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Abstract— In this paper we study array-based codes over
graphs for correcting multiple node failures. These codes have
applications to neural networks, associative memories, and dis-
tributed storage systems. We assume that the information is
stored on the edges of a complete undirected graph and a node
failure is the event where all the edges in the neighborhood of
a given node have been erased. A code over graphs is called
ρ-node-erasure-correcting if it allows to reconstruct the erased
edges upon the failure of any ρ nodes or less. We present a
binary optimal construction for double-node-erasure correction
together with an efficient decoding algorithm, when the num-
ber of nodes is a prime number. Furthermore, we extend this
construction for triple-node-erasure-correcting codes when the
number of nodes is a prime number and two is a primitive ele-
ment in Zn . These codes are at most a single bit away from
optimality.

Index Terms— Array codes, crisscross erasures, codes over
graphs, rank metric codes.

I. INTRODUCTION

NETWORKS and distributed storage systems are usually
represented as graphs with the information stored in the

nodes (vertices) of the graph. In our recent work [23]–[25],
we have introduced a new model which assumes that the
information is stored on the edges. This setup is motivated
by several information systems. For example, in neural net-
works, the neural units are connected via links which store
and transmit information between the neural units [10]. Sim-
ilarly, in associative memories, the information is stored by
associations between different data items [21]. Furthermore,
representing information in a graph can model a distributed
storage system [7] while every two nodes can be connected
by a link that represents the information that is shared by the
nodes.

In [23]–[25], we introduced the notion of codes over graphs,
which is a class of codes storing the information on the edges
of a complete undirected graph (including self-loops). Thus,
each codeword is a labeled graph with n nodes (vertices) and
each of the

�
n+1

2

�
edges stores a symbol over an alphabet Σ.
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A node failure is the event where all the edges incident with a
given node have been erased, and a code over graphs is called
ρ-node-erasure-correcting if it allows to reconstruct the con-
tents of the erased edges upon the failure of any ρ nodes or
less.

The information stored in a complete undirected graph can
be represented by an n × n symmetric array and a failure of
the ith node corresponds to the erasure of the ith row and ith
column in the array. Hence, this problem is translated to the
problem of correcting symmetric crisscross erasures in square
symmetric arrays [15]. By the Singleton bound, the number of
redundancy edges (i.e., redundancy symbols in the array) of
every ρ-node-erasure-correcting code must be at least nρ−�

ρ
2

�
,

and a code meeting this bound will be referred as optimal.
While the construction of optimal codes is easily accomplished
by MDS codes, their alphabet size must be at least the order of
n2, and the task of constructing optimal (or close to optimal)
codes over graphs over smaller alphabets remains an intriguing
problem.

A natural approach to address this problem is by using the
wide existing knowledge on array code constructions such as
[2], [4]–[6], [9], [11]–[18], [20]. However, the setup of codes
over graphs differs from that of classical array codes in two
respects. First, the arrays are symmetric, and, secondly, a fail-
ure of the ith node in the graph corresponds to the failure of
the ith row and the ith column (for the same i) in the array.
Most existing constructions of array codes are not designed
for symmetric arrays, and they do not support this special
row–column failure model. However, it is still possible to use
existing code constructions and modify them to the special
structure of the above erasure model in graphs, as was done
in [23]–[25]. More specifically, based upon product codes [1],
[8], a construction of optimal codes whose alphabet size
grows only linearly with n has been proposed. Additionally,
using rank-metric codes [15]–[17], binary codes over graphs
were designed, however they are relatively close—yet do not
attain—the Singleton bound. In [23], [24], a construction of
optimal binary codes for two node failures was also presented
based upon ideas from EVENODD codes [2].

In this paper we build upon some of the methods that were
used in the array code constructions. An example of such
an approach is the algebraic representation of EVENODD
codes [2]. Another similar construction for optimal (p−1)×p
array codes that can tolerate any ρ column erasures was
given in [5] as well as its extensions in [4] and [11]. In these
papers, the authors also used an algebraic approach, where
each column of the array code is represented as a symbol
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over a fixed ring, which is then interpreted as a linear MDS
code of length p over the ring. Note that these constructions
cannot be used directly for the problem studied in the paper
for the reasons mentioned above. However, we still show
how to take advantage of this algebraic approach in order to
construct double- and triple-node-erasure-correcting codes.

Another approach for handling symmetric crisscross era-
sures (in symmetric arrays) is by using symmetric rank-metric
codes. In [16], Schmidt presented a construction of linear
[n × n, k, d] symmetric binary array codes with minimum
rank d, where k = n(n−d+2)/2 if n−d is even, and
k = (n+1)(n−d+1)/2 otherwise. Such codes can correct
any d − 1 column or row erasures. Hence, it is possible to
use these codes to derive ρ-node-failure-correcting codes
while setting d = 2ρ+1, as the ρ node failures translate into
the erasure of ρ columns and ρ rows. However, the redun-
dancy of these codes is

�
ρ
2

�
symbols away from the Singleton

bound for symmetric crisscross erasures (e.g., for ρ = 2, their
redundancy is 2n while the Singleton lower bound is 2n− 1).

In this paper we carry an algebraic approach such as the
one presented in [4], [5], and [11] in order to propose new
constructions of binary codes over graphs. In Section II,
we formally define codes over graphs and review several
basic properties from [23], [25] that will be used in the
paper. In Section III, we present our optimal binary construc-
tion for two-node failures along with its decoding procedure.
This construction is not only simpler than the one given in
[23], [25], but it also provides a good intuition to understand
the triple-node-erasure-correcting codes in the paper. Further-
more, in Section IV, it is shown how to efficiently decode
the case of a single node failure for this construction. Then,
in Section V, we extend this construction for the three-node
failures case. This new construction is only at most a single
bit away from the Singleton bound, thereby outperforming
the construction obtained from [16]. In Section VI, we show
how to efficiently decode the failure of three nodes. Lastly,
Section VII concludes the paper.

II. DEFINITIONS AND PRELIMINARIES

For a positive integer n, the set {0, 1, . . . , n − 1} will be
denoted by [n] and for a prime power q, Fq is the finite field
of size q. A linear code of length n and dimension k over Fq

will be denoted by [n, k]q or [n, k, d]q, where d denotes its
minimum distance. In the rest of this section, we follow the
definitions of our previous work [23] for codes over graphs.

A graph will be denoted by G = (Vn, E), where
Vn = {v0, v1, . . . , vn−1} is its set of n nodes (vertices) and
E ⊆ Vn × Vn is its edge set. In this paper, we only study
complete undirected graphs with self-loops, and in this case,
the edge set of an undirected graph G over an alphabet Σ is
defined by E = {(vi, vj) | (vi, vj) ∈ Vn × Vn, i � j}, with
a labeling function L : Vn × Vn → Σ. By a slight abuse of
notation, every undirected edge in the graph will be denoted
by �vi, vj� where the order in this pair does not matter, that
is, the notation �vi, vj� is identical to the notation �vj , vi�,
and thus there are

�
n+1

2

�
edges. We will use the notation

G = (Vn, L) for such graphs. For the rest of the paper,
whenever we refer to a graph we refer to an undirected graph.

The labeling matrix of an undirected graph G = (Vn, L)
is an n × n symmetric matrix over Σ denoted by
AG = [ai,j ]

n−1,n−1
i=0,j=0 , where ai,j = L�vi, vj�. We also

use the lower-triangle-labeling matrix of G to be the n × n
matrix A′

G = [a′
i,j ]

n−1,n−1
i=0,j=0 such that a′

i,j = ai,j if i � j and
otherwise a′

i,j = 0. The zero graph will be denoted by G0

where for all i, j ∈ [n], ai,j = 0.
Let Σ be a ring and G1 and G2 be two graphs over Σ with

the same node set V . The operator “ +” between G1 and G2

over Σ, is defined by G1 + G2 = G3, where G3 is the unique
graph satisfying AG1 + AG2 = AG3 . Similarly, the operator
“·” between G1 and an element α ∈ Σ, is denoted by α·G1 =
G3, where G3 is the unique graph satisfying α ·AG1 = AG3 .

A code over graphs over Σ of length n and size M is a set
of graphs C = {Gi = (Vn, Li)|i ∈ [M ]} over Σ, and it will be
denoted by (n, M)Σ. In case that Σ = {0, 1}, we simply use
the notation (n, M). The dimension of a code over graphs C
is k = log|Σ| M and the redundancy is r =

�
n+1

2

�−k. A code
over graphs C over a ring Σ will be called linear and will be
denoted by U-[n, k]Σ if for every G1, G2 ∈ C and α, β ∈ Σ,
αG1 + βG2 ∈ C.

The neighborhood edge set of the ith node of an undirected
graph G = (Vn, L) is defined by Ni = {�vi, vj� | j ∈ [n]},
and it corresponds to the ith column and the ith row in the
labeling matrix AG. The node failure of the ith node is the
event in which all the edges in the neighborhood set of the ith
node, i.e. Ni, are erased. We will also denote this edge set by
Fi and refer to it by the failure set of the ith node. A code
over graphs is called a ρ-node-erasure-correcting code if it
can correct any failure of at most ρ nodes in each of its graphs.

As discussed in [23]–[25], according to the Singleton
bound, the minimum redundancy r of any ρ-node-erasure-
correcting code of length n, satisfies

r �
�

n + 1
2

�
−

�
n − ρ + 1

2

�
= nρ −

�
ρ

2

�
, (1)

and a code over graphs which satisfies this inequality with
equality is called optimal. It was also observed in [23]–[25]
that for all n and ρ, an optimal ρ-node-erasure-correcting code
exists over a field of size at least Θ(n2), and thus the goal is
to construct such codes over smaller fields, and ideally over
the binary field.

We conclude this section with reviewing the definition of
a distance metric over graphs from [25] and its connection
to the construction of codes correcting node failures. Let
G = (Vn, L) be a graph and let E be the set of all nonzero
labeled edges of G, i.e., E = {e ∈ Vn × Vn | L(e) �= 0}.
A vertex cover W of G is a subset of Vn such that for each
�vi, vj� ∈ E either vi ∈ W or vj ∈ W . The graph weight of
G is defined by

w(G) = min
W is a vertex cover of G

{|W |},

and the graph distance between two graphs G1, G2 will
be denoted by d(G1, G2) where it holds that d(G1, G2) =
w(G1 − G2). It was proved in [25] that this graph distance
is a metric. The minimum distance of a code over graphs
C, denoted by d(C), is the minimum graph distance between
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any two distinct graphs in C, that is

d(C) = min
G1 �=G2 G1,G2∈C

{d(G1, G2)},

and in case the code is linear d(C) = minG∈C,G �=G0{w(G)}.
Lastly, we state the following theorem from [25] that estab-
lishes the connection between the graph distance and the node-
erasure-correction capability.

Theorem 1: A linear code over graphs C is a ρ-node-
erasure-correcting code if and only if its minimum distance
satisfies d(C) � ρ + 1.

Let n � 2 be a prime number. Denote by Rn the ring
of polynomials of degree at most n − 1 over F2. It is well
known that Rn is isomorphic to the ring of all polynomi-
als in F2[x] modulo xn − 1. Denote by Mn(x) ∈ Rn the
polynomial Mn(x) =

�n−1
�=0 x� over F2, where it holds that

Mn(x)(x + 1) = xn − 1 as a multiplication of polynomials
over F2[x]. To avoid confusion in the sequel, since we are
using only polynomials over F2, the notation x� + 1 for all
� ∈ [n], will refer to a polynomial in Rn and for � = n,
we will use the notation xn − 1. It is well known that for all
� ∈ [n] it holds that

gcd(x� + 1, xn − 1) = xgcd(�,n) + 1 = x + 1,

and since Mn(x)(x + 1) = xn − 1 it can be verified that

gcd(x� + 1, Mn(x)) = 1. (2)

Notice also that when 2 is primitive in Zn, the polynomial
Mn(x) is irreducible [3]. The last important and well known
property we will use for polynomials over F2 is that for all
k = 2j , j ∈ N it holds that 1+xsk = (1+xs)k. The notation
�a�n will be used to denote the value of (a mod n).

III. OPTIMAL BINARY

DOUBLE-NODE-ERASURE-CORRECTING CODES

In this section we present a family of optimal binary linear
double-node-erasure-correcting codes with n nodes, where n
is a prime number.

Remember that for i ∈ [n] the ith neighborhood set of the
ith node is Ni = {�vi, vj� | j ∈ [n]}. Let n � 3 be a prime
number and let G = (Vn, L) be a graph with n vertices. For
h ∈ [n] we define the neighborhood of the hth node without
itself self-loop by

Sh =
��vh, v�� | � ∈ [n], h �= �

�
. (3)

We also define for m ∈ [n], the mth diagonal set by

Dm = {�vk, v��|k, � ∈ [n], �k + ��n = m}. (4)

The sets Sh for h ∈ [n] will be used to represent parity con-
straints on the neighborhood of each node and similarly the
sets Dm for m ∈ [n] will be used to represent parity con-
straints on the diagonals with slope one in the labeling matrix
AG. We state that for all m ∈ [n], the size of Dm is n+1

2 . This
holds since in each neighborhood N(vi), there is only a single
edge which belongs to Dm, which is the edge �vi, v〈m−i〉n

�.
Another important observation is that Dm contains only a sin-
gle self-loop which is the edge �v〈m·2−1〉n

, v〈m·2−1〉n
�.

Example 1: In Fig. 1 we demonstrate the sets Sh and Dm,
where h, m ∈ [11], of a graph G = (V11, L) on its lower-
triangle-labeling matrix A′

G.
Motivated by the algebraic approach of the work in [4], [5],

and [11], we introduce one more useful notation for graphs.
Let G = (Vn, L) be a graph. For i ∈ [n] we denote the
neighborhood-polynomials of G to be

a′
i(x) = ei,0 + ei,1x + ei,2x

2 + · · · + ei,n−1x
n−1,

where for i, j ∈ [n], ei,j = ai,j = L�vi, vj�. We also denote
the neighborhood-polynomial without self-loops of G to be

ai(x) = a′
i(x) − ei,ix

i.

We are now ready to present the construction of optimal
double-node-erasure-correcting codes.

Construction 1: Let n � 3 be a prime number. The code
over graphs C2 is defined as follows,

C2 =

	
G = (Vn, L)






 (a)
�

〈vi,vj〉∈Sh
ei,j = 0, h ∈ [n]

(b)
�

〈vi,vj〉∈Dm
ei,j = 0, m ∈ [n]

�
.

Note that for any graph G over the binary field, it holds that

�
h∈[n]

�
〈vi,vj〉∈Sh

ei,j =
n−1�
h=0

n−1�
�=0,� �=h

eh,� = 2
n−1�
h=0

h−1�
�=0

eh,� = 0.

(5)

Therefore the code C2 has at most 2n − 1 linearly indepen-
dent constraints which implies that its redundancy is at most
2n−1. Our main result in this section, which is stated in The-
orem 2, claims that C2 is a double-node-correcting code, i.e.
its minimum distance is three. Thus, according to the Single-
ton bound we get that the redundancy of the code C2 is exactly
2n − 1, which implies that it is an optimal code. In the rest
of this section we provide the proof Theorem 2 by showing
a complexity optimal decoder for the code C2 and prove its
correctness.

Throughout this section we assume that G is a graph in the
code C2 and a�(x) for � ∈ [n] are its neighborhood polyno-
mials. We also assume that the failed nodes are v0, vi. First,
we define the following two polynomials S1(x), S2(x) ∈ Rn,
which will be called the syndrome polynomials

S1(x) = a0(x) + ai(x),

S2(x) ≡ a0(x) + ai(x)xi(modxn − 1).

Next, we prove the following claim.
Claim 1: The following properties hold on the graph G:

a) For all h ∈ [n]\{0, i}, the value of eh,0+eh,i is known.
b) For all m ∈ [n] \ {i}, the value of e0,m + ei,〈m−i〉n

is
known.

c) The value of e0,i is known.

Proof:

a) According to the neighborhood constraint Sh for all
h ∈ [n] \ {0, i}, we have that

0 =
�

〈vh,v�〉∈Sh

eh,� =
n−1�

�=0,� �=h

eh,� = eh,0 + eh,i +
�

�∈[n]\{0,i,h}
eh,�,
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Fig. 1. The constraints over undirected graphs, represented on the lower-triangle-labeling matrix.

and since eh,� are known for all � ∈ [n]\{0, i, h}, we get
that the value of eh,0 + eh,i is known.

b) For all m ∈ [n]\{i}, the set Dm\
��v0, vm�, �vi,v〈m−i〉n

��
is denoted by D′

m. Therefore, we have that

0 =
�

〈v�,v〈m−�〉n〉∈Dm

e�,〈m−�〉n

=
�

〈v�,v〈m−�〉n〉∈D′
m

e�,〈m−�〉n
+ e0,m + ei,〈m−i〉n

,

and since the value of es,� is known for all
�vs, v�� ∈ D′

m, we get that the value of e0,m +ei,〈m−i〉n

is known.
c) According to the diagonal constraint Di we get that

0 =
�

〈vs,v�〉∈Di

es,� = e0,i +
�

〈vs,v�〉∈Di\{〈v0,vi〉}
es,�,

and since the value of es,� is known, for all �vs, v�� ∈
Di \ {�v0, vi�}, the value of e0,i is known.

Denote the polynomials S1(x) and S2(x) by

S1(x) =
n−1�

h=1,h �=i

�
e0,h + ei,h

�
xh, (6)

S2(x) =
n−1�

m=0,m �=i

�
e0,m + ei,〈m−i〉n

�
xm. (7)

Note that it is possible to compute S1(x) and S2(x) based
upon the nodes that did not fail, and as we showed in Claim 1.
Also note that calculating S1(x) requires (n−2)(n−4) XOR
operations since in each of the n−2 constraints we read n−3
edges. Similarly, S2(x) requires (n− 1)(n− 5)/2 XOR oper-
ations since in each of the n−1 constraints we read (n−3)/2
edges. Next we show an important claim.

Claim 2: The following properties hold on the graph G:
a) For all h ∈ [n], ah(1) = 0.
b) a0(x) + ai(x) = ei,0(1 + xi) + S1(x).
c) a0(x) + ai(x)xi ≡ e0,0 + ei,ix

2i + S2(x)(modxn − 1).
Proof:

a) By the definition of the neighborhood constraints, for all
h ∈ [n], Sh = {�vh, v�� | � ∈ [n], h �= �}, and therefore

ah(1) =
n−1�

�=0,� �=h

eh,� =
�

〈vh,v�〉∈Sh

eh,� = 0.

b)

a0(x) + ai(x) =

= e0,0 + ei,ix
i +

n−1�
h=0

e0,hxh +
n−1�
h=0

ei,hxh

= e0,0 + ei,ix
i +

n−1�
h=0

�
e0,h + ei,h

�
xh

= e0,0 + ei,ix
i+

�
e0,0+ei,0

�
+

�
e0,i + ei,i

�
xi+ S1(x)

= ei,0(1 + xi) + S1(x).

c)

a0(x) + ai(x)xi =

= e0,0 + ei,ix
2i +

n−1�
m=0

e0,mxm +
n−1�
m=0

ei,mxm+i

≡ e0,0 + ei,ix
2i +

n−1�
m=0

e0,mxm

+
n−1�
m=0

ei,〈m−i〉n
xm(modxn − 1)

≡ e0,0 + ei,ix
2i

+
n−1�
m=0

�
e0,m + ei,〈m−i〉n

�
· xm(modxn − 1)

≡ e0,0 + ei,ix
2i+

�
e0,i+ ei,0

�
xi + S2(x)(modxn − 1)

≡ e0,0 + ei,ix
2i + S2(x)(modxn − 1).

If no nodes have failed in the graph G, then we can easily
compute both of these polynomials since we know the val-
ues of all the edges. However in case that v0, vi both failed
this becomes a far less trivial problem. However, using several
properties, that will be proved in this section, we will prove
that it is still possible to compute S1(x) and S2(x) entirely
even though the nodes v0, vi failed. First, we show that it is
possible to compute S1(x) and almost compute S2(x).

Claim 3: Given the two node failures v0, vi, it is possible
to exactly compute the polynomial S1(x).

Proof: By using the result of Claim 2(b) we deduce that

S1(x) = a0(x) + ai(x) = ei,0(1 + xi) + S1(x).
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According to Claim 1(a) we can compute the polynomialS1(x) and due to Claim 1(c) we can compute ei,0. Thus,
we can compute the polynomial S1(x).

According to Claim 1(c) it is possible compute the edge
ei,0 and this calculation requires (n − 3)/2 XOR operations.
Since the calculation of S1(x) requires (n − 2)(n − 4) XOR
operations, we deduce that it takes (n − 3)/2 + (n − 2)
(n − 4) XOR operations to calculate S1(x). Next we show
how to calculate the polynomial S2(x).

Claim 4: It is possible to compute all of the coefficients
of the polynomial S2(x) except for the coefficients of x0 and
x〈2i〉n .

Proof: By using the result of Claim 2(c) we deduce that

S2(x) = a0(x) + ai(x)xi

≡ e0,0 + ei,ix
2i + S2(x)(modxn − 1).

The polynomial S2(x) can be computed due to Claim 1(b).
The only coefficients in this polynomial that we can not com-
pute are x0 and x〈2i〉n , which are dependent on the edges e0,0

and ei,i.
After we compute e0,0 and ei,i, computing S2(x) requires

the same number of XOR operations as we did for S2(x)
which is (n − 1)(n − 5)/2. We now show how to compute
a0(x) and ai(x).

Claim 5: Given the values of e0,0, ei,i, we can compute
the polynomials a0(x) and ai(x), i.e., decode the failed nodes
v0, vi.

Proof: Assume that the values of e0,0, ei,i are known. This
implies that we can compute exactly the polynomials S1(x)
as well as S2(x) and let us denote

S1(x) + S2(x) ≡
n−1�
k=0

skxk(modxn − 1),

that is, the coefficients sk for k ∈ [n] are known. By the def-
inition of S1(x) and S2(x) we have that

S1(x) = a0(x) + ai(x),

S2(x) ≡ a0(x) + ai(x)xi(modxn − 1).

Adding up these two equations results with

S1(x) + S2(x) ≡ ai(x) + ai(x)xi(modxn − 1).

Thus, we get the following n equations with the n variables
ei,k for k ∈ [n]. For all k ∈ [n]\ {i, �2i�n} we get the equation

ei,k + ei,〈k−i〉n
= sk, (8)

for k = i we get the equation

ei,0 = si,

and lastly for k = �2i�n we get the equation

ei,〈2i〉n
= s〈2i〉n

.

Since ei,0 and sk for k ∈ [n] are known and since n is a
prime number, by a simple induction using (8) the edges
ei,〈−i〉n

, ei,〈−2i〉n
, . . . , ei,〈4i〉n

, ei,〈3i〉n
can be calculated.

Hence, at this point all of the coefficients of ai(x) are known
besides ei,i, which assures the claim’s statement for ai(x).

Algorithm 1 Decoding of e0,〈2i〉n

1: Decode e0,i using the Di constraint
2: � = 3
3: sum = e0,i

4: while � < n − 1 do
5: Compute d� = e0,〈�·i〉n

+ ei,〈�·i〉n

6: Compute f� = ei,〈�·i〉n
+ e0,〈(�+1)·i〉n

7: sum = sum + d� + f�

8: � = � + 2
9: e0,〈2i〉n

= sum

Lastly, the polynomial a0(x) can be decoded by the value of
e0,0 and the equality a0(x) = S1(x) + ai(x).

An important observation is that calculating S1(x)+S2(x)
requires n XOR operations. After that, calculating ai(x)
requires n − 3 XORs due to (8). The polynomial a0(x)
requires n more XORs by a0(x) = S1(x) + ai(x). We will
show that e0,0 and ei,i requires 5(n − 3) XORs and so,
computing a0(x) and ai(x) requires

(n − 2)(n − 4) + (n − 3)/2 + (n − 1)(n − 5)/2 + 5(n − 3)

+ 2n + n − 3 =
3
2
n2 − 1

2
n − 9

XOR operations.
Now all that is left to show is the decoding of e0,0, ei,i.

This will be done in two steps; first we will decode the val-
ues of ei,n−i, e0,〈2i〉n

and then we will derive the values of
e0,0, ei,i. The former edges will be decoded as described in
Algorithm 1.

Using a similar algorithm we decode the value ei,n−i as
well. To prove the correctness of Algorithm 1, it suffices that
we prove the following claim.

Claim 6: All steps in Algorithm 1 are possible to compute
and furthermore, sum = e0,〈2i〉n

.
Proof: First we compute the edge e0,i due to Claim 1(c).

Next, the values � receives in the while loop of the algorithm
are 3, 5, . . . , n − 2 and for every value of � it is possible to
compute d� by the neighborhood constraint of S〈�·i〉n

. Simi-
larly, the value of f� is computed by the diagonal constraint
D〈(�+1)·i〉n

.
From the while loop of Algorithm 1, we have that

sum = e0,i +

n−3
2�

k=1

(d2k+1 + f2k+1)

= e0,i +

n−3
2�

k=1

(e0,〈(2k+1)·i〉n
+ e0,〈(2k+2)·i〉n

)

=
n−1�

�=1,� �=2

e0,〈�·i〉n

(a)
=

n−1�
�=1,� �=〈2i〉n

e0,�
(b)
= e0,〈2i〉n

.

Step (a) holds since i is a generator of the group Zn, and thus
{�3i�n , �4i�n , . . . , �(n − 1) · i�n} are all distinct elements in
Zn, and since we also added the term e0,i to this summation.
Lastly, Step (b) holds by the neighborhood constraint of S0

and we get that sum = e0,〈2i〉n
.
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Algorithm 2
1: Compute S1(x), S2(x)
2: Compute S1(x) + S2(x)
3: Solve the linear system of equations induced from the

equality

S1(x) + S2(x) ≡ ai(x) + ai(x)xi(mod(xn − 1))

in order to decode ai(x)
4: Use the equality a0(x) = S1(x)+ai(x) in order to decode

a0(x)

Given the value of ei,0, computing the edge e0,〈2i〉n
in

Algorithm 1 requires 2(n − 3) XORs. Next, the edge ei,i

is calculated using the diagonal constraint D〈2i〉n
, which

requires (n − 3)/2 XORs. The edge e0,0 us calculated in the
same manner and requires 5(n − 3)/2 XOR operations.

To summarize, given the values of ei,i, e0,0, an efficient
decoding procedure with time complexity Θ(n2) is described
in Algorithm 2.

Finally, using the properties above we conclude that it is
possible to decode the polynomials a0(x) and ai(x) using
3
2n2 − 1

2n − 9 XOR operations and the following theorem
is established. Note that the decoding complexity is optimal
since the input size is Θ(n2).

Theorem 2: The decoding Algorithm 2 to the code C2, effi-
ciently corrects any two node failures. Its complexity is Θ(n2),
where n is the number of nodes.

IV. SINGLE NODE REGENERATION

In this section, we follow the recent works on regenerating
codes [7], [14], [18] in order to analyze a sufficient number of
edges we have to read in order to correct a single node erasure
while using the code C2. Our goal is to show that in order to
correct a single node erasure, we are not required to read the
rest of the graph in its entirety. Namely, while the number
of edges in the graph is n(n+1)

2 , we show that it is enough
to read only 5

12n2 + O(n) edges in order to decode a single
node failure. The main result of this section is summarized in
the following theorem.

Theorem 3: For any graph G ∈ C2 with a single node fail-
ure, it suffices to read 5

12n2 +O(n) edges in order to correct
the node failure.

From the symmetry of the code, the algorithm can assume
that v0 is the failed node and it is decoded as follows. The
x edges e0,n−1, . . . , e0,n−x will be corrected using the neigh-
borhood constraints Si, i ∈ [n]. The rest of the edges will be
corrected using the diagonal constraints Di, i ∈ [n]. Through-
out the section, to simplify the calculations, we assume that
when we read the sets Si for i ∈ [n], we also read the self
loop edge ei,i, that is, we read the neighborhood edge set
Ni = Si ∪ {ei,i}. We also assume that the edges of the node
v0 are read at the decoding algorithm as well. Note that these
two assumptions can only weaken the result on the number
of edges that are read in order to decode the node v0 and
they do not affect the statement in Theorem 3. Let R(x) be
the set of edges that are read in order to correct the x edges

Fig. 2. The red part is the edges which are read in order to
decode the edges e0,13, e0,14, . . . , e0,18 by the neighborhood constraints
Si, i ∈ [19] \ [13]. The green and blue parts are additional edges which
are read in order to decode the edges e0,0, e0,1, . . . , e0,12 by the diagonal
constraints Di, i ∈ [13].

e0,n−1, . . . , e0,n−x, that is, R(x) =
�

1�i�x

Nn−i. We begin

with the following claim.
Claim 7: Let k ∈ [n]. For all A ⊆ [n], such that |A| = k,

it holds that | �
t∈A

Nt| = nk − �
k
2

�
.

Proof: Clearly,
�

t∈A |Nt| = nk, and for all distinct
t1, t2 ∈ [n] it holds that |Nt1 ∩ Nt2 | = 1. Note that if k � 3,
for all B ⊆ [n], such that 3 � |B| � k, it holds that

|
�
t∈B

Nt| = 0.

Thus, we deduce that

|
�
t∈A

Nt| =
�
t∈A

|Nt| −
�

t1,t2∈A,t1 �=t2

|Nt1 ∩ Nt2 | = nk −
�

k

2

�
.

By Claim 7 we immediately deduce that |R(x)| = nx−�
x
2

�
.

Example 2: Fig. 2 demonstrates the edges that are read for
the case of n = 19, x = 6 when the failed node is v0.

Next, we prove the following claim where we assume that
x � �n/2�. For convenience, for all i ∈ [n − x], we denote
the set Ai(x) = {en−z,i+z|1 � z � x}. Remember that
Di = {ek,�|k, � ∈ [n], �k + ��n = i}.

Claim 8: The following properties hold:
a) For all i ∈ [n − x], Di ∩ R(x) = Ai(x).
b) For all i ∈ [n − 2x] and 1 � z � x, n − z > i + z.
c) For all i ∈ [n − 2x], |Ai(x)| = x.
d) For all i ∈ [n − x] \ [n − 2x] and 1 � z < �n−i

2 �,
n − z > i + z.

e) For all i ∈ [n − x] \ [n − 2x], |Ai(x)| = �n−i
2 �.

Proof:

a) For all 1 � z � x it holds that en−z,i+z ∈ Nn−z and
thus Ai(x) ⊆ R(x). Clearly, en−z,i+z ∈ Di. Hence,
Ai(x) ⊆ Di ∩R(x) and it is possible to verify the other
direction, so Ai(x) = Di ∩ R(x).

b) It holds that

n − z
(a)

� n − x
(b)
> i + x

(c)

� i + z,

where (a) and (c) hold since 1 � z � x and (b) holds
since i ∈ [n − 2x].
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c) By the definition of Ai(x), for all i ∈ [n − 2x],
|Ai(x)| � x. By (b), for all i ∈ [n−2x] and 1 � z � x,
n − z > i + z. Therefore, every value of z between 1
and x generates a unique edge en−z,i+z . Thus, by the
definition of Ai(x), we deduce that |Ai(x)| = x.

d) It holds that

n − z
(a)
> n −

�n − i

2

� (b)

� i +
�n − i

2

� (c)
> i + z,

where (a) and (c) hold since 1 � z < �n−i
2 � and (b)

holds since n − 2�n−i
2 � � i.

e) By (d), for all i ∈ [n−x]\ [n−2x] and 1 � z < �n−i
2 �,

n−z > i+z. Therefore, every value of z between 1 and
�n−i

2 �−1 generates a unique edge en−z,i+z . Moreover,
for z = �n−i

2 �, n − z � i + z. Thus, |Ai(x)| � �n−i
2 �.

Next, for all �n−i
2 � + 1 � z′ � x, the positive inte-

ger z = n − i − z′ satisfies 1 � z � �n−i
2 �. Hence,

we deduce that the edge ei+z′,n−z′ = ei+z,n−z already
appears in Ai(x), and since we already counted
all the edges ei+z,n−z ∈ Ai(x), we conclude that
|Ai(x)| = �n−i

2 �.

Claim 9: It holds that
n−x−1�
i=n−2x

|Ai(x)| = x2 −
x−1�
i=0

� i

2

�
.

Proof: Note that,
n−x−1�
i=n−2x

|Ai(x)| =
n−x−1�
i=n−2x

�n − i

2

�

=
x−1�
i=0

�n − i − n + 2x

2

�
=

x−1�
i=0

�
x −

� i

2

��

= x2 −
x−1�
i=0

� i

2

�
.

Denote by F (x) the number of edges that we have to read
in order to reconstruct all the edges in N0. Now we are ready
to present the proof of Theorem 3.

Proof of Theorem 3: Note that the value |R(x)| corre-
sponds to the number of edges that are read to decode the x

edges e0,n−x, . . . , e0,n−1, and
�n−x−1

i=0

�
|Di| − |Ai(x)|

�
is

the remaining number of edges in order to decode the first
n − x edges e0,0, . . . , e0,n−x−1. Thus,

F (x) = |R(x)| +
n−x−1�

i=0

�
|Di| − |Ai(x)|

�

= |R(x)| +
n−x−1�

i=0

|Di| −
n−2x−1�

i=0

|Ai(x)| −
n−x−1�
i=n−2x

|Ai(x)|

(a)
= nx −

�
x

2

�
+ (n − x)

n + 1
2

− (n − 2x)x

−
�
x2 −

x−1�
i=0

� i

2

��
.

In the last equation, Step (a) holds since by Claim 7, |R(x)| =
nx− �

x
2

�
, using the fact that for all i ∈ [n], |Di| = n+1

2 , also
by Claim 8(c), for all i ∈ [n − 2x], |Ai(x)| = x, and also
using Claim 9 in which

n−x−1�
i=n−2x

|Ai(x)| = x2 −
x−1�
i=0

� i

2

�
.

Lastly, it is possible to check that applying x = n
3 � pro-

vides that F (n
3 �) � 5

12n2 + n
2 = 5

12n2 + O(n) as required.
Thus it is sufficient to read only 5

12n2 + O(n) edges in
this decoding algorithm for v0. This concludes the proof of
Theorem 3.

V. BINARY TRIPLE-NODE-ERASURE-CORRECTING CODES

In this section we present a construction of binary triple-
node-erasure-correcting codes for undirected graphs. Let n �
5 be a prime number such that 2 is a primitive number in Zn.
Let G = (Vn, L) be a graph with n vertices. We will use in
this construction the edge sets Sh, Dm for h ∈ [n], m ∈ [n]
which were defined in (3),(4), respectively. In addition, for
s ∈ [n] we define the edge set

Ts = {�vk, v��|k, � ∈ [n], �k + 2��n = s, k �= �}.
In this construction we impose the same constraints from Con-
struction 1, that is, the sets Sh will be used to represent parity
constraints on the neighborhood of each node, the sets Dm

will represent parity constraints on the diagonals with slope
one of AG, and furthermore the sets Ts will represent parity
constraints on the diagonals with slope two of AG.

Example 3: In Fig. 3 we present the sets Ts, s ∈ [11] of a
graph G = (V11, L) on its labeling matrix AG, and its lower-
triangle-labeling matrix A′

G.
We are now ready to show the following construction.
Construction 2: For all prime number n � 5 where 2 is

primitive in Zn, let C3 be the following code:

C3 =

⎧⎪⎨⎪⎩G = (Vn, L)









(a)

�
〈vi,vj〉∈Sh

ei,j = 0, h ∈ [n]
(b)

�
〈vi,vj〉∈Dm

ei,j = 0, m ∈ [n]
(c)

�
〈vi,vj〉∈Ts

ei,j = 0, s ∈ [n]

⎫⎪⎬⎪⎭.

Note that the code C3 is a subcode of the code C2 and for
any graph G over the binary field, by (5) there are only n− 1
independent constraints (a) in Construction 2, and by the same
principle,�
s∈[n]

�
〈vi,vj〉∈Ts

ei,j =
n−1�
s=0

n−1�
�=0

� �=〈3−1s〉n

e〈s−2�〉n,� = 2
n−1�
h=0

h−1�
�=0

eh,� = 0.

(9)

Therefore the code C3 has at most 3n−2 linearly independent
constraints which implies that its redundancy is not greater
than 3n − 2. Since we will prove in Theorem 4 that C3 is a
triple-node-correcting codes, according to the Singleton bound
we get that the code redundancy is at most a single bit away
from optimality. Our main result in this section is showing the
following theorem.
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Fig. 3. The slope-two-diagonal constraints over undirected graphs, represented on the labeling matrix and the lower-triangle-labeling matrix.

Theorem 4: For all prime number n � 5 such that 2 is
primitive in Zn, the code C3 is a triple-node-erasure-correcting
code. It is at most a single bit away from optimality.

Proof: Assume on the contrary that there is a graph
G = (Vn, L) ∈ C3 where w(G) � 3. We prove here only
the case that w(G) = 3 since the case of w(G) � 2 holds
according to Theorem 2. By the symmetry of Construction 2,
it is sufficient to assume that a vertex cover W of G is
W = {v0, vi, vj} for distinct i, j ∈ [n] \ {0}, while all other
cases hold by relabeling the indices 0, i, j. We will show that
G = G0.

Denote by Hi,j the set

Hi,j = {i, j, �2i�n, �2j�n, �2i + j�n, �2j + i�n}, (10)

and for all s ∈ [n], denote by hi,j(s) the sum

hi,j(s) = e0,s + ei,〈s−2i〉n
+ ej,〈s−2j〉n

(11)

+ e0,〈2−1s〉n
+ ei,〈2−1(s−i)〉n

+ ej,〈2−1(s−j)〉n
.

The next claim presents several useful properties.
Claim 10: The following properties hold on the graph G:

a) For all h ∈ [n] \ {0, i, j}, e0,h + ei,h + ej,h = 0.
b) For all m ∈ [n] \ {i, j, �i + j�n}, e0,m + ei,〈m−i〉n

+
ej,〈m−j〉n

= 0.
c) e0,i + ej,〈i−j〉n

= e0,j + ei,〈j−i〉n
= ej,i + e0,〈i+j〉n

= 0.
d) For all s ∈ [n] \ Hi,j , it holds that hi,j(s) = 0.
e) It holds that�

s∈Hi,j

hi,j(s)xs

≡ ei,0(xi+x2i) + ej,0(xj + x2j) + ej,i(x2i+j + xi+2j)
(modxn − 1).

Proof: We remind that for all k, � ∈ [n] \ {0, i, j},
ek,� = 0.

a) We know that for all h ∈ [n] \ {0, i, j}, s ∈ [n] \ {h},
�vs, vh� ∈ Sh, and therefore by the definition of the
constraint (a) in Construction 2 we get that

0 =
�

〈vs,vh〉∈Sh

es,h =
n−1�

s=0,s�=h

es,h = e0,h + ei,h + ej,h.

b) For all m ∈ [n] \ {i, j, i + j}, denote by D′
m the set

D′
m = Dm\��v0, vm�, �vi, v〈m−i〉n

�, �vj , v〈m−j〉n
�� .

Therefore, we have that

0 =
�

〈vj ,v〈m−j〉n 〉∈Dm

ej,〈m−j〉n
=

�
〈vj ,v〈m−j〉n 〉∈D′

m

ej,〈m−j〉n
+ e0,m+ ei,〈m−i〉n

+ ej,〈m−j〉n
,

and since es,k = 0 for all �vs, vk� ∈ D′
m, we get that

e0,m + ei,〈m−i〉n
+ ei,〈m−i〉n

= 0.
c) Similarly to (b), for m = i we get that �v0, vm� =

�vi, v〈m−i〉n
� and therefore by the definition of the

constraint (b) in Construction 2 we get that e0,i +
ej,〈i−j〉n

= 0. It can be similarly verified that for m = j
we get that e0,j + ei,〈j−i〉n

= 0 and for m = �i + j�n
we get that ej,i + e0,〈i+j〉n

= 0.
d) For all s ∈ [n], let Bs be the following edge set

Bs = {�v0, vs�, �vi, v〈s−2i〉n
�, �vj , v〈s−2j〉n

�, (12)

�v0, v〈2−1s〉n
�, �vi, v〈2−1(s−i)〉n

�, �vj , v〈2−1(s−j)〉n
�}.

It can be readily verified that for s /∈ {0, �3i�n, �3j�n}∪
Hi,j , |Bs| = 6. For all k ∈ {0, i, j} and for all
s ∈ [n]\{0, �3i�n, �3j�n} it holds that k �= �s−2k�n and
therefore, if �vk, v〈s−2k〉n

� ∈ Bs then �vk, v〈s−2k〉n
� ∈

Ts, i.e., Bs ⊆ Ts. Therefore, by the definition of the
diagonal constraint (c) in Construction 2 we deduce
that for all s /∈ {0, �3i�n, �3j�n} ∪ Hi,j ,

0 =
�

〈vk,vm〉∈Ts

ek,m =
�

〈vk,vm〉∈Bs

ek,m = hi,j(s).

Moreover, for s = 0, �v0, vs� = �v0, v〈2−1s〉n
� =

�v0, v0� and therefore |B0| = 5. It can be similarly ver-
ified that |B〈3i〉n

| = |B〈3j〉n
| = 5. Notice that for all

k ∈ {0, i, j}, s ∈ {0, �3i�n, �3j�n}, if �vk, v〈s−2k〉n
� ∈

Bs then it holds that �vk, v〈s−2k〉n
� ∈ Ts ∪ {�vk, vk�},

i.e., Bs ⊆ Ts ∪ {�vk, vk�}. Therefore again, by the def-
inition of the diagonal constraint (c) in Construction 2
we deduce that for all s ∈ {0, �3i�n, �3j�n},

0 =
�

〈vk,vm〉∈Ts∪{〈v〈3−1s〉n
,v〈3−1s〉n

〉}
ek,m+ e〈3−1s〉n,〈3−1s〉n

=
�

〈vk,vm〉∈Bs

ek,m + e〈3−1s〉n,〈3−1s〉n
= hi,j(s).

e) For all s ∈ Hi,j let Bs be the edge set from (12). Notice
that for s = i we get that �v0, vs� = �vi, v〈2−1(s−i)〉n

�,
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for s = �2i�n we get that �vi, v〈s−2i〉n
� = �v0, v〈2−1s〉n

�,
and for s = �2i + j�n we get that �vi, v〈s−2i〉n

� =
�vj , v〈2−1(s−j)〉n

�, and therefore for all s ∈ Hi,j ,
|Bs| = 5. Similarly to the proof of (d), the edge set Bs

consists of all the edges incident to at least one of the
nodes v0, vi and vj in Ts, i.e., Bs ⊆ Ts. Therefore we
deduce that for s ∈ {i, j},

es,0 =
�

〈vk,vm〉∈Ts

ek,m+ es,0 =
�

〈vk,vm〉∈Bs

ek,m+es,0= hi,j(s),

and the coefficient of the monomial xi, xj in the poly-
nomial

�
s∈Hi,j

hi,j(s)xs is ei,0, ej,0, respectively. The
proof that the coefficient of x2i, x2j , x2i+j , x2j+i in this
polynomial is ei,0, ej,0, ej,i, ej,i is similar, respectively.

From this claim we deduce the following equations.
n−1�

h=1,h/∈{i,j}

�
e0,h + ei,h + ej,h

�
xh = 0, (13)

n−1�
m=0,m/∈{i,j,〈i+j〉n}

�
e0,m + ei,〈m−i〉n

+ ej,〈m−j〉n

�
xm = 0,

(14)
n−1�

s=0,s/∈Hi,j

hi,j(s)xs = 0. (15)

Next, let a0(x), ai(x) and aj(x) be the neighborhood
polynomials without self-loops of G. The following lemma
presents a few equalities that will be used to decode the
values of a0(x), ai(x) and aj(x).

Lemma 5: The following properties hold:
a) a0(x) + ai(x) + aj(x)

= ei,0(1 + xi) + ej,0(1 + xj) + ej,i(xi + xj).
b) a0(x) + ai(x)xi + aj(x)xj

≡ e0,0 + ei,ix
2i + ej,jx

2j + ei,0x
i + ej,0x

j + ej,ix
i+j

( mod xn−1).
c) a0(x)+ai(x)x2i+aj(x)x2j +a2

0(x)+a2
i (x)xi+a2

j(x)xj

≡ ei,0(xi + x2i) + ej,0(xj + x2j) + ej,i(x2i+j + xi+2j)
( mod xn−1).

Proof:

a) According to the neighborhood-polynomials definition
we can write

a0(x) + ai(x) + aj(x) =

=
�

h∈{0,i,j}
eh,hxh+

n−1�
h=0

e0,hxh+
n−1�
h=0

ei,hxh+
n−1�
h=0

ej,hxh

=
�

h∈{0,i,j}
eh,hxh +

n−1�
h=0

�
e0,h + ei,h + ej,h

�
xh

= e0,0 + ei,ix
i + ej,jx

j +
�
e0,0 + ei,0 + ej,0

�
+

�
e0,i + ei,i + ej,i

�
xi +

�
e0,j + ei,j + ej,j

�
xj

+
n−1�

h=1,h/∈{i,j}

�
e0,h + ei,h + ej,h

�
xh

(a)
= ei,0(1 + xi) + ej,0(1 + xj) + ej,i(xi + xj),

where Step (a) holds due to (13).

b)

a0(x) + ai(x)xi + aj(x)xj =

=
�

m∈{0,i,j}
em,mx2m +

n−1�
m=0

e0,mxm +
n−1�
m=0

ei,mxm+i

+
n−1�
m=0

ej,mxm+j ≡
�

m∈{0,i,j}
em,mx2m+

n−1�
m=0

e0,mxm

+
n−1�
m=0

ei,〈m−i〉n
xm+

n−1�
m=0

ej,〈m−j〉n
xm(modxn − 1)

=
�

m∈{0,i,j}
em,mx2m+

n−1�
m=0

�
e0,m+ei,〈m−i〉n

+ej,〈m−j〉n

�
xm

= e0,0 + ei,ix
2i + ej,jx

2j

+
�
e0,i+ei,0+ej,〈i−j〉n

�
xi+

�
e0,j+ei,〈j−i〉n

+ej,0

�
xj

+
�
e0,〈i+j〉n

+ ei,j + ej,i

�
xi+j

+
n−1�

m=0,m/∈{i,j,〈i+j〉n}

�
e0,m+ei,〈m−i〉n

+ ej,〈m−j〉n

�
xm

(a)
= e0,0+ei,ix

2i + ej,jx
2j + ei,0x

i + ej,0x
j +ej,ix

i+j ,

where Step (a) holds due to (14).
c)

a0(x)+ai(x)x2i+aj(x)x2j+a2
0(x)+a2

i (x)xi +a2
j(x)xj

=
�

s∈{0,i,j}
es,sx

3s+

n−1�

s=0

e0,sx
s+

n−1�

s=0

ei,sx
s+2i+

n−1�

s=0

ej,sx
s+2j

+
�

s∈{0,i,j}
es,sx

3s+

n−1�

s=0

e0,sx
2s+

n−1�

s=0

ei,sx
2s+i+

n−1�

s=0

ej,sx
2s+j

≡
n−1�

s=0

e0,sx
s +

n−1�

s=0

ei,〈s−2i〉nxs +

n−1�

s=0

ej,〈s−2j〉nxs

(modxn − 1)

+

n−1�

s=0

e0,〈2−1s〉n
xs+

n−1�

s=0

ei,〈2−1(s−i)〉n
xs+

n−1�

s=0

ej,〈2−1(s−j)〉n
xs

=

n−1�

s=0

hi,j(s)x
s =
�

s∈Hi,j

hi,j(s)x
s +

n−1�

s=0,s/∈Hi,j

hi,j(s)x
s

(a)
= ei,0(x

i+x2i)+ej,0(x
j + x2j) + ej,i(x

2i+j + xi+2j),

where Step (a) holds due to (15).

Notice that by setting x = 1 in the equation of Lemma 5(b)
we get that

e0,0 + ei,i + ej,j + ei,0 + ej,0 + ej,i = 0. (16)

Using the result of Lemma 5 we get the next three equali-
ties. The proof of this lemma is given in Appendix A

Lemma 6: The following equations hold
a) aj(x)(1 + xi) + a2

j(x) ≡ ej,j(1 + xj)(xi + xj)
( mod xn−1).

b) ai(x)(1 + xj) + a2
i (x) ≡ ei,i(1 + xi)(xi + xj)

( mod xn−1).
c) a0(x)(xi + xj) + a2

0(x) ≡ e0,0(1 + xi)(1 + xj)
( mod xn−1).
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Our next step is showing that the value of at least one
of the self-loops ej,j, ei,i or e0,0 is zero. For this goal,
we show another important claim where its proof is given in
Appendix B.

Lemma 7: It holds that e0,0 + ei,i + ej,j = ej,0 + ej,0 +
ej,i = 0.

By Lemma 7, we know that at least one of the self-loops
ej,j , ei,i or e0,0 is zero, and our next step is showing that one
of the polynomials a0(x), ai(x) or aj(x) is zero. We assume
that ej,j is zero, while the proof of the other two cases will
be similar based upon Lemma 6(b) and 6(c). By Lemma 6(a),
we get that

aj(x)[1 + xi + aj(x)] ≡ 0(modxn − 1).

Denote by p(x) the polynomial p(x) = 1+xi+aj(x) which is
clearly in Rn. Since Mn(x) is irreducible, either Mn(x)|aj(x)
or Mn(x)|p(x). Since 1 + x|aj(x) and 1 + x|p(x) it is possi-
ble to derive that either aj(x) = 0 or p(x) = 0. We will show
that p(x) �= 0 which will lead to the fact that aj(x) = 0.
Assume on a contrary that p(x) = 0. Therefore we deduce
that aj(x) = 1 + xi and thus ej,i = ej,0 = 1. Notice that in
this case, by Lemma 7 we have that ei,0 = 0. By Lemma 5(a)
we deduce that

a0(x) + ai(x) + 1 + xi

= a0(x) + ai(x) + aj(x)

= ei,0(1 + xi) + ej,0(1 + xj) + ej,i(xi + xj)

= (1 + xj) + (xi + xj) = 1 + xi,

and therefore a0(x) + ai(x) = 0. Again, by Lemma 7 we
know that e0,0 + ei,i + ej,j = 0 and therefore, since ej,j = 0,
we get that ei,i = e0,0. By Lemma 5(b) we deduce that

a0(x) + ai(x)xi + (1 + xi)xj

= a0(x) + ai(x)xi + aj(x)xj

≡ e0,0 + ei,ix
2i + ej,jx

2j + ei,0x
i + ej,0x

j

+ ej,ix
i+j(modxn − 1)

≡ e0,0 + ei,ix
2i + xj + xi+j(modxn − 1)

≡ e0,0 + ei,ix
2i + (1 + xi)xj(modxn − 1),

and therefore a0(x) + ai(x)xi ≡ e0,0 + ei,ix
2i(modxn − 1).

Next, we show an important claim.
Claim 11: If

a0(x) + ai(x) = 0,

a0(x) + ai(x)xi ≡ e0,0 + ei,ix
2i(modxn − 1),

then a0(x) = ai(x) = 0.
Proof: The summation of these equations results with

ai(x)(1 + xi) ≡ e0,0 + ei,ix
2i(modxn − 1).

It holds that e0,0 = ei,i by applying x = 1 in the last equation.
Assume that e0,0 = ei,i = 1, so we get that

ai(x)(1 + xi) ≡ 1 + x2i(modxn − 1).

Since 1 + x2i = (1 + xi)2, it holds that

(1 + xi)(1 + xi + ai(x)) ≡ 0(modxn − 1).

Denote by p(x) the polynomial p(x) = 1 + xi + ai(x), and
since p(1) = 0, it holds that 1 + x|p(x). As stated in (2),
it holds that gcd(xi + 1, Mn(x)) = 1, and since

(1 + xi)p(x) = (xn − 1)s(x) = Mn(x)(x + 1)s(x)

for some polynomial s(x) over F2, we deduce that
Mn(x)|p(x). Therefore we get that xn − 1|p(x), however
p(x) ∈ Rn, and so we deduce that p(x) = 0, that is,
ai(x) = 1 + xi. This results with a contradiction since the
coefficient of xi in ai(x) is 0. Thus e0,0 = ei,i = 0 and

ai(x)(1 + xi) ≡ 0(modxn − 1).

Notice that ai(x) ∈ Rn and by Claim 2(a) it also holds
ai(1) = 0. Since gcd(xi + 1, Mn(x)) = 1, we derive that
xn − 1|ai(x) and since ai(x) ∈ Rn, we immediately get that
ai(x) = 0. Finally, since a0(x) + ai(x) = 0, we also get that
a0(x) = 0, and that completes the proof.

Using Claim 11 we get a contradiction since ej,i =
ej,0 = 1. Therefore, it holds that aj(x) = 0 and since C3 is
a sub code of C2, we again get that a0(x) = ai(x) = 0, and
that concludes the proof.

Next, it is proved that the redundancy of the code C3 is
exactly 3n − 2. Every linear code over undirected graphs
U-[n, k]Fq can be represented by a parity-check matrix of
dimension r × �

n+1
2

�
over Fq , when r �

�
n+1

2

� − k. Let
H be the parity check matrix of the code C3 of dimension
3n × �

n+1
2

�
, which is constructed as follows. The first n

rows of H, denoted by sh, h ∈ [n], are formed by the neigh-
borhood constraints Sh, h ∈ [n]. The next set of n rows,
denoted by dm, m ∈ [n], are formed by the diagonal con-
straints Dm, m ∈ [n]. Lastly, the last set of n rows, denoted
by ts, s ∈ [n], are formed by the constraints Ts, s ∈ [n]. For a
vector u ∈ F

n
2 denote by w(u) its Hamming weight, i.e., the

number of non-zero entries in u.
Theorem 8: The redundancy of the code C3 is 3n − 2.
Proof: By the Singleton bound in (1), the redundancy of

C3 is at least 3n− 3 and therefore dim(kerH) � 3. Our goal
is to show that dim(kerH) = 2. Let 0,1 be a length-n vector
of zeros, ones, respectively. Denote by u0, u1 the following
vector of length 3n.

u0 = (1,0,0), u1 = (0,0,1),

respectively. By (5), (9), the sum of the first, last n rows of H
is zero, and thus it holds that the vector u0, u1 is in kerH,
respectively. Clearly u0 and u1 are linearly independent
and therefore dim(kerH) � 2. Furthermore, every self-loop
em,m, m ∈ [n] appears only in the constraint Dm, m ∈ [n],
and thus only vectors of the form (x,0, y) can be in kerH,
where x, y is a binary vector of length n, respectively.

Now, assume in the contrary that dim(kerH) = 3.
Therefore, we can deduce that there is another vector
u2 = (x,0, y) ∈ kerH which is not in span{u0, u1}. Since
the redundancy of the double-node-erasure-correcting code
C2 is 2n−1, it holds that every n−1 rows of the first n rows
of H are linearly independent. Hence, y /∈ {0,1} and it can
be similarly proved that x /∈ {0,1}. Another observation is
that we can choose a vector x such that w(x) � (n − 1)/2,
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since otherwise we can choose a vector x′ such that
(x′,0, y) = (x,0, y) + u0 which is also in kerH and
w(x′) � (n−1)/2. The same property holds for the vector y
and thus it is possible to choose vectors x0 and y0 such that
w(x0),w(y0) � (n − 1)/2 and u2 = (x0,0, y0) ∈ kerH.
Let x1, y1 be a vector which results from a single right cyclic
shift of the vector x0, y0. By symmetry of the construction
we can relabel the nodes of every graph in the code, and
deduce that the vector u3 = (x1,0, y1) is also in kerH.
Since w(x0) = w(x1) � (n − 1)/2, there are indices i, j
such that (x0)i = 1, (x1)i = 0 and (x0)j = 0, (x1)j = 1 and
therefore, the vector u3 is not in span{u0, u1, u2}. Thus
dim(kerH) � 4 and we get a contradiction.

VI. DECODING OF THE

TRIPLE-NODE-ERASURE-CORRECTING CODES

In Section V, we proved that the code C3 can correct the
failure of any three nodes in the graph. Note that whenever
three nodes fail, the number of unknown variables is 3n − 3,
and so a naive decoding solution for the code C3 is to solve the
linear equation system of 3n − 2 constraints with the 3n − 3
variables. In this section we show how to efficiently solve this
linear equation system for C3 with time complexity Θ(n2).
Clearly, this time complexity is optimal since the complexity
of the input size of the graph is Θ(n2).

Assume that G is a graph in the code C3 and that the failed
nodes are v0, vi, and vj . Let v be a binary vector of length
3n − 2 denoted by

v =(e0,0, e0,1, . . . , e0,n−1, ei,1, . . . , ei,n−1,

ej,1, . . . , ej,i−1, ej,i+1, . . . , ej,n−1).

Using the 3n − 2 constraints in the code C3, it is possible to
form the linear equation system as

H · v = s. (17)

Here, H is a binary (3n−2)×(3n−3) matrix that its columns
are indexed by the edges in v and its rows indexed by the con-
straints S0, S1, . . . Sn−2, D0, D1, . . . , Dn−1, T0, T1, . . . , Tn−2,
and s is a syndrome vector of length 3n − 2, indexed by the
same order of the 3n − 2 constraints, that is calculated from
the surviving edges. In this case, the binary matrix has H
has O(n) non zero entries (three rows with n − 1 one’s and
all other rows with at most 6 one’s) and furthermore, it has a
unique solution since we proved the minimum distance of the
code is four. Hence, according to Wiedemann [19], the vector
v can be found in time complexity O(n2).

VII. CONCLUSION

In this paper we continued our research on codes over
graphs from [23], [24]. We presented an optimal binary con-
struction for codes correcting a failure of two nodes together
with a decoding procedure that its complexity is optimal.
We then extended this construction for triple-node-erasure-
correcting codes which are at most a single bit away from
optimality with respect to the Singleton bound.

APPENDIX A

Remember that i and j are indices such that
i, j ∈ [n] \ {0}.

Lemma 6: The following equations hold

a) aj(x)(1 + xi) + a2
j(x) ≡ ej,j(1 + xj)(xi + xj)

( mod xn−1).
b) ai(x)(1 + xj) + a2

i (x) ≡ ei,i(1 + xi)(xi + xj)
( mod xn−1).

c) a0(x)(xi + xj) + a2
0(x) ≡ e0,0(1 + xi)(1 + xj)

( mod xn−1).
Proof: We only prove equation a while the other two hold

by relabelling of the construction. First we prove two useful
properties on polynomials.

Claim 12: The following equation holds

(x2i + x2j)(1 + xi) + (1 + x2j)(1 + xi)x2i

+ (x2i + x2j)2 + (1 + x2j)2xi

= (1 + xi)(1 + x2j)(x2i + x2j) + (1 + xi)3xi.

Proof: This equation can be rewritten by

(x2i + x2j)(1 + xi) + (1 + x2j)(1 + xi)x2i

+ (1 + xi)(1 + x2j)(x2i + x2j) + (1 + xi)3xi

= (x2i + x2j)2 + (1 + x2j)2xi,

or,

(1 + xi)[(x2i + x2j) + (1 + x2j)x2i

+ (1 + x2j)(x2i + x2j) + (1 + xi)2xi]

= (x2i + x2j)2 + (1 + x2j)2xi.

Moreover, it can be rewritten by

(1 + xi)[x2i + x2j + x2i + x2j+2i+

+ (1 + x2j)(x2i + x2j) + xi + x3i]

= (x2i + x2j)2 + (1 + x2j)2xi,

or

(1 + xi)[x2j + x2j+2i

+ x2i + x2j + x2i+2j + x4j + xi + x3i]

= x4i + x4j + xi + x4j+i.

We finally rewrite it by

(1 + xi)(x2i + x4j + xi + x3i)

= x4i + x4j + xi + x4j+i,

which holds since (1 + xi)(x2i + x4j + xi + x3i) =
x2i + x4j + xi + x3i + x3i + x4j+i + x2i + x4i = x4i + x4j +
xi + x4j+i.

Let e0,0, ei,i, ej,j be the label on the self-loop of node
v0, vi, vj , respectively, and let ei,0, ej,0, ej,i be the label on
the edge �vi, v0�, �vj , v0�, �vj , vi�, respectively. We define the
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following three polynomials

p(x) =ei,i(1 + x2i) + ej,j(1 + x2j) + ej,i(1 + xi)(1 + xj),
(18)

q(x) =e0,0(1 + x2i)+ej,j(x2i+x2j)+ej,0(xi + xj)(1 + xi),
(19)

s(x) =ei,0(xi + x2i) + ej,0(xj + x2j) + ej,i(x2i+j + xi+2j).
(20)

Claim 13: The following equation holds

q(x)(1 + xi) + p(x)(1 + xi)x2i + q2(x) + p2(x)xi

+ s(x)(1 + xi)2 = ej,j(1 + xi)(1 + x2j)(x2i + x2j).

Proof: By the definition,

q(x)(1 + xi) + p(x)(1 + xi)x2i + q2(x) + p2(x)xi

+ s(x)(1 + xi)2 =

[e0,0(1+x2i)+ej,j(x2i+x2j)+ej,0(xi+xj)(1+xi)](1+xi)

+ [ei,i(1 + x2i) + ej,j(1 + x2j) + ej,i(1 + xi)(1 + xj)]

· (1 + xi)x2i

+ [e0,0(1 + x2i) + ej,j(x2i + x2j) + ej,0(xi + xj)(1 + xi)]2

+ [ei,i(1 + x2i) + ej,j(1 + x2j) + ej,i(1 + xi)(1 + xj)]2xi

+ [ei,0(xi + x2i) + ej,0(xj + x2j) + ej,i(x2i+j + xi+2j)]

· (1 + xi)2

= e0,0(1 + xi)3xi + ei,i[(1 + xi)3x2i + (1 + x)4ixi]

+ ei,0(xi + x2i)(1 + xi)2

+ ej,0(1 + xi)2[(xi + xj) + (xi + xj)2 + (xj + x2j)]

+ ej,i(1+xi)2[(1+xj)x2i+(1 + xj)2xi + (x2i+j + xi+2j)]

+ ej,j [(x2i + x2j)(1 + xi) + (1 + x2j)(1 + xi)x2i

+ (x2i + x2j)2 + (1 + x2j)2xi]
(a)
= e0,0(1 + xi)3xi + ei,i(1 + xi)3xi + ei,0(1 + xi)3xi

+ ej,0(1 + xi)2(xi + x2i)

+ ej,i(1 + xi)2[x2i + x2i+j + xi + xi+2j + x2i+j + xi+2j ]

+ ej,j [(1 + xi)(1 + x2j)(x2i + x2j) + (1 + xi)3xi]

= e0,0(1 + xi)3xi + ei,i(1 + xi)3xi + ei,0(1 + xi)3xi

+ ej,0(1 + xi)3xi + ej,i(1 + xi)3xi

+ ej,j [(1 + xi)(1 + x2j)(x2i + x2j) + (1 + xi)3xi]
(b)
= ej,j(1 + xi)(1 + x2j)(x2i + x2j),

where Step (a) holds since by Claim 12,

ej,j[(x2i + x2j)(1 + xi) + (1 + x2j)(1 + xi)x2i

+ (x2i + x2j)2 + (1 + x2j)2xi]

= ej,j[(1 + xi)(1 + x2j)(x2i + x2j) + (1 + xi)3xi],

and Step (b) holds since by equation (16) e0,0 + ei,i + ej,j +
ei,0 + ej,0 + ej,i = 0.

Summing the equation of Lemma 5(a) with the equation
of Lemma 5(b) we get

ai(x)(1 + xi) + aj(x)(1 + xj) ≡ e0,0 + ei,ix
2i + ej,jx

2j

+ ei,0 + ej,0 + ej,i(xi + xj + xi+j)(modxn − 1),

and since e0,0 = ei,i + ej,j + ei,0 + ej,0 + ej,i we rewrite it as

ai(x)(1 + xi) + aj(x)(1 + xj) (21)

≡ ei,i(1 + x2i) + ej,j(1 + x2j) + ej,i(1 + xi)(1 + xj)
= p(x)(modxn − 1).

Multiplying the equation of Lemma 5(a) by xi and adding it
to the equation of Lemma 5(b) we get

a0(x)(1 + xi) + aj(x)(xi + xj) ≡ e0,0 + ei,ix
2i + ej,jx

2j

+ ei,0x
2i + ej,0(xi + xj + xi+j) + ej,ix

2i(modxn − 1),

and since ei,i = e0,0 + ej,j + ei,0 + ej,0 + ej,i we rewrite it as

a0(x)(1 + xi) + aj(x)(xi + xj) ≡ e0,0(1 + x2i) (22)

+ ej,j(x2i + x2j) + ej,0(xi + xj)(1 + xi)
= q(x)(modxn − 1).

Next, we multiply the equation of Lemma 5(c) by (xi + 1)2.
In the left-hand side of this equation we set the value
of a0(x)(1 + xi) from equation (22) and the value of
ai(x)(1 + xi) from equation (21) to get that

a0(x)(1 + xi)2 + ai(x)(1 + xi)2x2i + aj(x)(1 + xi)2x2j

+ a2
0(x)(1 + xi)2 + a2

i (x)(1 + xi)2xi + a2
j(x)(1 + xi)2xj

≡ [aj(x)(xi + xj) + q(x)](1 + xi)

+ [aj(x)(1 + xj) + p(x)](1 + xi)x2i

+ [aj(x)(xi + xj) + q(x)]2

+ [aj(x)(1 + xj) + p(x)]2 xi

+ aj(x)(1 + xi)2x2j + a2
j(x)(1 + xi)2xj(modxn − 1).

The right-hand side of this equation is

s(x)(1 + xi)2(modxn − 1).

Now, we proceed with the calculations, while having on the
left-hand side only the values that depend on aj(x), so we
receive that,

aj(x)[(xi+xj)(1+xi) + (1+xj)(1+xi)x2i + (1 + xi)2x2j ]

+ a2
j(x)[(xi + xj)2 + (1 + xj)2xi + (1 + xi)2xj ]

≡ aj(x)(1 + xi)(xi + xj + x2i + x2j + x2i+j + xi+2j)

+ a2
j(x)(xi + xj + x2i + x2j + x2i+j + xi+2j)(modxn − 1)

≡ aj(x)(1 + xi)2(1 + xj)(xi + xj)

+ a2
j(x)(1 + xi)(1 + xj)(xi + xj)(modxn − 1).

The right-hand side of the last equation is rewritten to be

q(x)(1 + xi) + p(x)(1 + xi)x2i + q2(x) + p2(x)xi (23)

+ s(x)(1 + xi)2(modxn − 1),

which is equal to ej,j(1+xi)(1+x2j)(x2i+x2j) by Claim 13.
Combining both sides together we deduce that

aj(x)(1 + xi)2(1 + xj)(xi + xj)

+ a2
j(x)(1 + xi)(1 + xj)(xi + xj)

≡ ej,j(1 + xi)(1 + x2j)(x2i + x2j)(modxn − 1),
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which can be rewritten by,

(1 + xi)(1 + xj)(xi + xj)

· [aj(x)(1 + xi) + a2
j(x) + ej,j(1 + xj)(xi + xj)] ≡ 0

(modxn − 1).

Lastly, denote by m(x) the polynomial

m(x) = aj(x)(1 + xi) + a2
j(x) + ej,j(1 + xj)(xi + xj),

where it holds that 1 + x|m(x) since m(1) ≡ 0(modxn − 1).
Notice that the polynomials 1 + xi and 1 + xj are in Rn and
by (2) they are co-prime to Mn(x). Similarly, the polynomial
xi + xj is also in Rn and thus is co-prime to Mn(x) as well.
Therefore, we deduce that Mn(x)|m(x) and m(x) ≡ 0(mod
xn − 1), which leads to,

aj(x)(1 + xi) + a2
j(x) ≡ ej,j(1 + xj)(xi + xj)(modxn − 1).

APPENDIX B

Lemma 7: It holds that e0,0 + ei,i + ej,j = ej,0 + ej,0 +
ej,i = 0.

Proof: We start with proving several important claims.
Claim 14: If

aj(x)(1 + xi) + a2
j (x) (24)

≡ ej,j(xj + xi+j + x2j)(modxn − 1),

then for all s ∈ [n]

ej,s = ej,〈2s〉n
+ ej,〈2s−i〉n

, (25)

and for all 1 � t � n − 1 it holds that

ej,s =
2t−1�
�=0

ej,〈2ts−�i〉n
. (26)

Proof: First notice that by calculating the coeffi-
cient of x〈2s〉n of equation (24) for all s ∈ [n] such that
�2s�n /∈ {j, �i + j�n, �2j�n} it holds that

ej,〈2s〉n
+ ej,〈2s−i〉n

+ ej,s = 0.

For �2s�n = j, �2s�n = �i + j�n, �2s�n = �2j�n, since the
coefficient of xj , x〈i+j〉n , x〈2j〉n in aj(x), aj(x)xi, a2

j(x) is
zero, respectively, we deduce that also in this case we can
write

ej,〈2s〉n
+ ej,〈2s−i〉n

+ ej,s = 0,

which proves the correctness of equation (25).
Next, we prove the rest of this claim by induction on t

where 1 � t � n − 1.
Base: for t = 1, as we showed above, by calculating the coef-
ficient of x〈2s〉n of equation (24) we deduce that for all s ∈ [n]
it holds

ej,s = ej,〈2s〉n
+ ej,〈2s−i〉n

.

Step: assume that the claim holds for all τ where 1 � τ �
t − 1 � n − 2, that is,

ej,s =
2τ−1�
�=0

ej,〈2τ s−�i〉n
.

By the correctness of equation (25) and replacing s with
�2τs − �i�n we deduce that

ej,〈2τ s−�i〉n
= ej,〈2(2τ s−�i)〉n

+ ej,〈2(2τ s−�i)−i〉n
,

and for τ = t − 1 we get that

ej,s =
2t−1−1�

�=0

ej,〈2t−1s−�i〉n

=
2t−1−1�

�=0

�
ej,〈2ts−2�i〉n

+ ej,〈2ts−2�i−i〉n

�
=

2t−1�
�=0

ej,〈2ts−�i〉n
.

For a, t, s ∈ [n] denote by Ia,t,s the number

Ia,t,s = |{(τ, �) | �2τs − �a�n = �a2−1�n, τ ∈ [t], � ∈ [2τ ]}|.
Corollary 9: For all 1 � t � n − 1 and s ∈ [n] it holds

that

ej,s =
2t−1�
�=0

ej,〈2ts−�i〉n
+ ej,jIi,t,s.

Proof: By adding the monomial ej,jx
i to equation (24)

we get the same expression as in Claim 6(a) on the right-hand
side. According to equation (25), by calculating the coeffi-
cient of x〈2s〉n , for all s ∈ [n] \ {�2−1i�n} we will get ej,s =
ej,〈2s〉n

+ ej,〈2s−i〉n
and for s = �2−1i�n we will get ej,s =

ej,〈2s〉n
+ ej,〈2s−i〉n

+ ej,j . According to the modification of
equation (25) for s = �2−1i�n, we need to similarly adjust
equation (26) by counting the number of times the self-loop
ej,j should be added to the equation. Hence, by the same argu-
ments of the proof of Claim 14, we deduce that

ej,s =
2t−1�
�=0

ej,〈2ts−�i〉n
+ ej,jIi,t,s,

where by definition, Ii,t,s is the number of pairs (τ, �) where
τ ∈ [t] and � ∈ [2τ ] such that �2τs − �i�n = �i2−1�n.

Next we show another important claim.
Claim 15: For all s ∈ [n] it holds

ej,s = ej,〈i−s〉n
+ ej,j(1 + Ii, n−1

2 ,s).

Proof: By Corollary 9 we know that for all t, s ∈ [n],

ej,s =
2t−1�
�=0

ej,〈2ts−�i〉n
+ ej,jIi,t,s.

Since 2 is primitive in Zn, there exists a t for which
�2t�n = n − 1, or equivalently, there is an odd positive num-
ber h such that 2t = hn − 1. It can be verified that in this

Authorized licensed use limited to: Eitan Yaakobi. Downloaded on July 21,2020 at 08:26:36 UTC from IEEE Xplore.  Restrictions apply. 



4102 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 7, JULY 2020

case t = (n − 1)/2. Therefore,

ej,s =
nh−2�
�=0

ej,〈−s−�i〉n
+ ej,jIi, n−1

2 ,s

=
n(h−1)−1�

�=0

ej,〈−s−�i〉n
+

nh−2�
�=nh−n

ej,〈−s−�i〉n
+ ej,jIi, n−1

2 ,s

=
n(h−1)−1�

�=0

ej,〈−s−�i〉n
+

n−2�
�=0

ej,〈−s−�i〉n
+ ej,jIi, n−1

2 ,s

(a)
=

n−2�
�=0

ej,〈−s−�i〉n
+ ej,jIi, n−1

2 ,s

= ej,〈i−s〉n
+

n−1�
�=0

ej,〈−s−�i〉n
+ ej,jIi, n−1

2 ,s

(b)
= ej,〈i−s〉n

+ ej,j + ej,jIi, n−1
2 ,s

= ej,〈i−s〉n
+ ej,j(1 + Ii, n−1

2 ,s).

Note that the summation
�n(h−1)−1

�=0 ej,〈−s−�i〉n
expresses the

neighborhood of the jth node (including its self-loop) h − 1
times (i.e., an even number of times). Hence, in Step (a) we
noticed that

�n(h−1)−1
�=0 ej,〈−s−�i〉n

= 0. Step (b) holds since�n−1
�=0 ej,� = ej,j .
Our next goal is to show that the value of Ii, n−1

2 ,i is
even. For that we show two more claims. First, we define for
t ∈ [n+1

2 ] the indicator bit xt as follows:

xt =

	
0 if �2t−1�n < �2−1�n,

1 if �2t−1�n � �2−1�n.

Claim 16: For all 2 � t � n−1
2 ,

Ii,t,i − Ii,t−1,i = 2(Ii,t−1,i − Ii,t−2,i) − xt−1 + xt.

Proof: By definition, for t ∈ [n−1
2 ], Ii,t,i is given by

Ii,t,i = |{(τ, �)|�2τ i − �i�n = �i2−1�n, τ ∈ [t], � ∈ [2τ ]}|
= |{(τ, �)|�2τ − ��n = �2−1�n, τ ∈ [t], � ∈ [2τ ]}|
= |{(τ, m)|�m�n = �2−1�n, τ ∈ [t], 1 � m � 2τ}|.

Therefore, it holds that for all 2 � t � n−1
2

Ii,t,i − Ii,t−1,i = |{m | �m�n = �2−1�n, 1 � m � 2t−1}|
=

�
2t−1

n

�
+ xt =

�
2 ·

�2t−2

n

��
+ xt

= 2
�

2t−2

n

�
+ xt−1 + xt

(a)
= 2(Ii,t−1,i − Ii,t−2,i) − xt−1 + xt,

where in Step (a) we used the property that
Ii,t,i − Ii,t−1,i =

�
2t−2

n

�
+ xt−1.

Claim 17: For all t ∈ [n+1
2 ] it holds that �Ii,t,i +xt�2 = 0.

Proof: We will prove this claim by induction on t ∈ [n−1
2 ].

Base: For t = 0, �20�n = 1 which is smaller than �2−1�n
and indeed Ii,0,i + x0 = 0. Similarly, for t = 1, �21�n = 2
which is smaller than �2−1�n for all prime n � 5 and therefore
again Ii,1,i + x1 = 0 is even.

Step: Assume that the claim holds for t − 1 where
2 � t < n−1

2 . By the induction assumption, we have that
�Ii,t−1,i + xt−1�2 = 0, and by Claim 16 we know that

Ii,t,i − Ii,t−1,i = 2(Ii,t−1,i − Ii,t−2,i) − xt−1 + xt,

or similarly

Ii,t,i = 3Ii,t−1,i − 2Ii,t−2,i − xt−1 + xt,

and therefore

�Ii,t,i + xt�2 = �3Ii,t−1,i + 2Ii,t−2,i + xt−1�2
= �Ii,t−1,i + xt−1�2 = 0.

Corollary 10: The value of Ii, n−1
2 ,i is even.

Proof: By Claim 17, it holds that xn−1
2

= 0 since

�2 n−1
2 −1�n = n−1

2 < n+1
2 = �2−1�n and we immediately

deduce that Ii, n−1
2 ,i is even.

By Claim 15 we know that

ej,s = ej,〈i−s〉n
+ ej,j(1 + Ii, n−1

2 ,s).

Since Ii, n−1
2 ,i is even, we get

ej,i = ej,0 + ej,j .

By symmetry of the construction, we also get

ej,i + ei,0 + ei,i = 0,

ej,0 + ei,0 + e0,0 = 0.

The summation of the last three equalities results with

ej,j + ei,i + e0,0 = 0,

and since

ej,j + ei,i + e0,0 + ej,i + ei,0 + ej,0 = 0,

we deduce that

ej,i + ei,0 + ej,0 = 0.
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