
3590 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 6, JUNE 2020

Private Information Retrieval in Graph-Based
Replication Systems

Netanel Raviv , Member, IEEE, Itzhak Tamo , and Eitan Yaakobi , Senior Member, IEEE

Abstract— In a Private Information Retrieval (PIR) protocol,
a user can download a file from a database without revealing
the identity of the file to each individual server. A PIR protocol
is called t-private if the identity of the file remains concealed
even if t of the servers collude. Graph based replication is
a simple technique, which is prevalent in both theory and
practice, for achieving robustness in storage systems. In this
technique each file is replicated on two or more storage servers,
giving rise to a (hyper-)graph structure. In this paper we study
private information retrieval protocols in graph based replication
systems. The main interest of this work is understanding the
collusion structures which emerge in the underlying graph. Our
main contribution is a 2-replication scheme which guarantees
perfect privacy from acyclic sets in the graph, and guarantees
partial-privacy in the presence of cycles. Furthermore, by provid-
ing an upper bound, it is shown that the PIR rate of this scheme is
at most a factor of two from its optimal value for regular graphs.
Lastly, we extend our results to larger replication factors and to
graph-based coding, a generalization of graph based replication
that induces smaller storage overhead and larger PIR rate in
many cases.

Index Terms— Private information retrieval (PIR), distributed
storage systems.

I. INTRODUCTION

RECENT data breaches in major corporations have empha-
sized the need for privacy in the digital era. Among the

many challenges that designers of distributed storage systems
face is the ability to support private information retrieval (PIR)
protocols. These protocols enable the user to retrieve an entry
in the database, while concealing the identity of that entry from
the servers. This paper studies PIR protocols in a particular
common type of distributed storage systems.

Manuscript received March 4, 2019; revised September 12, 2019; accepted
November 9, 2019. Date of publication November 22, 2019; date of current
version May 20, 2020. The work of N. Raviv was supported in part by the
Post-Doctoral Fellowship of the Center for the Mathematics of Information
(CMI), California Institute of Technology. The work of I. Tamo was supported
in part by the Israel Science Foundation (ISF) under Grant 1030/15 and
Grant NSF-BSF 2015814. The work of E. Yaakobi was supported in part
by the Israel Science Foundation (ISF) under Grant 1817/18. This work
was presented in part at the International Symposium on Information Theory
(ISIT), Vail, CO, USA, 2018.

N. Raviv was with the Department of Electrical Engineering, California
Institute of Technology, Pasadena, CA 91125 USA. He is now with the
Department of Computer Science and Engineering, Washington University
in St. Louis, St. Louis, MO 63130 USA.

I. Tamo is with the Department of Electrical Engineering—Systems,
Tel-Aviv University, Tel-Aviv 39040, Israel.

E. Yaakobi is with the Department of Computer Science, Technion—Israel
Institute of Technology, Haifa 3200003, Israel.

Communicated by A. Jiang, Associate Editor for Coding Theory.
Color versions of one or more of the figures in this article are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2019.2955053

Coding for storage systems has developed tremendously
in recent years. However, many system designers still favor
replication techniques, over more involved ones, as a means
to guarantee robustness against hardware failures [7], [14].
In spite of having high storage overhead and low failure
resilience, replication is often preferred due to its simplicity of
implementation. In addition, various types of replication sys-
tems are studied in theoretical research due to their real-world
impact and ease of analysis [11], [21], [22], [32], [33]. How-
ever, since contemporary datasets are far too large to be stored
on one machine, it is usually the case where every machine
stores a small number of selected files from the dataset, each of
which is replicated among geographically separated machines.
In turn, such systems can be modeled as hypergraphs, where
nodes represent storage servers and (hyper-)edges represent
files. In these graphs, an edge is incident with a node if a copy
of the respective file is stored on the respective server. Storage
systems which broadly adhere to the above outline are called
graph-based replication systems. A graph based replication
system in which every file is replicated r times is called an r-
replication system, and r is called its replication factor.

One of the most important metrics by which PIR proto-
cols are measured is their collusion resistance. In its most
simplistic form, a PIR protocol must guarantee perfect pri-
vacy against every individual server.1 That is, it should
be information-theoretically impossible for every individual
server to infer any information regarding the identity of the
requested file. The term collusion resistance measures the
ability of a PIR protocol to perform beyond this baseline.
That is, what is the maximum number of servers that still
remain completely oblivious to the identity of the file, even
if collusion among them is permitted. Traditionally, the term
“collusion” stems from a mindset which considers the servers
themselves as adversaries. Yet, the authors of this paper
deem this interpretation obsolete, since it does not align
with contemporary storage services. Instead, one can think
of geographically separated servers as having independent
security protocols, that must be individually broken by an
adversary. In this case, the term “colluding servers” refers to
a set of servers whose security was breached by an outside
adversary, that can therefore observe their input and output.
Normally, the term t-privacy of a given protocol indicates the
maximum number of servers that cannot infer any information

1In some settings, only computational privacy is required, but this paper
focus exclusively on perfect privacy.

0018-9448 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Eitan Yaakobi. Downloaded on July 21,2020 at 08:17:15 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1686-1994
https://orcid.org/0000-0002-8000-0419
https://orcid.org/0000-0002-9851-5234

RAVIV et al.: PRIVATE INFORMATION RETRIEVAL IN GRAPH-BASED REPLICATION SYSTEMS 3591

regarding the identity of the file even if they collude; and
in our alternative viewpoint, t + 1 is the minimum number
of individually-secured servers that must be breached by an
adversary in order to infringe the perfect privacy of the proto-
col. Nevertheless, this alternative viewpoint is mathematically
equivalent, and in our choice of terms we comply with the
standard nomenclature.

Motivated by the prevalence of graph-based storage sys-
tems in the real world, in this paper we initiate a study
about PIR protocols in such systems. Specifically, for a given
number of servers, files, replication factor r, and a privacy
parameter t, we wish to find an r-replication system which
supports t-private PIR at the maximum possible rate, defined
as the ratio between the size of the desired file and the
amount of downloaded information. Since such systems are
inherently non-uniform, in the sense that every server stores a
different part of the dataset, one might expect that the collusion
resistance will behave accordingly. Indeed, our results show
that the right viewpoint for analyzing colluding sets is not
their size, but rather the structure of their induced subgraph.

Consequently, our results also provide PIR protocols for
a given r-replication system, in cases where one is not free
to disperse the files as one pleases.2 Specifically, we provide
a PIR protocol for 2-replication systems and show that its
PIR rate is at least half of its optimal value in many cases
of interest. For larger replication factors we provide a simple
scheme whose collusion resistance is less than the replication
factor, and another scheme which enables larger collusion
resistance by a reduction to the 2-replication case.

Further, we study an alternative graph-based coding
approach, which generalizes graph-based coding, in which
every file is coded by using an MDS code, and the resulting
codeword symbols are dispersed as in graph-based replication
systems. While this approach reduces the storage overhead and
increases the PIR rate, our scheme requires a careful dispersion
of files in order to guarantee nontrivial collusion resistance.
The results in this paper, and graph-based coding in particular,
call for future research and practical implementations, that
would hopefully bring the vast PIR literature closer to realistic
storage systems.

This paper is structured as follows. Preliminaries and pre-
vious works are discussed in Section II. Protocols and bounds
for 2-replication systems are given in Section III, and larger
replication factors are discussed in Section IV. Graph-based
coding is discussed in Section V, and open problems for future
research are discussed in Section VI.

II. PRELIMINARIES

A. Problem Statement, Results, and Inherent Flaws

Given integers s, n, f , r ≥ 2, and t, devise an r-replication
system with s servers, n files of f symbols each, and a
respective t-private PIR protocol. The figure of merit of any
given protocol is its PIR rate, defined as the ratio between the
amount of required information and the expected amount of
downloaded information. Notice that a PIR algorithm must be

2This is the case, e.g., in cloud storage systems in which file dispersion is
random, or in situations where the user does not own the data.

random, and hence the amount of downloaded symbols might
vary from one execution to another. Perfect privacy, however,
must be maintained in all executions. Further, notice that every
tuple of parameters is feasible at rate 1/n, by downloading the
entire dataset.

Our contributions in this paper are for the cases r = 2
and t ≥ 2 in Section III, a simple scheme for 2 ≤ t < r
in Subsection IV-A, and by reduction to r = 2, for larger
values of r and t ≥ r in Subsection IV-B. It will be clear in
the sequel that our schemes rely heavily on the (hyper-)graph
structure, and hence reduce to construction graphs with that
structure. Our analysis also provides PIR protocols for given
graphs, in cases where one cannot choose the dispersion of
the files.

It is readily verified that if r = 2, t ≥ 2, and two
servers store more than one file in common (a scenario that
corresponds to the existence of parallel edges in the graph)
then every PIR protocol must download all the mutual files
from these two servers. This is an inherent flaw of graph-based
replication, and to avoid trivialities, we restrict our attention to
graphs with no parallel edges, and consequently to n ≤

(
s
2

)
.

It will also be evident from our bound in Subsection III-B
that for t ≥ 2, the PIR rate must tend to zero as s tends to
infinity (which is a necessity if one wishes n to tend to infinity,
since n ≤

(
s
2

)
). This is also an inherent flaw of these systems.

Under these unfortunate truths, we wish to maximize the PIR
rate for a given set of parameters.

We comment that in general, we pay greater attention to
the case t ≥ r. In the case where t < r and one can disperse
files arbitrarily, one can store all information on r servers and
apply standard PIR protocols for (fully) replicated storage (yet
it remains open if this is optimal). If one is not free to disperse
the file arbitrarily, the scheme in Subsection IV-A applies, and
provides the same PIR rate as the r = 2 case, but with no
limitation on the number of files.

We also study graph-based coding, where instead of the
parameter r above, one is given N and K , and is required
to devise a t-private protocol for a system in which every
file is coded with an (N, K) MDS code, and dispersed
among N servers. These systems generalize graph-based repli-
cation, and induce lower storage overhead (i.e., the amount of
redundant storage in the system) than r-replication systems
if K/N > 1/r.

B. Previous Work

Originally defined in [8], the PIR problem has attracted
a tremendous amount of research in the past two decades;
and due to its tight connection with distributed storage,
PIR enjoyed an increasing attention in the past few years.
Since a comprehensive summary of previous works is beyond
the scope of this paper, we list herein only a partial list
of recent contributions, and elaborate on the most relevant
ones.

The recent surge of interest in PIR, which addresses the
problem from a distributed storage standpoint, includes the
reduction of storage overhead by using error correcting codes
in [12] and its improvement in [5]; obtaining secrecy by one

Authorized licensed use limited to: Eitan Yaakobi. Downloaded on July 21,2020 at 08:17:15 UTC from IEEE Xplore. Restrictions apply.

3592 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 6, JUNE 2020

extra bit in [20] and its improvement in [6]; and an extensive
line of works regarding achievability and capacity in various
scenarios, such as multi-round, multi-message, symmetric, and
with byzantine or colluding servers [2], [3], [23]–[26], [29].
This line of works is a natural extension of an earlier one in the
computer science community, which addressed the problem
in a more simplistic fashion. Namely, the dataset is assumed
to be replicated in its entirety on all servers in the system,
and the files are assumed to consist of a single bit. Further-
more, this problem is strongly connected to locally decodable
codes [30], [31], and has seen a substantial progress
recently [10].

All of the aforementioned works fall into either one of two
extremes in the approach towards PIR. In one, the dataset in
its entirety is stored in every server, and in the other it is coded
by using an MDS code. The current work addresses a sweet
spot between the two, that is strongly motivated by real-world
applications [7], [14], as well as a plethora of storage models
that were addressed in the past [11], [21], [22], [32], [33].

Nevertheless, two notions that are relevant to this work
were recently addressed in the literature. First, one may
consider the special case of graph-based replication in which
the degree of every node in the graph (i.e., number of edges
that are incident with it) is upper bounded by some parameter.
Evidently, this special case is strongly connected to recent
works [1], [28] that addressed the general coded PIR question
in cases where each server is constrained to contain only
a fraction of the entire dataset. Yet, [28] did not impose
the particular replication structure that is fundamental to our
approach, and more importantly, did not consider collusion.
We also note that [1] contains bounds that are applicable in our
case as well (specifically, by choosing t = 2 in [1, Thm. 2]),
but are far more general, and as such provide weak bounds
for our model.

Another notion that was previously studied is that of
collusion patterns [16], [27]. In this variant, the system
must guarantee collusion resistance against specific subsets of
servers, rather than any subset up to a certain size. This notion
bears some similarity to this work, since one may compel the
vertices in these specific sets not to induce a subgraph which
infringes privacy in our scheme. However, the approach and
the results of these works is substantially different from ours,
e.g., since [27] only discuss coded storage, and [16] discussed
replication of the entire dataset in every server, and disjoint
colluding sets.

Remark 1. After preliminary versions of this paper were
made publicly available, two follow-up pre-prints have been
published online. In [4] the roles of the files and servers
in the storage graph are reversed (i.e., vertices represent
files and edges represent servers), and the special cases
of the complete graph and the cycle graph are studied.
Ref. [15] studies an additional constraint of X-security,
where the data itself should be concealed from sets of at
most X colluding servers. In addition, [15] characterizes
the capacity in several cases, some of which by utiliz-
ing the size of the maximum 2-matching of the storage
graph.

C. Notations and Background

For a prime power q let Fq be the field with q ele-
ments. In a PIR protocol (not necessarily a graph-based one),
a dataset X = (x�

1 , . . . , x�n)� ∈ F
n×f
q , which consists of n

files {xi}n
i=1 of f symbols each, is stored across s storage

servers in a possibly coded manner.
The user wishes to download the file xφ, where for the

sake of the probabilistic analysis, φ is seen as uniformly
distributed over [n] � {1, 2, . . . , n}. To this end, the user
uses randomness in order to generate queries q1, . . . , qs, one
for every server. In turn, server i replies with ai, that is a
deterministic function of qi and of the server’s content. The
protocol is called t-private if for every subset T ⊆ [s] of size
at most t,

I({qj}j∈T ; φ) = 0,

where I denotes mutual information. The PIR rate of the
system is f/

∑
i∈[s] |ai|, i.e., the ratio between the size of

the desired data and the amount of downloaded one, both
measured in Fq symbols.3

In a graph-based replication system every file is replicated
multiple times and each one of the copies is stored on a
different server. If all files are replicated an identical number
of times r, we say that it is an r-replication system, and r is its
replication factor. In a 2-replication system a graph structure
arises, in which nodes represent servers, edges represent files,
and an edge is incident with a node if the respective file
is stored on the respective server. Similarly, in r-replication
systems for r > 2 an r-uniform hypergraph4 structure arises,
and in systems where every file is replicated a different number
of times, a non-uniform hypergraph arises. Notice that for
r = 2 a multigraph might arise, i.e., a graph in which two
nodes can have multiple edges connecting them, in cases
where there exist two servers that share more than one file
in common. While our analysis does not exclude these cases,
they result in poor collusion resistance (see Subsection II-A).
Therefore, we restrict our attention to systems in which every
two servers store at most one file in common (see Remark 8
for further discussion).

Graphs are denoted by G = (E, V), where E =
{e1, e2, . . .} and V = {v1, v2, . . .} are the sets of edges and
vertices, respectively. Unless otherwise stated, all graphs in
this paper are undirected, and hence, an edge is a subset of
vertices (subset of size two in graphs, and of arbitrary size
in hypergraphs). For a given graph G′ we denote its set of
edges by E(G′) and its set of vertices by V (G′). Since graphs
represent storage systems in this paper, the terms node, vertex,
and server are used interchangeably, and so does the terms
edge and file.

For a graph G and a subset S ⊆ V (G) we denote by GS
the subgraph induced by S, i.e., the graph which consists of

3As mentioned in Subsection II-A, PIR rate is normally defined as the ratio
between the size of the file and the expected number of downloaded symbols,
since those might depend on the randomness of the user. However, in all of
our schemes the number of downloaded elements is not random, and hence
we restrict our attention to this definition for the sake of simplicity.

4That is, a hypergraph in which all edges contain an identical number of
nodes.

Authorized licensed use limited to: Eitan Yaakobi. Downloaded on July 21,2020 at 08:17:15 UTC from IEEE Xplore. Restrictions apply.

RAVIV et al.: PRIVATE INFORMATION RETRIEVAL IN GRAPH-BASED REPLICATION SYSTEMS 3593

the nodes in S and all the edges in E(G) such that both of
their incident nodes are in S. A cycle in G is a subgraph
of G whose nodes are {vi}t−1

i=0 for some t, and whose edges
are {vi, vi+1 mod t}t−1

i=0 , and these edges exist also in E(G).
An edge e is said to be incident with a vertex v, and vice
versa, if v ∈ e. The set of edges in E(G) that are incident
with v are denoted by ΓG(v), where G is omitted if clear
from context. The incidence matrix I(G) of a graph G is
a |V (G)|× |E(G)| zero-one matrix in which rows correspond
to nodes and columns correspond to edges, and an entry
contains 1 if and only if the respective vertex is incident with
the respective edge. In the sequel, the well-known Breadth
First Search (BFS) algorithm is used repeatedly, in graphs
as well as in hypergraphs, and the uninformed reader is
referred to [9].

In all subsequent protocols, the queries q1, . . . , qs are
vectors in F

n
q , i.e., they contain a field element for every file.

However, since the servers contain only a portion of the files
in the system, the user communicates only their support to the
servers. We denote by Q the s×n matrix whose i’th row is qi

for every i ∈ [s], and note that it is a random variable that
depends on φ, and on the randomness at the user.

Since submatrices are used repeatedly, we define the fol-
lowing notation. For a matrix A ∈ F

s×n and sets S ⊆ [s]
and N ⊆ [n], let AS,N be the submatrix of A that consists
of the rows in S and the columns in N . Further, let A:,N �
A[s],N and AS,: � AS,[n]. For vectors a ∈ F

n
q and b ∈ F

s
q we

define aN and bS analogously. For convenience, we consider
the rows and columns of a matrix AS,N as indexed by S
and N , respectively, rather than by [|S|] and [|N |]. For exam-
ple, if n = s = 4 and S = N = {2, 3}, then AS,N is a 2 × 2
matrix whose entries are indexed by (2, 2), (2, 3), (3, 2), (3, 3).
Since submatrices of Q are in strong correspondence with
subgraphs of G, for every subgraph T of G (denoted T ⊆ G)
we denote QT � QV (T),E(T), and similarly, for every vec-
tor v ∈ F

s
q we define vT � vV (T).

By and large, we use lower-case letters (a, b, c, . . .) to denote
scalars, boldface letters (a, b, c, . . .) to denote vectors (all of
which are row vectors), capital letters (A, B, C, . . .) to denote
matrices or graphs, and calligraphic letters (A,B, C, . . .) to
denote sets. Finally, we use the standard notation [N, K]q to
denote a linear code of length N and dimension K over Fq .

III. REPLICATION FACTOR TWO

A. A PIR Protocol for 2-Replication Systems

The following scheme applies for r = 2 and any field Fq

with at least three elements. Upon requiring file xφ, the user
randomly chooses a vector α = (αi)n

i=1 ∈ (F∗
q)n, a vec-

tor γ = (γi)s
i=1 ∈ (F∗

q)
s, and an element h ∈ Fq \ {0, 1}, all

uniformly at random, and defines

Q � diag(γ) · Iφ · diag(α),

where Iφ is obtained from the incidence matrix I(G) by
replacing the lower 1-entry in each column with −1, and then
replacing the 1-entry in column φ by h.

Let qj , the query for server j, be the j-th row of Q. Clearly,
to upload this row we only need to send the values of its

nonzero entries, and hence the total upload complexity is 2n.
Each node responds with aj = qj · X , and therefore the
download complexity is sf , and the PIR rate is 1/s. Note
that node j can calculate the inner product since the support
of qj contains only the indices of the files available to it.
Upon receiving the information from all s servers, the user has
access to QX = diag(γ)Iφ diag(α)X . Then, by multiplying
from the left by the matrix diag(γ)−1 and by the all ones
vector �, the user get

� · diag(γ)−1 diag(γ)Iφ diag(α)X = � · Iφ diag(α)X
= (h − 1)αφxφ,

and hence xφ can be recovered. We proceed with studying the
collusion resistance of the suggested scheme. The following
claim is a special case of a more general one that is given in
the sequel (Theorem 5). Nevertheless, it is given here in its
current form to maintain simplicity and flow, and its proof is
sketched.

Proposition 2. For any set of servers S ⊆ V such that GS
does not contain a cycle, we have that I({qi}i∈S ; φ) = 0.

Proof sketch. To prove the claim, we analyze the submatrix of
queries that is seen by S. For clarity, we omit zero columns
from this matrix, as well as columns of weight one, since the
latter ones are obviously purely random, and cannot cause
leakage of information. Hence, the matrix we analyze is
chosen according to the random variable QGS .

It is evident that every matrix which is chosen according
to QGS has support which is identical to that of I(G)GS .
In what follows we explain why every |V (GS)| × |E(GS)|
matrix M whose support is identical to that of I(G)GS can
be obtained by some choice of γ, α, and h with identical
probability, regardless of the value of φ. Consequently, this
proves that no information regarding φ is leaked.

We calculate Pr(QGS = M) by an iterative process that
follows a Breadth First Search (BFS) traversal on GS . Pick
an arbitrary vi ∈ S, and fix the value of the corresponding γi

(with probability one). Clearly, it follows that Pr(γi · αj ·
(Iφ)i,j = Mi,j) = (q−1)−1 for every ej ∈ ΓGS (vi) regardless
of whether or not (Iφ)i,j is the entry of Iφ which is multiplied
by h. Having the values of αj for every ej ∈ ΓGS (vi) fixed,
we have that Pr(γj′ ·αj ·(Iφ)j′,j = Mj′,j) = (q−1)−1 for the
same reasons, where vj′ is the other end of edge ej (again,
regardless of whether or not (Iφ)j′,j is the entry of Iφ which
is multiplied by h). In other words, we have that fixing an
entry in γ which corresponds to some v ∈ V (GS) compels
us to fix the values in α which correspond to all of ΓGS (v).
In turn, fixing these entries of α compels us to fix the values
of γ at the other endpoints of the edges in ΓGS (v). Since GS
does not contain a cycle, we may proceed in a BFS fashion and
have that every edge-node incidence in GS reduces the overall
probability of obtaining M by (q − 1)−1. Hence, every such
matrix M is obtained with probability (q−1)−|M|, where |M |
is the size of the support of M , and regardless of the value
of φ. Hence, perfect privacy is guaranteed.

It readily follows from Proposition 2 that given system
parameters (s, n, f, r = 2, t), it suffices to find an underlying

Authorized licensed use limited to: Eitan Yaakobi. Downloaded on July 21,2020 at 08:17:15 UTC from IEEE Xplore. Restrictions apply.

3594 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 6, JUNE 2020

graph with s nodes n edges and girth (the size of smallest
cycle) at least t + 1; this is a fundamental challenge in graph
theory (see Example 7 below). We now turn to study how
gracefully the perfect privacy deteriorates if S contains one or
more cycles, i.e., how much of φ’s identity is revealed.

Proposition 3. For any cycle C = (V ′, E′) in G, any
matrix M in the support of the random variable QC is
invertible if and only if eφ ∈ E′.

Proof. Let A � diag(γV ′)−1M diag(αE′)−1, and observe
that rank(A) = rank(M). If φ /∈ E′, then each column of A
has two nonzero entries 1 and −1. Hence, � is in its left kernel,
and thus rank(A) < c, where c � |V ′| = |E′|. Moreover, it is
an easy exercise to show that any set of c − 1 columns of A
are linearly independent, and hence rank(A) = c − 1.

On the other hand if φ ∈ E′, assume without loss of
generality that A is of the form

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

∗ h
∗ ∗

∗ . . .
. . . ∗

∗ −1

⎞
⎟⎟⎟⎟⎟⎟⎠ ,

where ∗ denotes a nonzero entry. Then, detA = (−1)c−1h ·
detA1 − detA2, where A1 (resp. A2) is the bottom-left
(resp. top-left) (c − 1) × (c − 1) submatrix of A. Notice
that detA1 is the product of all ∗-entries in the sub-diagonal
of A, and that detA2 is product of all ∗-entries in the main
diagonal of A. Hence, since every pair of ∗-entries in any given
column are negations of one another, it follows that detA1 =
(−1)c−1 detA2. Thus, detA = (−1)2c−2h·detA2−detA2 =
(h − 1) detA2 �= 0.

Corollary 4. A set S ⊆ V can narrow down the possible
values of eφ (and hence, of φ itself) to

T = T (S, φ) �
(

�⋂
k=1

E(Ck)

)
\

⎛
⎝ �′⋃

k=1

E(C′
k)

⎞
⎠ , (1)

where C1, . . . , C� are all cycles in GS that contain5 eφ,
and C′

1, . . . , C
′
�′ are all cycles in GS that do not contain eφ.

Proof. Let M be the matrix that is seen by S; chosen
according to the random variable QGS . By Proposition 3,
the colluding servers can compute the rank of MC for every
cycle C in their induced subgraph, and deduce if eφ ∈ E(C)
accordingly.

We now show that Corollary 4 is in some sense the best
that the colluding servers can hope for. Formally, we show
that conditioned by eφ ∈ T , all respective possible queries are
obtained with identical probability. The immediate conclusion
is that out of the log n protected bits of φ, the information
leakage if a set S colludes is precisely log n − log |T | (note

5For � = 0 we define
��

k=1 E(Ck) = E, and for �′ = 0 we
define ∪�′

k=1E(C′
k) = ∅.

that this expression might vary with φ). More formally, for
every S ⊆ V we have

I({qj}j∈S ; φ) = H(φ) − H(φ|{qj}j∈S)

= log n − H(log |T (S, φ)|).

To state the main theorem of this paper, whose proof is
given in Appendix A, and of which Proposition 2 is a special
case, we require the following definition. For S ⊆ V and
D ⊆ E, we say that a matrix in F

|S|×|D|
q is (S,D)-compatible

with G ((S,D)-compatible, for short) if its support coincides
with that of I(G)S,D . This definition extends naturally to a
subgraph T ⊆ G where a matrix in F

|V (T)|×|E(T)|
q is said to

be T -compatible if it is (V (T), E(T))-compatible.

Theorem 5. For every subgraph T ⊆ G, the support of
the random variable QT |φ is the set of all matrices A ∈
F
|V (T)|×|E(T)|
q such that:

(a) A is T -compatible with G; and
(b) for every cycle C ⊆ T ,

rank(AC) =

{
|E(C)| if φ ∈ E(C)
|E(C)| − 1 if φ /∈ E(C)

.

Furthermore, the random variable QT |φ is uniformly distrib-
uted on its support.

First, it is evident that the case where T is acyclic in
Theorem 5 proves Proposition 2. Second, we have the fol-
lowing corollary.

Corollary 6. For every set S ⊆ V and every two distinct
values φ1, φ2 ∈ [n] such that φ2 ∈ T (S, φ1), the servers in S
cannot infer if φ = φ1 or φ = φ2.

Proof. Clearly, it suffices to prove that the random vari-
ables QGS |(φ = φ1) and QGS |(φ = φ2) are identical,
i.e., the same queries are obtained with identical probabilities.
Since both random variables are uniformly distributed on their
support by Theorem 5, it suffices to prove that their supports
are identical. Also by Theorem 5, it suffices to prove that
the conditions (a) and (b) coincide in both cases. For (a) this
claim is clear since it does not depend on the value of φ. For
condition (b), we need to prove that φ1 ∈ E(C) if and only
if φ2 ∈ E(C) for every cycle C in GS , which is precisely the
meaning of φ2 ∈ T (S, φ1).

We now turn to present several choices of the graph G, and
the resulting privacy of the PIR schemes. These examples are
summarized in Table I.

Example 7.

1) Taking G to be the Petersen graph (a 3-regular graph
with 10 nodes, 15 edges, and girth 5) allows to store 15
files on 10 servers, 3 files on each, where any 4 servers
cannot infer any information regarding φ. According to
the structure of the Petersen graph, at least 8 servers
are required to infer the exact identity of φ. The upload
complexity is 30 field elements, and the download com-
plexity is 10f field elements, i.e., the PIR rate is 0.1.

Authorized licensed use limited to: Eitan Yaakobi. Downloaded on July 21,2020 at 08:17:15 UTC from IEEE Xplore. Restrictions apply.

RAVIV et al.: PRIVATE INFORMATION RETRIEVAL IN GRAPH-BASED REPLICATION SYSTEMS 3595

TABLE I

DIFFERENT EXAMPLES FOR THE CHOICE OF G IN SECTION III. THE PARAMETER t STANDS FOR THE GUARANTEED t-PRIVACY
OF THE SYSTEM AND d DENOTES THE FIXED DEGREE OF THE VERTICES IN THE GRAPH

2) Taking G = (L ∪ R, V) to be the complete bipartite
graph, where |L| = |R| = s/2, allows to store n = s2/4
files. To retrieve a file xφ, the user downloads s

2 ·f field
elements. The resulting system ensures perfect privacy
against all sets S ⊆ L∪R such that either |S ∩L| ≤ 1
or |S ∩ R| ≤ 1, and in particular, all sets of size three.

3) Graphs of large (constant) girth g are particu-
larly useful since all sets with at most g − 1
nodes are cycle-free, and hence the resulting protocol
is (g − 1)-private. These can be obtained as inci-
dence graphs of generalized polygons [21, Table I],
of which Item 2 above is a special case. In partic-
ular, for prime power q, there exist explicit graphs
with degree q + 1 with s ∈ {O(q2), O(q3), O(q5)}
(and hence n ∈ {O(q3), O(q4), O(q6)}), where g ∈
{6, 8, 12}, respectively. The respective download com-
plexities are O(n2/3) · f , O(n3/4) · f , and O(n5/6) · f .

4) Let p ≥ 5 be a prime, and let m be a positive integer.
The Murty graph [19] is a (pm + 2)-regular graph
with s = 2p2m nodes, n = p2m(pm + 2) edges, and
girth five. In the resulting system, a database of n files
is stored on O(n2/3) servers, O(n1/3) files in each,
and ensures perfect privacy against any four colluding
servers. To retrieve a file, a user downloads O(n2/3) · f
field elements.

5) Ramanujan graphs (e.g., [18]) with n edges and con-
stant degree have girth O(log n). Hence, the system
is resilient against any O(log n) colluding servers,
but require download of δnf field elements for
some δ ∈ (0, 1).

Remark 8. It is evident that the correctness of the scheme and
its privacy guarantees hold also in cases where there exist two
servers that store more than one file in common. However,
in the resulting multigraph, these two servers form a cycle,
and hence t = 1. However, the system designer may choose to
disperse the files while ignoring the aforementioned restriction
in order to increase the number of files in the system. Then,
to maintain t ≥ 2, the user will download all but one of the
mutual files from any pair of servers, prior to executing the
above scheme, which will induce a loss of rate.

B. Bound on the PIR Rate

In this subsection we explore the limitations of PIR proto-
cols for graph-based replication systems by proving a bound

on the PIR rate. The resulting bound is particularly powerful
for the important family of regular graphs, for which the bound
is within a factor of two from the rate in Subsection III-A.
In what follows, the maximum degree of a vertex in G is
denoted by δ, and recall that we assume t ≥ 2. This bound
also applies in cases where servers can share more than one
file in common.

Lemma 9. For r = 2 the PIR rate is at most δ
n .

Proof. Let G be the induced graph, and let μi ≥ 0 be the
amount of downloaded information (measured in fraction of f)
from server i by the user in any execution of the algorithm.
Clearly, it must be that6 μi + μj ≥ 1 for every edge {i, j} ∈
E(G), since otherwise, servers i and j can infer that their
mutual file (or files) is not required by the user, and hence the
system is not 2-private. Further, the PIR rate of the system
is (�s · μ�)−1, where �s is the all 1’s vector of length s
and μ � (μ1, . . . , μs). Hence, an upper bound on the PIR
rate of the system is obtained from the optimal solution of the
following linear program.

min �s · μ�, subject to I(G)�μ� ≥ �n and μ ≥ 0, (2)

That is, the inverse of the optimum value of the objective
function serves as an upper bound on the PIR rate of the
system. In the following problem, which is called the dual
of (2), δ is a vector of n variables.

max �n · δ�, subject to I(G)δ� ≤ �s and δ ≥ 0. (3)

According to the primal-dual theory [9, Sec. 29.4], any solu-
tion which is feasible for (3) provides a lower bound for (2).
It is readily verified that δ = 1

δ · �n is a feasible solution
for (3), and the objective function for this solution equals n/δ.
Therefore, the PIR rate is bounded by δ/n.

In cases where G is a regular graph, which are particularly
interesting since they induce systems with balanced storage,
the resulting bound equals δ

n = 2δ
sδ = 2/s. In some cases, it is

possible to improve the bound δ/n for graphs which are not
regular, and the details are given in Appendix C.

IV. ARBITRARY REPLICATION FACTORS

In this section we consider r-replication systems for r ≥ 2,
which are favored in practice due to their greater resilience to

6More broadly, μi +μj must at least the number of mutual files of server i
and server j.

Authorized licensed use limited to: Eitan Yaakobi. Downloaded on July 21,2020 at 08:17:15 UTC from IEEE Xplore. Restrictions apply.

3596 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 6, JUNE 2020

simultaneous failures [7], [14]. First, for any integer r ≥ 2,
collusion resistance of r−1 can be attained by a simple scheme
that is given below in Subsection IV-A. Then, we provide
another scheme in Subsection IV-B, which guarantees larger
collusion resistance by a reduction to the 2-replication case.
The collusion resistance in the latter case will strongly depend
on our ability to increase the girth by removing edges from a
certain multigraph. To simplify the discussion, in this section
we alleviate the requirement that every two servers share at
most one file in common.

A. Replication Factor r and Collusion Resistance r − 1
The user begins by choosing a uniformly random

matrix V ∈ F
r×n
q , whose rows sum to eφ, the φ’th unit vector

of length n. Then, the user disperses the nr symbols of the
matrix V to the queries {qi}s

i=1 arbitrarily,7 such that every
server that stores a file xj receives a unique entry from the
j’th column of V . Namely, the r servers which store the r
copies of a file xj receive the symbols of the j’th column
of V , one symbol per server. In turn, the servers respond with
the respective linear combinations {aj = qj · X}s

j=1, and the
user computes

∑s
i=1 ai = eφ · X = xφ.

It is readily verified that the PIR rate is 1/s, and that every
set of r − 1 servers can observe at most r − 1 entries in
every column of V . Hence, since these entries appear entirely
random, the resulting scheme is r−1 private. Notice that there
is no restriction on the number of files that can be stored in
this system, nor there is a restriction on their dispersion.

B. Arbitrary Replication Factor by Reduction

In systems where files might be stored in more than two
servers, one can obtain perfect privacy by “ignoring” all but
two copies of every file that is replicated more than twice, in a
sense that will be made clear shortly, and applying the scheme
in Section III. Observe that choosing which copies to ignore
may drastically affect the collusion resistance of the system,
since each choice produces a different graph with different
cycles. Nevertheless, this observation can in fact contribute to
the security of the system by concealing the cycle structure
of the resulting graph from an adversary. In what follows we
formalize these intuitions and discuss the different aspects of
the reduction to the 2-replication scheme.

Evidently, it is natural to consider an r-replication system
for r ≥ 2 (or in fact, any replication system) as a hypergraph,
where each file corresponds to a hyperedge. Yet, for our
purpose it is often more convenient to consider it as a colored
multigraph. That is, instead of considering every file as a
hyperedge, which is incident with the nodes that contain it,
we consider a multigraph in which every edge carries a label
(or a color) in [n]. Then, two servers are connected by an
edge with label i ∈ [n] if both of them contain a copy
of xi. Clearly, given a hypergraph G, one can easily create
the respective colored multigraph Ĝ by replacing hyperedge i
with a clique whose edges are labelled by i. Notice that Ĝ can
be a multigraph (i.e., contain parallel edges) since hyperedges

7This is possible since
�s

i=1 |qi| =
�s

i=1 |Γ(i)| = rn, where |qi| is the
length of qi.

Fig. 1. A hypergraph G (in light blue) and its respective colored multigraph Ĝ
(in dashed lines). The vertices {v1, v2, v5} contain a monochromatic cycle,
but not a polychromatic one. The vertices {v1, v4, v3, v2, v5} contain a
monochromatic cycle, and a polychromatic one.

can intersect in more than one node. An illustration of these
definitions is given in Figure 1, which also demonstrates the
natural notions of a monochromatic and polychromatic cycles,
that will be useful in the sequel. In what follows we use G
and Ĝ interchangeably.

Given a replication system with a respective multigraph Ĝ,
it is obvious that the user can choose any two copies of every
file, and apply the scheme from Section III while ignoring the
remaining copies. Formally, for a server i that stores a copy
of xj that is chosen to be ignored by the user, the user simply
transmits a zero coefficient for xj , or omits that coefficient
altogether. Further, the operation of ignoring all but two copies
of every file corresponds to removing all but one of the edges
of every color. Obviously, there are potentially many options
to choose which edge to keep for every label, and every such
choice can be described by a function c : [n] → E(Ĝ) such
that the edge c(i) is labelled by i, for every i ∈ [n]. For any
such c, let Ĝc be the result of keeping the edges {c(i)}i∈[n],
and removing the remaining ones. It is readily verified that the
resulting scheme guarantees perfect privacy against colluding
sets that do not contain a cycle in Ĝc.

Clearly, if one can choose the file dispersion in the system as
one pleases, then it is possible to first choose the dispersion of
only two copies of each file, so that the resulting graph G′ has
a certain girth. Then, the remaining copies can be dispersed
arbitrarily, and the PIR scheme is performed with respect to
the function c that c(i) ∈ E(G′) for every i. However, if Ĝ
is given to the user, finding a function c such that Ĝc has a
large girth requires more care.

For a given Ĝ one can choose c at random. In spite of
not having any clear minimum girth guarantee, this approach
has the extra benefit of concealing the cycle structure from an
adversary. For a given integer g, a function c such that Ĝc

has girth g, if exists, can be found be deciding the feasibility
of the following {0, 1}-program. In this program, for i ∈ [n]
let Ei be the set of all 2-subsets {a, b} of [s] such that there
exists an edge {a, b} labelled by i.

Authorized licensed use limited to: Eitan Yaakobi. Downloaded on July 21,2020 at 08:17:15 UTC from IEEE Xplore. Restrictions apply.

RAVIV et al.: PRIVATE INFORMATION RETRIEVAL IN GRAPH-BASED REPLICATION SYSTEMS 3597

• Objective: None.
• Variables: {xi,{a,b} | i ∈ [n] and {a, b} ∈ Ei}.
• Constraints:

–
∑

{a,b}∈Ei
xi,{a,b} = 1 for all i ∈ [n].

–
∑

i|{a,b}∈Ei
xi,{a,b} ≤ 1 for every {a, b} such that

there exists at least one edge {a, b} in Ĝ.
–
∑

i|{a,b}∈Ei
xi,{a,b} +

∑
i|{b,c}∈Ei

xi,{b,c} +∑
i|{c,a}∈Ei

xi,{c,a} ≤ 2, for every a, b, c ∈ [s] that

contain at least one triangle in Ĝ.
...

–
∑g

j=1

∑
i|{aj ,a(j+1) mod g∈Ei} xi,{aj ,a(j+1) mod g} ≤

g − 1 for every a0, . . . , ag−1 ∈ [s] that contain at
least one g-cycle in Ĝ.

Clearly, the first set of constraints guarantees that exactly
one edge is chosen for every file i ∈ [n]. The second set
of constraints guarantees that the resulting choice does not
contain 2-cycles, the next set guarantees that there are no
triangles, and so on. Finally, we note that while solving this
system for a general g is NP-hard, the special case g = 2
reduces to finding a maximum matching in a bipartite graph,
a problem that can be solved efficiently.

V. GRAPH-BASED CODING–REDUCING THE STORAGE

OVERHEAD AT IMPROVED PIR RATES

This section discusses storage systems in which every file is
similarly stored on a small number of servers, but replication
is generalized to arbitrary encoding. Hence, when employing
an [N, K]q code with rate larger than 1/2 (i.e., K/N > 1/2),
we obtain an improvement over previous schemes in terms of
storage overhead. Furthermore, it is shown that the resulting
PIR rate is improved whenever N − K > 1. However,
the (coded) file dispersion must follow a certain structure,
and the resulting collusion patterns are in correspondence
with polychromatic cycles (see Subsection IV-B and Figure 1),
as will be explained next. Finally, we note that the scheme in
this section is loosely inspired by ideas from [13] and [17].

Essentially, in the scheme of Section III, every file xi

is coded by using a repetition code of length 2 over the
alphabet F

f
q . Then, every symbol of the resulting codeword

is stored on a different server. The scheme which is presented
in this section generalizes this concept by employing codes
other than the repetition code.

For integers N and K let G ∈ F
K×N
q be a genera-

tor matrix of an [N, K]q MDS code D. Consider every
file xi as an (f/K) × K matrix (x�

i,1, . . . , x�i,K) over Fq,
and let (x�

i,1, . . . , x�i,K) · G � (y�
i,1, . . . , y�

i,N), where the
vectors {yi,j}N

j=1 are called the codeword symbols of xi.
Let L1, . . . ,LN ⊆ [s] be disjoint nonempty subsets whose
union is [s] (and hence we must have N ≤ s). Then, for
every i ∈ [n], disperse the N codeword symbols yi,1, . . . , yi,N

to the servers such that for every j ∈ [N], the codeword
symbol yi,j is in exactly one server which belongs to Lj .
For example, one can think of a system in which the servers
are partitioned to three disjoint subsets; the servers in the
first subset contain the first halves of all files, the servers
in the second contain the other half, and the servers in the

third contain the sums of the two halves (see Example 12 and
Example 13 which follow).

The above coding scheme gives rise to an N -uniform
N -partite hypergraph in the following manner. Let [s] be the
set of vertices, and define hyperedges e1, . . . , en, such that ei

contains all servers that store either one of yi,1, . . . , yi,N . It is
evident that the edges are of size N , and that the N parts of the
hypergraph are the sets L1, . . . ,LN . Let G be this hypergraph,
and let Ĝ be its respective colored multigraph, as described in
Subsection IV-B.

We begin by presenting the PIR protocol for the special
case N − K = K , and later extend it to other parameters
by operating in rounds. Begin by choosing α ∈ (F∗

q)n, γ ∈
(F∗

q)
s, and h ∈ Fq \ {0, 1} uniformly at random, and pick an

arbitrary subset K ⊆ [N] of size K . Then, for every m ∈ [N],
a server j ∈ [s] which belongs to Lm receives the following
query.

(qj)t =

⎧⎨
⎩γj · αt · hδ(t,m)

if j contains a codeword
symbol of xt

0 else
, (4)

where δ(t, m) is a Boolean indicator for the event “m ∈ K
and t = φ”. Namely, the user transmits to server j the part
of the vector γj · α that is relevant to it, where arbitrary K
servers that store a codeword symbol of xφ are having the
φ’th entry of γj · α multiplied by h. In turn, a server j
in Lm, which stores {y�,m|� ∈ L} for some L ⊆ [n], responds
with aj �

∑
�∈L(qj)� · y�,m. Having the responses {ai}s

i=1,
the user composes the following matrix.⎛
⎝∑

j∈L1

γ−1
j a�

j , . . . ,
∑

j∈LN

γ−1
j a�j

⎞
⎠ =

n∑
j=1

αj(y�
j,1, . . . , y�j,N)

︸ ︷︷ ︸
�Y

+ e,

where for m ∈ [N], the m’th column of e is

(e)m =

{
αφ(h − 1)yφ,m if m ∈ K
0 else

.

Now, it is evident that every row in the matrix Y is a codeword
in D, whose minimum distance is N−K+1. Therefore, since e
has at most K nonzero columns, and since K = N − K ,
a decoding algorithm8 for D can extract e from the matrix
that was composed by the user. At this point the user has
obtained {yφ,m}m∈K, that are sufficiently many codeword
symbols of xφ in order to retrieve it. Therefore, the PIR rate
of this scheme is f

s·(f/K) = K
s = N−K

s . The proof of privacy
will be given after the general description.

Notice that in the above scheme, N −K codeword symbols
of xφ are obtained, while K many of those are sufficient to
retrieve xφ. However, in cases where N−K < K , the scheme
will not be successful, and in cases where N − K > K ,
the resulting scheme will not be exploited to its full potential.

Therefore, to address cases in which K �= N − K ,
we retrieve multiple files in rounds, a standard practice in the

8Notice that the “error values” are in prescribed positions, and hence,
an erasure correction algorithm suffices.

Authorized licensed use limited to: Eitan Yaakobi. Downloaded on July 21,2020 at 08:17:15 UTC from IEEE Xplore. Restrictions apply.

3598 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 6, JUNE 2020

PIR literature (e.g., [13], [17]). That is, we assume that the user
wishes to download xφ1 , . . . , xφb

privately for some b ≥ 1,
and the protocol operates in � ≥ 1 rounds. In each round,
the user sends a query to every server, and receives responses
from all servers. Specifically, we choose b and � so that Kb =
�(N − K), i.e., � � LCM(K,N−K)

N−K and b � LCM(K,N−K)
K .

Prior to executing these rounds, the user fixes the following
subsets of [N]

J (1) = J (1,1) ∪ J (1,2) ∪ . . . ∪ J (1,b)

J (2) = J (2,1) ∪ J (2,2) ∪ . . . ∪ J (2,b)

...

J (�) = J (�,1) ∪ J (�,2) ∪ . . . ∪ J (�,b), (5)

such that in every row, the sets in the union are pairwise
disjoint, such that |J (i)| = N −K for every i ∈ [�], and such
that |∪s

i=1 J (i,j)| = K for every j ∈ [b]. Intuitively, for j ∈ [b]
and i ∈ [�], the set J (j,i) contains the indices of the codeword
symbols of xφj that are retrieved during round i. The choice
of such sets is easy, and is illustrated in Appendix B.

In each round i the user executes the aforementioned
protocol (for the case K = N − K), where J (i) is used in
lieu of the set K. That is, the queries are defined as in (4),
with the difference that δ(t, m) is a Boolean indicator for the
event “there exists j ∈ [b] such that t = φj and m ∈ J (i,j)”.
Having obtained the responses from all servers in round i,
the user computes⎛
⎝∑

j∈L1

γ−1
j a�

j , . . . ,
∑

j∈LN

γ−1
j a�

j

⎞
⎠ =

n∑
j=1

αj(y�j,1, . . . , y�
j,N)

︸ ︷︷ ︸
�Y

+ e′,

where for m ∈ [N], the m’th column of e′ is

(e′)m =

{
αφj (h − 1)yφj ,m if m ∈ J (i,j)

0 else
.

Since |J (i)| = N − K , a decoding algorithm on the
matrix Y can extract the values of e′. Hence, according to
the structures of the sets in (5), it follows that by the end
of the �’th round, the user has obtained the K codeword
symbols {yφj ,m}m∈∪iJ(i,j) of xφj for every j ∈ [b], and
hence all the files {xφj}b

j=1 can be retrieved. The resulting
PIR rate is

bf

s · (f/K) · � = b · K

s�
=

�(N − K)
K

· K

s�
=

N − K

s
.

Remark 10. Roughly speaking, the scheme which is described
in Section III is as a special case of the one in this section,
where K = 1, N = 2, and D � {(x,−x)|x ∈ Fq}, and
the resulting rate is indeed N−K

s = 1
s . However, further

simplification is possible for this particular choice of D,
since the process of extracting the error vector e reduces to
multiplying by � from the left. Hence, the partitioning of the
servers to subsets {Lj}N

j=1 is not required.

Proposition 11. A set S ⊆ V that contains no polychromatic
cycles in Ĝ gains no information about φ1, . . . , φb.

Proof. For S that does not contain a polychromatic cycle,
let R ⊆ [n] be the set of hyperedges in G that have two
or more vertices in S. Similar to Proposition 2, we analyze
the matrix which is chosen according to the random vari-
able QS,R. Clearly, every matrix which is chosen according
to QS,R is (S,R)-compatible with G, and we show that the
inverse is also true.

Let M ∈ F
|S|×|R|
q be a matrix which is (S,R)-compatible

with G. Fix some vi ∈ S as the starting point of the
BFS algorithm, and choose an arbitrary value for γi (with
probability 1). Once γi is fixed, it is evident that Pr(γi · αj ·
hδ = Mi,j) = (q−1)−1 for every hyperedge ej that is incident
with vi regardless of the value of the Boolean indicator δ.

Notice that the only mutual element of these hyperedges
is vi, since otherwise, a polychromatic cycle of length two
would exist in Ĝ. Therefore, once αj is fixed for such a
hyperedge ej , we have that Pr(γ� ·αj ·hδ = M�,j) = (q−1)−1

for every � such that v� ∈ ej ∩R, again, regardless of δ. Pro-
ceeding in a BFS fashion, we have that each node-hyperedge
incidence reduces the overall probability of obtaining M by a
multiplicative factor of (q − 1)−1. Since S does not contain
a polychromatic cycle, no discrepancy is encountered, which
concludes the proof.

Example 12. Consider s = 12, and let D be the parity
code {(x, y, x+ y)|x, y ∈ Fq}, and hence N = 3 and K = 2.
Also, let L1 = {1, . . . , 4}, L2 = {5, . . . , 8}, and L3 =
{9, . . . , 12}. Consider the following 16 hyperedges.

{1, 5, 9} {2, 5, 10} {3, 5, 11} {4, 5, 12}
{1, 6, 10} {2, 6, 11} {3, 6, 12} {4, 6, 9}
{1, 7, 11} {2, 7, 12} {3, 7, 9} {4, 7, 10}
{1, 8, 12} {2, 8, 9} {3, 8, 10} {4, 8, 11}

It is readily verified that every two distinct edges intersect in at
most one node, and hence, there are no polychromatic cycles
of length 2. The resulting system is 2-private, has storage
overhead 1.5, and its PIR rate is 1/12.

Example 13. Generalizing the previous example, let s be
any integer divisible by 3, let D be the parity code, and
let L1 = {1, . . . , s/3}, L2 = {s/3 + 1, . . . , 2s/3}, and
L3 = {2s/3 + 1, . . . , s}. Let M1, . . . ,Ms/3 be edge-disjoint
maximum matchings9 in a complete bipartite graph H whose
one side is L2, and the other is L3. Notice that |Mi| = s/3
for every i, and consider the following hyperedges.

{{1, a, b}|{a, b} ∈ M1} , {{2, a, b}|{a, b} ∈ M2} ,

. . . ,
{
{s/3, a, b}|{a, b} ∈ Ms/3

}
9Recall that a matching is a subset of disjoint edges. A maximal matching is

a matching such that any edges that is added to it violates the disjointness of its
edges. A maximum matching is a matching of the largest possible cardinality.
It is readily verified that a complete bipartite graph Km,m contains m disjoint
maximum matchings.

Authorized licensed use limited to: Eitan Yaakobi. Downloaded on July 21,2020 at 08:17:15 UTC from IEEE Xplore. Restrictions apply.

RAVIV et al.: PRIVATE INFORMATION RETRIEVAL IN GRAPH-BASED REPLICATION SYSTEMS 3599

We claim that any two of the above hyperedges intersect in at
most one node. Assuming otherwise we have |{a1, a2, a3} ∩
{b1, b2, b3}| = 2 for some integers ai and bi. If a1 = b1,
it follows that the edges {a2, a3} and {b2, b3} in H share a
vertex, even though they both belong to Ma1 , a contradiction.
If a1 �= b1, it follows that the matchings Ma1 and Mb1 both
contain the edge {a2, a3} = {b2, b3}, another contradiction.

Therefore, the resulting system is 2-private, accommo-
dates n = s2/9 files, incurs storage overhead of 1.5, and has
PIR rate of 1/s. For comparison, considering the full graph
on s nodes and applying the scheme in Section III provides a
2-private system with n = (s2+s)/2 files, storage overhead 2,
and comparable PIR rate 1/s.

VI. DISCUSSION AND OPEN QUESTIONS

In this paper we initiated a study of private information
retrieval for a specific storage model that is widely used in
practice, and widely studied in theoretical research. In order
to improve our understanding of this model, and in order to
improve its applicability to real-world systems, we suggest the
following research directions.

1) Close the gap between achievable PIR rate in Subsec-
tion III-A and the upper bound in Subsection III-B.

2) Improve the collusion resilience in systems with arbi-
trary replication factors.

3) Construct families of dense graphs in which T (S, φ) (1)
is large for every S ⊆ [s] and every φ.

4) Study graceful degradation for replication factors larger
than two.

5) Find PIR schemes for 2-replication systems that guaran-
tee collusion resistance against cycles, and are nontrivial
(i.e., download less than the entire dataset).

APPENDIX A
PROOF OF THE MAIN THEOREM

The proof of Theorem 5 requires two auxiliary lemmas
(Lemma 14 and Lemma 15), and then is proved in two parts
(Lemma 16 and Lemma 17).

Lemma 14. Let C ⊆ G be a cycle with c edges, and
let M ∈ F

c×(c−1)
q be a matrix which is (V (C), E(C) \ {j})-

compatible, where j is the maximum index of an edge in E(C).
Then, there exist precisely q − 1 vectors a ∈ F

c
q such

that M ′ � (M |a) ∈ F
c×c
q is (V (C), E(C))-compatible and

rank(M ′) = c − 1.

Proof. First, observe that since C \ {j} is a tree, and
since M is (V (C), E(C)\{j})-compatible with G, it follows
that rankM = c − 1. Hence, the added vector a must be
in colspan(M), i.e.,

a =
∑

k∈E(C)\{j}
mkck, (6)

where the ck’s are the columns of M and the mk’s are coef-
ficients from Fq. Furthermore, since M ′ must be compatible
with G, the column a must contain nonzero entries precisely in
row i1 and row i2, that correspond to the two vertices incident
with edge j. Hence, since each row k ∈ V (C)\{i1, i2} of M

contains precisely two nonzero entries in some columns k1

and k2, it follows that intersecting the column span of M
with Nk � {x = (xi)c

i=1 ∈ F
c
q|xk = 0} reduces the degrees

of freedom in (6) by 1, since it renders any one of {mk1 , mk2}
to be a linear function of the other. Therefore,

dim (X) = (c − 1) − (c − 2) = 1, where

X � colspan(M)
⋂⎛
⎝ ⋂

k∈V (C)\{i1,i2}
Nk

⎞
⎠ .

Since any nonzero vector in X is a suitable candidate for a,
the claim follows.

Lemma 15. If an edge e ∈ E(G) is on a cycle in G, then
there exists a BFS ordering of E(G) for which e is a back
edge.

Proof. Denote eφ = {vf , vg} and choose vd ∈ V (G) which
maximizes dist(vg, vd), where distance between two vertices
is defined as the number of edges in the shortest path between
them. Without loss of generality, assume that dist(vg, vd) ≥
dist(vf , vd), and consider a BFS run which begins at vd.
Partition V (G) to layers L1, L2, . . . according to their distance
from vd, and recall that edges inside each layer are always
back edges. Hence, if eφ is inside a layer, we are done.
Otherwise, assume that vf is in Li for some i, and hence vg

is in Li+1. Since eφ is on a cycle, there exists another edge e′

from a node v′ ∈ Li to vg . Hence, in cases where v′ pops
out of the queue before vf , eφ will indeed be a back edge.
It is readily verified that the order of insertion of discovered
vertices in the same layer is arbitrary, and hence there exists
a BFS run in which v′ predates vf , and the claim follows.

We now turn to prove Theorem 5 in two parts.

Lemma 16. For every subgraph T ⊆ G, the support of
the random variable QT |φ is the set of all matrices A ∈
F
|V (T)|×|E(T)|
q such that:

(a) A is T -compatible with G; and
(b) for every cycle C ⊆ T

rank(AC) =

{
|E(C)| if φ ∈ E(C)
|E(C)| − 1 if φ /∈ E(C)

.

Proof. For simplicity assume that 2|q, but other cases can
be proved similarly. By the definition of QT |φ, it is evi-
dent that (a) is necessary, and according to Proposition 3,
it follows that (b) is necessary. In what follows, it is shown
that (a) and (b) are also sufficient. To this end, let A ∈
F
|V (T)|×|E(T)|
q be a matrix which satisfies (a) and (b), and it is

shown that there exists a choice of α, γ, and h for which QT |φ
produces A.

Consider a BFS run on T , and number V (T) and E(T)
according to their discovery times. That is, let v1, . . . , v|V (T)|
be the vertices of T sorted by their discovery times, and
let e1, . . . , e|E(T)| be the edges of T sorted by their discovery
times. Also, assume that if eφ ∈ E(T), and eφ closes a cycle,
then it is a back edge (see Lemma 15).

The values of α, γ, and h which produce A are determined
according to this BFS ordering, as follows.

Authorized licensed use limited to: Eitan Yaakobi. Downloaded on July 21,2020 at 08:17:15 UTC from IEEE Xplore. Restrictions apply.

3600 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 6, JUNE 2020

First, fix an arbitrary value in F
∗
q for γ1. Then,

since v1 is incident with the edges e1, . . . , e|Γ(v1)|, we fix
the values of α1, . . . , α|Γ(v1)| as αi � Av1,ei/γ1, i ∈
{1, . . . , |Γ(v1)|}. Then, for v2, . . . , v|Γ(v1)|+1, that are the
end vertices of e1, . . . , e|Γ(v1)|, respectively, we fix γi =
Avi,ei−1/αi−1, i ∈ {2, . . . , |Γ(v1)|+1}. If eφ is not on a cycle
in T , and eφ happens to be, say, e1, then we can obviously
choose α2 � Av2,e1/(γ1 · h), where h is arbitrary (the case
where eφ lies on a cycle is treated in the sequel). Clearly,
this process goes on unhindered as long as a back edge is not
discovered.

Once a back edge eb = {vc, vd}, b �= φ is discovered,
we have that γc, γd were already determined in earlier stages
of the algorithm. Hence, we ought to show that there exists αb

for which

αb =
Avc,eb

γc
, and αb =

Avd,eb

γd
. (7)

To this end, let C be a cycle which is discovered in whole
when eb is discovered and let c be its number of edges.
Further, let M � AC\{eb}, i.e., the partial matrix of A
which corresponds to the subgraph C \ {eb}. Similarly,
let N � diag(γV (C))IC\{eb} diag(αE(C)\{eb}) be the matrix
which corresponds to the choice of entries in γ and α up
until eb is discovered. By the correctness of the algorithm
so far, it follows that M = N . Moreover, both M and N
are (V (C), E(C)\{j})-compatible, and by the definition of A,
the submatrix AC is C-compatible, and its rank is c − 1.
According to Lemma 14 there exist precisely (q−1) columns
c1, . . . , cq−1 that extend M (and also N) to a C-compatible
matrix of rank c − 1, one of which is AC . Further, it is
evident that the matrix diag(γV (C))IC diag(αE(C)), for any
of the (q − 1) possible values of αb ∈ F

∗
q , results in a

C-compatible matrix of rank c − 1 as well. Therefore, there
exists a 1-1 correspondence between the possible values of αb

and c1, . . . , cq−1. Since one of c1, . . . , cq−1 is the actual eb’th
column of AC , it follows that there exists a unique value
of αb ∈ F

∗
q which satisfies (7).

If eφ lies on a cycle C′ in T , we denote eφ � {vf , vg}.
Since eφ is a back edge, we have that γg and γf were
determined in earlier steps of the algorithm. Hence, we must
find αφ ∈ F

∗
q and h ∈ Fq \ {0, 1} for which

hγgαφ = Avg,eφ
(8)

γfαφ = Avf ,eφ
.. (9)

Clearly, the choice αφ � Avf ,eφ
/γf satisfies (9), and conse-

quently, h � Avg,eφ

γgαφ
satisfies (8). We are only left to show

that this value for h is neither 0 nor 1. First, it is obviously
nonzero as a product of nonzero terms. Second, if h = 1
happens to be the answer, we have by Proposition 3 that AC′

is rank-deficient, in contradiction with condition (b).

Lemma 17. For every T ⊆ G, the random variable QT |φ is
uniformly distributed on its support.

Proof. Let A be a matrix in the support of QT |φ. By following
the proof of Lemma 16, we have that once γ1 is fixed, and
as long as a back edge is not discovered, every edge-node

incidence reduces the overall probability of obtaining A
by (q − 1)−1. In addition, every back edge which is not eφ

reduces the probability of obtaining A by (q−1)−1 due to (7),
instead of by (q − 1)−2 for tree edges.10 Finally, if eφ lies on
a cycle, it reduces the overall probability by 1

q−1 due to (9)
and by 1

q−2 due to (8). Therefore, we have the following,
where u denotes the number of edge-node incidences in T ,
and k denotes the number of back edges in a BFS run (which
is identical in every run of a BFS algorithm).

• If eφ is not on a cycle in T then

Pr((QT |φ) = A) =
(

1
q − 1

)u−k

.

• If eφ is on a cycle in T then

Pr((QT |φ) = A) =
(

1
q − 1

)u−k

· 1
q − 2

.

APPENDIX B
CHOICE OF SETS

The process of choosing the sets {J (j,i)}(j,i)∈[r]×[b] in (5) is
very simple, and is best illustrated by the following examples.

Example 18. Assume that N − K = 4 and K = 6, which
implies that r = 3 and b = 2. Consider the following matrix⎛

⎝1 1 1 1
2 2 1 1

2 2 2 2

⎞
⎠ ,

which naturally corresponds to the sets

J (1,1) = {1, 2, 3, 4} J (1,2) = ∅

J (2,1) = {5, 6} J (2,2) = {1, 2}
J (3,1) = ∅ J (3,2) = {3, 4, 5, 6}.

As another example, in which N−K ≥ K , we may consider
the following.

Example 19. Assume that N − K = 6 and K = 4, which
implies that r = 2 and b = 3. Consider the following matrix(

1 1 1 1 2 2
2 2 3 3 3 3

)
which naturally corresponds to the sets

J (1,1) = {1, 2, 3, 4} J (2,1) = ∅

J (1,2) = {5, 6} J (2,2) = {1, 2}
J (1,3) = ∅ J (2,3) = {3, 4, 5, 6}.

APPENDIX C
IMPROVED BOUND

In this section it is shown that the upper bound in Lemma 9
can be improved in some cases. Consider the dual linear
program in (3). We begin by presenting a feasible vector ρ,

10An edge which is not a back edge in a BFS ordering is called a tree edge.

Authorized licensed use limited to: Eitan Yaakobi. Downloaded on July 21,2020 at 08:17:15 UTC from IEEE Xplore. Restrictions apply.

RAVIV et al.: PRIVATE INFORMATION RETRIEVAL IN GRAPH-BASED REPLICATION SYSTEMS 3601

for which the value of the objective �n · δ� is often larger
than n

δ . Let ρ = (ρi)n
i=1 ∈ R

n be such that

ρi � 1
max{deg(ai), deg(bi)}

,

where ai and bi are the vertices incident with edge ei, for
every i ∈ [n]. That is, for every i ∈ [n] the value of ρi is
the inverse of the maximum among the degrees of the vertices
that are incident with the edge ei.

It is now shown that ρ is a feasible vector for (3). Since
ρ ≥ 0, it suffices to show that I(G) · ρ� ≤ �s. For j ∈
[s] let I(G)j be the j’th row of I(G), which is a zero-one
vector indicating the edges that are incident with node vj ,
and denote the neighboring vertices of vj by u1, . . . , udeg(vj).
Hence, we have

I(G)j · ρ� =
deg(vj)∑

k=1

1
max{deg(vj), deg(uk)}

≤
deg(vj)∑

k=1

1
deg(vj)

= 1,

and therefore I(G) · ρ� ≤ �s. Recall that the value of the
objective function for this feasible vector is

�n · ρ� =
n∑

i=1

1
max{deg(ai), deg(bi)}

� μ,

and hence an immediate bound on the PIR rate is μ−1.
This bound is stronger than Lemma 9 for graphs that are far

from being regular; e.g., where there exist one node of high
degree, whereas the remaining nodes are of low degree. For
example, consider graphs which contain an �-regular subgraph
on s − 1 nodes for some constant �, and an additional vertex
of degree s − 1. These graphs satisfy n = (s − 1)(1 + �/2)
and δ = s− 1. The bound resulting Lemma 9 is 1/(1 + �/2),
a constant, whereas

μ−1 =
1

(s − 1) · 1
s−1 + (s−1)�

2 · 1
�+1

=
2(� + 1)

2(� + 1) + �(s − 1)

goes to zero as s grows.

REFERENCES

[1] M. A. Attia, D. Kumar, and R. Tandon, “The capacity of private informa-
tion retrieval from uncoded storage constrained databases,” May 2018,
arXiv:1805.04104. [Online]. Available: https://arxiv.org/abs/1805.04104

[2] K. Banawan and S. Ulukus, “The capacity of private information
retrieval from coded databases,” Sep. 2016, arXiv:1609.08138. [Online].
Available: https://arxiv.org/abs/1609.08138

[3] K. Banawan and S. Ulukus, “Multi-message private information
retrieval: Capacity results and near-optimal schemes,” IEEE Trans. Inf.
Theory, vol. 64, no. 10, pp. 6842–6862, Oct. 2018.

[4] K. Banawan and S. Ulukus, “Private information retrieval from non-
replicated databases,” Dec. 2018, arXiv:1901.00004. [Online]. Available:
https://arxiv.org/abs/1901.00004

[5] S. Blackburn and T. Etzion, “PIR array codes with optimal
PIR rates,” Sep. 2016, arXiv:1609.07070. [Online]. Available:
https://arxiv.org/abs/1609.07070

[6] S. Blackburn, T. Etzion, and M. B. Paterson, “PIR schemes with
small download complexity and low storage requirements,” Sep. 2016,
arXiv:1609.07027. [Online]. Available: https://arxiv.org/abs/1609.07027

[7] Apache Cassandra 2.1 for DSE, Data replication. Accessed:
Dec. 4, 2019. [Online]. Available: https://docs.datastax.com/en/
cassandra/2.1/cassandra/architecture/
architectureDataDistributeReplication_c.html

[8] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private informa-
tion retrieval,” in Proc. IEEE 36th Annu. Found. Comput. Sci. (FOCS),
Oct. 1995, pp. 41–50.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms. Cambridge, MA, USA: MIT Press, 2009.

[10] Z. Dvir and S. Gopi, “2-server PIR with subpolynomial communica-
tion,” in Proc. 47th Annu. ACM Symp. Theory Comput. (STOC), 2015,
pp. 577–584.

[11] S. El Rouayheb and K. Ramchandran, “Fractional repetition codes for
repair in distributed storage systems,” in Proc. 48th Annu. Allerton Conf.
Commun., Control, Comput. (Allerton), Sep./Oct. 2010, pp. 1510–1517.

[12] A. Fazeli, A. Vardy, and E. Yaakobi, “PIR with low storage overhead:
Coding instead of replication,” May 2015, arXiv:1505.06241. [Online].
Available: https://arxiv.org/abs/1505.06241

[13] R. Freij-Hollanti, O. W. Gnilke, C. Hollanti, and D. A. Karpuk, “Private
information retrieval from coded databases with colluding servers,”
SIAM J. Appl. Algebra Geometry, vol. 1, no. 1, pp. 647–664, 2017.

[14] Hadoop Distributed File System (HDFS). Architecture Guide-
Data Replication. Accessed: Dec. 4, 2019. [Online]. Available:
http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html#Data+Replication

[15] Z. Jia and S. A. Jafar, “On the asymptotic capacity of X-secure T -private
information retrieval with graph based replicated storage,” Apr. 2019,
arXiv:1904.05906. [Online]. Available: https://arxiv.org/abs/1904.05906

[16] Z. Jia, H. Sun, and S. A. Jafar, “The capacity of private information
retrieval with disjoint colluding sets,” in Proc. IEEE Global Commun.
Conf. (GLOBECOM), Dec. 2017, pp. 1–6.

[17] D. Karpuk, “Private computation of systematically encoded data with
colluding servers,” Jan. 2018, arXiv:1801.02194. [Online]. Available:
https://arxiv.org/abs/1801.02194

[18] A. Lubotzky, R. Phillips, and P. Sarnak, “Ramanujan graphs,” Combi-
natorica, vol. 8, no. 3, pp. 261–277, 1988.

[19] U. S. R. Murty, “A generalization of the Hoffman–Singleton graph,”
ARS Combin., vol. 7, pp. 191–193, 1979.

[20] N. B. Shah, K. V. Rashmi, and K. Ramchandran, “One extra bit of
download ensures perfectly private information retrieval,” in Proc. IEEE
Int. Symp. Inf. Theory (ISIT), Jun./Jul. 2014, pp. 856–860.

[21] N. Silberstein and T. Etzion, “Optimal fractional repetition codes based
on graphs and designs,” IEEE Trans. Inf. Theory, vol. 61, no. 8,
pp. 4164–4180, Aug. 2015.

[22] M. Sipser and D. A. Spielman, “Expander codes,” IEEE Trans. Inf.
Theory, vol. 42, no. 6, pp. 1710–1722, Nov. 1996.

[23] H. Sun and S. A. Jafar, “The capacity of private information retrieval,”
IEEE Trans. Inf. Theory, vol. 63, no. 7, pp. 4075–4088, Jul. 2017.

[24] H. Sun and S. A. Jafar, “The capacity of robust private informa-
tion retrieval with colluding databases,” May 2016, arXiv:1605.00635.
[Online]. Available: https://arxiv.org/abs/1605.00635

[25] H. Sun and S. A. Jafar, “Multiround private information retrieval:
Capacity and storage overhead,” IEEE Trans. Inf. Theory, vol. 64, no. 8,
pp. 5743–5754, Aug. 2018.

[26] R. Tajeddine, O. W. Gnilke, and S. El Rouayheb, “Private information
retrieval from MDS coded data in distributed storage systems,” IEEE
Trans. Inf. Theory, vol. 64, no. 11, pp. 7081–7093, Nov. 2018.

[27] R. Tajeddine, O. W. Gnilke, D. Karpuk, R. Freij-Hollanti, C. Hollanti,
and S. El Rouayheb, “Private information retrieval schemes for coded
data with arbitrary collusion patterns,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Jun. 2017, pp. 1908–1912.

[28] R. Tandon, M. Abdul-Wahid, F. Almoualem, and D. Kumar, “Pri-
vate information retrieval from storage constrained databases–coded
caching meets PIR,” Nov. 2017, arXiv:1711.05244. [Online]. Available:
https://arxiv.org/abs/1711.05244

[29] Q. Wang and M. Skoglund, “Symmetric private information retrieval
for MDS coded distributed storage,” in Proc. IEEE Int. Conf. Commun.
(ICC), May 2017, pp. 1–6.

[30] S. Yekhanin, “Private information retrieval,” Commun. ACM, vol. 53,
no. 4, pp. 68–73, Apr. 2010.

[31] S. Yekhanin, Locally Decodable Codes and Private Information
Retrieval Schemes. Berlin, Germany: Springer-Verlag, 2010.

[32] L. Yohananov and E. Yaakobi, “Codes for graph erasures,” May 2017,
arXiv:1705.02639. [Online]. Available: https://arxiv.org/abs/1705.02639

[33] L. Yohananov and E. Yaakobi, “Codes for erasures over directed
graphs,” Sep. 2017, arXiv:1709.04701. [Online]. Available: https://
arxiv.org/abs/1709.04701

Authorized licensed use limited to: Eitan Yaakobi. Downloaded on July 21,2020 at 08:17:15 UTC from IEEE Xplore. Restrictions apply.

3602 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 6, JUNE 2020

Netanel Raviv (S’15–M’17) received the B.Sc. degree in mathematics and
computer science and the M.Sc. and Ph.D. degrees in computer science
from the Technion—Israel Institute of Technology, Israel, in 2010, 2013,
and 2017, respectively. He was a Post-Doctoral Scholar with the Center for
the Mathematics of Information (CMI), California Institute of Technology.
He is an Assistant Professor with the Department of Computer Science and
Engineering, McKelvey School of Engineering, Washington University in
Saint Louis. His research interests include applications of coding theory to
computation, privacy, and storage. He was awarded the IBM Ph.D. Fellowship
from 2015 to 2016, the First Prize of the Feder Family Competition for
best student work in communication technology, and the Lester–Deutsche
Post-Doctoral Fellowship.

Itzhak Tamo received the B.A. degree in mathematics, and the B.Sc. and
Ph.D. degrees in electrical engineering from Ben-Gurion University, Israel,
in 2008 and 2012, respectively. From 2012 to 2014, he was a Post-Doctoral
Researcher with the Institute for Systems Research, University of Maryland,
College Park. Since 2015, he has been a Senior Lecturer with the Electrical
Engineering Department, Tel-Aviv University, Israel. His research interests
include storage systems and devices, coding, information theory, and combi-
natorics. He was a corecipient (with Zhiying Wang and Jehoshua Bruck) of the
IEEE Communication Society Data Storage Technical Committee 2013 Best
Paper Award. He received the 2015 IEEE Information Theory Society Paper
Award along with A. Barg. In 2018, he received the Krill Prize.

Eitan Yaakobi (S’07–M’12–SM’17) received the B.A. degree in computer
science and mathematics and the M.Sc. degree in computer science from
the Technion—Israel Institute of Technology, Haifa, Israel, in 2005 and
2007, respectively, and the Ph.D. degree in electrical engineering from the
University of California, San Diego, in 2011. He is an Associate Professor
with the Computer Science Department, Technion—Israel Institute of Tech-
nology. From 2011 to 2013, he was a Post-Doctoral Researcher with the
Department of Electrical Engineering, California Institute of Technology, and
the Center for Memory and Recording Research, University of California. His
research interests include information and coding theory with applications to
nonvolatile memories, associative memories, DNA storage, data storage and
retrieval, and private information retrieval. He received the Marconi Society
Young Scholar Award in 2009 and the Intel Ph.D. Fellowship from 2010 to
2011.

Authorized licensed use limited to: Eitan Yaakobi. Downloaded on July 21,2020 at 08:17:15 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

