
How to Best Share a Big Secret

Roman Shor* Gala Yadgar* Wentao Huang† Eitan Yaakobi* Jehoshua Bruck‡

*Computer Science Department, Technion, †Snap Inc., ‡California Institute of Technology
{shroman, gala, yaakobi}@cs.technion.ac.il, whuang@snapchat.com, bruck@caltech.edu

ABSTRACT
When sensitive data is stored in the cloud, the only way to
ensure its secrecy is by encrypting it before it is uploaded. The
emerging multi-cloud model, in which data is stored redun-
dantly in two or more independent clouds, provides an oppor-
tunity to protect sensitive data with secret-sharing schemes.
Both data-protection approaches are considered computation-
ally expensive, but recent advances reduce their costs con-
siderably: (1) Hardware acceleration methods promise to
eliminate the computational complexity of encryption, but
leave clients with the challenge of securely managing en-
cryption keys. (2) Secure RAID, a recently proposed scheme,
minimizes the computational overheads of secret sharing, but
requires non-negligible storage overhead and random data
generation. Each data-protection approach offers different
tradeoffs and security guarantees. However, when comparing
them, it is difficult to determine which approach will provide
the best application-perceived performance, because previous
studies were performed before their recent advances were
introduced.

To bridge this gap, we present the first end-to-end compar-
ison of state-of-the-art encryption-based and secret sharing
data protection approaches. Our evaluation on a local cluster
and on a multi-cloud prototype identifies the tipping point at
which the bottleneck of data protection shifts from the com-
putational overhead of encoding and random data generation
to storage and network bandwidth and global availability.

1 INTRODUCTION
Cloud storage services are ubiquitous, offering high perfor-
mance and availability, global-scale fault tolerance, file shar-
ing, elasticity, and competitive pricing schemes. Outsourcing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SYSTOR, 2018, Haifa, Israel
© 2018 Association for Computing Machinery.
ACM ISBN 123-4567-24-567/08/06. . . $15.00
https://doi.org/10.475/123_4

data storage and management to a cloud storage provider
can be significantly less costly to an organization than main-
taining a private data-center with equivalent availability and
performance.

However, many businesses and individuals are reluctant
to trust an external service provider with their sensitive data;
while providers guarantee the durability of the data, they can-
not fully guarantee confidentiality in the face of a malicious
or compromised employee. Recent reports suggest that the
majority of cloud service providers do not specify in their
terms of service that data is owned by the customers, and
lack security mechanisms to protect it [2, 52]. Furthermore,
several incidents of “data leakage” from the cloud have been
recently documented [22, 55, 56, 60].

As long as data is stored by one provider, the only way
to ensure confidentiality is to encrypt it at the client side,
before it is uploaded to the cloud, and decrypt it whenever it is
downloaded. This requires generation and maintenance (either
locally or remotely) of a large number of encryption keys.
Key-based encryption provides computational security—it
prevents attacks by requiring excessive complexity (and thus,
computational power and time). However, because encryption
is considered computationally expensive [66, 75], many users
still upload their original data to the cloud without further
protection [2].

Additional limitations hinder the wider adoption of cloud
storage. One is vendor lock-in, where switching from one
cloud provider to another (for various business reasons) be-
comes prohibitively expensive due to the cost of retrieving
large amounts of data or developing new application inter-
faces [54]. Another is outages that a single cloud provider
might suffer [34, 40].

An emerging and increasingly popular storage model ad-
dresses these limitations; data in a multi-cloud [9–11, 15, 47]
(also referred to as ‘inter-cloud’, ‘cloud-of-clouds’ or ‘feder-
ated cloud’) is stored redundantly in two or more independent
clouds. Such redundancy enables users to access or recover
their data when one of the clouds is temporarily unavailable,
goes out of business, or experiences excessive load. Alterna-
tively, it offers the flexibility of placing more capacity or I/O
load on the clouds that currently offer it for the lowest price
or highest throughput.

76

https://doi.org/10.475/123_4

SYSTOR, 2018, Haifa, Israel Roman Shor et al.

This new model also presents an opportunity to protect
data by secret sharing. A secret-sharing scheme is a special
encoding which combines the user’s original data with re-
dundant random data and ensures that the original data can
only be decoded by obtaining all of the encoded pieces. These
pieces must be stored on independently secured nodes, as is
done in multi-clouds. Secret sharing provides information-
theoretic security—even an attacker with unlimited compu-
tational power has no way of gaining any information about
the data that was stored. Thus, information-theoretic security
is considered stronger than computational security.

Although they do not require encryption keys, secret-
sharing schemes still incur significant storage overhead and
non-trivial encoding and decoding complexity, and require
generating large amounts of random data. Thus, they are cur-
rently used only for long-term archiving of cold data [75],
or for remotely storing small amounts of data, like encryp-
tion keys [10, 11, 15]. An alternative to explicit storage of
encryption keys was proposed in AONT-RS [66]: the keys are
hashed with the encrypted data and dispersed on independent
storage nodes, achieving significantly higher throughput and
lower storage overhead than secret sharing.

Recent technological advances eliminate two major bottle-
necks of data protection. One is a new secret sharing scheme,
secure RAID, that facilitates efficient decoding of partial data,
and whose computational overhead is comparable to that
of standard erasure coding [29, 33]. Another is hardware-
accelerated encryption [23] and its adoption in common cryp-
tographic libraries [3].

These advances present system designers with a new trade-
off. Encryption provides computational security, but requires
key generation and management and relies on hardware accel-
erators for efficient implementation. Secret sharing provides
information theoretical security at low complexity but incurs
significant storage overhead. Unfortunately, existing evalua-
tion results do not indicate which approach will provide better
application-perceived performance, because they are based
on studies conducted prior to these advances.

Our goal is to bridge this gap by directly comparing the
state of the art of both approaches. We reevaluate the inherent
tradeoffs of secure remote storage and present the first compre-
hensive end-to-end analysis of secret-sharing and encryption-
based schemes. Our evaluation addresses all stages of the
data path, including random data generation, encoding and
encryption overheads, and overall throughput on a local clus-
ter and on geo-distributed remote storage. We implement two
secret-sharing schemes and two encryption-based schemes,
and measure their performance in a wide range of system pa-
rameters, including levels of availability and security, storage
devices, and network architectures.

Our main conclusions can be summarized as follows.
(1) The low throughput of true random data generation

precludes information-theoretical security in real system
implementations. (2) Secure RAID completely eliminates
the computational bottleneck of secret sharing, and is
outperformed only by hardware accelerated encryption. (3)
Once storage and network bottlenecks are introduced, secret
sharing is outperformed by encryption based techniques
due to its additional I/O and transfer overhead. (4) Only
encryption and secure-RAID provide efficient access to small
random data chunks.

The rest of this paper is organized as follows. Section 2
provides background and Section 3 describes the goals of
our analysis. We evaluate computational overheads in Sec-
tion 4, and end-to-end performance in Section 5. We discuss
additional aspects in Section 6 and survey related work in
Section 7. Section 8 concludes our work.

2 DATA PROTECTION SCHEMES
Data availability. Fault tolerance in distributed storage sys-
tems is provided by replication or by erasure coding. An
(n,k, r) erasure code encodes k data chunks into a stripe of n
chunks, such that all the data can be reconstructed from any
n − r chunks. The encoded chunks are distributed across n
different disks or nodes, ensuring that the data remains avail-
able even if r arbitrary nodes are unavailable. In a systematic
erasure code, the original data is stored as is on k nodes and
the redundant (parity) information is stored on the remaining
n − k nodes. Thus, such a scheme allows direct access to
data stored on a healthy node. Maximum distance separable
(MDS) codes can tolerate the highest number of concurrent
node failures given their storage overhead, i.e., r = n − k.

The most commonly used erasure code is Reed-
Solomon [65], which is both systematic and MDS. Its en-
coding and decoding entail matrix multiplication over a finite
field, traditionally considered a computationally expensive op-
eration. However, efficient implementations of Reed-Solomon
are available [62] and used in open-source systems such as
Ceph [79] and HDFS [72]. Recent studies show that its encod-
ing and decoding overheads are negligible compared to other
overheads in the system [28, 36, 45, 61]. New acceleration
libraries, such as Intel’s ISA-L [14], utilize specialized pro-
cessor instructions to further increase encoding and decoding
throughput.
Data security. Storage systems must address many aspects
of data security, including data integrity, user authentication
and access control, and secure communication with clients.
These aspects can be successfully guaranteed by any sin-
gle distributed-storage provider and are orthogonal to our
analysis. Mechanisms that address them guarantee that the
data stored by users cannot be modified without their con-
sent. However, they do not prevent unauthorized parties from
accessing this data, fully or partially.

77

How to Best Share a Big Secret SYSTOR, 2018, Haifa, Israel

Figure 1: Encoding process of Shamir’s secret sharing (a), AONT-RS where c1, . . . , ck are the encrypted data chunks and p1 . . . ,pr
are Reed-Solomon parities (b), and secure RAID (c).

We note that while unauthorized data modification can
be detected by the owner of the data, unauthorized reads
can go unnoticed. In this context, eavesdropping refers to an
unauthorized reader, who might also forward (leak) the data or
parts of it to an unauthorized third party. Confidentiality refers
to preventing eavesdroppers from inferring any information
about the data. We are interested in the latter in this work.

For data distributed across n nodes, the confidentiality level
is defined by z, the maximum number of eavesdropping nodes
that cannot learn any information about the data, even if they
collude. This formal definition inherently assumes that all
nodes are independently secured. In other words, when a node
is attacked, causing it to behave maliciously, this does not
mean the remaining nodes are equally compromised. Thus,
the n nodes must be separately managed and owned, like in
the multi-cloud model.
Encryption. In symmetric-key cryptography, the data is en-
crypted and decrypted using a small secret encryption key.
Many distributed storage systems are designed assuming
that data has been encrypted at the client prior to being dis-
tributed [9, 19, 25, 39, 67]. Thus, generation and maintenance
of encryption keys remains the responsibility of the clients.
While keys can be generated using a password, these tend to
get lost, which results in data loss. Securely storing encryp-
tion keys locally at the client prevents access to the data from
different end devices, while distributing the keys on several
devices introduces additional security issues [48, 58, 75].

Cryptographic encryption introduces significant computa-
tional overhead to the data path. The advanced encryption
standard (AES) [16] is a popular symmetric encryption algo-
rithm, which operates on fixed-length strings (blocks) of 128
bits. AES includes implementations (ciphers) for key sizes
ranging from 128 to 256. Larger encryption keys provide
better security, but also incur higher computational overhead.
This limitation has recently been addressed by the introduc-
tion of a specialized hardware accelerator and a processor
instruction set, AES-NI [23].
Secret sharing. Secret sharing is an alternative method for
ensuring data confidentiality without requiring maintenance
of encryption keys. In an (n,k, r , z) threshold secret-sharing
scheme, a secret of size k is split between n nodes, such that

every subset of z nodes or less cannot deduce any information
about the secret, and the data can be recovered if at most
r nodes are unavailable [8, 41, 49, 70]. In Shamir’s gener-
alized secret-sharing scheme1, also called ramp or packed
Shamir [12], k secrets, (m1, . . . ,mk), over a finite field F are
shared between n nodes with threshold z as follows. z random
elements are chosen from F , (u1, . . . ,uz), referred to as keys
(not to be confused with encryption keys). The secrets and
the keys define a polynomial p(x) of degree z + k − 1. Evalu-
ating p(x) over n distinct non-zero points (x1, . . . ,xn) yields
n shares, ci = p(xi). Thus the secret can be decoded from any
z + k shares, from which the polynomial is reconstructed by
interpolation. z shares or less do not reveal any information
about the secrets.

The polynomial is typically evaluated via multiplication by
a n×(z+k) matrix, as depicted in Figure 1 (a). Thus, encoding
requires O((z + k)n) finite field operations per k secret bytes.
Decoding is done by interpolation and incursO((z+k)2) finite
field operations per byte. Sharing a secret of b bytes requires
zb
k bytes of random data. We discuss the challenge of random

data generation below. Shamir’s generalized scheme can be
applied to arbitrary k, r , and z with the minimal achievable
storage overhead. However, its main limitation is the need to
download n − r non-systematic shares upon every data access.

The added value of confidentiality on top of standard fault
tolerance entails significant overhead. It has been shown that
the maximal secret size, k, in an (n,k, r , z) threshold secret-
sharing scheme is n − r − z [32]. Thus, while the minimal
storage overhead for tolerating r failures with an erasure
code is k+r

k (in MDS codes), the minimal overhead for also
tolerating z eavesdropping nodes is k+r+z

k .
All-or-Nothing Transform with Reed-Solomon (AONT-
RS). AONT-RS [66] was proposed in the context of
independently-secure storage nodes, and is designed to avoid
the high storage and computational overheads of secret shar-
ing schemes as well as encryption key maintenance. As de-
picted in Figure 1 (b), it first encrypts the data with a standard
symmetric cipher like AES using a random encryption key.
It then computes a cryptographic hash of the encrypted data,
XORs the hash value with the key, and appends the resulting
1Shamir’s original scheme required that k = 1 [70].

78

SYSTOR, 2018, Haifa, Israel Roman Shor et al.

string to the data, creating an AONT-RS package. The pack-
age is encoded with an (n,k) Reed-Solomon code, and the
resulting n chunks are each stored on a different node.

Clients can decrypt any of the systematic chunks as long as
they store the encryption key. At the same time, owners who
do not store the key locally can recover it by computing the
cryptographic hash of all k systematic chunks. This procedure
is followed even if the application requires less than k data
chunks. An attacker can access the data only by compromising
k independent nodes or guessing the encryption key.
Secure RAID. A recently proposed secret-sharing scheme
follows an alternative approach for addressing the limitations
of Shamir’s scheme: rather than relying on encryption, it
minimizes the number of finite field operations for encoding
and decoding. An (n,k, r , z) secure-RAID scheme stores k
secrets, (m1, . . . ,mk), over a field F . In the first step, z random
keys, (u1, . . . ,uz), are generated and encoded with an (n −

r , z) erasure code and stored systematically on z nodes. In
the second step, the k secrets, XORed with the keys and
the redundancy generated in the first step, are encoded with
an (n,n − r) erasure code and split between the remaining
n − z nodes. The security of the scheme is ensured by its
combination of erasure codes [29, 33].

Figure 1 (c) shows the encoding in a (9,3,4,2) secure
RAID scheme. The two keys, (u1,u2), are encoded with a
(5, 2) Reed-Solomon code (RS1) which generates three pari-
ties, (pu1 ,p

u
2 ,p

u
3). These parities are XORed with the secret,

(m1,m2,m3), and the result is encoded with a carefully cho-
sen (9, 5) Reed-Solomon code (RS2) to produce the n shares2.
Decoding is done by obtaining the keys, encoding them with
RS1, and using the parities to reveal any mi or all of them.
Thus, three shares are required to decode one data share, and
any five shares can reveal the entire secret. The data can be
recovered from up to four node failures.

This scheme holds several desirable properties. First, its
storage overhead is optimal (k = n − r − z) as in the gen-
eralization of Shamir’s scheme. Second, the two encoding
steps are comparable in complexity to standard erasure codes.
Since the keys are stored systematically and every element
of the secret is protected by exactly z keys, the number of
finite field operations for encoding is O(zk + (z + k)r). We
refer to this property as near-systematic encoding. Finally, a
random read of a single share of the secret requires access-
ing only a single encoded share and z keys, and the original
share can be decoded with only O(z) finite field operations.
This is in contrast to accessing and decoding n − r shares in
existing secret-sharing schemes (note that typically, n − r is
considerably greater than z).

2Secure RAID schemes can be constructed with alternative erasure
codes [31]. We focus on the Reed-Solomon-based scheme which does not
impose any constraint on k , r , and z .

Random data generation. Key-based encryption and secret-
sharing schemes are only as secure as their random data. In
true random data, the value of one bit does not disclose any
information on the value of any other bit. Thus, if the keys
are not truly random, an attacker can derive some information
about the encoded data.

True random data is generated by measuring a natural
source of noise, such as atmospheric or thermal noise, or
hardware interrupts [13, 17, 24, 26, 27]. This method pro-
duces unpredictable streams of data, but is rate-limited by the
external noise source and may require special hardware. Thus,
true random data generators are typically orders or magnitude
slower than the data protection schemes that rely on them.
In addition, most of them cannot be used safely on virtual
machines that share hardware [35].

An alternative approach uses a pseudo-random number
generator (PRNG). A PRNG is a deterministic algorithm
that, given an initial value (seed), generates a sequence of
uniformly distributed numbers. A cryptographically secure
PRNG (CSPRNG) generates a random output that is com-
putationally indistinguishable from true random data. Thus,
it is considered computationally secure to use CSPRNGs to
generate encryption and secret-sharing keys. CSPRNGs are
typically implemented with a cryptographic function, whose
seed must be generated by a true random generator.

3 CHALLENGES AND GOALS
The schemes described above have been designed with dif-
ferent objectives and tradeoffs between storage and compu-
tational overhead, maintenance, and level of security. At the
same time, their performance depends on recently introduced
acceleration methods for encryption, random data generation,
or finite field operations. Thus, previous evaluation results do
not provide a clear picture of how these schemes compare
in terms of application-perceived read and write through-
put. For example, AONT-RS has been shown to outperform
Shamir’s secret sharing scheme, in a study that preceded both
secure RAID and hardware-accelerated encryption [66]. Sim-
ilarly, the complexity of secure RAID has been shown to
be lower than that of Shamir’s scheme and encryption, but
this theoretical result does not reflect the effects of hardware
acceleration on each of these methods. Finally, while secret-
sharing schemes rely on large amounts of random data to
provide information-theoretical security, we are not aware of
any evaluation that includes true random data generation.

To further complicate matters, the benefit of recent schemes
and hardware improvements depends on their specific imple-
mentation and on the storage system they are applied to. The
choice and combination of a random number generator, era-
sure code, and encryption algorithm can determine which
one becomes the bottleneck. Similarly, the system bottleneck

79

How to Best Share a Big Secret SYSTOR, 2018, Haifa, Israel

Component Implementation Provider Comments
True RNG /dev/random Linux Environmental noise as random source, including interrupts and RdRand

RdRand Intel Thermal noise as random source followed by cryptographic function. Con-
sidered here as True RNG due to high seeding rate.

CSPRNG /dev/urandom Linux Based on ChaCha, seeded periodically by the operating system
AES OpenSSL (C++) AES 256 in counter mode

PRNG rand() <cstdlib>
Not secure

XOR xoroshiro128+
Hashing SHA-1 OpenSSL (C++), Sun (Java) 160 bit hash

SHA-256 OpenSSL (C++), Sun (Java) 256 bit hash
Symmetric key ChaCha OpenSSL (C++), Bouncy Castle (Java) Stream cipher, 128 bit keys, used in TLS [18, 42]

encryption AES OpenSSL (C++), SunJCE (Java) Block cipher, hardware accelerated using 128, 256 bit keys
Erasure coding Reed-Solomon (RS) Jerasure (C++), Backblaze (Java) Optimized using vectorization with SIMD instructions
Data dispersal AONT-RS Our implementation (C++/Java) AES-128 + SHA-1
Secret sharing Shamir’s Our implementation (C++/Java) Uses Jerasure for finite field operations in C++

Secure RAID Our implementation (C++/Java) Based on Reed-Solomon

Table 1: Implementation details of the data protection primitives and schemes used in our evaluation.

may be determined by the speed of the processor, the charac-
teristics of the storage devices, the topology of the network,
and the interaction between those components. Multi-cloud
environments may further increase the sensitivity of any given
scheme to unstable storage and network throughput.

Our goal in this study is to close this gap by mapping
the end-to-end costs of the state-of-the art in data protection
schemes. To that end, we examine how application read and
write throughput are affected by (1) random data generation,
(2) hardware acceleration, (3) storage overhead, (4) storage
type, and (5) network topology. Our results reveal a different
clear winner in each context: in-memory computation, in-
house LAN, and multi-cloud.

4 COMPUTATIONAL OVERHEADS
We evaluate the following data protection schemes.
• Reed-Solomon, which provides only fault tolerance, is our
baseline.
• Encryption, which encrypts the data with a key-based sym-
metric cypher and encodes the result with Reed-Solomon for
fault tolerance.
• AONT-RS, which hashes the encrypted data, combines the
result with the encryption key, and encodes the entire package
with Reed-Solomon.
• Shamir’s secret-sharing scheme, which combines security
and fault tolerance in non-systematic encoding.
• Secure RAID, which combines security and fault tolerance
in two encoding rounds based on Reed-Solomon.
The goal of this section is to evaluate the computational over-
head of the presented schemes.

4.1 Methodology
We implemented all the data protection schemes in C++ for
the computational performance evaluation and in Java for the
distributed objects store described in Section 5. Whenever
possible, we based our implementation on existing verified
and optimized implementations of standard procedures. The

Ciphers Hash functions (digest)
ChaCha AES-128 AES-256 SHA-1 SHA-256

Encrypt 841.54 4537.93 3379.98
853.73 377.9

Decrypt 846.62 4569.03 3425.19

Table 2: Throughput (MB/s) of cryptographic functions.

implementation details of the data protection schemes are
summarized in Table 1.
Experimental setup. We performed our evaluations on an
8-core Intel Xeon E5-2630 v3 at 2.40 GHz with 128 GB
RAM, running Linux kernel 4.9.0. We first encoded and then
decoded 512 4-MB objects (2 GB in total) and measured the
single threaded throughput of each data protection scheme.
We used random objects generated before the start of the
experiment. In each experiment, we varied k (2,4,8,16,32),
and r , z (1,2) whenever they were applicable, to reflect a wide
range of overheads. We omit k = {4, 16} from the results due
to lack of space, and include them in the full tech report [71].

We measured the throughput of each scheme in one encode
and three decode use-cases.
• Encode: n shares were generated from k data chunks. n var-
ied depending on the scheme, either n = k + r for encryption
based schemes or n = k + r + z for secret-sharing.
• Stripe decode: the k data chunks were generated from k or
k + z shares, depending on the scheme.
• Degraded read: to emulate one or two lost shares, the k
data chunks were generated from the surviving data and parity
shares.
• Random access: one random data chunk from each stripe
was requested and decoded by the corresponding procedure.

4.2 Results
We begin our evaluation with a preliminary comparison of the
basic cryptographic primitives that are used by the various
data-protection schemes. We measured the encryption and
decryption throughput of the ciphers, and the digest through-
put of the hash functions. Our results, summarized in Table 2,

80

SYSTOR, 2018, Haifa, Israel Roman Shor et al.

True RNG Secure PRNG Non-secure PRNG
/dev/random RdRand /dev/urandom AES Basic XOR

1.15 54.82 214.07 3379.98 420.69 798.55

Table 3: Throughput (MB/s) of random data generators.

show that AES achieves a speedup of up to 5x compared to
ChaCha, thanks to its hardware acceleration. We use AES-256
in the rest of our evaluation.
Random number generation. We measured the throughput
of the RNGs detailed in Table 1. Our results, summarized in
Table 3, show that true random data generation is too slow
for any practical purpose on a general purpose machine. The
AES CSPRNG is the most efficient method, outperforming
even the non-secure PRNGs, thanks to its accelerated cipher.

We measured the encoding throughput of Shamir’s scheme
and secure RAID with random data generated with the dif-
ferent methods to evaluate their overall effect on encoding
performance. Figure 2 shows the results for k = 2, 8, 32 and
r = z = 2. They show that the random data generation bottle-
neck can be eliminated if we are willing to replace information
theoretical security with computational security, which can
be achieved by hardware accelerated CSPRNG.

To reason about these results, we define the random rate
as z

k , the ratio between the number of random and data bytes
in a stripe. Both schemes have the same random rate. Indeed,
when k = 2 and the random rate is 1, both schemes required
4 MB of random data per 4-MB stripe, and their performance
was similar with RdRand, which was the bottleneck. The ef-
fect of random data generation decreased with the random rate
as k increased. Even with a random rate of 0.0625, RdRand
reduced secure RAID’s encoding throughput by 3x. Our evalu-
ation of available random number generation techniques leads
to our first conclusion, that the low throughput of true random
data generation precludes information-theoretical security in
real system implementations. In the rest of our evaluation, we
used only AES CSPRNG.
Encode/decode. We measured encode, decode and degraded
decode throughput of all the schemes. We draw three main
conclusions from these results: (1) Secure RAID completely
eliminates the computational bottleneck of secret sharing. (2)
Hardware accelerated encryption removes the computational
overhead and outperforms the other schemes. (3) The perfor-
mance of AONT-RS is limited by the cryptographic hash.

Figure 3 shows encode (a) and decode (b) throughput of
all schemes with r = z = 2 and k = 2, 8, 32. Reed-Solomon
was omitted from the decode experiment because it does
not require any decoding. For each encryption based scheme
(AES, ChaCha, AONT-RS), the throughput is the same for all
k. Hardware accelerated AES performed best among these
schemes. The encoding throughput of AES is lower (2160
MB/s), than the AES cipher encryption throughput (3380
MB/s in Table 2) because it also includes Reed-Solomon

Figure 2: The effect of random data generation on secret-
sharing schemes with different random rates and r = z = 2.

encoding. AONT-RS had the lowest encoding and decoding
throughput, about 650 MB/s. This is due to the low throughput
of its hash calculation.

Interestingly, Shamir’s encoding and decoding throughput
did not increase with k, despite the decreasing random rate.
The reason is its non-systematic encoding—the number of
operations for encoding grew quadratically with k, and be-
came the bottleneck for k ≥ 4. Thanks to the near-systematic
encoding in secure RAID, its encoding throughput increased
with k , as its random rate decreased. Its encoding throughput
with k = 8 was 1890 MB/s, 55% higher than with k = 2,
and only 12% lower than hardware accelerated AES. Secure
RAID decode throughput is fastest at about 4200 MB/s.
Sensitivity to r and z. We repeated encode and decode
measurements with different r and z combinations. The re-
sults [71] showed similar trends to encoding and decoding
with z = r = 2, while efficient schemes were more sensitive
to changes in r and z.

Reducing r from 2 to 1 increased the encoding throughput
of all schemes with all k values. The increase was higher
for the efficient schemes, AES and secure RAID, in which
parity generation was responsible for more of the overall
overhead. Reducing z from 2 to 1 reduced the random rate
and increased encoding and decoding throughput of both
secret-sharing schemes. Here, too, the increase was higher in
secure RAID which is the more efficient scheme.
Degraded decode. We measured the degraded decode
throughput of each scheme when two systematic shares are
missing. For encryption based schemes, additional reconstruc-
tion overhead affected only AES, whose slowdown was about
36%. Decryption remained the bottleneck of ChaCha and
AONT-RS, whose throughput was not affected by the recov-
ery operations. Shamir’s scheme was also unaffected, but for
a different reason. Due to its non-systematic encoding, ev-
ery decode had to “recover” k data shares from n − r shares,
and the choice of shares did not affect the decoding method.
The throughput of degraded decode with secure RAID was
roughly half that of regular decode. The throughput increased
slightly with an increase in k , as the size of the reconstructed
shares decreased [71].

81

How to Best Share a Big Secret SYSTOR, 2018, Haifa, Israel

Figure 3: Encoding (a) and decoding (b) throughput and random access decode latency (c) with r = z = 2.

RS AES ChaCha AONT-RS Shamir S-RAID

Enc 312.48 159.09 89.55 70.4 37.08 128.61
(x19) (x14) (x8) (x9) (x20) (x14)

Dec 664.5 121.29 111.75 65.44 297.89
(x5) (x7) (x6) (x15) (x14)

Table 4: Measured throughput (MB/s) of main data protection
schemes implemented in Java for k = 8, r = z = 2 and slowdown
(in parentheses) compared to the C++ implementation.

Random access decode. Figure 3 (c) shows the average de-
coding latency of a single share in a 4 MB object for each
scheme. The latency was averaged over decoding of a ran-
dom chunk from each of the 512 objects. The difference
between the data protection approaches is clearly evident, and
demonstrates the major limitation of AONT-RS and the major
advantage of secure RAID.

The encryption-based schemes had to decode only the re-
quested share, and thus their latency decreased as k increased
and the share size decreased. Their measured throughput
(not shown) was comparable to that of decoding a full stripe.
AONT-RS, on the other hand, had to hash all k shares to
obtain the encryption key. This overhead was the bottleneck,
preventing the latency from decreasing with share size.

Shamir’s scheme had to process almost the entire stripe,
k + z shares, to decode a single share. However, the size of its
output decreased as k increased, and thus its decoding latency
decreased as well. Secure RAID, on the other hand, required
only z + 1 shares to decode a single share, and is thus faster
than all the schemes, and 16–30% faster than AES.

The results of our measurements of encode and decode
performance lead to our second main conclusion, that secure
RAID completely eliminates the computational bottleneck of
secret sharing. Secure RAID is the fastest scheme for decod-
ing, and its encoding throughput is exceeded only by hardware
accelerated encryption.

5 END-TO-END EVALUATION
In the previous section, we identified the bottlenecks of the
different data protection schemes with respect to their com-
putational overheads. Here, we wish to understand the effect
of the various system-level parameters on these bottlenecks,

and whether new bottlenecks are introduced. We conducted
our evaluation in two different environments. The LAN setup
consisted of five servers connected by a high speed network.
The multi-cloud setup consisted of up to 37 virtual servers
on Amazon Elastic Compute Cloud (EC2) [1], deployed in
multiple geographical regions.

5.1 Methodology
We implemented a distributed object store prototype, which
consists of a client that connects to a specified number of
servers for transmitting and receiving data shares. We chose
Java for our implementation because it provides full and effi-
cient thread management and communication services. Thus,
we re-implemented all our data protection schemes in Java.

For consistency, we compared the single threaded encoding
and decoding throughput of the data schemes in Java and in
C++. Table 4 shows the results for k = 8, r = z = 2, with
the slowdown of the Java implementation compared to that
in C++. Although the JNI modules employ optimizations
such as vectorization, the achieved increase in throughout is
masked by the overhead of data movement between Java and
the native modules. To ensure that encoding and decoding
are not the bottleneck in our LAN and multicloud setups, the
client executes them using a pool of four threads. Our results
show that this removes the computational bottleneck for all
schemes except Shamir’s secret sharing.

Communication was handled by a separate thread for each
server and used a secure protocol (TLS v1.2). At the servers,
a separate thread managed I/O, to allow I/O and communi-
cation to proceed in parallel. Encoding and decoding were
executed at the client, which supports one write and four read
operations, as follows.
• Write: an object of 4MB was encoded into a stripe of n
shares with one of our data protection schemes, and transmit-
ted to n servers.
• Object read: n−r shares were requested from their servers
and decoded.
• Degraded read: n − r shares were requested, assuming
up to r servers were unavailable. The shares were decoded,
possibly with a degraded decode operation.
• Random read: one random share was decoded from each

82

SYSTOR, 2018, Haifa, Israel Roman Shor et al.

Figure 4: Write (a) and read (b) throughput and random access latency (c) in the LAN setup with r = z = 2.

object. The number of servers contacted for this share de-
pended on the data protection scheme.
• Greedy read: all n shares were requested from their servers,
and decoding began as soon as the first n − r shares were re-
ceived, possibly as a degraded decode.

We used the same number of servers, s, for each k. We
chose s so that s ≥ k+4, to ensure then shares were distributed
to n different servers. We distributed shares to servers in a
round-robin fashion, so that the first chunk of object i was
sent to server i · n(mods), and subsequent shares were sent to
subsequent servers. For each parameter set and data protection
scheme, we wrote a series of 4MB random objects, and then
read them with the four read types. The throughput for each
operation was measured in a separate experiment and run on
a new JVM with clean caches.
LAN Setup. Our local cluster used five machines identical
to the one described in Section 4, connected by a 10Gb Eth-
ernet network and equipped with four Dell 960GB SATA
SSDs, each. The client ran on a dedicated machine, and
each of the remaining machines was used for up to ten
virtual servers. Thus, in some of our configurations, some
SSDs were serving up to three virtual servers. We ran
all combinations of r = {1, 2}, z = {1, 2}, and (k, s) =
{(2, 7), (4, 11), (8, 13), (16, 23), (32, 37)}. For each parameter
set and data protection scheme, we wrote and read 512 ob-
jects, 2 GB in total.
Multi-cloud. We performed the same experiments in the
multi-cloud setup, with 256 objects, r = z = 2 and (k, s) =
{(2, 7), (8, 13), (16, 23), (32, 37)}. We ran each experiment four
times and present the average and standard deviation. We
used the same client machine for our multi-cloud setup. We
used two instance types for our virtual servers on Amazon’s
EC2 [4]: c4.large has two virtual CPUs, 3.75 GiB of
RAM and “moderate network bandwidth”. c4.xlarge has
four virtual CPUs, 7.5 GiB of RAM and “high network
bandwidth”. We configured our servers with three storage
types: General Purpose SSD is the default storage provided
by Amazon Web Services (AWS), with a baseline through-
put of 100 IOPS. Provisioned IOPS SSD provides 50 IOPS
per 1 GB. We created volumes of 50 GB, with 2500 IOPS
per volume. Throughput Optimized HDD supports up to 500

MB/s for sequential workloads. Our default setup consisted of
c4.xlarge machines and general purpose SSDs. We com-
pared the different storage and machine types in a separate
experiment, described below.

AWS data centers are divided into regions, which corre-
spond to distinct geographical locations and are completely
independent. Within a region, isolated data centers are known
as availability zones. We used separate zones to simulate in-
dependent cloud providers. We deployed EC2 instances in
14 different regions and two or three availability zones in
each region: Ireland (3), Frankfurt (3), London (3), N. Vir-
ginia (3), Ohio (3), N. California (3), Oregon (3), Canada Cen-
tral (2), Sao Paolo (2), Mumbai (3), Singapore (2), Seoul (2),
Tokyo (2), and Sydney (2). Our client machine was located in
Israel, which is connected to Europe by fiber optic cables [5].

5.2 Results
The results of our end-to-end evaluation demonstrate how
the additional storage overhead of the secret-sharing schemes
increases their storage and network bandwidth and limits their
performance. They also reinforce the limitation of AONT-RS
and Shamir’s scheme in small random accesses.
Write/read throughput. Figure 4 shows the write (a) and
read (b) throughput of all schemes with r = z = 2 and k =
{2, 8, 16, 32} in the LAN setup. The write and read throughput
of Reed-Solomon, AES, and secure RAID increased with k
thanks to the reduction in storage overhead and the increased
I/O parallelism. Our cluster had 16 SSDs whose utilization
increased until the number of servers exceeded the number
of devices. Thus, the throughput was maximal with k = 16
and slightly lower with k = 32, when the overhead of the
additional communication threads was considerable.

As the I/O read throughput was higher than write through-
put, ChaCha and AONT-RS reached their maximal read
throughput with k = 8. It did not increase further with k
because of their computational overhead. The read and the
write throughput of Shamir’s scheme did not increase beyond
k = 4 due to its computational overhead, which was the bot-
tleneck. In secure RAID, the high storage overhead limited its
throughput with k ≤ 4. However, with k = 16, the throughput
of secure RAID was about 10% lower than that of AES. This

83

How to Best Share a Big Secret SYSTOR, 2018, Haifa, Israel

Figure 5: Write (a), read (b) and greedy read (c) throughput in multi-cloud setup, on c4.xlarge instances with general purpose
SSD storage and r = z = 2.

was roughly the difference between the storage overhead of
those schemes.

Figure 5 shows the write (a), read (b), and greedy read (c)
performance in the multi-cloud setting. The results are av-
eraged over four executions, with error bars marking the
standard deviation. The smallest multi-cloud (s = 7) was de-
ployed in European regions only. We increased the size of the
multi-cloud by deploying instances in additional regions, in
order of their observed throughput. As a result, the variabil-
ity in the throughput provided by different servers increased,
increasing the standard deviation of our results.

The write throughput increased with k = 8 and k = 16,
thanks to the increased parallelism, but then decreased with
k = 32. With k ≥ 8 the difference between the schemes was
no longer noticeable. The read throughput decreased as the
number of servers increased, due to the delays induced by
high-latency network connections. Our results for the largest
multi-cloud (s = 37) demonstrate a pathological case; this
deployment included two servers each in the Tokyo and Singa-
pore regions, whose observed download throughput was 1.3
Mb/sec and 100Kb/s, respectively. This caused all schemes
to achieve extremely low throughput.

The greedy read optimization successfully increased the
read throughput with s = 13 and s = 23, by eliminating the
bottleneck of the two slowest servers in each experiment.
However, the setup with s = 37 included two more slow
servers, and the redundancy (r = 2) was not high enough to
eliminate all of them.
Random access latency. Figure 4 (c) shows the average la-
tency of all schemes when reading one share from a stripe,
with r = z = 2 and k = {2, 8, 32} in the LAN setup. These
results reinforce the limitation of AONT-RS and Shamir’s
scheme with respect to small random accesses.

The latency of Reed-Solomon, AES, ChaCha and secure
RAID decreased with k, as the size of the requested share
decreased. Secure RAID reads z + 1 = 3 shares, because it
requires two keys to decode the data share, while the other
schemes read only the data. AONT-RS must read and hash the
entire object, and thus its latency was higher but decreased

slightly with an increase in k , thanks to higher I/O parallelism.
Shamir’s scheme also reads the entire object. Thus, its latency
also decreased as k increased. However, for k > 8 its latency
increased with k due to the increased decoding complexity.
Storage and server type. We repeated the experiment in the
small multi-cloud (s = 7) with a different combination of
machine and storage type in each run.

The long-distance network bandwidth was the main bottle-
neck in this experiment, and thus the machine types had little
to no effect on the throughput of all operations in all schemes.
In contrast, the storage type did affect the throughput of the
write and greedy read operations. These operations are less
sensitive to the network performance than read, and thus the
throughput of all schemes increased with the increase in stor-
age bandwidth provided by the Throughput Optimized HDD,
compared to SSD. The results for the Provisioned IOPS SSD,
which is optimized for random access, were identical to those
of the General Purpose SSD [71].

Our end-to-end evaluation, combining both the LAN and
multi-cloud setups, leads to our final two conclusions. First,
once storage and network bottlenecks are introduced, secret
sharing is outperformed by encryption based techniques due
to its additional I/O and transfer overhead. Finally, only en-
cryption and secure RAID provide efficient access to small
random data chunks.

6 DISCUSSION
Our evaluation focused on read and write throughput, which
are major objectives in storage-system design. However, ad-
ditional factors affect the applicability and appeal of the dif-
ferent data-protection approaches.
Security level. Our evaluation focused on performance and
did not explicitly consider the confidentiality level of each
scheme and setup. Namely, the security of secure-RAID and
AONT-RS depends on z and k, respectively, while that of
encryption is based on its key management scheme.
Full node repair. Recovery of a failed node entails trans-
ferring data from the surviving nodes to the replacement

84

SYSTOR, 2018, Haifa, Israel Roman Shor et al.

node in charge of reconstructing the lost data. The replace-
ment node necessarily gains access to more than z shares,
which creates a security risk unless the data is encrypted.
Several solutions to this problem entail increased storage
overhead [6, 59, 68, 69, 77] which, as our results indi-
cate, will likely reduce read and write throughput. In POT-
SHARDS [75], an additional random mask is transferred with
every share, doubling the repair network cost. Methods for
minimizing this cost and general reconstruction protocols for
any z are studied in [30, 37, 63, 64].
Deduplication. Storage service providers eliminate dupli-
cate data from their systems in order to reduce storage and
network costs [20, 21, 73, 81]. Such duplicates cannot be
identified when data is encoded before it is uploaded. Conver-
gent encryption, in which the encryption key is generated by
a cryptographic hash of the data, can successfully alleviate
this problem [46, 74]. A similar solution can be applied to
secret-sharing schemes [44]. Our results indicate that this
will significantly reduce encoding throughput, unless both
encryption and hashing are hardware accelerated.
Pricing. Cloud resource pricing depends on the location of
the servers, the amount and type of storage attached to them,
and the I/O and network bandwidth they use. Therefore, ad-
ditional storage overhead not only limits the performance of
the secret-sharing schemes, but is also more costly for the
user. Furthermore, the additional cost of downloading entire
stripes during random access or z additional shares in each
download may rule out some of the schemes we evaluated.

Our evaluation provides some insight into the effect of
several technological trends. As storage-class memory and
RAM-based storage [57] gain popularity, the bottlenecks in
the data path shift from storage to computation. In such ar-
chitectures, the bottlenecks we identified in Section 4 may no
longer be masked by high storage costs. This may increase
the benefit from low computational overhead in schemes like
secure RAID, although the additional data transfer they in-
cur may remain the bottleneck. At the same time, hardware
acceleration of common complex operations may be applied
to additional schemes. Intel’s ISA-L acceleration library pro-
vides an interface for accelerated Reed-Solomon encoding
and cryptographic hashing, which might also be leveraged for
random data generation. Such improvements may affect the
bottlenecks we identified in Section 4.

7 RELATED WORK
To protect data in a distributed system, several aspects of
security must be combined. Data integrity refers to ensuring
that the data is not modified by anyone other than an autho-
rized user. This is usually obtained by adding cryptographic
hashes as signatures to the data before it is stored [19, 25, 39].
Authorized users are authenticated by a separate interface,

which also verifies user permissions using tokens, access con-
trol lists, or other schemes [9, 43, 51, 53]. Communication
between the client and the provider’s servers, as well as be-
tween servers of the same provider, is secured by the network
protocols they use [18, 80]. These mechanisms are orthogonal
to the scheme used for securely storing the data.

Designing a reliable storage system on a set of untrusted
nodes is challenging in several aspects. Early designs that
targeted peer-to-peer networks, such as OceanStore [39],
Pond [67], and Glacier [25], addressed access control, se-
rialized updates, load balancing, routing, and fault tolerance.
They all assume the data has been encrypted prior to being en-
coded with erasure code and distributed, while maintenance of
encryption keys remains the responsibility of the clients. Most
multi-cloud architectures follow a similar approach [7, 9, 19].
DepSky [10] and SCFS [11] incorporate encryption into their
client, along with a secret-sharing scheme for securely storing
the encryption keys. Our results indicate that this is approach
is indeed optimal for multi-clouds.

Several studies reduce the storage overhead of secret-
sharing schemes by reducing the capacity of individual shares.
One approach store only the seed of the randomly generated
data, and regenerates it during the decoding process [76]. Our
evaluation of the multi-cloud settings indicate that the reduc-
tion in storage overhead (and thus, download bandwidth) may
justify the increased computational overhead.

Considerable theoretical effort has focused on reducing the
computation complexity of Shamir’s secret-sharing scheme
while still making it information-theoretically secure [29, 31,
41, 49, 50, 78]. Another approach opts for computational
security [38]. Our results show that due to the high cost of
true random data generation, any implementation of Shamir’s
and other secret-sharing schemes in a real system will only
provide computational security whose strength depends on
the strength of the CSPRNG.

8 CONCLUSIONS
We performed the first comprehensive comparison of
encryption-based and secret-sharing schemes. We show that
information-theoretical security is infeasible in real system
implementations, due to the high cost of true random data
generation. In terms of encoding and decoding performance,
secret sharing with secure RAID is comparable to (and some-
times better than) hardware accelerated encryption.

Our end-to-end evaluation demonstrates how the bottleneck
in real implementations shifts from computational complexity
to storage throughput (on local storage) and network band-
width (in cloud deployments). In these settings, encryption
outperforms secret sharing thanks to its minimal storage over-
head. Thus, our results suggest that encrypting the data and
dispersing the keys with an efficient secret sharing scheme is
optimal for multi-cloud environments.

85

How to Best Share a Big Secret SYSTOR, 2018, Haifa, Israel

REFERENCES
[1] 2006. Amazon EC2. https://aws.amazon.com/ec2/. (2006).
[2] 2017. Netskope Report Reveals Bulk of Cloud Services

Still Not GDPR-Ready. https://www.netskope.com/press-releases/
netskope-report-reveals-bulk-cloud-services-still-not-gdpr-ready/. (18
Sept. 2017).

[3] 2017. OpenSSL. http://www.openssl.org. (2017).
[4] 2018. Amazon EC2 Instance Types. https://aws.amazon.com/ec2/

instance-types/. (2018).
[5] 2018. Submarine Cable Map. https://www.submarinecablemap.com/.

(Feb. 2018).
[6] Abhishek Agarwal and Arya Mazumdar. 2015. Security in locally

repairable storage. Manuscript, arXiv:1503.04244 (2015).
[7] Fahad Alsolami and C. Edward Chow. 2013. N-Cloud: improving

performance and security in cloud storage. In IEEE International Con-
ference on High Performance Switching and Routing (HPSR ’13).

[8] Amos Beimel. 2011. Secret-sharing schemes: a survey. In International
Conference on Coding and Cryptology.

[9] David Bermbach, Markus Klems, Stefan Tai, and Michael Menzel.
2011. MetaStorage: A Federated Cloud Storage System to Manage
Consistency-Latency Tradeoffs. In IEEE International Conference on
Cloud Computing (CLOUD ’11).

[10] Alysson Bessani, Miguel Correia, Bruno Quaresma, Fernando André,
and Paulo Sousa. 2013. DepSky: Dependable and Secure Storage in a
Cloud-of-Clouds. Trans. Storage 9, 4, Article 12 (Nov. 2013), 33 pages.

[11] Alysson Bessani, Ricardo Mendes, Tiago Oliveira, Nuno Neves, Miguel
Correia, Marcelo Pasin, and Paulo Verissimo. 2014. SCFS: A Shared
Cloud-backed File System. In USENIX Annual Technical Conference
(ATC ’14).

[12] George Robert Blakley and Catherine Meadows. 1984. Security of
Ramp Schemes. In Workshop on the Theory and Application of Crypto-
graphic Techniques.

[13] Marco Bucci, Lucia Germani, Raimondo Luzzi, Alessandro Trifiletti,
and Mario Varanonuovo. 2003. A high-speed oscillator-based truly
random number source for cryptographic applications on a smart card
IC. IEEE Trans. Comput. 52, 4 (2003), 403–409.

[14] Dorian Burihabwa, Pascal Felber, Hugues Mercier, and Valerio Schi-
avoni. 2016. A Performance Evaluation of Erasure Coding Libraries
for Cloud-Based Data Stores. In IFIP WG 6.1 International Conference
on Distributed Applications and Interoperable Systems (DAIS ’16).

[15] Christian Cachin, Robert Haas, and Marko Vukolic. 2010. Dependable
Storage in the Intercloud. Technical Report RZ 3783. IBM.

[16] Joan Daemen and Vincent Rijmen. 2013. The Design of Rijndael: AES
- The Advanced Encryption Standard. Springer Science & Business
Media.

[17] Don Davis, Ross Ihaka, and Philip Fenstermacher. 1994. Cryptographic
randomness from air turbulence in disk drives. In Annual International
Cryptology Conference on Advances in Cryptology (CRYPTO ’94).

[18] Tim Dierks. 2008. The transport layer security (TLS) protocol version
1.2. (2008).

[19] Dan Dobre, Paolo Viotti, and Marko Vukolic. 2014. Hybris: Robust
hybrid cloud storage. In Annual ACM Symposium on Cloud Computing
(SOCC ’14).

[20] Fred Douglis, Abhinav Duggal, Philip Shilane, Tony Wong, Shiqin Yan,
and Fabiano Botelho. 2017. The Logic of Physical Garbage Collection
in Deduplicating Storage. In USENIX Conference on File and Storage
Technologies (FAST ’17).

[21] Min Fu, Dan Feng, Yu Hua, Xubin He, Zuoning Chen, Wen Xia, Fangt-
ing Huang, and Qing Liu. 2014. Accelerating Restore and Garbage Col-
lection in Deduplication-based Backup Systems via Exploiting Histori-
cal Information. In USENIX Annual Technical Conference (ATC ’14).

[22] Vindu Goel and Nicole Perlroth. 2016. Yahoo says 1 billion user ac-
counts were hacked. https://www.nytimes.com/2016/12/14/technology/
yahoo-hack.html. (14 Dec. 2016).

[23] Shay Gueron. 2010. Intel® Advanced Encryption Standard (AES) New
Instructions Set. Intel Corporation (2010).

[24] Zvi Gutterman, Benny Pinkas, and Tzachy Reinman. 2006. Analysis of
the Linux random number generator. In IEEE Symposium on Security
and Privacy (S&P ’06).

[25] Andreas Haeberlen, Alan Mislove, and Peter Druschel. 2005. Glacier:
Highly durable, decentralized storage despite massive correlated fail-
ures. In USENIX Symposium on Networked Systems Design & Imple-
mentation (NSDI ’05).

[26] Mike Hamburg, Paul Kocher, and Mark E Marson. 2012. Analysis of
Intel’s Ivy Bridge digital random number generator. Technical Report,
Cryptography Research Inc. (Mar. 2012).

[27] W. Timothy Holman, J. Alvin Connelly, and Ahmad B. Dowlatabadi.
1997. An integrated analog/digital random noise source. IEEE Transac-
tions on Circuits and Systems I: Fundamental Theory and Applications
44, 6 (1997), 521–528.

[28] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus, Brad Calder,
Parikshit Gopalan, Jin Li, and Sergey Yekhanin. 2012. Erasure coding
in Windows Azure storage. In USENIX Annual Technical Conference
(ATC ’12).

[29] Wentao Huang and Jehoshua Bruck. 2016. Secure RAID schemes for
distributed storage. In IEEE International Symposium on Information
Theory (ISIT ’16).

[30] Wentao Huang and Jehoshua Bruck. 2017. Generic Secure Repair for
Distributed Storage. CoRR abs/1706.00500 (2017).

[31] Wentao Huang and Jehoshua Bruck. 2017. Secure RAID schemes from
EVENODD and STAR codes. In IEEE International Symposium on
Information Theory (ISIT ’17).

[32] Wentao Huang, Michael Langberg, Jörg Kliewer, and Jehoshua Bruck.
2015. Communication Efficient Secret Sharing. CoRR abs/1505.07515
(2015).

[33] Wentao Huang, Michael Langberg, Joerg Kliewer, and Jehoshua Bruck.
2016. Communication efficient secret sharing. IEEE Transactions on
Information Theory 62, 12 (2016), 7195–7206.

[34] Jacob Kastrenakes. 2017. Amazon’s web servers are down and it’s
causing trouble across the internet. https://www.theverge.com/2017/2/
28/14765042/amazon-s3-outage-causing-trouble. (28 Mar. 2017).

[35] Brendan Kerrigan and Yu Chen. 2012. A study of entropy sources in
cloud computers: random number generation on cloud hosts. Computer
Network Security (2012), 286–298.

[36] Osama Khan, Randal C Burns, James S Plank, William Pierce, and
Cheng Huang. 2012. Rethinking Erasure Codes for Cloud File Systems:
Minimizing I/O for Recovery and Degraded Reads. In 10th Usenix
Conference on File and Storage Technologies (FAST ’12).

[37] Ankit Singh Rawat Koyluoglu, Onur Ozan and Sriram Vishwanath.
2014. Secure Cooperative Regenerating Codes for Distributed Storage
Systems. IEEE Transactions on Information Theory 60, 9 (Sept 2014),
5228–5244.

[38] Hugo Krawczyk. 1994. Secret Sharing Made Short. In Annual Interna-
tional Cryptology Conference on Advances in Cryptology.

[39] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick
Eaton, Dennis Geels, Ramakrishan Gummadi, Sean Rhea, Hakim
Weatherspoon, Westley Weimer, Chris Wells, and Ben Zhao. 2000.
OceanStore: An Architecture for Global-scale Persistent Storage. SIG-
PLAN Not. 35, 11 (Nov. 2000), 190–201.

[40] Rinkesh Kukreja. 2016. The 11 Worst Cloud Outages (Fiascos) of
2016. https://www.stacktunnel.com/worst-cloud-outages-fiascos-2016.
html. (2016).

86

https://aws.amazon.com/ec2/
https://www.netskope.com/press-releases/netskope-report-reveals-bulk-cloud-services-still-not-gdpr-ready/
https://www.netskope.com/press-releases/netskope-report-reveals-bulk-cloud-services-still-not-gdpr-ready/
http://www.openssl.org
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://www.submarinecablemap.com/
https://www.nytimes.com/2016/12/14/technology/yahoo-hack.html
https://www.nytimes.com/2016/12/14/technology/yahoo-hack.html
https://www.theverge.com/2017/2/28/14765042/amazon-s3-outage-causing-trouble
https://www.theverge.com/2017/2/28/14765042/amazon-s3-outage-causing-trouble
https://www.stacktunnel.com/worst-cloud-outages-fiascos-2016.html
https://www.stacktunnel.com/worst-cloud-outages-fiascos-2016.html

SYSTOR, 2018, Haifa, Israel Roman Shor et al.

[41] Jun Kurihara, Shinsaku Kiyomoto, Kazuhide Fukushima, and Toshiaki
Tanaka. 2008. A new (k, n)-threshold secret sharing scheme and its ex-
tension. In International Conference on Information Security (ISC ’08).

[42] Adam Langley, Wan-Teh Chang, Nikos Mavrogiannopoulos, Joachim
Strombergson, and Simon Josefsson. 2016. ChaCha20-Poly1305 cipher
suites for transport layer security (TLS). RFC 7905.

[43] Andrew W. Leung and Ethan L. Miller. 2006. Scalable Security for
Large, High Performance Storage Systems. In ACM Workshop on Stor-
age Security and Survivability (StorageSS ’06).

[44] Jin Li, Xiaofeng Chen, Mingqiang Li, Jingwei Li, Patrick PC Lee, and
Wenjing Lou. 2014. Secure Deduplication with Efficient and Reliable
Convergent Key Management. IEEE Transactions on Parallel and
Distributed Systems 25, 6 (June 2014), 1615–1625.

[45] Mingqiang Li and Patrick P.C. Lee. 2014. Stair codes: A general
family of erasure codes for tolerating device and sector failures in
practical storage systems. In USENIX Conference on File and Storage
Technologies (FAST ’14).

[46] Mingqiang Li, Chuan Qin, and Patrick P. C. Lee. 2015. CDStore:
Toward Reliable, Secure, and Cost-efficient Cloud Storage via Conver-
gent Dispersal. In USENIX Conference on Usenix Annual Technical
Conference (ATC ’15).

[47] Mingqiang Li, Chuan Qin, Patrick P. C. Lee, and Jin Li. 2014. Conver-
gent Dispersal: Toward Storage-Efficient Security in a Cloud-of-Clouds.
In USENIX Workshop on Hot Topics in Storage and File Systems (Hot-
Storage ’14).

[48] Yan Li, Nakul Sanjay Dhotre, Yasuhiro Ohara, Thomas M. Kroeger,
Ethan Miller, and Darrell D. E. Long. 2013. Horus: Fine-Grained
Encryption-Based Security for Large-Scale Storage. In USENIX Con-
ference on File and Storage Technologies (FAST ’13).

[49] Chunli Lv, Xiaoqi Jia, Lijun Tian, Jiwu Jing, and Mingli Sun. 2010. Effi-
cient Ideal Threshold Secret Sharing Schemes Based on EXCLUSIVE-
OR Operations. In International Conference on Network and System
Security (NSS ’10).

[50] Robert J. McEliece and Dilip V. Sarwate. 1981. On Sharing Secrets and
Reed-Solomon Codes. Commun. ACM 24, 9 (Sept. 1981), 583–584.

[51] Ethan L. Miller, Darrell D. E. Long, William E. Freeman, and Ben-
jamin C. Reed. 2002. Strong Security for Network-attached Storage. In
USENIX Conference on File and Storage Technologies (FAST ’02).

[52] Mihir Nanavati, Patrick Colp, Bill Aiello, and Andrew Warfield. 2014.
Cloud Security: A Gathering Storm. Commun. ACM 57, 5 (May 2014),
70–79.

[53] Zhongying Niu, Ke Zhou, Dan Feng, Hong Jiang, Frank Wang, Hua
Chai, Wei Xiao, and Chunhua Li. 2007. Implementing and Evaluat-
ing Security Controls for an Object-Based Storage System. In IEEE
Conference on Mass Storage Systems and Technologies (MSST ’07).

[54] Justice Opara-Martins, Reza Sahandi, and Feng Tian. 2016. Critical
analysis of vendor lock-in and its impact on cloud computing migration:
a business perspective. Journal of Cloud Computing 5, 1 (2016), 4.

[55] Dan O’Sullivan. 2017. Cloud Leak: How A Verizon Partner Exposed
Millions of Customer Accounts. https://www.upguard.com/breaches/
verizon-cloud-leak. (2017).

[56] Dan O’Sullivan. 2017. The RNC Files: Inside the Largest US Voter
Data Leak. https://www.upguard.com/breaches/the-rnc-files. (2017).

[57] John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita Kejriwal, Collin
Lee, Behnam Montazeri, Diego Ongaro, Seo Jin Park, Henry Qin,
Mendel Rosenblum, Stephen Rumble, Ryan Stutsman, and Stephen
Yang. 2015. The RAMCloud Storage System. ACM Trans. Comput.
Syst. 33, 3, Article 7 (Aug. 2015), 55 pages.

[58] Doyel Pal, Praveenkumar Khethavath, Johnson P. Thomas, and Tingt-
ing Chen. 2015. Multilevel Threshold Secret Sharing in Distributed
Cloud. In International Symposium on Security in Computing and
Communications (SSCC).

[59] Sameer Pawar, Salim El Rouayheb, and Kannan Ramchandran. 2011.
Securing Dynamic Distributed Storage Systems Against Eavesdropping
and Adversarial Attacks. IEEE Transactions on Information Theory 57,
10 (Oct 2011), 6734–6753.

[60] Nicole Perlroth. 2016. Yahoo says hackers stole data on 500 mil-
lion users in 2014. https://www.nytimes.com/2016/09/23/technology/
yahoo-hackers.html. (23 Sept. 2016).

[61] James S. Plank and Mario Blaum. 2014. Sector-Disk (SD) Erasure
Codes for Mixed Failure Modes in RAID Systems. Trans. Storage 10,
1, Article 4 (Jan. 2014), 4:1–4:17 pages.

[62] James S. Plank, Kevin M. Greenan, and Ethan L. Miller. 2013. Scream-
ing Fast Galois Field Arithmetic Using Intel SIMD Instructions. In
USENIX Conference on File and Storage Technologies (FAST ’13).

[63] KV Rashmi, Nihar B. Shah, Kannan Ramchandran, and P Vijay Kumar.
2012. Regenerating codes for errors and erasures in distributed storage.
In IEEE International Symposium on Information Theory (ISIT ’12).

[64] Ankit Singh Rawat, Onur Ozan Koyluoglu, Natalia Silberstein, and Sri-
ram Vishwanath. 2014. Optimal Locally Repairable and Secure Codes
for Distributed Storage Systems. IEEE Transactions on Information
Theory 60, 1 (Jan 2014), 212–236.

[65] Irving S. Reed and Gustave Solomon. 1960. Polynomial codes over
certain finite fields. J. Soc. Indust. Appl. Math. 8, 2 (1960), 300–304.

[66] Jason K. Resch and James S. Plank. 2011. AONT-RS: blending security
and performance in dispersed storage systems. In USENIX Conference
on File and Stroage Technologies (FAST ’11).

[67] Sean C. Rhea, Patrick R. Eaton, Dennis Geels, Hakim Weatherspoon,
Ben Y. Zhao, and John Kubiatowicz. 2003. Pond: the OceanStore
prototype. In USENIX Conference on File and Storage Technologies
(FAST ’03).

[68] Birenjith Sasidharan, P Vijay Kumar, Nihar B. Shah, KV Rashmi,
and Kishore Ramachandran. 2014. Optimality of the product-matrix
construction for secure MSR regenerating codes. In International Sym-
posium on Communications, Control and Signal Processing (ISCCSP

’14).
[69] Nihar B. Shah, KV Rashmi, and P Vijay Kumar. 2011. Information-

Theoretically Secure Regenerating Codes for Distributed Storage. In
IEEE Global Telecommunications Conference (GLOBECOM ’11).

[70] Adi Shamir. 1979. How to Share a Secret. Commun. ACM 22, 11 (Nov.
1979), 612–613.

[71] Roman Shor. 2018. Efficiently Combining Confidentiality and Avail-
ability in Distributed Storage Systems. Master’s thesis. Technion, Israel
Institute of Technology.

[72] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler. 2010. The Hadoop Distributed File System. In IEEE Sympo-
sium on Mass Storage Systems and Technologies (MSST ’10).

[73] Kiran Srinivasan, Tim Bisson, Garth Goodson, and Kaladhar Voruganti.
2012. iDedup: Latency-aware, inline data deduplication for primary
storage. In USENIX Conference on File and Storage Technologies
(FAST ’12).

[74] Mark W. Storer, Kevin Greenan, Darrell D.E. Long, and Ethan L. Miller.
2008. Secure Data Deduplication. In ACM International Workshop on
Storage Security and Survivability (StorageSS ’08).

[75] Mark W. Storer, Kevin M. Greenan, Ethan L. Miller, and Kaladhar
Voruganti. 2009. POTSHARDS - a secure, recoverable, long-term
archival storage system. ACM Transactions on Storage 5, 2 (2009),
1–35.

[76] Satoshi Takahashi and Keiichi Iwamura. 2013. Secret Sharing Scheme
Suitable for Cloud Computing. In IEEE International Conference on
Advanced Information Networking and Applications (AINA ’13).

[77] Ravi Tandon, SaiDhiraj Amuru, Thomas Charles Clancy, and
Richard Michael Buehrer. 2016. Toward Optimal Secure Distributed
Storage Systems With Exact Repair. IEEE Transactions on Information

87

https://www.upguard.com/breaches/verizon-cloud-leak
https://www.upguard.com/breaches/verizon-cloud-leak
https://www.upguard.com/breaches/the-rnc-files
https://www.nytimes.com/2016/09/23/technology/yahoo-hackers.html
https://www.nytimes.com/2016/09/23/technology/yahoo-hackers.html

How to Best Share a Big Secret SYSTOR, 2018, Haifa, Israel

Theory 62, 6 (2016), 3477–3492.
[78] Yongge Wang. 2015. Privacy-Preserving Data Storage in Cloud Using

Array BP-XOR Codes. IEEE Transactions on Cloud Computing 3, 4
(Oct 2015), 425–435.

[79] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long,
and Carlos Maltzahn. 2006. Ceph: A Scalable, High-performance
Distributed File System. In USENIX Symposium on Operating Systems
Design and Implementation (OSDI ’06).

[80] Aaron D. Wyner. 1975. The wire-tap channel. The Bell System Techni-
cal Journal 54, 8 (Oct 1975), 1355–1387.

[81] Benjamin Zhu, Kai Li, and Hugo Patterson. 2008. Avoiding the Disk
Bottleneck in the Data Domain Deduplication File System. In USENIX
Conference on File and Storage Technologies (FAST ’08).

88

	Abstract
	1 Introduction
	2 Data Protection Schemes
	3 Challenges and goals
	4 Computational overheads
	4.1 Methodology
	4.2 Results

	5 End-to-End Evaluation
	5.1 Methodology
	5.2 Results

	6 Discussion
	7 Related work
	8 Conclusions
	References

