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Abstract—In this work, we study limited-shift errors in race-
track memories and propose several schemes to combat these
errors. There are two kinds of shift errors, namely under-shift
errors, that can be modeled as sticky-insertions and limited-
over-shift errors, that can be modeled as bursts of deletions of
limited length. One approach to tackle the problem is to use
deletion/sticky-insertion-correcting codes. Using this approach, we
present a new family of asymptotically optimal codes that correct
multiple bursts of deletions of limited length and any number
of sticky insertions. We then study another approach that takes
advantage of the special features of racetrack memories and the
ability to add extra heads for redundancy. Here, we propose how
to place the extra heads and construct codes to correct these shift
errors.

I. INTRODUCTION

Racetrack memory is an emerging non-volatile memory tech-
nology which has attracted significant attention in recent years
due to its promising ultra-high storage density and low power
consumption [1], [2]. The basic information storage element of
a racetrack memory is called a domain, also known as a cell.
The magnetization direction of each cell is programmed to store
information. The reading mechanism is operated by many read
ports, called heads. In order to read the information, each cell is
shifted to its closest head by a shift operation. We note that once
a cell is shifted, all other cells are also shifted in the same direc-
tion and in the same speed. Normally, along the racetrack strip,
all heads are fixed and distributed uniformly [3]. Each head thus
reads only a block of consecutive cells which is called a data
segment.

A shift operation might not work perfectly. When the cells are
not shifted (or under-shifted), the same cell is read again in the
same head. This event causes a repetition (or sticky-insertion)
error. When the cells are shifted by more than a single cell lo-
cation (or over-shifted), one cell or a block of cells is not read
in each head. This event causes a single deletion or a burst
of consecutive deletions. We note that the maximal number of
consecutive deletions is limited or in other words, the burst of
consecutive deletions has limited length. An experimental result
shows that the cells are over-shifted by at most two locations
with extremely high probability [3]. In this paper, we study both
kinds of errors and refer to these errors as limited-shift errors.

Since limited-shift errors can be modeled as sticky-insertions
and bursts of consecutive deletions with limited length, sticky-
insertion/deletion-correcting codes can be applied to combat
these limited-shift errors. Although there are several known
sticky-insertion-correcting codes [4]–[6], deletion-correcting
codes [7]–[9], single-burst-deletion-correcting codes [10], [11],
and multiple-burst-deletion-correcting codes [12], there is a
lack of knowledge on codes correcting a combination of mul-
tiple bursts of deletions and sticky insertions. In this paper,

motivated by the special structure of having multiple heads in
racetrack memories, we study codes correcting multiple bursts
of deletions and sticky insertions. To correct shift errors in
racetrack memories with only a single head, Vahid et al. [13]
recently studied codes correcting two deletions and insertions.

Another approach to combat limited-shift errors is to leverage
the special feature of racetrack memories where it is possible
to add some extra heads to read cells. If there is no error, the
information read in these extra heads is redundant. However,
if there are limited-shift errors, this information is useful to
correct these errors. Recently, several schemes have been pro-
posed to leverage this feature [3], [14]–[16] in order to tackle
this problem. However, in [14]–[16], each head needs to read
all the cells while in this model, each head only needs to read
a single data segment. The goal of this paper is to present sev-
eral schemes to add extra heads and construct codes to correct
limited-shift errors.

II. PRELIMINARIES

Let Fq denote the q-ary finite field. A q-ary word of length
n over the alphabet Fq is a vector u in Fn

q . For each word
u = (u1, . . . , un) ∈ Fn

q , a subvector of the word u is a vector
u[i1, i2] = (ui1 , ui1+1, . . . , ui2) ∈ Fi2−i1+1

q , where 1 6 i1 6
i2 6 n. In case i1 = i2 = i, we denote the subvector u[i, i] by
u[i] to specify the i-th symbol ui of the vector u.

A q-ary code of length n is a subset C ⊆ Fn
q . Each element

of C is called a codeword. For each code C of length n, we
define the rate of the code C to be R(C) = logq(|C|)/n, where
|C| is the size of the code C.

Let `, n,m be three positive integers such that n = ` · m.
In this work, we consider a racetrack memory which comprises
of n cells, each of which can store a single bit, and m heads
which are distributed uniformly. We assume that the informa-
tion stored in a racetrack memory is represented by a length-n
word c = (c1, c2, . . . , cn) where the i-th cell stores the bit ci.
Initially, the i-th head is placed at the location (i−1) ·`+1 and
reads a data segment of ` bits ci = (c(i−1)·`+1, . . . , ci·`). For
example, in Fig. 1, a racetrack memory contains twelve data
cells and three heads are placed initially at locations 1, 5, and
9. Let ci,j = c(i−1)·`+j for 1 6 i 6 m and 1 6 j 6 `. The
output matrix from all m heads (without error) is:

c1

c2

...
cm

 =


c1,1 c1,2 . . . c1,`
c2,1 c2,2 . . . c2,`

...
...

. . .
...

cm,1 cm,2 . . . cm,`


where ci = (ci,1, . . . , ci,`) is the output of the i-th head for all
1 6 i 6 m. Let the following bijection

Φm : {0, 1}m 7→ Fq,
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c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
1st data segment 2nd data segment 3rd data segment

Fig. 1: Racetrack memory with twelve data cells and three heads

where q = 2m, be an order of all 2m binary words of length
m. For 1 6 i 6 ` and ĉi = (c1,i, c2,i, . . . , cm,i) ∈ Fm

2 , let
Φm(ĉi) = ui ∈ Fq. That is, we view each column in the out-
put matrix as an element in the finite field Fq . Thus, we can
also view the output matrix as a q-ary word of length `, u =
(u1, u2, . . . , u`) ∈ F`

q.
Under this set up, we consider an event where an over-shift

occurs and every head does not read one of the bits. Since there
are m heads, m of the n bits are not read, however the posi-
tions of these bits are correlated since all heads are fixed and
all cells are shifted in the same direction. For example, when
an over-shift occurs at the ith position and the bit c1,i is not
read in the first head, then the bit cj,i is not read in the j-th
head for all 1 6 j 6 m. Thus, the column ĉi is deleted in the
output matrix, that is, the symbol ui is deleted in the received
q-ary word. Moreover, when an over-shift occurs, it may hap-
pen that not only a single bit but a few consecutive bits are
deleted. However, the maximum number of consecutive dele-
tions is limited by some small number b. Zhang et al. [3] re-
cently provided an experimental result to show that b 6 2 with
extremely high probability. We therefore study a model where
each over-shift causes a burst of consecutive deletions whose
length is at most b and refer to this error as b-limited-over-shift
error or b-limited-burst-deletion. In this model, any two bursts
of consecutive deletions are not adjacent since each head always
reads at least a bit between two over-shifts1. To correct these
errors, we use a q-ary deletion-correcting code. In particular, in
Section III-A, we construct a q-ary code correcting t bursts of
deletions where the length of each burst is at most b and re-
fer to the code as a q-ary b-limited t-burst-deletion-correcting
code. The techniques that we use are in the same spirit of the
ones in [17], [18].

On the other hand, when an under-shift occurs, each head
reads the same bit again. Hence, in the received q-ary word,
a bit is repeated and there is a sticky-insertion. If only under-
shift errors happen, we can use q-ary sticky-insertion-correcting
codes to correct these errors. Recall that binary sticky-insertion-
correcting codes have been well studied [4], [5] and could be
easily generalized to q-ary codes. An optimal q-ary code correct-
ing any number of sticky-insertions with high-rate was recently
provided [6].

Furthermore, both under-shift and limited-over-shift errors
could occur in racetrack memories. Hence, a code correct-
ing a combination of sticky-insertions and multiple bursts of
deletions of limited length is required. In Section III-B, we
present a q-ary code correcting t1 bursts of deletions and t2
sticky-insertions whose length is at most b and refer to the
code as a q-ary b-limited t1-burst-deletion t2-sticky-insertion-
correcting code. The rates of these codes are shown to be close
to optimality.

Furthermore, we also propose several schemes which add ex-
tra heads that can be used to correct errors and thus construct

1Throughout this paper, we always assume that any two bursts of deletions
are not adjacent.

codes to correct limited-shift errors in racetrack memory for this
model. These results are presented in Section IV. This paper is
the first to propose and study these schemes.

A. Our Contributions
Our first contribution is a construction of a q-ary b-limited

t1-burst-deletion-correcting code. Then we analyse the rate of
the above code to obtain the following result.

Theorem 1. Given 0 < δ, ε < 1, there exists a q-ary b-limited
t1-burst-deletion-correcting code of length ` such that its rate sat-
isfies

R1 > (1− logq(b+ 1)) · (1− δ − ε)

where t1 · b = δ · `.

Furthermore, in Theorem 10, we show how to use the above
code to correct a combination of sticky-insertions and bursts of
deletions. We obtain the following result.

Theorem 2. Given 0 < δ, ε < 1, there exists a q-ary b-limited
t1-burst-deletion t2-sticky-insertion-correcting code of length `
for any arbitrarily large t2 and t1 · b = δ · ` such that its rate

R2 > (1− logq(b+ 2)) · (1− δ − ε).

It is clear that an upper bound on the maximal rate of the above
codes is 1 − δ, that is R1, R2 6 1 − δ. Since ε is arbitrarily
small, when b is small and q = 2m is big, the rates of the
above codes are close to the upper bound. Hence, these codes
are asymptotically optimal.

Our next contributions are several schemes to add extra heads
and construct codes to correct limited-shift errors. In particular,
we obtain the following results.

Theorem 3. Consider a racetrack memory comprising n = m · `
bits and m heads which are distributed uniformly. Using
(dlog(b+ 2)e − 1) extra heads, it is possible to construct a code
correcting a combination of any number of sticky-insertions and
t1 bursts of deletions whose length is at most b such that its rate
satisfies

R3 >
m− 1

m
· (1− δ − ε)

where t1 · b = δ · ` and 1 > δ, ε > 0.

Theorem 4. Consider a racetrack memory comprising m heads
which are distributed uniformly. Using m extra heads, we can
construct a q-ary code correcting any number of sticky-insertions
and any number of deletions where any two deletions are not ad-

jacent such that its rateR4 > logq
q−2+

√
q2−4

2 −ε for any ε > 0.

III. CONSTRUCTIONS WITHOUT EXTRA HEADS

In this section, we present constructions of codes correcting
limited-shift errors without using any extra heads.
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A. q-ary b-Limited t1-Burst-Deletion-Correcting Codes
In this subsection, we assume that only limited-over-shift er-

rors occur in the memory. Our main goal is to study q-ary b-
limited t-burst-deletion-correcting codes. Before we construct
these codes, we introduce some necessary definitions.

Definition 5.
• A cyclic sequence σ = (σ1, . . . , σ`) is called a de Bruijn

sequence of length ` and strength h over an alphabet of size
q if all ` possible substrings of length h are distinct. It is
known that ` 6 qh.

• A q-ary sequence π = (π1, . . . , π`) is called a b-bounded
de Bruijn sequence of strength h if all length-h subvectors
π[i, i+h−1] in b consecutive positions are distinct. That is,
we can always determine the position i of sub-vector π[i, i+
h− 1] provided the estimation of that position in a segment
of length b.

Example 1. Let ` = 2q and b 6 q then u = (0, 1, . . . , q −
1, 0, 1, . . . , q − 1) is a b-bounded de Bruijn sequence of length
`, strength h = 1 over alphabet size q for any 1 6 n 6 ` and
v = (0, 0, 1, 1, . . . , q − 1, q − 1) is a de Bruijn sequence of
length `, strength h = 2 over alphabet size q. 2

We note that de Bruijn sequences have been well studied in
the literature and have several known constructions [19], [20].
For the completeness of the results in the paper, we present the
following construction of b-bounded de Bruijn sequences.

Construction 6. Let u = (u1, . . . , ub) be a de Bruijn sequence
of strength h, length b over an alphabet of size q. For any n, we
construct a q-ary word of length n, c = (c1, . . . , cn) ∈ Fn

q , such
that ci = uj if i ≡ j (mod b).

We can verify that c is a b-bounded de Bruijn sequence of
strength h over an alphabet of size q. Although the length of
the b-bounded de Bruijn sequence c is not limited, we need to
require that b 6 qh.

Lemma 7. Let c be a b-bounded de Bruijn sequence of strength
one over an alphabet of size q. Let c(∆−) be the vector obtained
from c after deleting all symbols specified by the locations in the
set ∆− such that the maximum number of consecutive deletions
is at most b − 1. The set ∆− is uniquely determined from c and
c(∆−).

Proof: Assume that ∆− = {i1, i2, . . . , it} where i1 <
i2 < · · · < it is the set of t locations of all t deleted bits. Since
i1 is the leftmost index that a deletion occurs, c[1, i1 − 1] =
c(∆−)[1, i1−1]. Furthermore, since c is a b-bounded de Bruijn
sequence of strength one, the symbols c[i] for i1 6 i 6 i1+b−1
are distinct. Since c[i1] is deleted and the maximum number of
consecutive deletions is at most b − 1, c(∆−)[i1] 6= c[i1]. So,
i1 is the leftmost index that c and c(∆−) differ. Therefore,
we can determine i1 from the two vectors c and c(∆−). Let
∆−

1 = ∆− \ {i1} = {i2, . . . , it}. To correct the first error, we
insert the symbol c[i1] into the i1-th position in c(∆−) and ob-
tain the vector c(∆−

1 ). Similarly, we can determine the value
of i2 as the leftmost index that c and c(∆−

1 ) differ and correct
the deleted symbol. We repeat this procedure until we deter-
mine all the locations of the deleted symbols in c. Therefore,
the set ∆− is determined and the lemma is proven.

We are now ready to present a construction of q-ary b-limited
t1-burst-deletion-correcting codes.

Construction 8. Let π = (π1, π2, . . . , π`) be a b-bounded de
Bruijn sequence of strength one over an alphabet of size q1. Let
Cq2(`, t) be a q2-ary t-erasure-correcting code of length `. Let
q = q1 · q2. For each word c = (c1, c2, . . . , c`) ∈ Cq2(`, t), we
define f(c, π) = (f1, f2, . . . , f`) such that fi = (πi, ci) for all
1 6 i 6 `. We construct the following q-ary code of length `,
Cq(b, `, t) = {f(c, π) : c ∈ Cq2(`, t)}.

The following theorem proves the correctness of Construction 8.

Theorem 9. The code Cq(b+ 1, `, t) from Construction 8 is a q-
ary b-limited t1-burst-deletion-correcting code where t = t1 · b.

Proof: Let f = (f1, . . . , f`) ∈ Cq(b + 1, `, t) be a stored
codeword of length `. Assume that ∆− = {i1, . . . , it} is the set
of locations of all deleted bits such that i1 < · · · < it. Hence,
f(∆−) is the received word. Since there are at most t1 bursts
of deletions whose length is at most b, |∆−| = t 6 t1 · b and
there are at most b consecutive numbers in ∆−. From the re-
ceived vector f(∆−), we can extract the unique pair of vectors
(π(∆−), c(∆−)) where c(∆−) and π(∆−) are two vectors ob-
tained from c and π respectively after deleting all the symbols
specified by the locations in the set ∆−. Using Lemma 7, we
can determine the set ∆− from the vectors π(∆−) and π since
π is a (b + 1)-bounded de Bruijn sequence of strength one.
Moreover, Cq2(`, t) can correct up to t erasures. Hence, using
the decoder of Cq2(`, t), we can recover the vector c provided
c(∆−) and ∆−. From the two vectors c and π, we obtain the
stored codeword f = (f1, . . . , f`) such that fi = (πi, ci) for
1 6 i 6 `. In conclusion, Theorem 9 is proven and a simple
decoding algorithm to recover f follows from the proof.

Let

R(Cq2(`, t)) =
logq2 |Cq2(`, t)|

`

denote the rate of the code Cq2(`, t). From Construction 6, there
exists a (b+ 1)-bounded de Bruijn sequence π of strength one
over an alphabet of size q1 if b+ 1 6 q1. From Construction 8,
if π exists and there exists a q2-ary t-erasure-correcting code of
length `, then |Cq(b + 1, `, t)| = |Cq2(`, t)|. Let q1 = q/q2 =
b+ 1. The rate of the q-ary code Cq(b+ 1, `, t) is

R =
logq |Cq(b+ 1, `, t)|

`
=

logq q2 · logq2 |Cq2(`, t)|
`

= logq(q/q1) ·R(Cq2(`, t)) = (1− logq(b+ 1)) ·R(Cq2(`, t)).

Moreover, it is known that for any 0 < ε, δ < 1, there exists a
q2-ary code of length ` correcting t = δ · ` erasures with rate
R(Cq2(`, t)) > 1− δ − ε. Therefore, Theorem 1 holds.

B. q-ary b-Limited t1-Burst-Deletion t2-Sticky-Insertion-
Correcting Codes

The main goal in this subsection is to study error-correcting-
codes to combat both kinds of errors: under-shift and limited-
over-shift errors. In particular, we investigate q-ary b-limited
t1-burst-deletion t2-sticky-insertion-correcting codes. Our first
contribution in this subsection is the following theorem.

Theorem 10. The code Cq(b + 2, `, t) from Construction 8 is
a q-ary b-limited t1-burst-deletion t2-sticky-insertion-correcting
code for any integer t2 and t = t1 · b.
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⇓
c1,1 c1,2 c1,3 c1,4 c2,1 c2,2 c2,3 c2,4 c3,1 c3,2 c3,3 c3,4︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

1st data segment 2nd data segment 3rd data segment

Fig. 2: Racetrack memory with three main heads and one extra head

To prove Theorem 10, we simply mimic the proof of Theo-
rem 9 with the following lemma replacing the role of Lemma
7. We skip the details due to the lack of space.

Lemma 11. Let π be a (b + 2)-bounded de Bruijn sequence of
strength one over an alphabet of size q. Let ∆− = {i1, . . . , it}
be such that i1 < · · · < it and there are at most b consecutive
numbers. Let ∆+ = {j1, . . . , jt2} be such that j1 6 · · · 6 jt2 .
Assume that we receive the word π(∆−,∆+) which is a vector
obtained from π after deleting the symbols πi for all i ∈ ∆− and
repeating the symbols πj for all j ∈ ∆+. Then, we can determine
the two sets ∆− and ∆+.

Proof: Since π is a (b + 2)-bounded de Bruijn sequence
of strength one, π[i] 6= π[j] for all i, j satisfy |i − j| 6 b + 1.
Finally, using Lemma 7, we can determine the set ∆−.

The size and the rate of the code Cq(b + 2, `, t) have been
analysed in Subsection III-A. Therefore, Theorem 2 holds.

Remark 1.
• In classical insertion/deletion channel, we always know the

difference between the numbers of deletions and insertions.
However, in racetrack memories, this information may not
come for free. We note that in our construction, we can
decode without knowing this information.

• Recall that b = 2 is the most practical case according
to experimental results [3]. In this case, a 2m-ary two-
limited-burst-deletion t2-sticky-insertion-correcting code
C2m(4, `, t) has rate R(C2m(4, `, t)) > m−2

m · (1− δ − ε),
for any 0 < ε, δ < 1 and 2t1 = δ · `.

IV. CONSTRUCTIONS WITH EXTRA HEADS

In this section, we also consider a racetrack memory which
comprises of n cells and m heads, and each head reads the
information in a data segment of length ` such that n = m · `.
However, the goal of this section is to present schemes that add
extra heads for error-correction and construct codes to correct
limited-shift errors in a racetrack memory. We assume that both
kinds of errors, under-shift and limited-over-shift, could occur
but when a limited-over-shift occurs, at most b consecutive bits
are not read. Our contributions in this section are the following
two schemes.

A. Adding Extra Heads in One Data Segment

In this subsection, we present a scheme to add one extra head
and construct a code correcting any number of under-shifts and
t1 two-limited-over-shifts. We describe the scheme in details as
follows.

Scheme I: Add one extra head right after the first head as
in Fig. 2. In case there is no error, the output matrix from the

m+ 1 heads is:
c1

c∗

c2

...
cm

 =


c1,1 c1,2 . . . c1,`−1 c1,`
c1,2 c1,3 . . . c1,` c2,1
c2,1 c2,2 . . . c2,`−1 c2,`

...
...

. . .
...

...
cm,1 cm,2 . . . cm,`−1 cm,`


where ci = (ci,1, . . . , ci,`) is the output in the i-th main head
for all 1 6 i 6 m and c∗ = (c1,2, . . . , c1,`, c2,1) is the output in
the extra head. In case there are sticky-insertions and bursts of
deletions, we need to construct a code that corrects these errors.
We now present a code correcting any number of under-shift
errors and t1 two-limited-over-shift errors in this model.

Construction 12. Let c1 = (c1,1, c1,2, . . . , c1,`, c2,1) be a four-
bounded de Bruijn sequence of strength two. Let Cq2(`, t) be a
q2-ary t-erasure-correcting code of length `, where t = 2 · t1 and
q2 = 2m−1. For each 1 6 j 6 `, let Φm−1(ĉj) = vj ∈ Fq2

where ĉj = (c2,j , . . . , cm,j). Let (c2, . . . , cm) be such that v =
(v1, . . . , v`) ∈ Cq2(`, t) ⊂ F`

q2 . Then, it is possible to correct
any number of under-shifts and t1 two-limited-over-shifts.

To show the correctness of Construction 12, we first show
that using the outputs from the first head c1 and the extra head
c∗, we can determine the locations of all sticky-insertions and
deletions provided that there are at most two consecutive dele-
tions. For 1 6 j 6 `, let Φ2(c1[j], c∗[j]) = πj ∈ F4. Since
(c1,1, c1,2, . . . , c1,`) is a four-bounded de Bruijn sequence of
strength two, the vector π = (π1, . . . , π`) is a four-bounded de
Bruijn sequence of strength one. From Lemma 11, we can deter-
mine the set of locations of all errors. Now, we can correct any
number of sticky-insertions and t1 bursts of deletions of length
at most two since Cq2(`, t) can correct t = 2 · t1 erasures.

Since we know the rate of the code Cq2(`, t), we can obtain
the following result.

Theorem 13. Using one extra head, we can construct a code cor-
recting any number of sticky-insertions and t1 bursts of deletions
of length at most two such that its rate R > m−1

m · (1 − δ − ε)
where 2 · t1 = δ · ` and any ε > 0.

It is also possible to generalize this result to obtain the result
in Theorem 3. Due to the lack of space, we skip the details in
this version.

B. Adding Extra Heads in All Data Segments
In this subsection, we present a scheme that adds m extra

heads and construct a code correcting any number of sticky-
insertions and any number of deletions such that any two dele-
tions are not adjacent.

Scheme II: Recall that a racetrack memory has m heads
distributed uniformly. Right after each head, we add an extra
head as in Figure 3. In total, we add m extra heads.
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⇓ ⇓ ⇓
c1,1 c1,2 c1,3 c1,4 c2,1 c2,2 c2,3 c2,4 c3,1 c3,2 c3,3 c3,4︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

1st data segment 2nd data segment 3rd data segment

Fig. 3: Racetrack memory with three main heads and three extra heads

In the model without extra heads, we can view the received
word as a q-ary word u = (u1, . . . , u`) of length ` where q =
2m. Hence, in this model, we can view the received word as a
symbol-pair word π(u) = ((u1, u2), (u2, u3), . . . , (u`−1, u`)).
We note that this model is the same as the symbol-pair read
channel [21]–[23]. However, this paper is the first to study codes
correcting sticky-insertions and deletions in symbol-pair read
channel. We now present a construction of a code correcting
any number of sticky-insertions and any number of deletions
such that any two deletions are not adjacent.

Construction 14. Let I = {(a, a), (a, b, a, b) : 0 6 a, b 6 q −
1}. A word u is said to avoid the set I if it does not contain any
pattern from I as a substring. Let Cq(`, I) be a set of all q-ary
words of length ` avoiding the set I.

Theorem 15. Under the set up in Scheme II, the code Cq(`, I)
can correct any number of sticky-insertions and any number of
deletions such that any two deletions are not adjacent.

Proof: Let u ∈ Cq(`, I) be a stored codeword. To show
the correctness of Construction 14, we show how to recover
the word u. Consider a shifting operation at position i. After
reading a pair (ui, ui+1), if there is no error, that is all cells
are shifted successfully by one position, then the output is the
next pair (ui+1, ui+2). However, if an under-shift occurs, that
is, all cells are not shifted successfully, then the output is the
same pair (ui, ui+1). Otherwise, if an over-shift occurs, assum-
ing that all cells are over-shifted by a single location, then the
output is the pair (ui+2, ui+3). Since u ∈ Cq(`, I), u avoids
all patterns (a, a) for all 0 6 a 6 q − 1. Hence, ui 6= ui+1

and ui+1 6= ui+2. Thus, we can easily detect whether an error
occurs. Furthermore, (ui, ui+1) 6= (ui+2, ui+3) since u avoids
all patterns (a, b, a, b) for all 0 6 a, b 6 q − 1. So, we can de-
termine whether the error is an under-shift or an over-shift. In
both cases, we receive all bits and know exactly what are the
bits. Therefore, we can recover the stored codeword u.
A simple decoding algorithm can be found in the above proof
while an encoding algorithm has been studied recently [24]. In
[24] , Chee et al. showed that the rate of the above code R4 >

logq
q−2+

√
q2−4

2 −ε for any ε > 0. Therefore, Theorem 4 holds.
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