
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 8, AUGUST 2020 4917

Bounds on the Length of Functional
PIR and Batch Codes

Yiwei Zhang , Tuvi Etzion , Fellow, IEEE, and Eitan Yaakobi , Senior Member, IEEE

Abstract— A functional k-Private Information Retrieval (k-PIR)
code of dimension s consists of n servers storing linear combina-
tions of s linearly independent information symbols. Any linear
combination of the s information symbols can be recovered by
k disjoint subsets of servers. The goal is to find the minimum
number of servers for given k and s. We provide lower bounds on
the minimum number of servers and constructions which yield
upper bounds on this number. For k ≤ 4, exact bounds on this
number are proved. Furthermore, we provide some asymptotic
bounds. The problem coincides with the well known PIR problem
based on a coded database to reduce the storage overhead,
when each linear combination contains exactly one information
symbol. If any multiset of size k of linear combinations from the
linearly independent information symbols can be recovered by k
disjoint subset of servers, then the servers form a functional k-
batch code. A functional k-batch code is a functional k-PIR code,
where all the k linear combinations in the multiset are equal.
We provide some bounds on the minimum number of servers
for functional k-batch codes. In particular we present a random
construction and a construction based on simplex codes, Write-
Once Memory (WOM) codes, and Random I/O (RIO) codes.

Index Terms— Private Information Retrieval (PIR) codes,
batch codes, distributed storage codes.

I. INTRODUCTION

A. General Background

APrivate Information Retrieval (PIR) protocol allows a
user to retrieve a data item from a database, in such a way

that the servers storing the data will get no information about
which data item was retrieved. The problem was introduced
in [8], [9]. The protocol to achieve this goal assumes that the
servers are curious but honest, so they don’t collude. It is also
assumed that the database is error-free and is synchronized

Manuscript received April 15, 2019; revised December 25, 2019; accepted
February 14, 2020. Date of publication March 2, 2020; date of current
version July 14, 2020. The work of Yiwei Zhang and Eitan Yaakobi was
supported by the ISF Grant 1817/18. The work of Yiwei Zhang and Tuvi
Etzion was supported by the BSF-NSF Grant 2016692. The work of Yiwei
Zhang was supported by a Technion Fellowship. This work was supported
by the Technion Hiroshi Fujiwara Cyber Security Research Center and the
Israel Cyber Directorate. This article was presented in part at the 2019 IEEE
International Symposium on Information Theory (ISIT). (Corresponding
author: Tuvi Etzion.)

Yiwei Zhang was with the Department of Computer Science, Technion—
Israel Institute of Technology, Haifa 3200003, Israel. He is now with the
School of Cyber Science and Technology, Shandong University, Qingdao
266237, China, and also with the Key Laboratory of Cryptologic Technol-
ogy and Information Security, Ministry of Education, Shandong University,
Qingdao 266237, China (e-mail: ywzhang@sdu.edu.cn).

Tuvi Etzion and Eitan Yaakobi are with the Department of Computer
Science, Technion—Israel Institute of Technology, Haifa 3200003, Israel
(e-mail: etzion@cs.technion.ac.il; yaakobi@cs.technion.ac.il).

Communicated by L. Dolecek, Associate Editor for Coding Techniques.
Color versions of one or more of the figures in this article are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2020.2977631

all the time. For a set of k servers, the goal is to design an
efficient k-server PIR protocol, where efficiency is measured
by the total number of bits transmitted by all parties involved.
This model is called information-theoretic PIR; there is also
computational PIR, in which the privacy is defined in terms of
the inability of a server to compute which item was retrieved
in a reasonable time [22]. We continue to consider only the
information-theoretic PIR.

The area of PIR was very active in the last twenty years
and a survey on recent developments can be found in a recent
paper [3]. While most of the work in this area is theoretical,
there have been notable recent advances in bridging the
gap between theory and practice. For example, the recent
paper [17] reports on the design and implementation of a scal-
able and private media delivery system — called Popcorn —
that explicitly targets Netflix-like content distribution. Another
practical system for private queries on public datasets — called
Splinter — is currently in development [41]. This system has
been reported to achieve latencies below 1.20 seconds for
realistic workloads including a Yelp clone, flight search, and
map routing.

The classic model of PIR assumes that each server stores a
copy of an s-bit database, so the storage overhead, namely
the ratio between the total number of bits stored by all
servers and the size of the database, is k. However, recent
work combines PIR protocols with techniques from distrib-
uted storage (where each server stores only a coded frac-
tion of the database) to reduce the storage overhead. This
approach was first considered in [33], and several papers
have developed this direction further, e.g. [2], [11], [12].
Our discussion on PIR will follow the breakthrough approach
presented in [18], [19], which shows that n servers (for some
n > k) may emulate a k-server PIR protocol with storage
overhead significantly lower than k. The scheme used for
this purpose is called a k-PIR and will be discussed in the
next paragraph.

The s-bit database S is considered as the information bits
of a linear code of length n and dimension s. This code has
an s×n generator matrix G. The linear combinations related
to the codeword SG are stored in the n servers. In other words,
the i-th server stores the linear combination generated when
the s-bit information word is multiplied by the i-th column
of G. The generator matrix G represents a k-PIR scheme
if there are k pairwise disjoint subsets of [n] � {1, 2, . . . , n},
R1, R2, . . . , Rk, such that the sum of the columns of G related
to each such subset is the data item (out of the s data items)
which the user wants to retrieve. Using these k subsets any
known k-PIR protocol can be emulated with the given n
servers. The advantage of this scheme is a smaller amount

0018-9448 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Eitan Yaakobi. Downloaded on July 21,2020 at 08:28:03 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5158-4187
https://orcid.org/0000-0002-4315-4400
https://orcid.org/0000-0002-9851-5234

4918 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 8, AUGUST 2020

of storage used for a k-PIR protocol. The goal in the design
of such a PIR scheme is to find the smallest n, given s and k.
This problem was considered in several papers, e.g. [1], [18],
[19], [24], [28], [36], [42].

In all the PIR protocols known in the literature, the user
wants to retrieve one out of the s information bits of the
database. As will be described in the sequel, PIR codes and
their generalizations are similar to other concepts in coding
theory. For example, the requirements are very similar to the
ones in codes with availability [30], which are important in
applications of distributed storage codes. Recently, the study
of PIR was further extended to the so-called private function
retrieval or private computation [25], [29], [35], which are
privacy algorithms for distributed computing schemes. In such
schemes, a user (a party involved in a distributed computing
task) requests a linear combination of the information symbols
in order to perform its computing task. Therefore, it is quite
natural to generalize the concept of PIR code to the setting
when it is required to retrieve a linear combination of the s
bits of information symbols. Such a scheme will be called
a k-functional PIR code (this is some abuse of definition
since for the private information retrieval application such a
retrieval of linear combinations is not required). Given s and
k we would like to find the smallest n for which a functional
k-PIR exists. This is one of the two targets of the current
paper.

The definition of a k-PIR code appears to be a special case
of a k-batch code. The concept of a batch scheme was first
proposed by Ishai et al. [21], which was motivated by different
applications for load-balancing in storage and cryptographic
protocols. Originally, batch codes were defined in a very
general form, i.e., s information symbols are encoded into
n-tuples of strings where each string is called a bucket. Each
bucket contains a few linear combinations of the information
symbols. A single user wants to retrieve a batch of k distinct
data items (out of the s data items) by reading at most t
symbols from each bucket. The goal in the design of a batch
scheme is to find the smallest total length of all the buckets,
given s, k, t and n.

A stronger variant of batch codes [21] is intended for a
multi-user application instead of a single-user setting, known
as the multiset batch codes. In this variant we have k different
users each requesting a data item, where some of the requests
are allowed to be the same. Therefore all the k requests
constitute a multiset of data items (each being one out of the
s data items, replications allowed). Moreover, each bucket is
allowed to be accessed by at most one user. A special case
of a multiset batch code is when each bucket contains only
one symbol. This model is called a primitive multiset batch
code [21] (or a k-batch code in short) and it is a family of
batch codes that was most studied in the literature. In the
rest of this paper, we restrict our definition of batch codes
only to primitive multiset batch codes. Similarly as for a PIR
code, a batch code is represented by an s × n generator
matrix G. It is a k-batch scheme if there are k pairwise
disjoint subsets of [n], R1, R2, . . . , Rk, such that the k sums
from each subset of the columns in G constitute a multiset
of data items which some k users want to retrieve. Hence,

the requests in a k-PIR are special cases of the requests in a
k-batch when the multiset contains only one specific item k
times. Therefore a k-batch code can always work as a k-PIR
code but not vice versa. The goal in the design of a batch
scheme is to find the smallest n, given s and k. This problem
was considered in several papers, e.g. [1], [6], [21], [31], [37].

Similarly as our generalization of PIR into functional PIR,
by setting the requests to be a multiset of linear combina-
tions of the s bits of information symbols, a batch code is
generalized into a functional batch code. Given s and k we
would like to find the smallest n for which a functional k-
batch code exists. This is the second target of the current
paper.

A special case of batch codes, called switch codes, were
recently studied for network applications [6], [7], [38]–[40].
This family of codes was first proposed by Wang et al. [40] and
these codes were designed to increase the parallelism of data
writing and reading processes in network switches. A network
switch is required to write n incoming packets and read k
outgoing packets while using m memory banks, each able to
write and read one packet per time unit. Each set of n packets
written to the switch simultaneously is called a generation. The
objective is to store the packets in the banks such that every
request of k packets, which can be from previous generations,
can be handled by reading at most one packet from each bank.
Even though batch codes and switch codes were proved to be
equivalent [6], switch codes are commonly designed for the
special case of k = n, which balances the output and input
switching rates.

A related family of codes to functional batch codes is the
family of random I/O (RIO) codes. This family of codes was
recently introduced by Sharon and Alrod [34] and provides
a coding scheme to improve the random input/output per-
formance of flash memories. An (n, M, t) RIO code stores
t pages in n cells with t + 1 levels such that it is enough
to sense a single read threshold in order to read any of
the t pages. Sharon and Alrod showed in [34] that the
design of RIO codes is equivalent to the design of write-once
memory (WOM) codes [13], [20], [32], [43]. The latter family
of codes attracted substantial attention in recent years in order
to improve the lifetime of flash memories by allowing writing
multiple messages to the memory without the need for an erase
operation. However, while in WOM codes, the messages are
received one after the other and thus are not known in advance,
in RIO codes the information of all logical pages can be
known in advance when programming the cells. This variant of
RIO codes, called parallel RIO codes, was introduced in [44].
A recent construction of parallel RIO codes [45] used the coset
coding scheme [13] with Hamming codes in order to construct
parallel RIO codes. In fact, this construction is equivalent to
the requirements of functional batch codes, and thus every
functional batch code can be used as a parallel RIO code
as well. The other direction does not necessarily hold since
parallel RIO codes do not have to be linear, as opposed
to functional batch codes. The codes from [45] gave two
constructions of functional batch codes (which are parallel
RIO codes) with the following parameters: (s = 3, k = 4,
n = 7) and (s = 4, k = 8, n = 15).

Authorized licensed use limited to: Eitan Yaakobi. Downloaded on July 21,2020 at 08:28:03 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: BOUNDS ON THE LENGTH OF FUNCTIONAL PIR AND BATCH CODES 4919

B. General Description of the Problem

Assume there are n servers, each one is storing a linear
combination of s linearly independent items. Each of these
s items will be called an information symbol. Each linear
combination which consists of at least one of these information
symbols will be called a coded symbol. There are k users who
want to retrieve k linear combinations of items from these
servers. Each such linear combination which a user wants
to retrieve will be called a request. Each user has exactly
one such request and he should approach a set of servers to
obtain his request. The set of servers which are approached
by two different users must be disjoint. We would like to
know the minimum number of servers which is required to
satisfy any k requests of the k users. This scheme will be
called a functional k-batch code (functional k-batch for short,
and similarly done for the related concepts). If each request
contains exactly one information symbol, then the scheme will
be called a k-batch code. If the k requests are the same (linear
combination) then the scheme will be called a functional k-
PIR code and furthermore if these k requests contain the same
information symbol, then the scheme will be called a k-PIR
code. The formal definitions of these four types of codes are as
follows.

Definition 1: A functional k-batch code of length n and
dimension s consists of n servers and s information sym-
bols {x1, x2, . . . , xs}. Each server stores a nontrivial lin-
ear combination of the information symbols (which are the
coded symbols), i.e. the j-th server stores a linear com-
bination yi, 1 ≤ i ≤ n. For any request of k linear
combinations v1,v2, . . . ,vk (not necessarily distinct) of the
information symbols, there are k pairwise disjoint subsets
R1, R2, . . . , Rk of [n] such that the sum of the linear com-
binations in the related servers of Rj , 1 ≤ j ≤ k, is vj ,
i.e.

∑
i∈Rj

yi = vj . Each such vj will be called a requested
symbol and each such subset Rj will be called a recovery
set.

A functional k-batch code can be also represented by an
s × n matrix G in which the j-th column has ones in
positions i1, i2, . . . , i� if and only if the j-th server stores the
linear combination xi1 + xi2 + · · · + xi�

. Using this matrix
representation, a functional k-batch code is an s × n matrix
G, such that for any k column vectors v1,v2, . . . ,vk (not
necessarily distinct), there are k pairwise disjoint subsets of
columns in G such that the column vectors in each subset Rj

sums up to the vector vj .
Definition 2: A k-batch code is defined similarly to a

functional k-batch code, where each one of the requests
v1,v2, . . . ,vk contains exactly one information symbol.

Definition 3: A functional k-PIR code is defined similarly
to a functional k-batch code, where all the vi’s equal to
one linear combination v. A k-PIR code is defined similarly
to a functional k-PIR code, where the linear combination v
contains exactly one information symbol.

This definition for k-PIR coincides with the definition for
k-PIR given in [18], [19] for a single user. Let FB(s, k)
(B(s, k), FP (s, k), P (s, k), respectively) be the minimum
number of servers required for s items and k requests

for functional k-batch (k-batch, functional k-PIR, k-PIR,
respectively).

By these definitions, a (functional) batch code is also a
(functional) PIR code (where all the requests are equal) and
a functional batch (functional PIR, respectively) code is also
a batch (PIR, respectively) code, but not vice versa. In other
words, a user which has a request for a PIR code can obtain his
request from a related batch code, i.e., the set of batch codes is
a subset of the PIR codes. The reason is that the user can ask,
from a batch code, a request with multiple elements, where all
the elements in the request are identical. On the other hand,
there are PIR codes which cannot be used as batch codes since
they are not designed to answer requests which contain differ-
ent elements. Thus, we have the following relationships among
these four families of codes, where C1 −→ C2 implies that the
code C1 can be used functionally as the code C2. In the follow-
ing Venn diagram P denote the set of k-PIR codes, B denote
the set of k-batch codes, FP denote the set of functional k-PIR
codes, and FB denote the set of functional k-batch codes.

C. Basic Results

Our goal in this paper is to obtain lower and upper bounds
on FB(s, k) and FP (s, k), since relatively good bounds on
B(s, k) and P (s, k) are known from the literature. Some of
these bounds on B(s, k) and P (s, k) were derived in [1],
[6], [18], [23], [28], [31], [37], [42] and are summarized as
follows.

Lemma 4:

1) For each s ≥ 1, P (s, 2s−1) = 2s − 1 [19].
2) For each s ≥ 1, B(s, 2s−1) = 2s − 1 [40].
3) When k is a fixed integer, P (s, k) = s + Θ(

√
s) [18],

[28], [42].
4) B(s, k) = s + Θ(

√
s) for k = 3, 4, 5 [1], [37].

5) B(s, k) = s + O(
√

s log s) for k ≥ 6 [37].
6) B(s, s1/3) ≤ 2s [31].
7) B(s, sε) ≤ s + s7/8 for 7/32 ≤ ε ≤ 1/4 [31].
8) B(s, sε) ≤ s + s4ε for 1/5 < ε ≤ 7/32 [31].
9) B(s, s) ≤ 2s1.5 [6].

10) P (s,
√

s) = s + O(s(log 3/2)) [23].
11) P (s, sε) = s + O(s0.5+ε), 0 < � < 1/2 [23].
12) B(s, k = Θ(sε)) = s + o(s), 0 < � < 1 [1].
13) P (s, k = Θ(sε)) = s + o(s), 0 < � < 1 [1].
14) B(s, k = o(n1/3/ logn)) = s + O(k3/2

√
n log n) [26],

[27].
15) For k < 1

�2 n1/(2�+1), � is a positive integer, B(s, k) =
s + O(kn

�+1
2�+1) [26], [27].

For a binary vector v, let supp(v) denote the support of v,
i.e., the set of nonzero entries of v. Some simple bounds
on FB(s, k) and on FP (s, k) are derived in the following
theorem.

Theorem 5: If s and k are positive integers, then
1) For k > 1, FB(s, k) > FB(s, k − 1).
2) For k > 1, FP (s, k) > FP (s, k − 1).
3) For s ≥ 1, FP (s, 1) = FB(s, 1) = s.
4) For s ≥ 1, FP (s, 2) = s + 1.
5) For s ≥ 1 and k ≥ 1, FP (s, 2k) = FP (s, 2k − 1) + 1.
6) For s ≥ 1 and k ≥ 1, FP (s, k) ≤ FB(s, k).

Authorized licensed use limited to: Eitan Yaakobi. Downloaded on July 21,2020 at 08:28:03 UTC from IEEE Xplore. Restrictions apply.

4920 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 8, AUGUST 2020

Proof:

1) If any server is removed from a k-batch code then the
remaining servers form a (k − 1)-batch code and hence
FB(s, k) > FB(s, k − 1) for k > 1.

2) If any server is removed from a k-PIR code then the
remaining servers form a (k − 1)-PIR code and hence
FP (s, k) > FP (s, k − 1) for k > 1.

3) If FP (s, 1) < s or FB(s, 1) < s then the rank of the
information stored by the symbols is less than s and
hence there is a linear combination not in their spanned
information that cannot be recovered, a contradiction.
Hence, FP (s, 1) ≥ s and FB(s, 1) ≥ s. An 1-PIR
code (1-batch code) of length s is constructed by storing
the information symbol xj , 1 ≤ j ≤ s, in the j-th
server. Therefore, FP (s, 1) ≤ s and FB(s, 1) ≤ s and
the claim follows.

4) Since FP (s, k) > FP (s, k − 1) for k > 1, it follows
that FP (s, 2) ≥ s+1. Consider the code of length s+1,
where the j-th server stores the information symbol xj ,
1 ≤ j ≤ s and the (s + 1)-th server stores a parity
symbol σ =

∑
xj . For any requested symbol v, let

supp(v) be its support set. The requested symbol v can
be recovered from the servers indexed by its support set
and simultaneously by the remaining servers, since the
sum of the symbols from all servers is zero, i.e., v =∑

j∈supp(v) xj =
∑

j /∈supp(v) xj + σ.
5) From the previous parts of the theorem we have

FP (s, 2k − 1) ≤ FP (s, 2k) − 1. On the other hand,
suppose we have a functional (2k − 1)-PIR code with
FP (s, 2k − 1) servers. Add a server storing a global
parity symbol, i.e., the sum of the symbols in the other
servers. Any requested symbol can be recovered (2k−1)
times in the same way as in the functional (2k−1)-PIR
code. It can be recovered one additional time by using
all the remaining servers, since the global parity implies
that the sum of the symbols from all servers is zero.
This implies that FP (s, 2k) ≤ FP (s, 2k − 1) + 1 and
thus, FP (s, 2k) = FP (s, 2k − 1) + 1.

6) Follows from the observation that a functional k-batch
code can serve as a functional k-PIR code.

Another basic result concerning PIR and batch codes with s
information symbols and n servers is related to their presenta-
tion via a binary s × n matrix G whose columns represent

the information in the servers. In other words, the entries
on the i-th column of G have ones which relate to the
information symbols used in the coded symbol stored in the
i-th server. A code in which each information symbol is stored
in a server will be called systematic. An intriguing question is
whether for all PIR codes and/or batch codes there are related
systematic codes with the same parameters? We conjecture that
this is indeed the case, but there is no proof for this property
for k-PIR and k-batch and it is left as an open problem. We can
solve this question in the case of functional PIR and functional
batch.

Lemma 6: If there exists a functional k-PIR (batch) code
C of length n and dimension s, then there exists a systematic
functional k-PIR (batch) code of length n and dimension s.

Proof: Assume first that C is a functional k-PIR code
that is represented by an s × n matrix G. If rank(G) < s,
then there exists a nonzero vector v not in the column space
of G which cannot be recovered, a contradiction. Therefore,
rank(G) = s. Assume w.l.o.g. that G = [A B], where
A is an s × s matrix, B is an s × (n − s) matrix, and
rank(A) = s, i.e., A is an invertible matrix. We claim
that G′ = [A−1A A−1B] is also a matrix representing a
functional k-PIR code C′. For each request v (for the code C′),
consider how Av is recovered k times using C. For any set of
columns in G summing up to Av, we use the columns in G′

with the same indices. These columns sum to A−1Av = v.
Therefore, a systematic functional k-PIR code of length n and
dimension s is obtained.

A similar proof works if C is a functional k-batch code.
Some more simple bounds on FP (s, k) are given in the

following theorem.
Theorem 7: If s, t, s1, s2, k1, k2 are positive integers, then

(1) FP (s, 2s−1) = 2s − 1.
(2) FP (s, k1 + k2) ≤ FP (s, k1) + FP (s, k2).
(3) FP (s1 + s2, k) ≤ FP (s1, k) + FP (s2, k).
(4) FP (rt, 2r) ≤ 2t(2r − 1).

Proof:

(1) By Lemma 4(1), we have that FP (s, 2s−1) ≥
P (s, 2s−1) = 2s − 1, so we only need to show that
FP (s, 2s−1) ≤ 2s − 1. Indeed, a functional 2s−1-PIR
code is obtained from an s × (2s − 1) matrix whose
columns are all the columns of length s. Each request v
can be recovered 2s−1 times, by 2s−1−1 pairs (u,u+v)
and by v itself.

Authorized licensed use limited to: Eitan Yaakobi. Downloaded on July 21,2020 at 08:28:03 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: BOUNDS ON THE LENGTH OF FUNCTIONAL PIR AND BATCH CODES 4921

(2) This result follows immediately by concatenating the
matrices which represent the functional k1-PIR code and
the functional k2-PIR code with s information symbols.

(3) Assume A and B are the matrices which represent
the functional k-PIR codes which attain FP (s1, k) and

FP (s2, k), respectively. The matrix

[
A 0
0 B

]
repre-

sents a functional k-PIR code with s1 + s2 information
symbols.

(4) By (1) and (2) we have that FP (r, 2r) ≤ 2(2r − 1) and
applying it t times we obtain FP (rt, 2r) ≤ 2t(2r − 1).

Our first target in this paper is to improve on Theorem 7(4).

D. Our Contribution and Outline

In the rest of the paper new lower and upper bounds on
FB(s, k) and FP (s, k) will be presented. In Section II a
construction of functional k-PIR codes with k being a power
of 2 is presented. Proper puncturing of the code obtained by
the construction yields functional k-PIR codes for arbitrary k.
In Section III we provide several lower bounds on FP (s, k).
First, in Section III-A a general asymptotic lower bound using
a counting argument is proved. This argument is applied also
on specific values of s and k to get nontrivial lower bounds
on FP (s, k). An improved lower bound for k = 3 and k = 4
is presented in Section III-B. This lower bound is in fact
tight. A table on the asymptotic and specific lower and upper
bounds for FP (s, k) is also given. A random construction of
functional batch codes is given in Section IV. Bounds on the
length of functional batch codes are given in this section too.
In Section V, we study the performance of simplex codes when
used as functional batch codes. Conclusions and problems for
future research are outlined in Section VI.

II. A CONSTRUCTION OF FUNCTIONAL PIR CODES

In this section an explicit construction of functional k-
PIR codes when k is a power of 2, is presented. The code
which has rt information symbols will be represented by
two (t + 1) × 2r arrays. One array will be defined in the
construction and the second array will be defined in the proof
for the correctness of the construction. In the first array, each
entry, except for the entries of the last column, represents
the content of different servers. The last column of the array
contains zeroes. In the second array, each column represents a
recovery set. The second array is obtained from the first array
by a permutation defined via a translation induced from the
requested symbol. By puncturing p times this code for which
k = 2r, a functional k-PIR codes for k = 2r − 2p will be
obtained.

Construction 1: Let {xi
j : 1 ≤ i ≤ t, 1 ≤ j ≤ r} be the

set of s = rt information symbols. Let T be a (t + 1) × 2r

array whose last column consists of zeroes. The columns of
T are indexed by the elements of the power set 2[r]. The i-th
row, 1 ≤ i ≤ t, contains the 2r linear combinations of the
symbols {xi

j : 1 ≤ j ≤ r}. In particular, the entry on the
column indexed by A ∈ 2[r] contains the linear combination
xi

A =
∑

j∈A xi
j (note that xi

∅
= 0). Finally, the (t+1)-th row

is a parity row, where the entry in the column indexed by A is
XA =

∑t
i=1 xi

A =
∑t

i=1

∑
j∈A xi

j . This entry will be called
the leader of the column. Note that only the entries of the
column indexed by ∅ do not correspond to information stored
in a server. The parity of this column which is zero is stored
in the (t + 1)-th row and it is also called a leader. Each other
symbol in the array T is stored in a different server. The array
T contains all the n = (2r − 1)(t + 1) symbols and hence it
will be called the stored symbols array.

By Theorem 7, FP (rt, 2r) ≤ 2t(2r−1). In the next theorem
this upper bound is improved.

Theorem 8: The code of Construction 1 is a functional 2r-
PIR code. Therefore, FP (rt, 2r) ≤ (2r − 1)(t + 1).

Proof: Let v be the requested symbol, i.e., v is a linear
combination

v = v1 + v2 + · · · + vt ,

where each vi is a linear combination of the information
symbols {xi

j : 1 ≤ j ≤ r}, 1 ≤ i ≤ t. We also define
vt+1 = 0.

Given the (t+1)×2r stored symbols array T , we construct
a new (t + 1) × 2r array Rv as follows. The rows and the
columns of Rv are indexed exactly in the same way as the
rows and columns of T are indexed. To the symbol in T in
the entry on the i-th row, 1 ≤ i ≤ t + 1, and the column
indexed by any subset A of 2[r], we add vi to obtain the
corresponding symbol in Rv in the same entry. The array Rv

will be called the recovery array for v since each column
contains the content of the servers which form one of the
recovery sets. Note, that the i-th row of Rv , 1 ≤ i ≤ t + 1,
is a permutation of the i-th row of T and hence the symbols
contained in Rv are exactly the same symbols contained in T ,
which implies that the information of each server is contained
in exactly one entry of Rv , but usually not in the same entry
as in T . The exceptions are the (t + 1)-th row and each row
i for which vi = 0. It implies that the array Rv represents
the content of the servers, but in different entries from those
of T . We claim now that in each column of Rv contain the
content of a set of servers which form a recovery set.

Hence, to complete the proof it is sufficient to show that the
sum of the symbols in each column of Rv is v. For a subset
A of [r] let TA be the column of T indexed by A and let Rv

A

be the column of Rv indexed by A. The sum of the symbols
in Rv

A is computed from the symbols of TA and the request
v as follows

t∑
i=1

(xi
A + vi) + XA =

t∑
i=1

xi
A + XA +

t∑
i=1

vi =
t∑

i=1

vi = v.

Therefore, each column of Rv can serve as a recovery set
for the requested symbol v. Thus, the proof of the theorem is
completed.

Example 1: Let r = 4, t = 3, s = rt = 12, and k =
2r = 16. All the information symbols and the coded symbols
are represented in the stored symbols array in Table I, where
xi

j1 j2...j�
� xi

j1
+ xi

j2
+ · · · + xi

j�
and similarly Xj1 j2...j�

�∑t
i=1 xi

j1 j2...j�
=

∑t
i=1(x

i
j1 + xi

j2 + · · · + xi
j�

).
Now suppose that the requested symbol is v = x1

1 +
x2

1 + x2
2 + x3

2 + x3
3 + x3

4, i.e. v1 = x1
1, v2 = x2

1 + x2
2,

Authorized licensed use limited to: Eitan Yaakobi. Downloaded on July 21,2020 at 08:28:03 UTC from IEEE Xplore. Restrictions apply.

4922 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 8, AUGUST 2020

TABLE I

TABLE II

v3 = x3
2 + x3

3 + x3
4. For 1 ≤ i ≤ 3, by adding vi to each

entry in the i-th row we obtain the recovery array as shown
in Table II.

It is straightforward to verify that each column of Rv is a
recovery set for the requested symbol v. For example, in the
third column we have (x1

1 + x1
3) + (x2

1 + x2
2 + x2

3) + (x3
2 +

x3
4) + (x1

3 + x2
3 + x3

3) = x1
1 + x2

1 + x2
2 + x3

2 + x3
3 + x3

4 = v.
The next step is to consider how to modify Construc-

tion 1 for arbitrary k. Since by Theorem 5(5) FP (s, 2�) =
FP (s, 2� − 1) + 1 we can consider only even values of k.
The main idea is simply to delete some entries of the array
T , i.e. removing some servers and hence we can say that the
k-PIR code for k = 2r is being punctured. This simple idea
is less trivial to explain and even less trivial to prove that the
remaining servers can form the required number of recovery
sets. Hence, we start with the simplest case which is k = 2r−2
to illustrate the idea.

Construction 2: Let T be the (t + 1) × 2r stored symbols
array constructed in Construction 1. Choose three different
subsets A, B, and C of [r] such that A = (B \ C) ∪ (C \
B). Delete the symbols in the first t rows of column TA and
delete the leader symbols XB and XC in columns TB and
TC , respectively. The deletion is done by marking the deleted
symbols by a red color. Any deleted symbol will be also called
a red symbol. Each deleted symbol is related to a server which
is being removed, i.e. these t+2 red symbols are not associated
with any server. This array obtained from T will be denoted
by T̃ and also called the stored symbols array. The servers
store the content of the entries in T̃ which are not zeroes and
do not contain red symbols. Thus, the length of the code is
n = (t + 1)(2r − 1) − (t + 2) = (2r − 2)t + 2r − 3.

Theorem 9: The code of Construction 2 is a functional
(2r − 2)-PIR code. Therefore, FP (rt, 2r − 2) ≤ (2r − 2)t +
2r − 3.

Proof: Let v be the requested symbol, i.e., v is a linear
combination

v = v1 + v2 + · · · + vt ,

where each vi is a linear combination of the information
symbols {xi

j : 1 ≤ j ≤ r}, 1 ≤ i ≤ t. We also define
vt+1 = 0.

Given the (t+1)×2r stored symbols array T̃ , we construct
a new (t + 1)× 2r array R̃v from T̃ exactly as how Rv was

constructed from T in the proof of Theorem 8 (adding vi to
all the 2r entries of the i-th row, 1 ≤ i ≤ t + 1). The array
R̃v will be called the recovery array for v since each column
without a deleted leader will be used to define a recovery set.
In R̃v each symbol in a column of a deleted leader will be
called a free symbol since it is free to join any recovery set.
Each symbol which was a red symbol in T̃ will maintain a red
symbol in R̃v (usually in a different entry, unless it is either
a leader or in the i-th row and vi = 0).

Each column with a (non-deleted) leader corresponds to a
recovery set as follows.

• If the column contains no red symbol then the sum of
the entries in the column is v exactly as was proved in
Theorem 8.

• If the column contains a red symbol in the i-th row then
we add the symbols of the i-th row in columns TB and
TC to the recovery set. The red symbol in the i-th row
is xi

A. The free symbols in the i-th row of columns TB

and TC are xi
B + vi and xi

C + vi, respectively. xi
A =

xi
B +xi

C = xi
B +vi +xi

C +vi and hence the red symbol
in the i-th row can be replaced by the related free symbols
in columns TB and TC . The rest of the proof is as in the
proof of Theorem 8.

Therefore, each column of Rv with a (non-deleted) leader
can serve as a recovery set for the requested symbol v, with
replaced symbols for possible red symbols in the recovery set.
Thus, the proof of the theorem is completed.

Example 2: Continuing Example 1 above, choose three
subsets A = {1234}, B = {12}, and C = {34}. Delete
the symbols in the first t rows of the column TA = T1234

and delete the leader symbols XB = X12 and XC = X34

in columns TB = T12 and TC = T34, respectively. The
deletion is done by marking the deleted symbols in a red
color. The result is the stored symbols array as shown in
Table III.

Suppose that the requested symbol is v = x1
1 + x2

1 +
x2

2 + x3
2 + x3

3 + x3
4, i.e., v1 = x1

1, v2 = x2
1 + x2

2, v3 =
x3

2 + x3
3 + x3

4. By adding vi, 1 ≤ i ≤ 3, to each entry
in the i-th row, the recovery array as shown in Table IV
is obtained. Note that in this array the deleted symbols are
still marked in red, i.e., the red color is with the symbol
itself rather than the entry. Moreover the entries in columns

Authorized licensed use limited to: Eitan Yaakobi. Downloaded on July 21,2020 at 08:28:03 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: BOUNDS ON THE LENGTH OF FUNCTIONAL PIR AND BATCH CODES 4923

TABLE III

TABLE IV

TABLE V

TABLE VI

TB = T12 and TC = T34 are marked with a yellow color.
Since XB = X12 and XC = X34 are deleted, we do
not consider using the related columns TB = T12 and
TC = T34 as recovery sets. Therefore, the symbols on these
yellow entries are free symbols and can be used when we need
to replace certain deleted symbols.

As for the deleted (red) symbols located on recovery sets,
the free symbols (symbols in entries marked with yellow)
are used to replace the deleted (red) symbols. For x1

1234 and
x3

1234, the two free symbols in the same row can be used
to replace the deleted (red) symbol, i.e., x1

1234 = x1
2 + x1

134

and x3
1234 = x3

134 + x3
2. On the second row, the deleted (red)

symbol x2
1234 lies in an entry marked with yellow and does

not have to be replaced since this column is not used as a
recovery set. Hence, the recovery array is adjusted into the
form as shown in Table V. It is then straightforward to verify
that the symbols on each column with an undeleted leader sum
up to the requested symbol v. Therefore, a functional 14-PIR
code is obtained.

To sum up, the construction of the functional
(2r − 2)-PIR code is a ‘1-puncturing’ of the functional
(2r)-PIR code, where the punctured symbols are determined
by a choice of the tuple of subsets {A, B, C}. To generalize
this idea to a ‘p-puncturing’, it seems natural to just take more
tuples of subsets {Aj , Bj , Cj} and perform similar puncturing

methods. However, this generalization is non-trivial since one
may meet the following scenario.

Say we continue Example 2 and intend to do a ‘2-
puncturing’ to obtain a functional 12-PIR code. Choose
another triple of subsets

{
{13}, {4}, {134}

}
. Delete the sym-

bols in the first t rows of the column T134 and delete the leader
symbols X13 and X4 in columns T13 and T4, respectively.
In the recovering array for the same requested symbol v =
x1

1 + x2
1 + x2

2 + x3
2 + x3

3 + x3
4, the deleted symbols are

marked in red. The entries in the columns indexed by {12},
{34}, {13}, {4} are marked with yellow, indicating that the
symbols on these yellow entries are free symbols and can be
used to replace certain deleted symbols. The recovery array is
presented as in Table VI.

Now, on each row there are two deleted (red) symbols
that should be replaced by combinations of free symbols in
yellow entries. The problem is that we cannot simply replace
x1

1234 with x1
2 + x1

134 as before in Example 2 since now
x1

134 is also a deleted symbol. The solution is to replace
x1

1234 by x1
2 + x1

14 + x1
3 and x1

134 does not need repairing
since it lies on a yellow entry. This scenario demonstrates
that generalizing ‘1-puncturing’ into ‘p-puncturing’ is non-
trivial in the sense that we need an explicit algorithm to
describe how to use the free symbols to replace the deleted
symbols.

Authorized licensed use limited to: Eitan Yaakobi. Downloaded on July 21,2020 at 08:28:03 UTC from IEEE Xplore. Restrictions apply.

4924 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 8, AUGUST 2020

TABLE VII

Our generalization of Construction 2 and the proof of its
correctness in Theorem 9, i.e. generalizing the 1-puncturing
to p-puncturing, will consist of four steps. In the first step, p
pairwise disjoint triples from 2[r] will be defined (two elements
of a triple for deleting two leader symbols and the third one
for deleting the symbols of the column excluding the leader).
In the second step the related recovery array is constructed
similarly to the definition in Construction 2. In the third step
a replacing operation (in several rounds) to replace the deleted
(red) symbols by free symbols will be described. In the last
step we will prove that these actual replacements result in the
required recovery sets.

Following these ideas, Construction 2 for k-PIR, k = 2r − 2
can be generalized to arbitrary k = 2r − 2p, where 1 ≤
p < 2r−2. For the first step of the construction (defining the
pairwise disjoint triples) we need the following definition and
results on partial spreads.

Definition 10: A partial 2-spread of F
r
2 is a collection of

2-dimensional subspaces V1, . . . , VM of F
r
2 such that Vi∩Vj =

{0} for all i 	= j.
It is shown in [16] that a partial 2-spread with M = 2r−2

always exists. In each 2-dimensional subspace Vi we have
three nonzero vectors. Let Ai, Bi and Ci be their supports
which are subsets of [r]. By the definition of a partial 2-spread,
Ai = (Bi \Ci)∪ (Ci \Bi) and the triples {{Ai, Bi, Ci} : 1 ≤
i ≤ M} are pairwise disjoint.

Construction 3: Let T be the (t + 1) × 2r stored symbols
array constructed in Constructions 1 and 2. Since p < 2r−2

there exists a partial 2-spread F
r
2 which contains p pairwise

disjoint triples {{Ai, Bi, Ci} : 1 ≤ i ≤ p} such that Ai =
(Bi \ Ci) ∪ (Ci \ Bi). For each triple {Ai, Bi, Ci}, delete
the symbols in the first t rows of column TAi and the leader
symbols XBi and XCi in columns TBi and TCi , respectively.
The deletion is done by marking the deleted symbols by a red
color. Any deleted symbol will be called a red symbol, These
p(t + 2) red symbols are not associated with any server. This
array obtained from T will be denoted by T̃ . Thus, the length
of the code is n = (t+1)(2r −1)− tp−2p = (2r −p−1)t+
2r − 2p− 1.

Theorem 11: The code of Construction 3 is a functional
(2r − 2p)-PIR code. Therefore, FP (rt, 2r − 2p) ≤ (2r − p−
1)t + 2r − 2p − 1, for 0 ≤ p < 2r−2.

Proof: Let v be the requested symbol, i.e., v is a linear
combination

v = v1 + · · · + vt ,

where each vi is a linear combination of the information
symbols {xi

j : 1 ≤ j ≤ r}. We also define vt+1 = 0.

Given the (t+1)×2r stored symbols array T̃ , we construct
a new (t + 1) × 2r array R̃v exactly as in the proofs of
Theorems 8 and 9 (adding vi to all the 2r entries of the i-th
row, 1 ≤ i ≤ t + 1). Each symbol which was a red symbol
in T̃ will be also a red symbol in R̃v (usually in a different
entry, unless it is either a leader or in the i-th row and vi = 0).

The 2r − 2p recovery sets relate to the 2r − 2p columns in
which the leaders were not deleted. By the proof of Theorem 8,
the sum of the symbols (including the red ones) in each such
column is v. Our goal is that each column whose leader was
not deleted will be a recovery set. Hence, we have to apply
a procedure to replace the red symbols in these columns. For
each row i, 1 ≤ i ≤ t, we apply the following procedure.
In each step of the procedure the number of red symbols in
the row will be the same as the number of pairs of columns
with deleted leaders which have some symbols (red or free).
Before the first step the number of red symbols in the row is
p and the number of such pairs is also p.

Let {Bj, Cj} be a pair from the disjoint triples for which
the two related columns do not contain a red symbol. If there
is no such pair then all the red symbols are in the columns with
deleted leaders and the procedure for the row is completed.
The sum of the symbols in column Bj (of the i-th row) is
xi

Bj
+vi and in column Cj is xi

Bj
+vi. xi

Bj
+vi+xi

Bj
+vi =

xi
Aj

and xi
Aj

is a red symbol in some column D (neither
Bj nor Cj (since the related two entries do not have a red
symbol). We replace the red symbol xi

Aj
of column D with

the two symbols xi
Bj

+vi and xi
Cj

+vi (which are not marked
in red). Entries Bj and Cj in the i-th row will become empty.
The number of red symbols in the i-th row was reduced by
one and also the number of pairs of columns with deleted
leader which have some symbols was reduced by one. Hence,
these numbers remain equal and this property is satisfied at
the end of the step for this row. Note, that the red symbol xi

Aj

was replaced by two free (non-red) symbols whose sum equals
to xi

Aj
.

After this procedure was applied on all the first t rows,
all the recovery sets will not contain any red symbols. The
sum of symbols of any recovery set is not changed during the
procedure. The non-red symbols in new constructed array R̂v

are the same as the non-red symbols in R̃v.
Therefore, each column of R̂v can serve as a recovery set

for the requested symbol v. Thus, the proof of the theorem is
completed.

Example 3: Continuing Example 2, choose three disjoint
triples of subsets {{12}, {34}, {1234}}, {{13}, {4}, {134}}
and {{2}, {3}, {23}}. Delete the symbols in the first t rows
of the columns T1234, T134 and T23. Delete the leader symbols
X12, X34, X13, X4, X2 and X3. The deletion is done by

Authorized licensed use limited to: Eitan Yaakobi. Downloaded on July 21,2020 at 08:28:03 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: BOUNDS ON THE LENGTH OF FUNCTIONAL PIR AND BATCH CODES 4925

TABLE VIII

TABLE IX

TABLE X

marking the deleted symbols in a red color. The result is the
stored symbols array as shown in VII.

Suppose that the requested symbol is v = x1
1 + x2

1 + x2
2 +

x3
2 +x3

3 +x3
4, i.e., v1 = x1

1, v2 = x2
1 +x2

2, v3 = x3
2 +x3

3 +x3
4.

By adding vi, 1 ≤ i ≤ 3, to each entry in the i-th row the
recovery array is obtained as shown in Table VIII. Note that in
this array the deleted symbols are still marked in red. Moreover
the entries in columns T12, T34, T13, T4, T2 and T3 are marked
with a yellow color. Since X12, X34, X13, X4, X2 and X3

are deleted, we do not consider using the related columns as
recovery sets. Therefore, the symbols on yellow entries are
free symbols and can be used when we need to replace certain
deleted symbols.

Independently, on each row red symbols are replaced step
by step, e.g., the third row is transformed step by step as shown
in Table IX :

After the appropriate red symbols were replaced in all the
rows in a similar way, the final recovery array is as shown
in Table X.

It is straightforward to verify that the symbols on each
column with undeleted leader sum up to the requested
symbol v.

As mentioned in Theorem 5, by deleting any symbol in a
functional (2r − 2p)-PIR code we obtain a functional (2r −
2p − 1)-PIR code, therefore we have

Corollary 12: FP (rt, 2r − 2p− 1) ≤ (2r − 1− p)t + 2r −
2p − 2, for 0 ≤ p < 2r−2.

Remark 1: Note, that all the constructions above for func-
tional k-PIR codes with k ∈ [2r−1 + 1, 2r] are described for
rt information symbols. When the number of information
symbols is not a multiple of r, say rt + r′, 0 < r′ < r,
we may add r − r′ virtual information symbols and apply
the constructions above. All the virtual information symbols
are set to zero. Also some coded symbols, which are linear
combinations of only virtual information symbols are set to
zero.

For example, assume we want to construct a functional
2r-PIR code of dimension rt + r′. We add r − r′ virtual
information symbols and hence we construct a functional 2r-
PIR code of dimension r(t + 1) of length (2r − 1)(t + 2)
using Construction 1. The virtual information symbols are now
set to zero and thus some c symbols (linear combinations of
virtual information symbols) are set to zero. The number c is
2r−r′ − 1 when t ≥ 1 or 2r−r′+1 − 2 when t = 0 (since
some ‘leader’ symbols are also set to zero when t = 0).
Therefore for any 0 < r′ < r, FP (r′, 2r) ≤ 2(2r − 2r−r′

)
and FP (rt + r′, 2r) ≤ (2r − 1)(t + 1) + 2r − 2r−r′

when
t ≥ 1.

Similar idea holds when 2r−1 < k < 2r, but this should be
done carefully, since the c symbols set to zero are dependent on

Authorized licensed use limited to: Eitan Yaakobi. Downloaded on July 21,2020 at 08:28:03 UTC from IEEE Xplore. Restrictions apply.

4926 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 8, AUGUST 2020

TABLE XI

UPPER BOUNDS ON FP (s, k) ARISING FROM OUR
CONSTRUCTION IN SECTION II

the way that the puncturing from the functional 2r-PIR code to
the functional k-PIR code is done. Following this way, some
results with small parameters are summarized in Table XI.

III. LOWER BOUNDS ON THE LENGTH OF

FUNCTIONAL PIR CODES

This section is devoted to lower bounds on the length of
functional PIR codes. When the number of requests k is a fixed
constant,1 P (s, k) = s + o(s) (see Lemma 4) and hence the
research objective is to analyze the redundancy part o(s). How-
ever, for functional PIR codes this is not the case. By using
a counting argument it will be proved in this section that
FP (s, k) grows linearly in s, i.e., lims→∞ FP (s, k)/s ≥ c
for some constant c to be determined. Using another approach
in this section, a better lower bound on FP (s, 3) and FP (s, 4)
is derived. Codes for k = 4 in Construction 1 attain this bound
and hence the bound is exact.

A. A General Lower Bound by Counting

In our exposition which follows we will need some proper-
ties of the binomial coefficients. These properties are proved
in the following lemma.

Lemma 13: If n and r are two positive integers such that
n > 3r + 2, then

(1)
(

n
r+1

)
> 2

(
n
r

)
.

(2)
(

n
r+1

)
>

∑r
i=1

(
n
i

)
.

(3)
(

n
r+1

)
>

∑r−1
i=1 (r − i)

(
n
i

)
.

Proof:

(1) follows immediately by comparing
(

n
r+1

)
with 2

(
n
r

)
.

1more precisely k = o(s).

(2) follows by induction on r, where the basis is
(
n
2

)
>

(
n
1

)
,

and in the induction step (1) is used.
(3) follows by induction on r, where the basis for r = 2,

i.e.,
(
n
3

)
>

(
n
1

)
. For the induction hypothesis assume that

the claim is true for r − 1, i.e.

(
n

r

)
>

r−2∑
i=1

(r − 1 − i)
(

n

i

)
.

By (2) we have that

(
n

r + 1

)
>

r∑
i=1

(
n

i

)
,

and combining this with the induction hypothesis we have
that

�
n

r + 1

�
>

r�
i=1

�
n

i

�
>

r−2�
i=1

(r − 1 − i)

�
n

i

�
+

r−1�
i=1

�
n

i

�

=

r−2�
i=1

(r − i)

�
n

i

�
+

�
n

r − 1

�
=

r−1�
i=1

(r − i)

�
n

i

�
,

which proves the induction step.

For the next theorem we remind the reader that by Theo-
rem 5(5) we have FP (s, 2�) = FP (s, 2� − 1) + 1 and hence
can consider only even values of k. The even values will be
considered since they imply better bounds than the related odd
values.

Theorem 14: For a fixed even integer k ≥ 4,

lim
s→∞

FP (s, k)
s

≥ 1
H(1/k)

,

where H(·) is the binary entropy function defined by H(p) =
−p log p − (1 − p) log (1 − p).

Proof: Suppose there exists a functional k-PIR code of
dimension s and length n. For each request v, we have k
disjoint recovery sets of [n]. The sum of the sizes of all these
k(2s−1) recovery sets is at most n(2s−1). Hence, the average
size of a recovery set should be at most n

k .
Consider all the subsets of [n] of size at most
n

k � + 1.
If each such subset is used as a recovery set for some request,
then the average size of a recovery set is at least

∑�n
k �+1

i=1 i
(
n
i

)
∑�n

k �+1
i=1

(
n
i

) (1)

By applying Lemma 13(3) on
(

n
�n

k �+1

)
we have

(
n

n
k � + 1

)
>

�n
k �−1∑
i=1

(
⌈n

k

⌉
− i)

(
n

i

)
(2)

Authorized licensed use limited to: Eitan Yaakobi. Downloaded on July 21,2020 at 08:28:03 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: BOUNDS ON THE LENGTH OF FUNCTIONAL PIR AND BATCH CODES 4927

TABLE XII

LOWER AND UPPER BOUNDS ON lims→∞ F P (s,k)
s

By developing the numerator in (1) and plugging (2) in the
process we obtain

�n
k �+1∑
i=1

i

(
n

i

)
=

�n
k �∑

i=1

i

(
n

i

)
+

⌈n

k

⌉(
n

n
k � + 1

)
+

(
n

n
k � + 1

)

>

�n
k �∑

i=1

i

(
n

i

)
+

⌈n

k

⌉(
n

n
k � + 1

)
+

�n
k �−1∑
i=1

(
⌈n

k

⌉
− i)

(
n

i

)

=
⌈n

k

⌉ �n
k �+1∑
i=1

(
n

i

)
.

Now, we can evaluate the average in (1) as∑�n
k �+1

i=1 i
(
n
i

)
∑�n

k �+1
i=1

(
n
i

) >

⌈
n
k

⌉∑�n
k �+1

i=1

(
n
i

)
∑�n

k �+1
i=1

(
n
i

) =
⌈n

k

⌉
≥ n

k
,

which contradicts our proof that the average size of a recovery
set is at most n

k .
Therefore, not all the subsets of [n] of size at most
n

k �+1
are used as recovery sets, which implies that

∑�n
k �+1

i=1

(
n
i

)
>

k(2s − 1). The left hand side tends to 2nH(1/k) as n tends to
infinity. Hence, if n = cs, then

2csH(1/k) > k(2s − 1) ,

which implies that cH(1/k) > 1 and the claim of the theorem
follows.

Note, that the counting argument used in the proof of
Theorem 14 implies that the recovery sets used for all the
possible requests are of the smallest possible size. In practice,
it is difficult to assume that this would be the case. Improving
the lower bound by taking larger recovery sets into account is
a future task.

The first several lower bounds on lims→∞
FP (s,k)

s derived
from Theorem 14, together with the related upper bounds
implied by Construction 3, are summarized in Table XII.
The lower bound for k = 4 will be further improved in
Section III-B.

The technique used in the proof of Theorem 14 can
be applied slightly differently to obtain lower bounds on
FP (s, k) for specific parameters s and k.

Suppose we have a functional k-PIR code with dimension
s and length n. For each request v, we have k disjoint subsets
of [n], R1, . . . , Rk, where each one of them is a recovery set
for v. For each such request v we choose arbitrarily such k
recovery sets. Therefore, k(2s − 1) distinct recovery sets are
chosen. Let Ι(s) be the sum of the size of all these recovery

sets. Since the k recovery sets R1, . . . , Rk for any request v
are pairwise disjoint, it follows that

∑k
i=1 |Ri| ≤ n, which

implies that
Ι(s) ≤ n(2s − 1) . (3)

On the other hand, a lower bound of Ι(s) can be obtained
by choosing the recovery sets with smallest size as possible,
since the size of the recovery sets by such a choice will be a
lower bound on the actual size. There are k(2s − 1) distinct
recovery sets. Let d be the largest integer such that

d∑
i=1

(
n

i

)
≤ k(2s − 1) . (4)

The smallest lower bound Ι(s) will be obtained if all the∑d
i=1

(
n
i

)
subsets of size d or less will be included as

recovery sets. It implies that in the chosen k(2s − 1) recovery
sets, at least k(2s − 1) −

∑d
i=1

(
n
i

)
subsets of size d +

1 or greater than d+1, are included to obtain the lower bound.
Therefore,

d∑
i=1

i

(
n

i

)
+ (d + 1)

(
k(2s − 1) −

d∑
i=1

(
n

i

))
≤ Ι(s). (5)

The lower bound on FP (s, k) is obtained by comparing (3)
and (5), i.e., finding the minimum n for which

d∑
i=1

i

(
n

i

)
+ (d + 1)

(
k(2s − 1) −

d∑
i=1

(
n

i

))
≤ n(2s − 1).

Example 4: Assume that FP (6, 8) = 20, and apply (4) for
s = 6, k = 8 and n = 20, i.e.,(

20
1

)
+

(
20
2

)
= 210 < 8 · (26 − 1) = 504

and(
20
1

)
+

(
20
2

)
+

(
20
3

)
= 1350 > 8 · (26 − 1) = 504 .

Since in this code of length 20, a total of 8 · (26 − 1) = 504
recovery sets are required, it follows that there are at least
504−210 = 294 recovery sets of size at least three. Therefore
by (5), (

20
1

)
+ 2

(
20
2

)
+ 3 · 294 = 1282 ≤ Ι(6) ,

which is a contradiction to Ι(6) ≤ 20 ·(26−1) = 1260 by (3).
Thus, FP (6, 8) > 20 and since by Theorem 8, FP (6, 8) ≤
21, it follows that FP (6, 8) = 21.

Authorized licensed use limited to: Eitan Yaakobi. Downloaded on July 21,2020 at 08:28:03 UTC from IEEE Xplore. Restrictions apply.

4928 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 8, AUGUST 2020

TABLE XIII

NUMERICAL RESULTS ON FP (s, k)

Example 5: When k is even we have FP (2, k) ≤ 3k
2

(encode the two information symbols x1 and x2 into x1, x2,
and x1 + x2; each one of these three encoded symbol will
appear k

2 times in the code.)
Assume now that n = FP (2, k) ≤ 3k

2 − 1 and apply (5)
for s = 2, k and n = 3k

2 − 1. For each request, three recovery
sets are required for a total of 3k recovery sets. There are at
most n = 3k

2 − 1 recovery sets of size 1. Therefore, there are
at least 3k

2 + 1 recovery sets whose size at least two. Hence,
by (5),

(
3k

2
− 1) + 2 · (3k

2
+ 1) = 3 · 3k

2
+ 1 ≤ Ι(2) .

By (3), Ι(2) ≤ n · (22 − 1) = 3 · 3k
2 − 3, a contradiction.

Therefore, FP (2, k) > 3k
2 − 1 and thus FP (2, k) = 3k

2
when k is even.

Table XIII contains some specific bounds on FP (s, k) for
s ≤ 32 and 6 ≤ k ≤ 16, where k is even.

B. A Tight Bound of FP (s, 3) and FP (s, 4)
This subsection is devoted to analyzing FP (s, 3) and

FP (s, 4). Recall that by Lemma 6, a functional PIR code
can be always assumed to be systematic.

Let
{

t
b

}
be the Stirling number of the second kind, which

calculates the number of partitions of [t] into b nonempty
subsets. It is well known that{

t

b

}
=

1
b!

b∑
i=0

(−1)b−i

(
b

i

)
it.

Now, we derive the following lower bound on
FP (s, 3).

Theorem 15: For any given s ≥ 3 we have that

FP (s, 3) ≥
{

3
2s + 2 if s is even
3
2 (s + 1) if s is odd

.

Proof: Clearly, FP (s, 3) = s + t, where t ≥ 0. The
s× (s+ t) matrix G representing the functional 3-PIR code is

Authorized licensed use limited to: Eitan Yaakobi. Downloaded on July 21,2020 at 08:28:03 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: BOUNDS ON THE LENGTH OF FUNCTIONAL PIR AND BATCH CODES 4929

of the form G = [Is U], where Is is the s×s identity matrix.
The columns of U are denoted by {u1, . . . ,ut}.

A nonzero requested (column) vector v can be recovered
as v =

∑
i∈I1

ei +
∑

j∈U1
uj =

∑
i∈I2

ei +
∑

j∈U2
uj =∑

i∈I3
ei +

∑
j∈U3

uj , where I1, I2, I3 are three pairwise
disjoint subsets of [s] and U1, U2, U3 are three pairwise disjoint
subsets of [t]. The unordered triple {U1, U2, U3} will be called
a feasible triple corresponding to the requested vector v.
W.l.o.g. if we have U1 = U2 = ∅ then I1 and I2 have the
same indices for unit vectors which sum to v, contradicting
the disjointness of I1 and I2. Therefore, in a feasible triple at
most one of U1, U2, U3 is empty.

Next, it is claimed that no two requested vectors share a
common feasible triple.

To prove the claim let {U1, U2, U3} be a feasible triple and
let wj be the sum of the columns related to Uj , 1 ≤ j ≤ 3.
The requested vector v is recovered based on w1, w2 and w3

and some unit vectors. Note that each ei can be used only
once to recover v. Therefore, w1, w2 and w3 determine a
unique request vector v. This can be observed as follows by
considering each coordinate of v and the related coordinate in
w1, w2, and w3. Consider now the i-th coordinate, 1 ≤ i ≤ s.

Assume the triple obtained from the value of the triple
(w1,w2,w3) in the i-th coordinate is (0, 0, 1). If the i-th
coordinate of v is one then we must have ei in both I1 and I2,
contradicting the fact that ei can be used only once. Therefore,
the value of the i-th coordinate of v is zero.

Similarly, the value of the i-th coordinate of v is zero if
the value of the triple (w1,w2,w3) in the i-th coordinate is
(0, 1, 0), (1, 0, 0), or (0, 0, 0). The value of the i-th coordinate
of v is one if the value of the triple (w1,w2,w3) in the i-th
coordinate is (0, 1, 1), (1, 0, 1), (1, 1, 0), or (1, 1, 1).

Therefore, the requested vector v is uniquely determined by
U1, U2, and U3. Thus, no two requested vectors share a com-
mon feasible triple which completes the proof of the claim.

Let U4 � [t] \ (U1

⋃
U2

⋃
U3) and distinguish between the

following four cases in counting the number of feasible triples
{U1, U2, U3}:

1) If each one of U1, U2, U3, and U4 is nonempty, then
the number of feasible triples is the same as the number
of partitions of [t] into four nonempty subsets, where
one of them is chosen to be U4. The number of such
partitions, i.e. feasible triples, is 4

{
t
4

}
.

2) If each of U1, U2, and U3 is nonempty and U4 is empty,
then the number of feasible triples is the same as the
number of partitions of [t] into three nonempty subsets.
Hence, number of such feasible triples is

{
t
3

}
.

3) If exactly one of U1, U2, and U3 is empty and U4 is
nonempty, then the number of feasible triples is the same
as the number of partitions of [t] into three nonempty
subsets, where one of them is chosen to be U4. Hence,
the number of such feasible triple is 3

{
t
3

}
.

4) If exactly one of U1, U2, and U3 is empty and U4 is
empty, then the number of feasible triples is the same
as the number of partitions of [t] into two nonempty
subsets. Therefore, number of such feasible triples
is

{
t
2

}
.

Thus, the number of feasible triples is at most

4
{

t

4

}
+ 4

{
t

3

}
+

{
t

2

}
=

4t

6
− 2t−1 +

1
3
.

On the other hand, we proved that no two requested vectors
share a common feasible triple. Hence, there are at least 2s−1
feasible triples and this implies that

2s − 1 ≤ 4t

6
− 2t−1 +

1
3

.

Thus, t > s+log 6
2 .

The lower bound of Theorem 15 can be combined with the
bounds of Theorem 5 to obtain lower bounds on FP (s, k) for
k > 3. In particular we have.

Corollary 16: For any s ≥ 3 we have

FP (s, 4) ≥
{

3
2s + 3 if s is even
3
2 (s + 1) + 1 if s is odd

.

Considering Theorem 15, Theorem 8, Theorem 5, Corol-
lary 16 and Remark 1, we have that

Corollary 17: For any t ≥ 2, FP (2t, 3) = 3t + 2,
FP (2t, 4) = 3t + 3, 3t + 3 ≤ FP (2t + 1, 3) ≤ 3t + 4 and
3t + 4 ≤ FP (2t + 1, 4) ≤ 3t + 5.

IV. BOUNDS ON THE LENGTH OF

FUNCTIONAL BATCH CODES

In this section a random construction of functional batch
codes is presented. The random construction relies on a well-
known result of random constructions for linear codes which
attain the sphere-covering bound [4], [5].

Definition 18: For a binary code C of length n, the covering
radius is the smallest integer R such that for any v ∈ F

n
2 , there

exists u ∈ C such that d(v,u) ≤ R. The code C is a code
with covering radius R.

Proposition 19 [14]: If C is a binary linear code of length
n, and dimension k, with a parity check matrix H, then C has
covering radius R if and only if every column vector F

n−k
2 is

the sum of at most R columns of H.
Let V (n, R) be the size of the Hamming ball of radius R.

A code with covering radius R has at least 2n

V (n,R) codewords
and thus a linear code with covering radius R has dimension
k ≥ n − log V (n, R). This is the sphere covering bound for
linear codes. Blinovskii [4], [5] proved that almost all linear
codes attain the sphere covering bound (see also [10, Ch. 12,
p. 325] and the references therein).

Theorem 20: Let 0 ≤ ρ < 1/2, Ck,n be the ensemble of 2kn

linear codes generated by all possible binary k × n matrices,
and Rn = �ρn. There exists a sequence kn for which

kn/n ≤ 1 − H(ρ) + O(n−1 log n) ,

such that the fraction of codes Cn ∈ Ckn,n which have
covering radius Rn tends to 1, when n tends to infinity.

In other words, Theorem 20 implies that if a binary random
matrix H of size s×n is considered as a parity check matrix
of a linear code, then the covering radius R = ρn of the code
satisfies H(ρ) ∼ s

n with probability tending to 1, when n
tends to infinity, i.e., any column vector of length s is the sum
of at most R columns of H.

Authorized licensed use limited to: Eitan Yaakobi. Downloaded on July 21,2020 at 08:28:03 UTC from IEEE Xplore. Restrictions apply.

4930 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 8, AUGUST 2020

Cooper [15] proved the following result on the invertibility
of random binary matrices.

Theorem 21: Let G be a random binary matrix of size
s × s, where each entry is independently and identically
distributed with Pr[Gi,j = 1] = p(s). If min{p(s), 1−p(s)} ≥
(log s + d(s))/s for any d(s) → ∞, then Pr[G is invertible]
tends to a constant c ≈ 0.28879, when s tends
to infinity.

We are now in a position to present the random construction
of functional batch codes. The idea is illustrated first with an
example on functional 2-batch codes. For sufficiently large s,
randomly choose a binary matrix of size s×n to represent the
functional 2-batch code. Let u,v be two arbitrary requests.
By Theorem 20, with probability tending to 1, when s and
n tend to infinity, the request u can be recovered as a sum
of ρn columns, where H(ρ) ∼ s

n . The remaining matrix is
a random matrix of size s × (1 − ρ)n. If (1 − ρ)n > s,
then by Theorem 21, it has an s × s invertible sub-matrix
with probability c ≈ 0.28879. Using the columns from
this invertible sub-matrix, the request v can be recovered.
Therefore, under the constraints (1−ρ)n > s, H(ρ) ∼ s

n , there
exists a binary matrix of size s × n representing a functional
2-batch code when s and n are sufficiently large. To find the
asymptotic relation between n and s, note that the constraints
require s/n ∼ H(ρ) < 1 − ρ. The root of 1 − ρ = H(ρ) is
ρ = 0.227 and thus we can set n ∼ 1.2937s. The next theorem
generalizes this idea to arbitrary functional k-batch codes.

Theorem 22: If c1 = 1
2 and ck+1 is the root of the

polynomial H(z) = H(ck) − zH(ck), then

lim
s→∞

FB(s, k)
s

≤ 1
H(ck)

.

Proof: For a sufficiently large s, randomly choose an s×
n1 binary matrix G1 to represent the functional k-batch code.
With probability tending to 1 the first request can be recovered
as a sum of ρ1 n1 columns of G1, where H(ρ1) ∼ s

n1
. Let G2

be the matrix obtained by removing these ρ1 n1 columns from
G1. G2 is an s×n2 random matrix, where n2 = (1− ρ1)n1.
The second request can be recovered, with probability which
tends to 1, as a sum of ρ2 n2 columns on G2, where H(ρ2) ∼
s

n2
. This procedure continues and for the j-th request, 1 ≤ j ≤

k−1, we have a matrix Gj . The j-th request can be recovered,
with probability tending to 1, as a sum of ρjnj columns, where
H(ρj) ∼ s

nj
and nj =

∏j−1
i=1 (1 − ρi)n1. Finally, for the k-

th request, we have to show that the remaining matrix Gk

contains an s× s invertible sub-matrix. This is guaranteed by
Theorem 21 with positive probability c ≈ 0.28879 as long as
s < nk =

∏k−1
i=1 (1− ρi)n1 for sufficiently large s. Therefore,

we have a binary matrix of size s×n1 representing a functional
k-batch code if s < nk =

∏k−1
i=1 (1 − ρi)n1.

To complete the proof we have to derive the asymptotic
relation between n1 and s. Note first that

s

n1
∼ H(ρ1) ∼ H(ρ2)(1 − ρ1) ∼ · · ·

∼ H(ρk−1)
k−2∏
i=1

(1 − ρi) <

k−1∏
i=1

(1 − ρi).

Hence, to maximize s
n1

, we should have H(ρk−1) =
1 − ρk−1, H(ρk−2) = H(ρk−1)(1 − ρk−2), . . . , H(ρj) =
H(ρj+1)(1 − ρj), . . . , H(ρ1) = H(ρ2)(1 − ρ1). Therefore,
we set ρk−1 = c2, ρk−2 = c3, . . . , ρ1 = ck and thus
asymptotically we have n1 ∼ s

H(ck) .
A lower bound of FB(s, k) can be derived as follows.
Theorem 23:

lim
s→∞

FB(s, k)
s

≥ k

log(k + 1)
.

Proof: Assume there is a functional k-batch code of length
n and dimension s, represented by an s × n matrix G. For
any recovery process of a request v = (v1, . . . ,vk) with k
vectors of length s, assign a label to each column of G. The
label is either 0 or some i, 1 ≤ i ≤ k. A label 0 indicates
that the column is not used in the recovery process of v.
A label i, indicates that the column is used in the recovery
set for vi. Then the labeling of G for the request v is an
element in {0, 1, . . . , k}n. For any two different ordered k-
tuples of request vectors (v1, . . . ,vk) and (u1, . . . ,uk), where
v1, . . . ,vk are k distinct vectors and u1, . . . ,uk are also k
distinct vectors, the labeling of G must be different. Therefore,
(k + 1)n ≥

(
2s−1

k

)
k!.

Thus,

lim
s→∞

n

s
≥ k

log(k + 1)
,

which completes the proof.
Table XIV summarizes the lower and upper bounds of

lims→∞
FB(s,k)

s .

V. SIMPLEX CODES AS FUNCTIONAL BATCH CODES

The family of simplex codes is an important class of codes,
which has been analyzed in the literature of PIR and batch
codes. In [19] it was shown that P (r, 2r−1) = 2r − 1 and
in [39] it was proved that B(r, 2r−1) = 2r − 1. Furthermore,
in Theorem 7, we also confirmed that by using simplex codes
we have FP (r, 2r−1) = 2r−1. An intuitive explanation is that
the simplex codes contain every possible linear combination of
information symbols and therefore their availability might be
easier to analyze. Moreover, the behaviour of simplex codes
will also shed light on the construction of better codes. For
example, recall our construction of functional PIR codes in
Section II, each row of the array representation is indeed a
simplex code. Hence, in this section we analyze whether the
same property is also valid for functional batch codes, that is,
whether FB(r, 2r−1) = 2r − 1 holds.

Definition 24: A [2r − 1, r] simplex code is a linear code
of length n = 2r − 1 and dimension r whose r × n generator
matrix G contains each nonzero column vector z of length r
exactly once as a column.

Simplex codes have been used for several more applica-
tions, among them are write-once memory (WOM) codes and
random I/O (RIO) codes. An [n, k, t] WOM code is a coding
scheme comprising of n binary cells such that it is possible
to write a k-bit message t times while on each write the cell
values can only change from zero to one. An (n, k, t) RIO
code assumes that t k-bit messages are stored in n cells each

Authorized licensed use limited to: Eitan Yaakobi. Downloaded on July 21,2020 at 08:28:03 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: BOUNDS ON THE LENGTH OF FUNCTIONAL PIR AND BATCH CODES 4931

TABLE XIV

LOWER AND UPPER BOUNDS OF lims→∞ F B(s,k)
s

(BY THEOREMS 22 AND 23)

with t + 1 levels such that every page can be read by sensing
a single read threshold. In [44], it was proved that these two
families of codes are equivalent and a new variation of RIO
codes, called parallel RIO codes, has been proposed, where
all messages can be written together and thereby can allow the
design of codes with parameters that do not exist for WOM
codes.

While there are several constructions of WOM codes,
we focus here on the one called linear WOM codes [13]
in which a binary matrix is used to encode messages by
the syndromes of parity check matrices of error-correcting
codes. The authors of [13] studied this linear construction
using Golay codes as well as simplex codes. In particular,
the latter family of codes provided WOM codes with the
parameters [2r − 1, r, 2r−2 + 2]. Later, this result has been
improved by Godlewski [20], who showed the existence of
[2r − 1, r, 2r−2 + 2r−4 + 1] WOM codes.

The family of parallel RIO codes is very similar to the one
of functional batch codes. In fact, if parallel RIO codes are
constructed using linear codes and their parity check matrices,
such as in [13], [20], then these codes are in essence functional
batch codes as well. This approach to construct parallel RIO
codes has been initiated recently by Yamawaki, Kamabe, and
Lu in [45], where they studied the parameters of parallel RIO
codes using simplex codes and showed the construction of
(7, 3, 4) and (15, 4, 8) parallel RIO codes. These codes assure
also that FB(3, 4) = 7 and FB(4, 8) = 15. We also verified
that a (31, 5, 16) parallel RIO code exists which implies that
FB(5, 16) = 31, while similarly to the conjecture raised
in [45] we also have the following conjecture.

Conjecture 25: The [2r −1, r] simplex code is a functional
2r−1-batch code and therefore FB(r, 2r−1) = 2r − 1.

Remember that for WOM codes the message requests are
received in a sequential order and each recovery set should
be determined without knowing the upcoming requests. The
main idea of the construction for [2r − 1, r, 2r−2 + 2r−4 + 1]
WOM codes by Godlewski [20] with simplex codes works as
follows.

1) The first request v is simply satisfied by using v itself.
2) As long as there are at least 2r−1 nonzero available

vectors, each request v can always be satisfied by finding

a pair {u,u + v}. This process can satisfy at least
2r−2 more requests and only stops when the number
of unused vectors is less than 2r−1.

3) The key part of Godlewski’s construction is that it is
still possible to find recovery sets of size four unless the
number of unused vectors is less than 2r−2. Thus in this
process 2r−4 additional write requests can be satisfied.

To summarize, simplex codes can be used to satisfy roughly
any 5

162r write requests, when considered as WOM codes.
Since in the functional batch setting (or in parallel RIO codes)
we know all the requests in advance, it is possible to make
use of this knowledge and improve upon the 2r−2 + 2r−4 +
1 result. This improvement comes either from the choice of
many recovery sets of size one, or from a predetermined usage
of the 2r−2 remaining vectors in Godlewski’s method. Namely,
we prove the following theorem.

Theorem 26: The [2r − 1, r] simplex code can be used as
a functional (2r−2 + 2r−4 + � 2r/2√

24
)-batch code.

Proof: Consider γ = 2r−2+2r−4+� 2r/2√
24
 requests which

consist of Δ distinct vectors {v1, . . . ,vΔ}. To prove that the
simplex code is a γ-functional batch code, we distinguish
between the following two cases depending on the value of
Δ:
Case 1: If Δ ≥ 2r/2√

6
, we use the Δ subsets of size one of

the set {v1, . . . ,vΔ} as recovery sets of size one. For the
remaining γ − Δ requests, we follow Godlewski’s method.
The number of unused vectors is 2r−1−Δ. Recovery sets of
size two can be found until the number of unused vectors is
less than 2r−1. Hence, the number of recovery sets of size two
is 2r−1−Δ−(2r−1−1)

2 (if Δ is even) or 2r−1−Δ−(2r−1−2)
2 (if Δ

is odd), i.e., 2r−2 − �Δ
2 . Similarly, recovery sets of size four

can be found until the number of unused vectors is less than
2r−2, yielding 2r−4 recovery sets. Therefore, when Δ ≥ 2r/2√

6
,

the simplex code satisfies any 2r−2 + 2r−4 + Δ − �Δ
2 ≥ γ

requests.
Case 2: If Δ < 2r/2√

6
, let v1 be the vector which is requested

the largest number of times. Clearly, v1 is requested at least

 γ

Δ� times and the number of requests other than v1 is at most
γ −
 γ

Δ� times.

Authorized licensed use limited to: Eitan Yaakobi. Downloaded on July 21,2020 at 08:28:03 UTC from IEEE Xplore. Restrictions apply.

4932 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 8, AUGUST 2020

Partition all the 2r vectors (including the zero vector) into
2r−1 pairs of the form {u,u + v1}. The two vectors in
the same pair are called conjugates of each other. A pair
containing no requested vectors is called a good pair and
the vectors lying in good pairs are called good vectors. The
number of good vectors is then at least 2r − 2Δ.

For any vj 	= v1 which is requested an odd number of
times, vj is considered as a recovery set of size one. Hence,
now each such vj is requested an even number of times. For
these requests we find recovery sets using only good vectors
similarly to Godlewski’s method. Let {x,y} be a recovery
set of size two for vj , i.e., vj = x + y, where x and y
are good vectors. x and y are not conjugate since vj 	= v1).
Hence, their conjugates form another recovery set for vj , i.e.
vj = (x + v1) + (y + v1). Similarly, whenever a recovery
set of size four for vj is found among the good vectors, then
there are only two possibilities. On one hand if we have vj =
x + y + z + w where no two of the four vectors {x,y, z,w}
are conjugate, then their conjugates form another recovery set
vj = (x+v1)+(y+v1)+(z+v1)+(w+v1). On the other
hand if we have vj = x+y+z+(z+v1), then we construct
another recovery set vj = (x+v1)+(y+v1)+w+(w+v1),
where the good pair {w,w+v1} is chosen arbitrarily from the
unused good pairs. After performing this strategy for requests
other than v1 using the modified Godlewski’s method, the
remaining good vectors will appear in pairs where each pair
sums up to v1. These remaining good pairs will be used for
recovering v1.

To complete the proof we have to show that there exist
enough recovery sets. We distinguish between three subcases
depending on the number of times δ that v1 is requested:
Case 2.1: If δ ≤ 2r−3 times, then there are at least
2r−2Δ−(2r−1−2)

2 = 2r−2 − Δ + 1 recovery sets of size two
and 2r−4 recovery sets of size four for the queries which are
different from v1. This satisfies the requirements since the
number of queries other than v1 is upper bounded by

γ −
 γ

Δ
� ≤ 2r−2 + 2r−4 + � 2r/2

√
24

 − 2r−2 + 2r−4

2r/2/
√

6

≤ 2r−2 + 2r−4 + � 2r/2

√
24

 − 2r/2 · 5
√

6
16

≤ 2r−2 + 2r−4 − 2r/2

√
6

≤ 2r−2 + 2r−4 − Δ.

Meanwhile, when this modified Godlewski’s method con-
cludes, there are still 2r−2 good vectors constituting 2r−3 pairs
for recovering v1.
Case 2.2: If δ ≥ γ + Δ − 2r−2, then the total number
of requests different than v1 is γ − δ. Hence, the modified
Godlewski’s method concludes after we choose γ − δ recov-
ery sets of size two. Initially, there are at least 2r−1 − Δ
good pairs, among which γ−δ pairs are involved in recovery
sets of size two (since in the modified Godlewski’s method
every two conjugate recovery sets of size two together occupy
two good pairs). Therefore, the number of remaining good

pairs is

2r−1 − Δ − (γ − δ)

≥ 2r−1 − 2r/2

√
6

− (2r−2 + 2r−4 + � 2r/2

√
24

) + δ

≥ 2r−2 − 2r−4 − 2r/2 · 3
2
√

6
+ δ

≥ δ,

where the last inequality holds for r ≥ 6. Thus, there are
enough pairs to be used as recovery sets for v1.
Case 2.3: If 2r−3 < δ < γ + Δ − 2r−2, then the modified
Godlewski’s method concludes after we choose 2r−2 − Δ
recovery sets of size two and γ −δ− 2r−2 + Δ recovery sets
of size four. Initially, there are 2r−1 − Δ good pairs, among
which 2r−2−Δ pairs are involved in recovery sets of size two
and 2(γ−δ−2r−2+Δ) recovery sets are involved in recovery
sets of size four (since in the modified Godlewski’s method
every two conjugate recovery sets of size two together occupy
two good pairs and every two conjugate recovery sets of size
four together occupy four good pairs). Thus, the number of
remaining good pairs is

2r−1 − Δ − (2r−2 − Δ) − 2(γ − δ − 2r−2 + Δ)

= 2r−1 + 2r−2 − 2γ − 2Δ + 2δ

≥ 2r−2 − 2r/2 · 3√
6

+ δ (6)

≥ δ,

where (6) is derived by plugging the values of
γ = 2r−2 + 2r−4 + � 2r/2√

24
, Δ < 2r/2√

6
, and δ > 2r−3.

Finally, the last inequality holds for r ≥ 5. Therefore, there
are enough pairs for recovering v1.

Thus, the [2r − 1, r] simplex code can satisfy any 2r−2 +
2r−4 + � 2r/2√

24
 requests.

VI. CONCLUSION AND FUTURE RESEARCH

We have considered the shortest length of functional PIR
and functional batch codes. Several upper bounds, based on
explicit constructions and random ones, are given. Several
methods which yield lower bounds are also presented. In
particular connections to WOM codes and RIO codes are
derived and the parameters of the simplex code when used
as a functional batch code are discussed.

There are plenty of problems which remain for future
research, some of them are briefly outlined.

1) Prove or disprove that for any given PIR (batch) code,
there exists a systematic PIR (batch) code with the same
parameters.

2) We would like to see an upper bound on the length of
functional batch codes, which is derived from an explicit
construction.

3) We would like to see more tight bounds, general, asymp-
totic, and for specific parameters.

4) We would like to see a proof (or a counter-example) for
Conjecture 25, i.e., the [2r−1, r] simplex code is a func-
tional 2r−1-batch code and therefore FB(r, 2r−1) =
2r − 1.

Authorized licensed use limited to: Eitan Yaakobi. Downloaded on July 21,2020 at 08:28:03 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: BOUNDS ON THE LENGTH OF FUNCTIONAL PIR AND BATCH CODES 4933

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their
constructive comments.

REFERENCES

[1] H. Asi and E. Yaakobi, “Nearly optimal constructions of PIR and
batch codes,” IEEE Trans. Inf. Theory, vol. 65, no. 2, pp. 947–964,
Feb. 2019.

[2] D. Augot, F. Levy-Dit-Vehel, and A. Shikfa, “A storage-efficient and
robust private information retrieval scheme allowing few servers,” 2014,
arXiv:1412.5012. [Online]. Available: http://arxiv.org/abs/1412.5012

[3] S. R. Blackburn, T. Etzion, and M. B. Paterson, “PIR schemes with
small download complexity and low storage requirements,” IEEE Trans.
Inf. Theory, vol. 66, no. 1, pp. 557–571, Jan. 2020.

[4] V. M. Blinovskii, “Lower asymptotic bound on the number of linear
code words in a sphere of given radius in F n

q ,” Problems Inf. Transmiss.,
vol. 23, no. 2, pp. 50–53, 1987.

[5] V. M. Blinovskii, “Asymptotically exact uniform bounds for spectra
of cosets of linear codes,” Problems Inf. Transmiss., vol. 26, no. 1,
pp. 99–103, 1990.

[6] S. Buzaglo, Y. Cassuto, P. H. Siegel, and E. Yaakobi, “Consecutive
switch codes,” IEEE Trans. Inf. Theory, vol. 64, no. 4, pp. 2485–2498,
Apr. 2018.

[7] Y. M. Chee, F. Gao, S. T. H. Teo, and H. Zhang, “Combinatorial sys-
tematic switch codes,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Hong
Kong, Jun. 2015, pp. 241–245.

[8] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private infor-
mation retrieval,” in Proc. IEEE 36th Annu. Found. Comput. Sci.,
Milwaukee, WI, USA, Oct. 1995, pp. 41–50.

[9] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private informa-
tion retrieval,” J. ACM, vol. 45, no. 6, pp. 965–981, 1998.

[10] G. Cohen, I. Honkala, S. Litsyn, and A. Lobstein, Covering Codes.
Amsterdam, The Netherlands: Elsevier, 1997.

[11] T. H. Chan, S.-W. Ho, and H. Yamamoto, “Private information
retrieval for coded storage,” 2014, arXiv:1410.5489. [Online]. Available:
http://arxiv.org/abs/1410.5489

[12] T. H. Chan, S.-W. Ho, and H. Yamamoto, “Private information retrieval
for coded storage,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Hong Kong, Jun. 2015, pp. 2842–2846.

[13] G. Cohen, P. Godlewski, and F. Merkx, “Linear binary code for write-
once memories,” IEEE Trans. Inf. Theory, vol. 32, no. 5, pp. 697–700,
Sep. 1986.

[14] G. Cohen, M. Karpovsky, H. Mattson, Jr., and J. Schatz, “Covering
radius—Survey and recent results,” IEEE Trans. Inf. Theory, vol. 31,
no. 3, pp. 328–343, May 1985.

[15] C. Cooper, “On the rank of random matrices,” Random Struct. Algo-
rithms, vol. 16, no. 2, pp. 209–232, Mar. 2000.

[16] T. Etzion and A. Vardy, “Error-correcting codes in projective space,”
IEEE Trans. Inf. Theory, vol. 57, no. 2, pp. 1165–1173, Feb. 2011.

[17] H. T. Gupta, N. Crooks, W. Mulhern, S. Setty, L. Alvisi, and
M. Walfish, “Scalable and private media consumption with Popcorn,” in
Proc. 13th USENIX Symp. Netw. Syst. Design Implement., Santa Clara,
CA, USA, Mar. 2016, pp. 91–107.

[18] A. Fazeli, A. Vardy, and E. Yaakobi, “Codes for distributed PIR with
low storage overhead,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Hong Kong, Jun. 2015, pp. 2852–2856.

[19] A. Fazeli, A. Vardy, and E. Yaakobi, “PIR with low storage overhead:
Coding instead of replication,” May 2015, arXiv:1505.06241. [Online].
Available: https://arxiv.org/abs/1505.06241

[20] P. Godlewski, “WOM-codes construits à partir des codes de Hamming,”
Discrete Math., vol. 65, no. 3, pp. 237–243, Jul. 1987.

[21] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai, “Batch codes and
their applications,” in Proc. 36th Annu. ACM Symp. Theory Comput.
(STOC). Chicago, IL, USA: ACM, 2004, pp. 262–271.

[22] E. Kushilevitz and R. Ostrovsky, “Replication is not needed: Single
database, computationally-private information retrieval,” in Proc. 38th
Annu. Symp. Found. Comput. Sci. (FOCS), 1997, pp. 364–373.

[23] S. Lin and D. J. Costello, Error Control Coding. Upper Saddle River,
NJ, USA: Prentice-Hall, 2004.

[24] H.-Y. Lin and E. Rosnes, “Lengthening and extending binary private
information retrieval codes,” 2017, arXiv:1707.03495. [Online]. Avail-
able: http://arxiv.org/abs/1707.03495

[25] M. Mirmohseni and M. A. Maddah-Ali, “Private function retrieval,”
in Proc. Iran Workshop Commun. Inf. Theory (IWCIT), Tehran, Iran,
Apr. 2018, pp. 1–6.

[26] N. Polyanskii and I. Vorobyev, “Constructions of batch codes
via finite geometry,” 2019, arXiv:1901.06741. [Online]. Available:
http://arxiv.org/abs/1901.06741

[27] N. Polyanskii and I. Vorobyev, “Constructions of batch codes via finite
geometry,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Paris, France,
Jul. 2019, pp. 360–364.

[28] S. Rao and A. Vardy, “Lower bound on the redundancy of PIR codes,”
2016, arXiv:1605.01869. [Online]. Available: http://arxiv.org/abs/1605.
01869

[29] N. Raviv and D. A. Karpuk, “Private polynomial computation from
Lagrange encoding,” IEEE Trans. Inf. Forensics Security, vol. 15,
pp. 553–563, Jul. 2020.

[30] A. S. Rawat, D. S. Papailiopoulos, A. G. Dimakis, and S. Vishwanath,
“Locality and availability in distributed storage,” IEEE Trans. Inf.
Theory, vol. 62, no. 8, pp. 4481–4493, Aug. 2016.

[31] A. S. Rawat, Z. Song, A. G. Dimakis, and A. Gal, “Batch codes through
dense graphs without short cycles,” IEEE Trans. Inf. Theory, vol. 62,
no. 4, pp. 1592–1604, Apr. 2016.

[32] R. L. Rivest and A. Shamir, “How to reuse a ‘write-once’ memory,” Inf.
Control, vol. 55, nos. 1–3, pp. 1–19, Oct. 1982.

[33] N. B. Shah, K. V. Rashmi, and K. Ramchandran, “One extra bit of
download ensures perfectly private information retrieval,” in Proc. IEEE
Int. Symp. Inf. Theory, Honolulu, HI, USA, Jun. 2014, pp. 856–860.

[34] E. Sharon and I. Alrod, “Coding scheme for optimizing random I/O
performance,” in Proc. Non-Volatile Memories Workshop, San Diego,
CA, USA, Apr. 2013, pp. 1–5.

[35] H. Sun and S. A. Jafar, “The capacity of private computation,” 2017,
arXiv:1710.11098. [Online]. Available: http://arxiv.org/abs/1710.11098

[36] M. Vajha, V. Ramkumar, and P. Vijay Kumar, “Binary, shortened pro-
jective reed muller codes for coded private information retrieval,” 2017,
arXiv:1702.05074. [Online]. Available: http://arxiv.org/abs/1702.05074

[37] A. Vardy and E. Yaakobi, “Constructions of batch codes with near-
optimal redundancy,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Barcelona, Spain, Jul. 2016, pp. 1197–1201.

[38] Z. Wang, H. M. Kiah, and Y. Cassuto, “Optimal binary switch codes
with small query size,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Hong Kong, Jun. 2015, pp. 636–640.

[39] Z. Wang, H. M. Kiah, Y. Cassuto, and J. Bruck, “Switch codes: Codes
for fully parallel reconstruction,” IEEE Trans. Inf. Theory, vol. 63, no. 4,
pp. 2061–2075, Apr. 2017.

[40] Z. Wang, O. Shaked, Y. Cassuto, and J. Bruck, “Codes for network
switches,” in Proc. IEEE Int. Symp. Inf. Theory, Istanbul, Turkey,
Jul. 2013, pp. 1057–1061.

[41] F. Wang, C. Yun, S. Goldwasser, V. Vaikuntanathan, and M. Zaharia,
“Splinter: Practical private queries on public data,” in Proc. 13th
USENIX Symp. Netw. Syst. Design Implement., Boston, MA, USA,
Mar. 2017, pp. 299–313.

[42] M. Wootters. (Feb. 2016). Linear Codes With Disjoint Repair Groups.
[43] E. Yaakobi, S. Kayser, P. H. Siegel, A. Vardy, and J. K. Wolf, “Codes

for write-once memories,” IEEE Trans. Inf. Theory, vol. 58, no. 9,
pp. 5985–5999, Sep. 2012.

[44] E. Yaakobi and R. Motwani, “Construction of random input-output
codes with moderate block lengths,” IEEE Trans. Commun., vol. 64,
no. 5, pp. 1819–1828, May 2016.

[45] A. Yamawaki, H. Kamabe, and S. Lu, “Construction of parallel RIO
codes using coset coding with Hamming codes,” in Proc. IEEE Inf.
Theory Workshop (ITW), Kaohsiung, Taiwan, Nov. 2017, pp. 239–243.

Yiwei Zhang received the B.A. and Ph.D. degrees in mathematics from
Zhejiang University, Hangzhou, Zhejiang, China, in 2011 and 2016, respec-
tively. From 2016 to 2017, he was a Post-Doctoral Researcher at the School
of Mathematical Sciences, Capital Normal University, Beijing, China. From
2017 to 2019, he was a Post-Doctoral Researcher at the Department of
Computer Science, Technion—Israel Institute of Technology, Haifa, Israel. He
is currently a Professor with the School of Cyber Science and Technology,
Shandong University, Qingdao, Shandong, China. He is also with the Key
Laboratory of Cryptologic Technology and Information Security, Ministry of
Education, Shandong University. His research interests include coding theory,
as well as extremal combinatorics and their interactions.

Authorized licensed use limited to: Eitan Yaakobi. Downloaded on July 21,2020 at 08:28:03 UTC from IEEE Xplore. Restrictions apply.

4934 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 8, AUGUST 2020

Tuvi Etzion (Fellow, IEEE) was born in Tel Aviv, Israel, in 1956. He received
the B.A., M.Sc., and D.Sc. degrees from the Technion—Israel Institute of
Technology, Haifa, Israel, in 1980, 1982, and 1984, respectively.

Since 1984, he has been holding a position with the Department of
Computer Science, Technion, where he currently holds the Bernard Elkin
Chair in computer science. From 1985 to 1987, he was a Visiting Research
Professor with the Department of Electrical Engineering—Systems, Univer-
sity of Southern California, Los Angeles, CA, USA. During the summers
of 1990 and 1991, he was visiting Bellcore, Morristown, NJ, USA. From
1994 to 1996, he was a Visiting Research Fellow at the Computer Science
Department, Royal Holloway, University of London, Egham, U.K. He also had
several visits to the Coordinated Science Laboratory, University of Illinois
in Urbana–Champaign, from 1995 to 1998, two visits to HP Bristol in
summers of 1996 and 2000, a few visits to the Department of Electrical
Engineering, University of California at San Diego, from 2000 to 2017,
several visits to the Mathematics Department, Royal Holloway, University
of London, from 2007 to 2017, a few visits to the School of Physical and
Mathematical Science (SPMS), Nanyang Technological University, and to the
Department of Industrial Systems Engineering and Management, National
University of Singapore, Singapore, from 2016 to 2019, and a few visits
to Jiaotong University, Beijing, from 2017 to 2019. His research interests
include applications of discrete mathematics to problems in computer science
and information theory, coding theory, network coding, and combinatorial
designs.

Dr. Etzion was an Associate Editor for Coding Theory for the IEEE
TRANSACTIONS ON INFORMATION THEORY from 2006 to 2009. From
2004 to 2009, he was an Editor of the Journal of Combinatorial Designs.
Since 2011, he has been an Editor for Designs, Codes, and Cryptography,
and an Editor for the Advances of Mathematics in Communications since
2013.

Eitan Yaakobi (Senior Member, IEEE) received the B.A. degrees in computer
science and mathematics, and the M.Sc. degree in computer science from the
Technion—Israel Institute of Technology, Haifa, Israel, in 2005 and 2007,
respectively, and the Ph.D. degree in electrical engineering from the University
of California, San Diego, CA, USA, in 2011. From 2011 to 2013, he was
a Post-Doctoral Researcher at the Department of Electrical Engineering,
California Institute of Technology, and at the Center for Memory and
Recording Research, University of California, San Diego. He is currently an
Associate Professor with the Computer Science Department, Technion—Israel
Institute of Technology. His research interests include information and coding
theory with applications to non-volatile memories, associative memories,
DNA storage, data storage and retrieval, and private information retrieval.
He received the Marconi Society Young Scholar in 2009, and the Intel Ph.D.
Fellowship (2010–2011).

Authorized licensed use limited to: Eitan Yaakobi. Downloaded on July 21,2020 at 08:28:03 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

