply the codes
from [18] in order to construct codes with minimum pair dis-
tance dp then the Hamming distance dH of the codes will

have to satisfy
⌈

3dH
2

⌉
> dp, or dH >

⌊
2dp+1

3

⌋
. Hence, the

redundancy of these codes will be roughly
⌊

2dp+1
3

⌋
− 1

2

 log(n) =
⌊

dp − 1
3

⌋
log(n),

which is already close to the lower bound in (5). Our goal in
this section is to improve this construction for dp = 4, 6, 7, 10.

A. Codes with Minimum Pair-Distance Four
We begin with the case of minimum pair distance four. Let

w = (w1, . . . , wn) be defined so that wi = 1 if i is odd an
wi = 2 otherwise.

Theorem 5. Let n > 4 be an even integer and let C4(n) =
{x ∈ Σn : ∑

n
i=1 xi · wi ≡ 0 mod 4}. Then, dp(C4(n)) = 4.

The following corollary states the size of a code constructed
from Theorem 5.

Corollary 6. For an even n > 4, |C4(n)| = 2n

4 .

Suppose C4(n) is a code from Theorem 5. If codes from
[18] were used to construct a code with pair distance 4, then
the code would require Hamming distance at least 3 and so by
the sphere packing bound, the cardinality of the code would
be at most 2n

n+1 . Since 2n

n+1 < 2n−2, the size of C4(n) is larger
than the codes from [18]. These codes are also close to opti-
mality since by Theorem 3 we have that the upper bound for
even n is 2n

3 .

B. Codes with Minimum Pair-Distance Six

We now show how to construct codes with minimum
pair-distance 6. Let {0,α,α2,α3 = 1} = F4 and define
the map Π : F4 → F2

2 so that Π(0) = (0, 0), Π(α) =
(1, 0), Π(α2) = (1, 1), Π(α3) = (0, 1). Clearly, the map Π

is invertible. For a sequence x = (x1, x2, . . . , x n
2
) ∈ F

n
2
4 , let

Π(x) = (Π(x1), . . . , Π(x n
2
)) ∈

(
F2

2
) n

2 . Note that
(
F2

2
) n

2 is

isomorphic to Fn
2 , and hence, for a sequence x ∈ F

n
2
4 , we may

consider Π(x) ∈ Fn
2 . Similarly for a set Z ⊆ F

n
2
4 let Π(Z)

be the result of applying the map Π to every element in Z .
We now describe the code using a parity-check matrix. We

construct the matrix

H = (H(0), H(1), . . . , H(m−4)) ∈ Fm×N
4

where N = 4m−43

3 − 2m + 6. For j ∈ [m− 3],

H( j) = (h( j)
1 , . . . , h( j)

4m− j−2
) ∈ Fm×(4m− j−2)

4

where for every i ∈ {1, . . . , m− j− 2}, h( j)
i is a sequence

of length m. Note that for all j1 6= j2 ∈ [m− 3], H( j1) and
H( j2) have different sizes.

The matrix H has the following properties:
1) For any non-zero z ∈ FN

4 , if H · zT = 0, then wH(z) >
3.

2) Suppose z ∈ F4m− j−2
4 and wH(z) = 3. Then, if

H( j) · zT = 0, r(z) > 2.
3) Let α be a primitive element for F4, for any j ∈ [m− 3],

α3 · h( j)
4m− j−2

+α · h( j+1)
1 6= α3 · h( j)

k ,

where k ∈ {1, . . . , m− j− 2} and we assume h(m−3)
1 =

h(0)
1 .

The code C ⊆ FN
4 is defined as

C , {c ∈ FN
4 : H · cT = 0}. (9)

The following theorem states the properties of the matrix H
to produce codes with minimum pair-distance 6.

Theorem 7. Let C be a linear code of length N as defined in
(9). Then, dp(Π(C)) > 6.

We consider the cardinality of the code Π(C) and com-
pare it with the previously best known codes from [18].
Since C is a sub-code of a quaternary Hamming code of
length N = 4m−43

3 − 2m + 6, we know that C 6 4N

4m where
m 6 log4(3N + 43). Since the mapping Π generates codes
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TABLE II
TABLE OF LARGEST KNOWN CODES AND UPPER BOUNDS ((∗) DENOTES OUR CONTRIBUTION)

dp Upper Bound Lower Bound on Code Size Hamming Distance of the Code
4 2n

1+ n
b n

2 c
2n−2(∗) 2

5 2n

n+1
2n

n+1 [2] 3
6 2n

1+n+ n
b n

3 c

2n

1+ 3n
2 +43 (∗) 4

7 2n

1+2n
2n

4(1+n) (∗) 4

8 2n

2n+1+ n(n−1)
2b n

4 c

2n

(n+1)2 [18] 5

9 2n
1
2 (2+3n+n2)

2n

2(n+1)2 [18] 6

10 2n

1
2 (2+3n+n2)+

n(n−3)
b n

5 c

2n

2(n−1)2 (∗) 6

of length 2N, setting n = 2N gives: |C| > 2n
3n
2 +43 . If the con-

struction from [18] was used to produce a code with dp > 6,
we would need a binary cyclic code with Hamming distance
at least 4 and so the cardinality of the code would be at most

2n

2(1+n) , which is less than |C|. Note that the upper bound in

this case is roughly 2n

n+4 .

C. Codes with Minimum Pair-Distance Seven
We now turn to the construction of codes capable of correct-

ing 3 pair-symbol errors. Although the proof follows almost
directly from [1], we highlight the result by stating it as the
following theorem.

Theorem 8. Let n = 2m − 1 where m is an even integer. Then,
the binary cyclic code C of length n with generator polynomial
g(x) = (1 + x + x2)p(x), where p(x) is a primitive polyno-
mial, satisfies dp(C) > 7.

For n = 2m − 1, where C is a code constructed according
to Theorem 8, we have dp(C) > 7, and |C| > 2n

4(1+n) . If we
were to construct a code capable of correcting 3 pair-symbol
errors using the techniques from [18], the code would have to
have minimum Hamming distance 5, and thus its cardinality
will be at most

2n

1 + n +

(
n
2

) .

Hence, our codes offer an improvement in codebook size in
this case. Furthermore, the redundancy of our codes is at most
a single bit from the lower bound on the redundancy.

D. Codes with Minimum Pair-Distance Ten
Now, we turn to construct codes that have minimum pair-

distance 10. This is established in the next theorem.
Theorem 9. For a positive integer m > 2, let g(x) ∈ F2[x] be
a generator polynomial for a cyclic code C ⊆ F2m−1

2 with roots
{α−1,α0,α1} ⊂ F2m where α is a primitive element of F2m .
Then, dp(C) > 10.

The size of a code from Theorem 9 is at least 2n

2(n+1)2 ,
whereas if the construction from [18] were used to construct
codes with minimum pair-distance 10, their minimum dis-
tance should be at least 7 and so their size will be at most

2n

1+n+(n
2)+(n

3)
.
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