
Codes for Erasures over Directed Graphs
Lev Yohananov

Dept. of Computer Science

Technion-Israel Institute of Technology

Haifa 32000, Israel

Email: levyohananov@campus.technion.ac.il

Eitan Yaakobi
Dept. of Computer Science

Technion-Israel Institute of Technology

Haifa 32000, Israel

Email: yaakobi@cs.technion.ac.il

Abstract—In this work we continue the study of a new class
of codes, called codes over graphs. Here we consider storage sys-
tems where the information is stored on the edges of a complete
directed graph with n nodes. The failure model we consider is
of node failures which are erasures of all edges, both incoming
and outgoing, connected to the failed node. It is said that a code
over graphs is a ρ-node-erasure-correcting code if it can correct
the failure of any ρ nodes in the graphs of the code. While the
construction of such optimal codes is an easy task if the field
size is O(n2), our main goal in the paper is the construction of
codes over smaller fields. In particular, our main result is the
construction of optimal binary codes over graphs which correct
two node failures with a prime number of nodes.

I. INTRODUCTION

In this paper we follow up on a recent work from [5] which
studies the correction of node failures in graphs. The main
idea of the work in [5] was to look at information systems in
which the information is represented by a graph. Such sys-
tems include for example neural networks [2] and associative
memories [4] that mimic the operation of the brain in the
sense of storing and processing information by the associa-
tions between the information content. A distributed storage
system [1] is another example where every two nodes can
share a link with the information that is shared between them.

The work in [5] studied a new class of codes, called codes
over graphs. This model assumes that there are undirected
complete graphs with n nodes (vertices) and the information
is stored on the undirected edges which connect every two
nodes in the graph. Here, we extend this model to directed
graphs and construct codes over directed complete graphs;
thus, the information is stored on the edges connecting ev-
ery two nodes in the graph, including the self loops. Under
this setup, there are n2 edges in the graph which store n2

symbols over some alphabet Σ. A code over graphs will be
a set of directed graphs. Here, a node failure corresponds to
the erasure of all edges in the out- and in-neighborhood of
the graph. Thus, a code over graphs will be called a ρ-node
erasure-correcting code if it can correct the failure of any ρ
nodes in each graph in the code.

The main approach in constructing these codes follows the
one from [5] in which we use the adjacency matrix of the
graph. The adjacency matrix is a square n× n matrix where
its (i, j)-entry corresponds to the symbol stored on the edge
from node i to node j. Then, a failure of the i-th node in
the graph translates to the erasure of the i-th row and the i-
th column in the adjacency matrix of the graph. While there
exist numerous constructions of array codes, most of them
do not provide square matrices, but more than, they do not
support the special structure of rows and columns erasure,
as described above. The most relevant model to ours is the
one studied by Roth [3] for the correction of crisscross error
patterns. For crisscross error patterns it is assumed that some
prescribed number of rows and columns have been erased,
however the numbers of erased rows and erased columns can
be different and with different indices. Therefore, this class of
codes can be used to construct node-erasure-correcting codes,
however, as we shall see, they will not be optimal.

For any ρ-node-erasure-correcting code, the failure of any
ρ nodes translated to 2nρ− ρ2 failed edges in the graph and
thus the minimum number of redundancy edges of such a
code is at least

n2 − (n− ρ)2 = 2nρ− ρ2.
If a code satisfies this bound with equality, it will be called
optimal. Constructing optimal ρ-node-erasure-correcting code
is an easy task if there is no restriction on the field size. For
example, one can use an [n2, (n− ρ)2, 2nρ− ρ2 + 1] MDS
code over a field of size at least n2− 1. Hence, the primary fo-
cus in this paper is the construction of node-erasure-correcting
codes over a small field, and in particular binary codes.

The rest of this paper is organized as follows. In Section II,
we formally define the graph model and codes over graphs we
study in this paper. In Section III, we present two construc-
tions of ρ-node-erasure-correcting codes. The first one shows
how to construct optimal codes over a field of size q � n− 1.
The second construction is based on the codes from [3] for
crisscorss error patterns and generates binary codes for all
ρ, however they are not optimal. In Section IV, we present
our main result in the paper of optimal double-node-erasure-
correcting codes. Due to the lack of space some proofs of the
results in the paper are omitted.

II. DEFINITIONS AND PRELIMINARIES

In this section we formally define the codes over graphs
we study in the paper. We follow similar definitions from [5]
and modify them for directed graphs. Let G = (Vn, E) be a
directed graph, where Vn = {v0, v1, . . . , vn−1} is its set of
n nodes (vertices) and E ⊆ Vn × Vn is its set of edges. A
labeling function L of a graph G over an alphabet Σ is an
assignment to the edges in G by symbols from Σ, i.e., the
labeling is a function L : E → Σ.

In this work we will only study complete directed graphs
with self loops, that is, E = Vn ×Vn, with a labeling func-
tion L : Vn × Vn → Σ and we will use the notation G =
(Vn, L) for such graphs. The adjacency matrix of a graph
G = (Vn, L) is an n× n matrix over Σ denoted by AG =
[ai, j]

n−1,n−1
i=0, j=0 , where ai, j = L(vi , vj) for all 0 � i, j � n− 1.

For an integer n > 0 we denote by [n] the set {0, 1, . . . , n−
1}. For a prime power q, the finite field of size q will be
denoted by Fq. A linear code of size n, dimension k, and
minimum distance d over a field Fq will be denoted by an
[n, k, d]q code.

Let Σ be a ring and G1 and G2 be two graphs over Σ with
the same nodes set Vn. The operator ” + ” between G1 and
G2 over Σ, is defined by G1 + G2 = G3, where G3 is the
unique graph satisfying AG1 + AG2 = AG3 . Similarly, the
operator ” · ” between G1 and an element α ∈ Σ, is denoted
by α · G1 = G3, where G3 is the unique graph satisfying
α · AG1 = AG3 .

Definition 1. A code over graphs of size M and length
n over an alphabet Σ is a set of directed complete graphs
CG = {Gi = (Vn, Li)|i ∈ [M]} over Σ. We denote such a
code by G-(n, M)Σ and in case Σ = {0, 1}, it will simply be
denoted by G-(n, M). The dimension of a code over graphs

2017 IEEE Information Theory Workshop - ITW 2017 Kaohsiung

978-1-5090-3097-2/17/$31.00 ©2017 IEEE 116

CG is kG = log|Σ| M, the rate is RG = kG/n2, and the redun-
dancy is defined by rG = n2 − kG . A code over graphs CG
over a ring Σ will be called linear if for all G1, G2 ∈ CG and
α,β ∈ Σ it holds that α · G1 +β · G2 ∈ CG . We denote this
family of codes by G-[n, kG]Σ.

A linear code over graphs whose first k nodes contain the
kG = k2 unmodified information symbols on their edges, is
called a systematic code over graphs. All other n2 − k2 edges
in the graph are called redundancy edges. In this case we say
that there are k information nodes, r = n − k redundancy
nodes, and the number of information edges is kG = k2. The
redundancy is rG = n2 − k2 and the rate is RG = k2/n2. We
denote such a code by SG-[n, k]Σ.

Let G = (Vn, L) be a graph. For i ∈ [n], the out-
neighborhood set, in-neighborhood set, of the i-th node is
defined to be the set

Nout
i = {(vi , vj) | j ∈ [n]}, Nin

i = {(vj, vi) | j ∈ [n]},
respectively, and the neighborhood set of the i-th node is the
set Ni = Nout

i ∪ Nin
i . Note that the i-th out-neighborhood

set, in-neighborhood set, corresponds to the i-th column, row,
in the adjacency matrix, respectively, and the i-th neighbor-
hood set is the union of the i-th column and the i-th row in
the adjacency matrix. A node failure of the i-th node is the
event in which all the edges in the neighborhood set of the
i-th node, i.e. Ni, are erased. We will also denote this set by
Fi and refer to it by the failure set of the i-th node. For con-
venience, we also define the out-failure set, in-failure set of
the i-th node by Fout

i = Nout
i , Fin

i = Nin
i , respectively.

When a node failures happens, the failed node is known
and it is required to complete the values of the edges in its
neighborhood set. This failure model leads us to the following
definition.

Definition 2. A code over graphs is called a ρ-node-erasure-
correcting code if it can correct the failure of any ρ nodes in
each graph in the code.

The minimum redundancy rG of any ρ-node-erasure-
correcting code of length n is

rG � n2 − (n− ρ)2 = 2nρ− ρ2.
A code over graphs satisfying this inequality with equality
will be called optimal. Hence for systematic code over graphs
the number of redundancy nodes is at least ρ. For all n and ρ,
an optimal ρ-node-erasure-correcting code can be constructed
using an [n2, (n−ρ)2, 2nρ−ρ2 + 1]q MDS code over a field

of size q � n2− 1. The main goal of this work is to construct
node-erasure-correcting codes over small fields.

III. GENERAL CONSTRUCTIONS OF CODES OVER GRAPHS

In the previous section we saw that optimal ρ-node-erasure-
correcting codes are easy to construct over a field of size at
least n2− 1. In this section we will present two constructions
that reduce the large field size. Namely, in Section III-A, we
will show an improvement of this last result and present con-
structions of optimal ρ-node-erasure-correcting codes over a
field of size at least n − 1. In order to further reduce the
field size, in Section III-B, we present constructions of bi-
nary codes, however these codes will not be optimal.

A. Optimal Codes over a Field of Size q � n− 1
Let G = (Vn, L) be a graph over a field Fq and U ⊆

Vn ×Vn the subset of its edges. We define cU ∈ F
|U|
q to be

a vector over Fq of length |U|, where its entries are the la-
bels of the edges in the set U in their lexicographical order.
For example, if U = {(v2, v4), (v1, v0), (v3, v6), (v3, v2)},
then cU =

(
L(v1, v0), L(v2, v4), L(v3, v2), L(v3, v6)

)
. We

first start with the following claim on the intersections of
neighborhood sets.

Claim 3. Let J be a subset of [n] of size ρ � 1. Then, the fol-
lowing properties hold:

(a) For all � ∈ [n], |Nout
� ∩ (

⋃
k∈J Fin

k)| = ρ.

(b) For all m ∈ [n], |Nin
m ∩ (

⋃
k∈J Fout

k)| = ρ.

(c) For all � ∈ [n] \ J, |Nout
� ∩ (

⋃
k∈J Fk)| = ρ.

We are now ready to present the construction of ρ-node-
erasure-correcting codes. Let us consider the adjacency matrix
of each graph in the code in order to explain the main idea
of the construction. Each of the first n − ρ columns in the
adjacency matrix belongs to an [n, n−ρ,ρ+ 1]q MDS code,
where q � n− 1, and all rows belong to the same code as
well. This construction is formalized as follows.

Construction 1. Let n and ρ be two positive integers such
that n > ρ. Let C be an [n, n − ρ,ρ + 1]q MDS code, for
q � n− 1. The code CG1 is defined as follows,

CG1 =

{
G = (Vn, L)

∣∣∣∣∣
∀m ∈ [n− ρ], cNin

i
∈ C

∀� ∈ [n], cNout
i
∈ C

}
.

Theorem 4. For all ρ and n such that ρ < n, the code CG1 is a

G-[n, kG = (n− ρ)2]q ρ-node-erasure-correcting code, where
q � n− 1.

Note that the code CG1 can also be a systematic SG-[n, n−
ρ]q code where its first n−ρ nodes are the information nodes.
In the adjacency matrix, this corresponds to having the infor-
mation symbols in the upper left (n− ρ)× (n− ρ) matrix.
Then, each of the first n− ρ columns in encoded systemati-
cally by a systematic encoder of the MDS code C, and then
the same procedure is invoked on each of the n rows.

B. Binary Construction of Codes over Graphs
In this section we present constructions of binary ρ-node-

erasure-correcting codes for arbitrary ρ. This construction will
be based upon a construction by Roth for the correction of
crisscross error patterns [3].

Let Γ = [γi, j]
n−1,n−1
i=0, j=0 be an n× n matrix over a field F.

A cover of Γ is defined to be a pair of two sets (S, T) where
S, T ⊆ [n] such that for all i, j ∈ [n] if γi, j �= 0 then either
i ∈ S or j ∈ T, [3]. The cover-weight of Γ is defined to be
the minimum size of any cover (S, T) of Γ , that is,

w(Γ) = min
(S,T) is a cover of Γ

{|S|+ |T|}.

An [n × n, k, d] linear array code C over a field F is a k-
dimensional linear space of n × n matrices over F, where
the minimum cover-weight of all nonzero matrices in C is
d. It was claimed in [3] that the code C can correct the era-
sure of any d − 1 rows or columns in the array. Further-
more, the singleton bound for such array codes states that [3]
k � n(n− d + 1), and here we refer to array codes which
meet this bound as optimal array codes. In [3], a construction
of optimal array codes [n× n, n(n− r), r + 1] was given for
all r < n. In fact, another stronger property of this code was
proved in [3], in which the rank of every matrix in the code
is at least r + 1.

We are now ready to present the construction of binary
ρ-node-erasure-correcting codes.

Construction 2. Let C be an [n× n, n(n− 2ρ), 2ρ+ 1] bi-
nary optimal array code from [3], where ρ < n/2. The code
over graphs CG2 is defined as follows,

CG2 = {G = (Vn, L) | AG ∈ C} .

Theorem 5. For all ρ < n/2, the code CG2 is a G-[n, kG =
n(n− 2ρ)] ρ-node-erasure-correcting code.

2017 IEEE Information Theory Workshop - ITW 2017 Kaohsiung

978-1-5090-3097-2/17/$31.00 ©2017 IEEE 117

The construction of binary optimal array codes [n ×
n, n(n− r), r + 1] from [3] has also a systematic construc-
tion, where the first n − 2ρ rows of each matrix store the
information bits and the last 2ρ rows store the redundancy
bits. Therefore, we can use this family of codes also for the
construction of systematic SG-[n, k = n − 2ρ] codes over
graphs for ρ < n/2.

We saw in this section that optimal codes exist for a field
of size at least n− 1, while the binary construction does not
provide optimal codes. Our next task is to achieve these two
properties simultaneously, that is, optimal binary codes. In the
next section we show how to accomplish this task for two
node failures, when the number of nodes is a prime number.
The general case for arbitrary number of node failures is left
for future work.

IV. DOUBLE-NODE-ERASURE-CORRECTING CODES

In this section we present a construction of optimal bi-
nary double-node-erasure-correcting codes. We first start by
reviewing a construction from [5] for the correction of two
node failures for undirected graphs. We then show another
construction of such codes for undirected graphs, and lastly
we show how to combine between these two constructions
in order to generate a code correcting two node failures for
directed graphs.

We refer to a graph with only undirected edges as an
undirected graph. Here, we consider only complete undi-
rected graphs and denote them by GU = (Vn, LU), where
Vn = {v0, v1, . . . , vn−1} is the set of n nodes, and there ex-
ists an undirected edge between every two nodes, including
self loops. As for the directed case, LU is a labeling function
that assigns every edge with a symbol over some alphabet Σ.
An edge between node vi to node vj is denoted by 〈vi , vj〉
where the order in this pair does not matter, that is, the pair
〈vi , vj〉 is identical to the pair 〈vj, vi〉.

An undirected graph GU can be represented by its
lower-triangle-adjacency matrix of order n × n, that is,

AGU = [ai, j]
n−1,n−1
i=0, j=0 such that ai, j = LU (〈vi , vj〉) if i � j

and otherwise ai, j = 0. It can also be represented by an
upper-triangle-adjacency matrix by taking the transpose of
AGU .

A code over undirected graphs of size M and length n over
an alphabet Σ is a set of undirected graphs CU = {GUi =
(Vn, LUi)|i ∈ [M]} over Σ. A linear code over undirected
graphs is defined in a similar way to the directed case and a
linear code over undirected graphs whose first k nodes contain

the (k+1
2) unmodified information symbols on their edges, is

called a systematic code over undirected graphs and will be
denoted by UG-[n, k]Σ.

The neighborhood set of the i-th node in a graph GU =
(Vn, LU) is the set Ni = {〈vi , vj〉| j ∈ [n]}. A node failure of
the i-th node is the event in which all the edges in the neigh-
borhood set of the i-th node are erased and we will denote this
set by F̂i = Ni to indicate a failure set. A code over undirected
graphs is called an undirected ρ-node-erasure-correcting code
if it can correct the failure of any ρ nodes in each graph in
the code.

Let n � 5 be a prime number and GU = (Vn, LU) be an
undirected graph with n vertices. We use the notation 〈a〉n to
denote the value of (a mod n). Let us define for h ∈ [n− 1]

Sh =

{{〈vh, v�〉 | � ∈ [n− 1]
}

, h ∈ [n− 2],{〈v�, v�〉 | � ∈ [n− 1]
}

, h = n− 2,

and for m ∈ [n],
Dm =

{〈vk,v�〉|k, �∈ [n]\{n−2},〈k+�〉n=m
}∪{(vn−1,vn−2)

}
.

The sets Sh where h ∈ [n− 2], will be used to represent par-
ity constraints on the neighborhood of each of the first n− 2
nodes in the undirected graph (which correspond to “opposite-
L paths” in the lower-triangle-adjacency matrix), while the set
Sn−2 will be used to impose a parity constraint on the self
loops of the first n − 1 nodes. Similarly, the sets Dm for
m ∈ [n], will represent parity constraints on the diagonals of
the lower-triangle-adjacency matrix of the graph.

Example 1. The sets Sh, Dm for n = 7 are marked in Fig. 2.
Entries on lines with the same color belong to the same parity
constraint.0 0 0 0 0 00 0 0 0 00 0 0 00 0 00 00

(a) Neighborhood Parity Paths

0 0 0 0 0 00 0 0 0 00 0 0 00 0 00 006 60

0

1
12 2
3 3
4 4 4

5 5

(b) Diagonal Parity Paths

Fig. 1. The neighborhoods and diagonals sets.

In [5], we presented the following construction of
systematic binary UG-[n, n − 2] undirected double-node-
erasure-correcting codes.

Construction 3. For all n � 5 prime number let CU1 be the
following code over graphs,

CU1=

{
GU=(Vn, LU)

∣∣∣∣∣
(a)∑〈vi ,vj〉∈Sh

LU (vi , vj)=0, h∈[n−1]
(b)∑〈vi ,vj〉∈Dm LU (vi , vj)=0, m∈[n]

}
.

The correction of this construction was proved in [5] by
explicitly showing its decoding procedure for any two failed
nodes vi and vj. The more challenging case in which i, j ∈
[n− 2] works as follows. For h ∈ [n− 1] \ {i, j} and m ∈
[n] let Sh and Dm be the sets Sh = Sh \ (F̂i ∪ F̂j) and

Dm = Dm \ (F̂i ∪ F̂j). Denote the syndromes Ŝh, D̂m by

Ŝh = ∑
〈vk ,v�〉∈Sh

LU (vk, v�), D̂m = ∑
〈vk ,v�〉∈Dm

LU (vk, v�).

respectively. Let d = 〈 j− i〉n, x = 〈−1− d−1〉n and y =
〈−1 + d−1〉n. The decoding procedure for this case is pre-
sented in Algorithm 1.

Algorithm 1
1: bprev ← 0
2: for t = 0, 1, . . . , x do
3: s1 ← 〈−d(t + 1)− 2〉n
4: s2 ← 〈s1 + j〉n
5: if (s1 /∈ {i, j, n− 1}) then
6: LU (vs1 , vj)← D̂s2 + bprev

7: LU (vs1 , vi)← Ŝs1+LU (vs1 , vj)
8: bprev ← LU (vs1 , vi)

9: if (s1 = j) then
10: LU (vs1 , vj)← D̂s2 + bprev

11: LU (vi , vi)← Ŝn−2+LU (vs1 , vj)
12: bprev ← LU (vi , vi)

13: if s1 = n− 1 then
14: LU (vs1 , vj)← D̂s2 + bprev

15: bprev ← 0
16: for t = 0, 1, . . . , y do
17: s1 ← 〈d(t + 1)− 2〉n
18: s2 ← 〈s1 + i〉n
19: if (s1 /∈ {i, j, n− 1}) then
20: LU (vs1 , vi)← D̂s2 + bprev

21: LU (vs1 , vj)← Ŝs1+LU (vs1 , vi)
22: bprev ← LU (vs1 , vj)

23: if (s1 = i) then
24: LU (vs1 , vi)← D̂s2 + bprev

25: LU (vj , vj)← Ŝn−2+LU (vs1 , vi)
26: bprev ← LU (vj , vj)

27: if s1 = n− 1 then
28: LU (vs1 , vi)← D̂s2 + bprev

Next we present another construction of systematic binary
UG-[n, n − 2] undirected double-node-erasure-correcting
codes which is very similar to the codes from Construc-
tion 3. Here, we present this construction by its constraints
on its upper-triangle-adjacency matrix representation of the
graphs. For h ∈ [n− 1] denote,

S′h =

{{〈vh, v�〉 | � ∈ [n] \ {n− 2}} , h ∈ [n− 2],{〈v�, v�〉 | � ∈ [n] \ {n− 2}} , h = n− 2,
and for m ∈ [n],

D′m =
{〈vk,v�)〉|k, �∈ [n− 1]},〈k+�〉n=m

}∪{
(vn−2,vn−1)

}
.

2017 IEEE Information Theory Workshop - ITW 2017 Kaohsiung

978-1-5090-3097-2/17/$31.00 ©2017 IEEE 118

As before, the sets S′h for h ∈ [n − 1] and D′m for m ∈
[n], will be used to represent parity constraints on the upper-
triangle-adjacency matrix.

Example 2. The sets S′h, D′m for n = 7 are marked in Fig. 2.
Entries on lines with the same color belong to the same parity
constraint.

0
0 0
0 0 0
0 0 0 0
0 0 0 0 0
0 0 0 0 0 0

(a) Neighborhood Parity Paths

0
0 0
0 0 0
0 0 0 0
0 0 0 0 0
0 0 0 0 0 0

4′ 4′ 4′3′ 3′2′2′1′

1′

0′
0′
5′5′6′ 6′

(b) Diagonal Parity Paths

Fig. 2. The neighborhoods and diagonals sets.

Our second construction of UG-[n, n − 2] undirected
double-node-erasure-correcting codes works as follows.

Construction 4. For all n � 5 prime number let CU2 be the
following code over graphs,

CU2=

{
GU=(Vn, LU)

∣∣∣∣∣
(a)∑〈vi ,vj〉∈S′h

LU (vi , vj)=0, h∈[n−1]
(b)∑〈vi ,vj〉∈D′m LU (vi , vj)=0, m∈[n]

}
.

We will not prove here the correctness of the code CU2
since its construction is very similar to one of the code CU1 .
However, note that when constructing the code CU2 , we
switched the roles of the last two redundancy nodes such
that the first node is the diagonal parity node and the second
node is the single parity node. However, we still present here
a decoding algorithm of this code for the more challeng-
ing case when the failed nodes are vi , vj and i, j ∈ [n− 2].
Its correctness is similar to the one of Algorithm 1 as done
in [5]. For h ∈ [n− 1] \ {i, j} and m ∈ [n] let Sh and Dm
be the sets Sh = S′h \ (F̂i ∪ F̂j) and Dm = D′m \ (F̂i ∪ F̂j).

Denote the syndromes Ŝ′h, D̂′m by

Ŝ′h = ∑
〈vk ,v�〉∈Sh

LU (vk, v�), D̂′m = ∑
〈vk ,v�〉∈Dm

LU (vk, v�).

Let x′ = 〈−1+ d−1〉n and y′ = 〈−1− d−1〉n. The decoding
procedure for this case is described in Algorithm 2.

In order to construct codes over directed graphs, we will
use the two codes above for undirected graphs to get a fam-
ily of directed systematic binary SG-[n, n− 2] double-node-
erasure-correcting codes.

Algorithm 2
1: bprev ← 0
2: for t = 0, 1, . . . , x′ do
3: s1 ← 〈−d(t + 1)− 1〉n
4: s2 ← 〈s1 + j〉n
5: if (s1 /∈ {i, j, n− 2}) then
6: LU (vs1 , vj)← D̂′

s2
+ bprev

7: LU (vs1 , vi)← Ŝ′s1
+L(vs1 , vj)

8: bprev ← LU (vs1 , vi)

9: if (s1 = j) then
10: LU (vs1 , vj)← D̂′

s2
+ bprev

11: LU (vi , vi)← Ŝ′n−2+LU (vs1 , vj)
12: bprev ← LU (vi , vi)

13: if s1 = n− 2 then
14: LU (vs1 , vj)← D̂′

s2
+ bprev

15: bprev ← 0
16: for t = 0, 1, . . . , y′ do
17: s1 ← 〈d(t + 1)− 1〉n
18: s2 ← 〈s1 + i〉n
19: if (s1 /∈ {i, j, n− 2}) then
20: LU (vs1 , vi)← D̂′

s2
+ bprev

21: LU (vs1 , vj)← Ŝ′s1
+LU (vs1 , vi)

22: bprev ← LU (vs1 , vj)

23: if (s1 = i) then
24: LU (vs1 , vi)← D̂′

s2
+ bprev

25: LU (vj , vj)← Ŝ′n−2+LU (vs1 , vi)
26: bprev ← LU (vj , vj)

27: if s1 = n− 2 then
28: LU (vs1 , vi)← D̂′

s2
+ bprev

For i, j ∈ [n], not necessarily distinct, let 〈vi , vj〉↓
be the edge directed from vmax{i, j} to vmin{i, j}, i.e.,

〈vi , vj〉↓ = (vmax{i, j}, vmin{i, j}), and similarly 〈vi , vj〉↑ =
(vmin{i, j}, vmax{i, j}) is the edge directed from vmin{i, j} to

vmax{i, j}. For h ∈ [n− 2] the neighborhood-edge sets S↓h , S↑h
are defined by

S↓h={〈vi , vj〉↓|〈vi , vj〉 ∈ Sh}, S↑h={〈vi , vj〉↑|〈vi , vj〉 ∈ S′h}.

Furthermore, for m ∈ [n] the diagonal-edge sets D↓m, D↑m are
defined by

D↓m={〈vi , vj〉↓|〈vi , vj〉∈Dm}, D↑m={〈vi , vj〉↑|〈vi , vj〉∈D′m},

and for t ∈ [n] the failure-edge sets F↓t , F↑t are defined by

F↓t ={〈vi , vj〉↓|〈vi , vj〉 ∈ F̂t}, F↑t ={〈vi , vj〉↑|〈vi , vj〉 ∈ F̂t}.
Example 3. The sets S↓h , S↓h , D↑m, D↑m for n = 7 are marked
in Fig. 3. Entries on lines with the same color belong to the
same parity constraint.

(a) Neighborhood Parity Paths

4 4 44′ 4′ 4′
3 3 3′ 3′2′2′ 22
1′

1′
1

1

00′

0 0′
5′5′55 6 66′ 6′

(b) Diagonal Parity Paths

Fig. 3. The neighborhoods and diagonals sets.

The following claims for directed sets are very similar to
the corresponding claims that were stated in [5].

Claim 6. For all distinct i, j ∈ [n − 2], D↓〈i+ j〉n ∩ F↓j =
{(vj, vi)} and D↑〈i+ j〉n ∩ F↑j = {(vi , vj)}.

We are now ready to present the construction of double-node-
erasure-correcting codes.

Construction 5. For all n � 5 prime number let CG4 be the
following code.

CG4 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

G=(Vn, L)

∣∣∣∣∣∣∣∣∣∣

(a)∑
(vi ,vj)∈S↓h

L(vi , vj)=0, h∈[n− 2]

(b)∑
(vi ,vj)∈D↓m

L(vi , vj) = 0, m ∈ [n]

(c)∑
(vi ,vj)∈S↑h

L(vi , vj)=0, h∈[n− 2]

(d)∑
(vi ,vj)∈D↑m

L(vi , vj) = 0, m ∈ [n]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

Note that in this construction we did not use the constraints
that were derived from the two sets Sn−2 and S′n−2 (i.e., the
constraints on the main diagonal). Even though we do not
explicitly prove it here, it is not hard to notice that this con-
struction is systematic where the information is stored on the
edges of the first n− 2 nodes. Hence, in the next proof for
the correctness of the construction we will refer to it as a
systematic construction.

Theorem 7. The code CG4 is an optimal binary double-node-
erasure-correcting code.

Proof: Assume that nodes i, j ∈ [n], where i < j are the
failed nodes. We will show the correctness of this construc-
tion by explicitly showing its decoding algorithm. We will
only consider the more difficult case of i, j ∈ [n− 2].

For h ∈ [n− 1] \ {i, j} denote the sets S↓h = S↓h \ (F̂↓i ∪ F̂↓j)

and S↑h = S↑h \ (F̂↑i ∪ F̂↑j) and for m ∈ [n] denote the sets

D↓m = D↓m \ (F̂↓i ∪ F̂↓j) and D↑m = D↑m \ (F̂↑i ∪ F̂↑j). Then,

the neighborhood syndromes Ŝ↓h , Ŝ↑h are defined by

Ŝ↓h = ∑
〈vk ,v�〉∈S↓h

LU (vk, v�), Ŝ↑h = ∑
〈vk ,v�〉∈S↑h

LU (vk, v�),

and the diagonal syndromes D̂↓m, D̂↑m are defined by

D̂↓m = ∑
〈vk ,v�〉∈D↓m

LU (vk, v�), D̂↑m = ∑
〈vk ,v�〉∈D↑m

LU (vk, v�).

Let d = 〈 j− i〉n, x = 〈−1− d−1〉n, y = 〈−1 + d−1〉n,
x′ = 〈−1 + d−1〉n and y′ = 〈−1 − d−1〉n. The decoding
procedure for the code CG4 in this case is described in Algo-
rithm 3.

This algorithm consists of four loops marked as Loop

I, II, III, and IV. For Y ∈ {I, II, III, IV}, denote by s(t)1,Y the

2017 IEEE Information Theory Workshop - ITW 2017 Kaohsiung

978-1-5090-3097-2/17/$31.00 ©2017 IEEE 119

Algorithm 3
Loop I Loop II Loop III Loop IV
1: bprev ← 0
2: for t = 0, 1, . . . , x do
3: s1 ← 〈−d(t + 1)− 2〉n
4: s2 ← 〈s1 + j〉n
5: if (s1 /∈ {i, j, n− 1}) then
6: L(〈vs1 , vj〉↓)← D̂↓

s2 + bprev

7: L(〈vs1 , vi〉↓)←Ŝ↓s1+L(〈vs1 , vj〉↓)
8: bprev ← L(〈vs1 , vi〉↓)
9: if (s1 = j) then

10: L(vj , vj)← D̂↓
s2 + bprev

11: Wait until (vi , vi) is corrected.
12: bprev ← L(vi , vi)

13: if s1 = n− 1 then
14: L(vn−2 , vj)← D̂↓

s2 + bprev

15: bprev ← 0
16: for t = 0, 1, . . . , y do
17: s1 ← 〈d(t + 1)− 2〉n
18: s2 ← 〈s1 + i〉n
19: if (s1 /∈ {i, j, n− 1}) then
20: L(〈vs1 , vi〉↓)← D̂↓

s2 + bprev

21: L(〈vs1 , vj〉↓)←Ŝ↓s1+L(〈vs1 , vi〉↓)
22: bprev ← L(〈vs1 , vj〉↓)
23: if (s1 = i) then
24: L(vi , vi)← D̂↓

s2 + bprev
25: Wait until (vj , vj) is corrected.
26: bprev ← L(vj , vj)

27: if s1 = n− 1 then
28: L(vn−1 , vi)← D̂↓

s2 + bprev

29: bprev ← 0
30: for t = 0, 1, . . . , x′ do
31: s1 ← 〈−d(t + 1)− 1〉n
32: s2 ← 〈s1 + j〉n
33: if (s1 /∈ {i, j, n− 2}) then
34: L(〈vs1 , vj〉↑)← D̂↑

s2 + bprev

35: L(〈vs1 , vi〉↑)←Ŝ↑s1+L(〈vs1 , vj〉↑)
36: bprev ← L(〈vs1 , vi〉↑)
37: if (s1 = j) then
38: L(vj , vj)← D̂↑

s2 + bprev
39: Wait until (vi , vi) is corrected.
40: bprev ← L(vi , vi)

41: if s1 = n− 2 then
42: L(vj , vn−2)← D̂↑

s2 + bprev

43: bprev ← 0
44: for t = 0, 1, . . . , y′ do
45: s1 ← 〈d(t + 1)− 1〉n
46: s2 ← 〈s1 + i〉n
47: if (s1 /∈ {i, j, n− 2}) then
48: L(〈vs1 , vi〉↑)← D̂↑

s2 + bprev

49: L(〈vs1 , vj〉↑)←Ŝ↑s1+L(〈vs1 , vi〉↑)
50: bprev ← L(〈vs1 , vj〉↑)
51: if (s1 = i) then
52: L(vi , vi)← D̂↑

s2 + bprev
53: Wait until (vj , vj) is corrected.
54: bprev ← L(vj , vj)

55: if s1 = n− 2 then
56: L(vi , vn−2)← D̂↑

s2 + bprev

value of the variable s1 on iteration t of Loop Y. These

values of s(t)1,Y are given by:

s(t)1,I = 〈−d(t + 1)− 2〉n, s(t)1,II = 〈d(t + 1)− 2〉n,

s(t)1,III = 〈−d(t + 1)− 1〉n, s(t)1,IV = 〈d(t + 1)− 1〉n.

Next, we denote the following four sets:

A = {s(t)1,I : t ∈ [x + 1]}, B = {s(t)1,II : t ∈ [y + 1]},

A′ = {s(t
′)

1,III : t′ ∈ [x′ + 1]}, B′ = {s(t
′)

1,IV : t ∈ [y′ + 1]}.

Claim 8. The indices i, j satisfy the following property: i, j ∈
A ∩ B′ or i, j ∈ A′ ∩ B, but not in both.

The decoding Algorithm 3 for this case combines Algo-
rithm 1 and Algorithm 2, where Algorithm 1 is used to de-
code the lower-triangle-adjacency and Algorithm 2 is used to
decode the upper-triangle-adjacency matrix. However, since
we did not use the constraints of the two sets Sn−2 and S′n−2
on the main diagonal, we had to replace Step 11, 25 in Al-
gorithm 1, Algorithm 2 with the command wait until (vi , vi)
is corrected, wait until (vj, vj) is corrected, respectively. Ac-

cording to Claim 8, the indices i, j satisfy i, j ∈ A ∩ B′ or
i, j ∈ A′ ∩ B but not both. Without loss of generality, assume
that i, j ∈ A∩ B′. Therefore, in this case, Loops II and III of
Algorithm 3 will not be affected by the main diagonal con-
straint. This holds since the edges (vi , vi) and (vj, vj) are
not corrected in these two loops as the conditions in Steps 23
and 37 will not hold. Hence, these two loops operate and suc-
ceed exactly as done in Algorithm 1 and Algorithm 2. This
does not hold for Loops I and IV. Namely, Loop I, IV op-
erates exactly as Algorithm 1, Algorithm 2 until Loop I, IV
reaches Step 11, 53, respectively. Here we notice that accord-
ing to Algorithm 1, in Step 11, the algorithm was supposed
to correct the edge (vi , vi) according to the constraint on the
mail diagonal. Similarly, in Step 53, the algorithm was sup-
posed to correct the edge (vj, vj) according to the constraint

on the mail diagonal. However, since the edge (vi , vi) is cor-
rected in Loop IV and the edge (vj, vj) is corrected in Loop

I, all we need to do in Step 11 is to wait for the edge (vi , vi)
to be corrected and in the same way in Step 53 for the edge
(vj, vj) to be corrected. Then, the rest of these two loops pro-
ceed to correct the remaining edges as done in Algorithm 1
and Algorithm 2.

Lastly, from Claim 6, D↓〈i+ j〉n ∩ F↓j = {(vj, vi)} and

D↑〈i+ j〉n ∩ F↑j = {(vi , vj)}, so the last two information edges

(vj, vi) and (vi , vj) are corrected by constraints D̂↓i+ j and

D̂↑i+ j, respectively. Since all of the information edges were

corrected, we can correct the remaining uncorrected redun-
dancy edges (vn−2, vi),(vn−2, vj),(vi , vn−1) and (vj, vn−1)
using our encoding rules.

The decoding algorithm presented in the proof of Theo-
rem 7 is demonstrated in the next example.
Example 4.

0 1′ 2′ 4′ 6′ 7′ 8′1 2 3′ 5′ 7′ 8′ 9′2 3 4 6′ 8′ 9′ 10′
4 5 6 8 10′ 0′ 1′
6 7 8 10 1 2′ 3′7 8 9 0 2 3 4′8 9 10 1 3 4 5

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8
9
10

(a) Simulation of the algorithm

First Loop (Red)

s2 s1 〈vs1 , vj〉↓ 〈vs1 , vi〉↓
1 7 〈v7, v5〉↓ 〈v7, v3〉↓

10 5 〈v5, v5〉↓ −
8 3 − −
6 1 〈v1, v5〉↓ 〈v1, v3〉↓
4 10 〈v10, v5〉↓

(b) Lower tringle corrected edge order
Forth Loop (Blue)

s2 s1 〈vs1 , vi〉↑ 〈vs1 , vj〉↑
4 1 〈v1, v3〉↑ 〈v1, v5〉↑
6 3 〈v3, v3〉↑ −
8 5 − −

10 7 〈v7, v3〉↑ 〈v7, v5〉↑
1 9 〈v9, v3〉↑

(c) Upper tringle corrected edge order

Fig. 4. We consider the case where n = 11 and the failed nodes are v3
and v5, that is, i = 3, j = 5. Therefore d = 2 and x = y′ = 4, x′ =
y = 5. We use here the lower-triangle-adjacency matrix for Loop I (red)
and Loop II (green) and the upper-triangle-adjacency matrix for Loop III
(black) and Loop IV (blue). Loop I starts with the edge (v7, v5), and
ends with the edge (v10, v5) and Loop II starts with the edge (v3, v0)
and ends with the edges (v10, v3). Similarly, Loop III starts with the
edge (v5, v8), and ends with the edge (v5, v9) and Loop IV starts with
the edge (v1, v3) and ends with the edges (v3, v9). Loop I, IV corrects
the self loop (v5, v5), (v3, v3), respectively. At the end of this algorithm,
(v5, v3), (v9, v3), (v9, v5) are the uncorrected edges for the lower-triangle-
adjacency matrix and (v3, v5), (v3, v10), (v5, v10) for the upper-triangle-
adjacency matrix, and are marked in gray.

REFERENCES

[1] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ram-
chandran. Network coding for distributed storage systems. IEEE Trans-
actions on Information Theory, 56(9):4539–4551, 2010.

[2] J. J. Hopfield. Neurocomputing: Foundations of research. chapter Neural
Networks and Physical Systems with Emergent Collective Computational
Abilities, pages 457–464. MIT Press, 1988.

[3] R. M. Roth. Maximum-rank array codes and their application to
crisscross error correction. IEEE Transactions on Information Theory,
37(2):328–336, 1991.

[4] E. Yaakobi and J. Bruck. On the uncertainty of information retrieval in
associative memories. In ISIT, pages 106–110, 2012.

[5] L. Yohananov and E. Yaakobi. Codes for graph erasures. In ISIT, pages
844–848. IEEE, 2017.

2017 IEEE Information Theory Workshop - ITW 2017 Kaohsiung

978-1-5090-3097-2/17/$31.00 ©2017 IEEE 120

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

