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Bounds and Constructions of Codes Over
Symbol-Pair Read Channels

Ohad Elishco , Member, IEEE, Ryan Gabrys , Member, IEEE, and Eitan Yaakobi , Senior Member, IEEE

Abstract— Cassuto and Blaum recently studied the symbol-
pair channel, a model where every two consecutive symbols are
read together. This special channel structure is motivated by the
limitations of the reading process in high density data storage
systems, where it is no longer possible to read individual symbols.
In this new paradigm, the errors are not individual symbol errors,
but rather symbol-pair errors, where at least one of the symbols
is erroneous. In this work, we study bounds and constructions
of codes over the symbol-pair channel. We extend the Johnson
bound and the linear programming bound for this channel and
show that they improve upon existing bounds. We then propose
new code constructions that improve upon existing results for
pair-distance six, seven, and ten.

Index Terms— Coding theory, codes for storage media,
symbol-pair codes.

I. INTRODUCTION

A BASIC limitation of high density data storage systems
is that the outputs of the reading process are pairs

of consecutive symbols rather than individual symbols. The
symbol-pair read channel was recently proposed as a model
reflecting this limitation and it was first studied in [2] and [3].
In those papers the authors studied fundamental questions
arising from pair-symbol readings such as the pair-distance,
code constructions, decoding of error-correction codes, and
bounds on codes size. These results were later extended in
several directions such as cyclic codes [20], maximum distance
separable (MDS) codes [13], decoding algorithms [21] and
more.

In [21], the authors presented efficient decoding algorithms
that improved the initial lower bounds from [2] and [3] on the
minimum pair-distance of linear cyclic codes. Several more
works presented different decoding algorithms for arbitrary
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linear codes; see e.g. [9], [10], [15], [18]–[20]. The study of
MDS codes for the symbol-pair channel was initiated in [4],
and was later extended in several more works and for other
non-binary codes; see e.g. [5], [6], [12], [13], [17]. Another
generalization of the pair-symbol model was studied in [21] for
the b-symbol read channel. Here the assumption is that every
b > 2 consecutive symbols are read together. This model was
further studied for MDS codes in [5], [13].

Assume the stored word is given by the vector
x = (x0, x1, . . . , xn−1). The pair-read vector is given by

π(x) = ((x0, x1), (x1, x2), . . . , (xn−2, xn−1), (xn−1, x0)) .

A symbol-pair error is the event where at least one of
the symbols in the pair-read vector is in error. The pair-
distance between two words x and y, denoted by dp(x, y),
is the Hamming distance between their pair-read vectors, that
is dp(x, y) = dH (π(x), π(y)). Finally, the minimum pair-
distance of a code C is the minimum pair-distance between
any two different codewords. Under this paradigm, the goal is
to construct codes with large minimum pair-distance since this
is the appropriate figure of merit to study in order to correct
symbol-pair errors; that is, a code with minimum pair-distance
dp permits the correction of at least � dp−1

2 � symbol-pair errors.
In [21], it was shown that if a linear cyclic code has min-

imum Hamming distance dH then its minimum pair-distance
is at least dp �

�
3dH

2

�
. This work presents also decoding

algorithms for such codes. On the other hand, bounds on codes
with minimum pair-distance were studied in [3], where the
authors extended the sphere packing bound for symbol-pair
errors.

In this work, we improve upon existing results and propose
new upper bounds and code constructions for the symbol-
pair read channel. Specifically, we show how to extend the
Johnson bound and the linear programming bound for this
setup, and demonstrate how the new bounds improve upon
the best previously known bound from [3]. We also study
code constructions for relatively small minimum pair-distance,
namely six, seven, and ten. For these cases we show how to
improve the result from [21] using cyclic linear codes in order
to obtain codes with better redundancy.

The rest of this paper is organized as follows. In Section II,
we review the symbol-pair read channel and list several basic
properties that will be used throughout the paper. In Section III
we study bounds on codes correcting symbol-pair errors.
Then, in Section IV we present our new code constructions
of symbol-pair error-correcting codes when the minimum
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pair-distance is six, seven, and ten. Lastly, in Section V we
conclude the paper and discuss the results and future research.

II. PRELIMINARIES

Let n ∈ N (the natural numbers, including 0), and denote by
[n] the set {0, . . . , n − 1}. For a prime power q , we denote by
Fq the field of size q . For a sequence x ∈ F

n
2 denote by wH (x)

the Hamming weight of x. For two sequences x, y ∈ F
n
2 let

dH (x, y) denote the Hamming distance between x, y. For a
set C ⊆ F

n
2, denote by dH (C) � minx,y∈C,x �=y {dH (x, y)}

the minimum Hamming distance between any two different
sequences in C. We also denote by 0, 1 ∈ F

n
2 the all zeros and

the all ones sequences, respectively.

Definition 1. Let π : F
n
2 → (F2 × F2)

n denote the (cyclic)
pair-symbol read representation which is defined as follows. For
x = (x0, x1, . . . , xn−1) ∈ F

n
2,

π(x) � ((x0, x1), (x1, x2), . . . , (xn−2, xn−1), (xn−1, x0)) .

For a code C ⊆ F
n
2, we denote by π(C) ⊆ �

F
2
2

�n
the pair-code

generated by C, i.e.,

π(C) � {π(c) : c ∈ C} .

We now define the associated pair-weight and pair-distance.
For a sequence x ∈ F

n
2, define the pair-weight of x as

wp(x) � wH (π(x)) = ∣∣{ j ∈ [n] : (x j , x j+1) �= (0, 0)
}∣∣

with coordinates taken modulo n. Similarly, for sequences
x, y ∈ F

n
2, define the pair-distance as

dp(x, y) � dH (π(x), π(y))

= ��� j ∈ [n] : (x j , x j+1) �= (y j , y j+1)
���

with coordinates taken modulo n. For a set C ⊆ F
n
2 we define

dp(C) as the minimum pair-distance between two codewords,

dp(C) � min
x,y∈C,x �=y

dp(x, y).

In the following, we make use of the well known property
(see [21])

dp(x, y) = wp(x − y). (1)

Note that for a linear code C, we obtain

dp(C) = min
y∈C,y �=0

dp(0, y) = min
y∈C,y �=0

wp(y). (2)

Example 1. Let x = (0110), y = (0101) ∈ F
4
2. We have that

• wH (x) = wH (y) = 2.
• dH (x, y) = 2.
• π(x) = ((0, 1), (1, 1), (1, 0), (0, 0)).
• π(y) = ((0, 1), (1, 0), (0, 1), (1, 0)).
• wp(x) = 3, wp(y) = 4.
• dp(x, y) = 3.

Define r(x) � |{i : π(x)i = (0, 1)}|. It is evident that r(x)
is the number of occurrences of the symbol (0, 1) in π(x). It is
straightforward to show that r(x) = |{i : π(x)i = (0, 1)}| =
|{i : π(x)i = (1, 0)}|. Note that the sequence 1 has r(1) = 0.

We may consider r(x) as the number of runs of consecutive
symbols in x. Throughout the rest of the paper, we will
consider only binary vectors unless mentioned otherwise or it
is clear from the context. It is known [3] that for the binary
case

wp(x) = wH (x) + r(x). (3)

Moreover, if C is a linear code, from (2), it is straightforward
to verify that

dp(C) = min
y∈C,y �=0

{wH (y) + r(y)}. (4)

In this work we focus on bounds and constructions for codes
that, for fixed levels of redundancy, maximize the pair-distance
dp(x, y) for x, y ∈ F

n
2. We make use of the following lemma

from [21] which we include for completeness.

Lemma 2. [21, Lemma 1] Suppose C ⊆ F
n
2 is a cyclic linear

code with dimension greater than 1 and with dH (C) � d . Then,
for any x ∈ C, r(x) � � d

2 	.

As a consequence of Lemma 2, it follows that if C is a
linear cyclic code with minimum Hamming distance dH (C),
then the code C satisfies

dp(C) �
�3dH (C)

2

�
. (5)

III. UPPER BOUNDS

In this section, we derive a number of new bounds on
the maximum size of a code with a prescribed pair-distance.
In the first subsection, we consider upper bounds for even pair-
distance and then in the following subsection we apply linear
programming techniques.

A. Upper Bounds for Even Pair-Distance

In this subsection, we derive upper bounds for even pair-
distance codes using similar logic as in the Johnson bound
[11, Theorem 2.3.8]. In Lemma 3, we first derive a bound
on the maximal size of a code with minimum pair-distance at
least 2w where each codeword has pair-weight w. Afterwards,
this result is used in Theorem 5 to derive an upper bound for
codes with even pair-distance.

Let n, d, w ∈ N and denote by A p(n, d) the maximal size of
a code of length n with pair-distance d , and by A p(n, d, w) the
maximal size of a code of length n with pair-distance at least d
where each codeword has pair-weight w. For the specific case
in which d = 2w we have the following equality.

Lemma 3. For positive integers n, w,

A p(n, 2 w,w) =
	 n

w



.

Proof: Let x, y ∈ F
n
2 have pair-weight wp(x) = wp(y) =

w and dp(x, y) � 2w. Since dp is a metric, by the triangle
inequality, dp(x, y) � dp(x, 0) + dp(0, y) = 2 w, which
implies that if dp(x, y) � 2w, then dp(x, y) = 2w. At
first, we show that A p(n, 2w,w) �

� n
w

�
. We do so by
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constructing a code as follows. Let ci , 0 � i <
� n

w

�
, be the

sequence generated by appending iw zeroes, (w − 1) ones
and n − iw − w + 1 zeros, i.e., ci = 0iw1w−10n−iw−w+1 and
consider the code C =

{
c0, . . . , c� n

w �−1

}
. Note that |C| =� n

w

�
, ∀x ∈ C, wp(x) = w and ∀x, y ∈ C, dp(x, y) = 2w.

Thus, A p(n, 2w,w) �
� n

w

�
.

In order to show that A p(n, 2w,w) �
� n

w

�
we note

(using (1)) that 2w � dp(x, y) = wp(x + y). Since each word
has pair-weight w we obtain that 2w = wp(x) + wp(y) =
r(x) + wH (x) + r(y) + wH (y). Combining the inequalities
with the fact that dp(x, y) � wp(x) + wp(y) we obtain

wp(x + y) = r(x) + wH (x) + r(y) + wH (y).

This equality means that for every j ∈ [n], x j · y j = 0 and
x j · y j+1 = y j · x j+1 = 0. In other words, it means that x
and y cannot have 1 in the same position. Moreover, if x ( y)
has a run of ones that ends in position j , then y (x) cannot
have a run of ones beginning in position j + 1.

Suppose C is a code of maximal size where all sequences
in C have pair-weight w and dp(C) = 2 w. Let M ∈ F

M×n
2 be

a matrix which contains as rows the codewords from C. From
the previous discussion, notice that each column of M has at
most a single 1 in it. Additionally, the column immediately
after the end of any run of ones must not contain any 1.
We say that column j of M is occupied by x if x has a 1 in
position j or a run of ones ending in position j − 1. We claim
that the number of columns of M occupied by any codeword
in C is wH (x) + r(x) = w. Since each codeword occupies
w columns of M, and each column can only be occupied
by a single codeword, we can have at most

	
n
w



codewords

in C.
Before continuing, we introduce some additional notation

and useful results from [3]. For integers i, j where i � j ,
let [i, j ] = {i, i + 1, . . . , j}. For integers n > � � L, let
D(n, �, L) be the number of sequences of weight � that have
L runs. Recall that a sequence x is said to have L runs if the
symbol (0, 1) occurs L times in π(x) and so a run is sequence
of ones or zeros which appear consecutively. The next lemma
appears in [3].

Lemma 4. [3] For integers n>� � L,

D(n, �, L) = n

L


� − 1
L − 1

� 
n − � − 1

L − 1

�
.

For a sequence x ∈ F
n
q and for a natural number t ∈ N,

denote by St (x) the radius-t sphere around x, i.e., St (x) =
{ y : dp(x, y) = t}. In particular, from [3] we have

|St (x)| =
t−1∑

�=�t/2	
D(n, �, t − �)(q − 1)�.

Let Bt (x) = { y : dp(x, y) � t} be the ball of radius t around
x. Then,

|Bt (x)| = 1 +
t∑

i=1

|Si (x)|.

Notice from these expressions that the values for |St (x)|
and |Bt(x)| do not depend on x. Consequently, we denote

Sp(n, t) = |St (x)|, (6)

and

Bp(n, t) = |Bt (x)|. (7)

Note that for any fixed t , the order of both Sp(n, t) and
Bp(n, t) is �(n�t/2�). A code with pair distance 2t +1 has size
at most 2n

Bp(n,t) which implies at least log Bp(n, t) = t
2 log n

bits of redundancy. Thus, according to the sphere packing
bound [3], the redundancy of a code with minimum symbol-
pair distance dp is at least�

dp − 1

4

�
log(n). (8)

We may now state the main result of this subsection. The proof
follows a similar logic as in the proof of the Johnson bound
[11, Theorem 2.3.8].

Theorem 5. Let n, d ∈ N where d is even. Let t ∈ N be such
that d = 2t + 2, then

A p(n, d) � 2n

Bp(n, t) + Sp(n,t+1)

� n
t+1 �

.

Proof: Let C ⊆ F
n
2 be a code of size M with dp(C) � d

where d = 2t + 2. For a sequence x ∈ F
n
2, let dp(C, x) =

minc∈C,c�=x dp(x, c) and denote N = {x ∈ F
n
2 : dp(C, x) =

t + 1}. Clearly,

M · Bp(n, t) + |N | � 2n . (9)

Consider the set X ={
(c, x) ∈ C × N : dp(c, x) = t + 1

}
. We first calculate

|X |. For any c ∈ C, denote by Xc = {x ∈ N : (c, x) ∈ X }
and note that |X | = ∑

c∈C |Xc|. For a fixed c ∈ C, let x ∈ F
n
2

be any sequence such that dp(c, x) = t + 1. There are exactly
Sp(n, t + 1) such sequences. Thus, wp(c + x) = t + 1
which means that dp(C, x) � t + 1. We show that for any
c� ∈ C, c� �= c, we have dp(c�, x) � t + 1, which implies
dp(C, x) = t + 1. By the triangle inequality we obtain,

d � dp(c, c�) = wp(c + c�) = wp(c + x + c� + x)

� wp(c + x) + wp(x + c�) = t + 1 + wp(c� + x).

This implies that if d = 2t + 2 then wp(c� + x) = dp(c, x) �
t + 1. Since c� was arbitrary, we obtain dp(C, x) = t + 1.
Therefore, for a fixed c ∈ C, we have that |Xc| = Sp(n, t +1),
which implies that

|X | = M · Sp(n, t + 1). (10)

We now fix x ∈ N and consider the set

C �
x = {

x + c : c ∈ C and dp(x, c) = t + 1
}
.

Note that C �
x is a constant pair-weight code of length n with

codewords of pair-weight t + 1 and minimum pair-distance d .
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Therefore, for every choice x ∈ N , |C �
x | � A p(n, 2t+2, t+1).

This, in turn, implies that

|X | � |N | · A p(n, 2t + 2, t + 1). (11)

Combining Lemma 3 with (9), (10) and (11) we obtain

M

⎛
⎝Bp(n, t) + Sp(n, t + 1)	

n
t+1



⎞
⎠ � M · Bp(n, t) + |N | � 2n .

Since this is true for every code of size M , it is also true for
the value A p(n, d), which establishes the theorem’s statement.

B. Linear Programming Upper Bound

We now consider the application of linear programming
techniques to derive upper bounds on codes under the pair-
distance metric. The approach used here is analogous to the
approach from [8]. First, we introduce a mapping, which we
refer to as T[m1,m2]. In Lemma 6, we show that if the input to
T[m1,m2] is a sequence with Hamming weight i and j runs, then
the Hamming weight of the output sequence is a function of i
and j only. Lemma 7 then provides a necessary condition on
the weight enumerator for a code over (F2

2)
n and this condition

along with the result from Lemma 6 is used in Lemma 8
to derive a set of necessary conditions on the number of
codewords in a code with a prescribed pair-distance. Finally,
Theorem 9 gives our linear programming upper bound, which
contains the statement of Lemma 8 as one of its necessary
conditions.

Before continuing, we first introduce some useful notation.
For a linear code C ⊆ F

n
2 and for i, j ∈ [n], let

Ai, j � {x ∈ C : wH (x) = i, r(x) = j} ,

and denote by ai, j = |Ai, j |. Note that for i < j , Ai, j = ∅,
and so we may consider only the cases where j � i . Note
also that |C| = �

0� j�i<n ai, j . The following claim states
that given wH (x) and r(x) we can determine the statistics of
the symbols in π(x).

Claim 1 Suppose x ∈ F
n
2 is such that wH (x) = i and r(x) = j

and denote π(x) = (z0, z1, . . . , zn−1) ∈ (
F

2
2

)n
. Then

1) | {� ∈ [n] : z� = (1, 1)} | = i − j ,
2) | {� ∈ [n] : z� = (1, 0)} | = j , and
3) | {� ∈ [n] : z� = (0, 1)} | = j .

Proof: Note that under the setup described in the claim,
wp(x) = i + j . The fact that | {� ∈ [n] : z� = (1, 0)} | =
| {� ∈ [n] : z� = (0, 1)} | = j follows immediately from the
definition of r(x) presented in Section II. Since wp(x) = i+ j ,
it follows then that |{� ∈ [n] : z� = (1, 1)}| = wp(x) − 2 j =
i − j as desired.

Let m1, m2 ∈ [n] be such that m1 + m2 � n and let N =� n
m1

� · �n−m1
m2

�
. We introduce a mapping T[m1,m2] : �

F
2
2

�n →�
F

2
2

�N
as follows. Let J0, . . . ,JN−1 be the distinct ways of

choosing m1 positions out of n and then choosing additional
m2 positions. For every 0 � i � N −1 we think of Ji as a pair
Ji = �

Ji,1,Ji,2
�

where Ji,t ⊆ [n], |Ji,t | = mt for t = 1, 2

and Ji,1∩Ji,2 = ∅. Meaning that we think of Ji,1 as all the m1
positions that were chosen in the first round and of Ji,2 as all
the m2 positions that were chosen in the second round. For a
sequence z = (

(z0,0, z0,1), (z1,0, z1,1), . . . , (zn−1,0, zn−1,1)
) ∈(

F
2
2

)n
we define T[m1,m2](z) = y where y = (y0, . . . , yN−1) ∈(

F
2
2

)N
is defined as follows. For i ∈ [N],

yi ≡
⎛
⎝ �

�1∈Ji,1

(z�1,0, z�1,1) +
�

�2∈Ji,2

(0, z�2,1)

⎞
⎠ mod 2.

Note that if x = (x0, . . . , xn−1) and T[m1,m2] (π(x)) = y
where y = (y0, . . . , yN−1), then for i ∈ [N],

yi ≡
⎛
⎝ �

�1∈Ji,1

(x�1,0, x�1,1) +
�

�2∈Ji,2

(0, x�2,1)

⎞
⎠ mod 2.

Lemma 6. Suppose x ∈ F
n
2, wH (x) = i, r(x) = j where j � i .

Then,

wH
(
T[m1,m2](π(x))

) =
(

n
m1

) (
n − m1

m2

)
−

�
s≡t+s �+t �≡u( mod 2)


i − j

s

� 
j
t

� 
j
u

�
×


n − i − j

m1 − s − t − u

� 
i − j − s

s�
� 

j − t
t �

�
×


n − i − u

m2 − s� − t �
�

where
�a

b

� = 0 whenever a � 0, b < 0, b > a.

Proof: Let T[m1,m2](π(x)) = y = (y0, . . . , yN−1).
We would like to calculate the size | {� ∈ [N] : y� = (0, 0)} |
and obtain the Hamming weight by subtracting this amount
from N . From Claim 1, we have that in π(x) there are
i − j positions containing (1, 1), j positions containing (0, 1)
and j positions containing (1, 0). Fix � ∈ [N] and let s =
| {k ∈ J�,1 : π(x)k = (1, 1)

} |, t = |{k ∈ J�,1 : π(x)k =
(0, 1)}|, u = |{k ∈ J�,1 : π(x)k = (1, 0)}|. We have that

s�
k1=1

(1, 1) +
t�

k2=1

(0, 1) +
u�

k3=1

(1, 0) ≡ (0, 0) mod 2

iff s ≡ t ≡ u (mod 2). Now we do the same for the positions
in J�,2. Let s� = |{k ∈ J�,2 : π(x)k = (1, 1)}|, t � = |{k ∈
J�,2 : π(x)k = (0, 1)}|, u� = |{k ∈ J�,2 : π(x)k = (1, 0)}|.
Since the sum on the positions in J�,2 contributes only to the
(0, 1) term, we obtain that

s�
k1=1

(1, 1) +
t+s �+t ��

k2=1

(0, 1) +
u�

k3=1

(1, 0) ≡ (0, 0) mod 2

iff s ≡ t + s� + t � ≡ u (mod 2). Since


i − j

s

� 
j
t

�


j
u

� 
n − i − j

m1 − s − t − u

�
is equal to the number of ways

of picking the m1 positions for the set J�,1 (where s positions
in the set have value (1, 1), t positions have value (0, 1), and
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u positions have value (1, 0)), and


i − j − s

s�
� 

j − t
t �

�


n − i − u
m2 − s� − t �

�
is equal to the number of ways of

picking the m2 positions for the set J�,2, we get that
| {� ∈ [N] : y� = (0, 0)} | can be calculated as

n�
s,t,s �,t �,u=1

�s≡t+s �+t �≡u (mod 2)


i − j

s

�
j

t

�
j

u

�
×


n − i − j

m1 − s − t − u

�
·


i − j − s

s�

�
j − t

t �

�
×


n − i − u

m2 − s� − t �

�

which gives the desired result.
Notice from the previous lemma that wH (T[m1,m2](π(x)))

only depends on wH (x) = i, r(x) = j . Therefore, for any
x, we can characterize wH (T[m1,m2](π(x))) by the following
function

wH (i, j)�


n
m1

� 
n − m1

m2

�
−

�
s≡t+s �+t �≡u( mod 2)


i − j

s

� 
j
t

�
j
u

�
×


n − i − j

m1 − s − t − u

�
·


i − j − s
s�

�
×


j − t

t �
� 

n − i − u
m2 − s� − t �

�
.

where i, j are non-negative integers and j � i .
Before stating the main result of this section, we need one

more lemma which requires the following notation. For a pair-
code Cp ∈ �

F
2
2

�n
, let ai denote the number of codewords with

pair-weight i , i.e., ai = | {x ∈ Cp : wp(x) = i
} |. Consider-

ing Cp as a binary expansion of a code over {0, 1, 2, 3} we
obtain the following lemma from the Plotkin bound.

Lemma 7. For a code Cp ⊆ �
F

2
2

�n
, we have

n−1�
i=0

(n − 4

3
i)ai � 0.

Proof: Similar to the proof of Lemma 3, let Cp ⊆ �
F

2
2

�n

be a code of size |Cp| = M , and let M be the codeword
matrix which contains as rows all the codewords from Cp. For
shorthand, let mi, j denote the element in row i and column j
of M. For j ∈ [n], let w0, j = |{k : mk, j = (0, 0)}|, w1, j =
|{k : mk, j = (0, 1)}|, w2, j = |{k : mk, j = (1, 0)}|, and w3, j =
|{k : mk, j = (1, 1)}|. Then we have

M
n�

i=0

iai =
∑
c,d

dH (c, d)

= 2
� n�

j=1

w1, jw2, j + w1, jw3, j + w1, jw0, j

+ w2, jw3, j + w2, jw0, j + w3, jw0, j
�

where c, d ∈ (
F

2
2

)N
. To maximize the above expression we set

wi, j = M/4 for i ∈ {0, 1, 2, 3} so that M
�n

i=0 iai � 12 M2 n
16

which implies

n�
i=0

iai � 12 Mn

16
= 3n

4

n�
i=0

ai ,

so that 3n
4

�n
i=0 ai − �n

i=0 iai � 0 which after simplifying
gives the expression in the lemma.

We can now derive the main result of this section by
applying the previous lemma to the pair-code T[m1,m2](π(C)).
To simplify the notation, let

Km1,m2(n, i, j) �4
�

s≡t+s �+t �≡u( mod 2)


i − j

s

� 
j
t

�
×


j
u

� 
n − i − j

m1 − s − t − u

�
×


i − j − s

s�
� 

j − t
t �

� 
n − i − u

m2 − s� − t �
�

−


n
m1

� 
n − m1

m2

�
.

Lemma 8. For a positive integer n and non-negative integers
m1, m2 where 0 � m1 + m2 � n, we have�

j�i

Km1,m2(n, i, j)ai, j � 0.

Proof: From Lemma 7 we can write

0 �
N�

r=0

(N − 4

3
r)ar

=
N�

r=0

 
n

m1

� 
n − m1

m2

�
− 4

3
r

� �
wH (i, j )=r

ai, j

=
N�

r=0

�
wH (i, j )=r

 
n

m1

� 
n − m1

m2

�
− 4

3
r

�
ai, j

=
�
j�i


n

m1

� 
n − m1

m2

�
− 4

3
wH (i, j)

�
ai, j

=
�
j�i

ai, j

⎛
⎝4

3

�
s≡t+s �+t �≡u( mod 2)


i − j

s

� 
j
t

� 
j
u

�


n − i − j

m1 − s − t − u

�
·


i − j − s
s�

� 
j − t

t �
�


n − i − u

m2 − s� − t �
�

− 1

3


n

m1

� 
n − m1

m2

�⎞
⎠ ,

which simplifies to the expression in the statement of the
theorem.

We now may state the linear programming bound. For
integers n, m where 0 � m � n, let

Km(n, i) �
m�

k=0

(−1)k


i
k

� 
n − i
m − k

�
.
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TABLE I

COMPARISON OF THE RESULTS OF THEOREM 9 AND THEOREM 5
WITH THE SPHERE PACKING BOUND [3]

Theorem 9. Suppose C ⊆ F
n
2 with dp(C) � d . Then, |C| is

upper bounded by the following expression

Maximize
�

1� j�i

ai, j

Subject to: 1) a0,0 = 1

2) ai, j = 0 if i + j < d

3)

n�
i=0

Km(n, i)

⎛
⎝ i�

j=1

ai, j

⎞
⎠ � 0

0 � m � n

4) Km1,m2 (n, 0, 0)a0,0 +
n−1�
i=1

i�
j=1

Km1,m2(n, i, j)ai, j

+ Km1,m2 (n, n, 0)an,0 � 0

0 � m1 + m2 � n.

Proof: The fact that a0,0 = 1 follows since there is only
one codeword of weight zero. Furthermore, if i + j < d ,
then as a result of the minimum pair-distance of the code C,
ai, j = 0. Since

�i
j=1 ai, j represents the set of all codewords

of weight i , the third constraint is a direct consequence of the
linear programming bound found in [8] for instance. The last
constraint follows directly from Lemma 8.

In order to evaluate the new bounds we derived in this
section, we compared in Table I our results with the sphere-
packing upper bound from [3], for 2 � n, dp � 7. Each entry
consists of a pair of numbers delimited by a ’/’ where the first
number in the pair represents the result of using our linear
programming bound or the Johnson bound and the second
number represents the sphere-packing upper bound from [3].
For even distances we used our result from Theorem 5 and
for odd distances Theorem 9.

IV. CONSTRUCTIONS FOR SMALL

MINIMUM PAIR-DISTANCE

In this section, we present new code constructions for the
pair-symbol channel. Table II compares between the sizes
of the best known code constructions for the pair-symbol
channel (in terms of their code lengths) and the best known
upper bound on the codes cardinalities. For odd pair distance
we used the sphere-packing upper bound from [3] and for
even pair distance we used Theorem 5. We have highlighted
the contributions of this section by (∗). The fourth column
Table II, labeled as “Hamming Distance of the Code”, is a
lower bound on the Hamming distance of the code whose size
is listed in the third column. As can be seen from Table II,

our constructions provide codes that improve upon the state-
of-the-art results for the cases where dp = 6, 7, 10.

Note that the case of dp = 2, 3 are trivial and are known.
For the case where dp = 2, since every code has minimum
pair-distance at least 2, A p(n, 2) = 2n . For the case where
dp = 3, it can be shown that code with a single parity bit is
optimal, which implies A p(n, 3) = 2n−1. For dp = 4, the best
known construction is based on two interleaved simple parity
codes which results with codes of cardinality 2n/4, when n is
even. Note that the upper bound from Theorem 5 on the code
cardinality in this case is 2n/3, and thus this case is still not
fully solved (though it is solved for linear codes).

In general, if we were to apply the best known codes
in order to construct codes with minimum pair-distance dp

then the Hamming distance dH of the codes will have to
satisfy

�
3dH

2

�
� dp , or dH �

	
2dp+1

3



(see [21]). Hence,

the redundancy of these codes will be roughly⎢⎢⎢⎣
	

2dp+1
3



− 1

2

⎥⎥⎥⎦ log(n) =
�

dp − 1

3

�
log(n), (12)

which is already close to the lower bound in (8), which states
that the redundancy has to be at least

�
(dp − 1)/4

�
log(n).

Our goal in this section is to improve this construction for
dp = 6, 7, 10.

Throughout this section we represent codewords also as
polynomials. For a word c = (c0, . . . , cn−1) ∈ F

n
q , the poly-

nomial representation c(x) of c (with the indeterminate x) is
given by

c = c(x) =
n−1∑
i=0

ci x i ∈ Fq [x].

A. Codes with Minimum Pair-Distance Six

We now show how to construct codes with an even length n
and pair-distance equals to 6. Let {0, 1, α, α2} = F4 and define
the map � : F4 → F

2
2 so that �(0) = (0, 0),�(1) =

(0, 1),�(α) = (1, 0),�(α2) = (1, 1). Clearly, the map �

is invertible. For a sequence x = (x0, x1, . . . , x n
2 −1) ∈ F

n
2
4 ,

let �(x) = (�(x0), . . . ,�(x n
2 −1)) ∈ (

F
2
2

) n
2 . Note that

�
F

2
2

� n
2

is isomorphic to F
n
2 and hence we may consider a sequence

x ∈ F

n
2
4 as a sequence �(x) ∈ F

n
2. Similarly, for a set Z ⊆ F

n
2
4

let �(Z) be the result of applying the map � to every element
in Z . The following useful claim may be regarded as a slightly
generalized version of Theorem 1 in [21], since it holds for
all linear codes which do not have to be cyclic.

Claim 2 Suppose n is an even integer and let C ⊆ F

n
2
4 be a

linear code such that dH (C) � d . Then, dp(�(C)) �
� 3d

2

�
.

Proof: Since C is a linear code, we can determine the
minimum pair-distance of the code �(C) by considering the
minimum pair-weight of a sequence in �(C). We show the
result by proving that there does not exist a sequence in �(C)
with pair-weight less than

� 3d
2

�
. Let z = (z0, . . . zn−1) =

�(x) ∈ F
n
2, x ∈ C. Let I ⊆ [ n

2 ] denote the non-zero indices
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TABLE II

TABLE OF LARGEST KNOWN CODES AND UPPER BOUNDS

in x and suppose we partition I into 3 subsets I1,I2,I3 where
for any k ∈ I1, we have xk = α, for any k ∈ I2, we have
xk = α2, and for any k ∈ I3, we have xk = 1. Furthermore, let
i1 = |I1|, i2 = |I2|, and i3 = |I3| where clearly wp(x) = i1+
i2 + i3. From (3) we know that wp(z) = wH (z) + r(z) where
r(z) is the number of runs in z. Hence, wp(z) � i1 + 2i2 +
i3 + r(z). Since a run of symbols may start with �(1) = 01
and may end with �(α2) = 10 we obtain r(z) �

⌈
i1+i3

2

⌉
.

Thus we have

wp(z) � 2i2 +
⌈

3(i1 + i3)

2

⌉
.

We can minimize the expression by setting i2 = 0 and the
lemma follows.

We now describe the code using a parity-check matrix.
In the following, we describe how to construct the parity check
matrix. We begin by generating a set of matrices

H �(0), H �(1), . . . , H �(m−4).

For j ∈ [m − 3], suppose αm− j−1 ∈ F4m− j−1 is a primitive
element. Note that every power of αm− j−1 can be represented
by a sequence over F4 of length m − j − 1 which corresponds
to the polynomial representation of αm− j−1. We construct the

matrix H �( j ) ∈ F
m×4m− j−1−1
4 as follows:

H �( j ) = (13)⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 · · · 0
0 0 0 0 · · · 0
...

. . .
...

0 0 0 0 · · · 0
1 1 1 1 · · · 1

αm− j−1 α2
m− j−1 α3

m− j−1 α4
m− j−1 · · · α4m− j−1−1

m− j−1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where the first j rows of H �( j ) are equal to zero, the j +
1th row is all ones and the last m − j − 1 rows are
obtained by the sequence representation of α�

m− j−1 for � ∈�
1, . . . , 4m− j−1 − 1

�
. Note that under this writing, α4m− j−1−1

m− j−1
is the (multiplicative) unit of F4m− j−1 . Moreover, the 1 in
H �( j ) corresponds to the (multiplicative) unit in F4. We now
construct a set of matrices H ( j ), j ∈ [m −3] by removing one
column sequence from H �( j ) = (h�( j )

1 , . . . h�( j )
4m− j−1−1

). More
precisely, let α be a primitive element in F4, we remove the

column from the matrix H �( j ) which equals to

1

α3 ·
(
α3 · h�( j )

4m− j−1−1
+ α · h�( j+1)

1

)
, (14)

where we interpret the matrices cyclically so that H �(m−3) =
H �(0). We denote the resulting matrix as H ( j ) which we index
as H ( j ) = (h( j )

1 , . . . , h( j )
4m− j −2

) for j ∈ [m−3]. Notice that the

sequence in (14) is not equal to the first column of H �( j ) (for
any j ) since, according to (13) (considering the last m − j −1
components), we have h�( j )

1 = αm− j−1 and α3 · h�( j )
4m− j−1−1

+
α · h�( j+1)

1 = α3 · 1 + α · αm− j �= α3 · αm− j−1 where the
last inequality holds since αm− j has a different order than
α2(αm− j−1 − 1). Also note that for j ∈ [m − 3],

H ( j ) = (h( j )
1 , . . . , h( j )

4m− j −2
) ∈ F

m×(4m− j −2)
4 ,

where for every i ∈ {1, . . . , m − j − 2}, h( j )
i is a sequence of

length m. Moreover, for j1 �= j2 ∈ [m − 3], H ( j1) and H ( j2)

have different sizes. Next, we form the matrix

H = (H (0), H (1), . . . , H (m−4)) ∈ F
m×N
4

where N = 4m−43

3 − 2m + 6.
The matrix H satisfies the following properties which are

proved in Appendix:

Lemma 10.
1) For any non-zero z ∈ F

N
4 , if H · z = 0, then wH (z) � 3.

2) Suppose z ∈ F
4m− j−2
4 and wH (z) = 3. Then, if H ( j )·z = 0,

r(z) � 2.
3) Let α be a primitive element for F4, for any j ∈ [m − 3],

α3 · h( j )
4m− j −2

+ α · h( j+1)
1 �= α3 · h( j )

k ,

where k ∈ {1, . . . , m − j − 2} and we assume h(m−3)
1 =

h(0)
1 .

The code C6 ⊆ F
N
4 is defined as

C6 � {c ∈ F
N
4 : H · c = 0}.

The following theorem uses Claim 2 along with Lemma 10
to produce codes with minimum pair-distance six.

Theorem 11. The code C6 satisfies dp(�(C6)) � 6.
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Proof: From property 1) of the matrix H , we know
dH (C) � 3 and so by Claim 2, we have that dp(�(C)) � 5.
We proceed by assuming there exists a codeword y ∈ F

N
4

where wp(�(y)) = 5 and we will arrive at a contradiction.
If wp(�(y)) = 5, then since dH (C) = 3, we have two

possible options. Either wH (�(y)) = 3 and r(�(y)) = 2,
or wH (�(y)) = 4 and r(�(y)) = 1. We first consider the case
in which wH (�(y)) = 4 and r(�(y)) = 1. Thus, the sequence
�(y) contains 011110 as a subsequence. Under this setup,
wH (y) � 3, and so y contains the substring 1, α2, α. Since
the symbols 1, α, α2 appear consecutively in y, it follows that
we can invoke property 2) and conclude that r(y) � 2.

Now suppose that wH (�(y)) = 3 and r(�(y)) = 2 and
assume that the three non-zero symbols in y are in positions
which multiply only columns in H ( j ) for some j ∈ [m − 3].
For instance, if j = 1, this assumption implies that all three
non-zero symbols in y are contained within the first 4m − 2
positions of y. Then we have that for some sequence v,

H ( j ) · v = 0,

where H ( j ) contains a row that is all-ones. This implies that
the non-zero symbols of v are α, α2, and 1 which in turn
implies the non-zero symbols of y are α, α2, and 1. Under
the map �, this implies that wH (�(v)) = wH (�(y)) = 4.
We now would like to apply Property 2). The fact that the
conditions are met is proved in Lemma 16 which appears in
the appendix. From property 2) of the matrix H , we have
r(v) = r(y) � 2 which implies r(�(v)) = r(�(y)) � 2 and
hence dp(�(y)) � 6 and we arrive at a contradiction in this
case.

Suppose now that the three non-zero symbols in �(y) are
in positions which multiply columns in different sub-matrices
of H . Suppose first that y contains non-zero components that
multiply 3 sub-matrices in H . In other words, we would have

0 = γ1 · h( j1)
k1

+ γ2 · h( j2)
k2

+ γ3 · h( j3)
k3

. (15)

where γ1, γ2, γ3 ∈ F4 and |{ j1, j2, j3}| = 3. Recall that h( j )
k is

zero in the first j −1 components and 1 in the j -th component
so that if |{ j1, j2, j3}| = 3, then (15) cannot hold. Suppose
then that |{ j1, j2, j3}| = 2, and without loss of generality,
j1 = j2. By the structure of the sequences h( j1)

k1
(in particular,

since h( j1)
k1

has a row which is all-ones), this implies γ1 = γ2
and so if r(�(y)) = 2, then either:

h( j1)
2m− j1−2

+ α · h( j1+1)
1 = h( j1)

k2
, (16)

or

h( j1)
2m− j1−2

= α · h( j1+1)
1 + α · h( j1+1)

k2
. (17)

Note that (17) cannot be satisfied since h( j1)
2m− j1−2

has 1 in a

position in which both α·h( j1+1)
1 and α·h( j1+1)

k2
have zero. As a

consequence, we are left with (16). However, this contradicts
property 3) of H and so we arrive at a contradiction in this
case as well.

We consider the cardinality of the code �(C6) and compare
it with the previously best known codes. Since C6 is a linear
code with parity check matrix of dimension m, |C6| = 4N

4m .

Since N = 4m−43

3 −2m+6 where m � log4(3N+43) and since
the mapping � creates codes of length 2N , setting n = 2N
gives:

|C| � 2n

3n
2 + 43

.

The best known construction for codes with dp � 6 requires
a binary cyclic code with Hamming distance at least 4 [21].
Hence the cardinality of that code would be at least 2n

2n .

B. Codes with Minimum Pair-Distance Seven

In this subsection we turn to the construction of codes with
minimum pair-distance seven. Our point of departure for this
construction is a known result from [1] on burst-correcting
codes. A code will be called a b-burst-correcting code if it
can correct any error pattern which is confined to at most
b consecutive locations. According to [1], it is known that
for every even m � 4, there exists a cyclic 3-burst-correcting
code of length 2m −1 with a generator polynomial of the form
(1 + x + x2)p(x), where p(x) is a primitive polynomial. The
connection between three-burst-correcting codes and symbol-
pair codes with minimum pair distance seven is established in
the next theorem.

Theorem 12. Let n = 2m − 1 where m � 4 is an even integer.
Then, there exists a binary cyclic code C7 of length n such that
dp(C7) � 7.

Proof: Recall from [1] that there exists a cyclic code C7
of length 2m −1 with a generator polynomial of the form (1+
x + x2)p(x) where p(x) is primitive that can correct a single
burst of errors of length at most 3. Since the minimum distance
of the code C7 is 3, it follows from (5) that any codeword
in C7 with dH � 3 has at least two runs in it. Since the
code is cyclic, it therefore suffices to show that there does
not exist a codeword c(x) ∈ C7 where we can write c(x) =
B1(x) + x�B2(x) mod xn − 1 for a positive integer � when
(B1(x), B2(x)) ∈ {(1, 1 + x)(1, 1 + x + x2), (1 + x, 1 + x)}.
The result follows by noting that if, on the contrary, c(x) could
be written as c(x) = B1(x) + x�B2(x) mod xn − 1 then the
code C7 could not correct a burst of errors of length 3. This is
due to the fact that a linear code is a 3-burst error correcting
code iff every codeword (except the zero codeword) is not the
sum of two or less cyclic burst of length at most 3 [1].

For n = 2m −1, let C7 be the code constructed according to
Theorem 12, so that dp(C) � 7. Since the degree of a primitive
polynomial is m, this implies that the generator polynomial has
degree of m + 2 which in turn implies that

|C7| = 2n

4(1 + n)
,

since m = log2(n + 1). If we were to construct a code with
minimum pair distance seven using the result from [21], its
minimum Hamming distance will have to be at least five.
Hence, by the sphere packing bound, this implies that the
cardinality of the resulting code will be at most

2n

1 + n +


n
2

� .
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Furthermore, by the sphere packing bound for symbol-pair
codes [3], the largest cardinality of a code with minimum pair
distance seven is at most 2n

1+2n . Therefore, the redundancy of
the code C7 is roughly at most a single bit from optimality.

C. Codes with Minimum Pair-Distance Ten

Now, we turn to constructing codes that have pair-
distance 10. We will use the following property of cyclic
codes.

Lemma 13. (c.f., [14] ) SupposeC is a code with a self-reciprocal
generator polynomial. Then the codewords in C are reversible.

The following lemma will be used to prove our main result.

Lemma 14. For a positive integer m > 2, let g(x) ∈ F2[x] be
a generator polynomial for a cyclic code C ⊆ F

2m−1
2 with roots

{α, α−1} ⊂ F2m where α is a primitive element of F2m . Then
dH (C) � 4.

Proof: Since g(x) has the primitive element α as a root,
dH (C) � 3 from the BCH bound [16]. Suppose, on the
contrary, that dH (C) = 3. Then there exists a codeword
c(x) ∈ C where c(x) = 1 + xi + x j for j > i . Since
g(x) is self-reciprocal we know from Lemma 13 that the
codewords in C are reversible, and so there exists a codeword
c�(x) = 1+ x j−i + x j . But then c(x)+ c�(x) = xi + x j−i ∈ C,
which is a contradiction since dH (C) � 3.

Using the previous lemma, we can now prove the main
result of this section.

Theorem 15. For a positive integer m > 2, let g(x) ∈ F2[x]
be a generator polynomial for a cyclic code C10 ⊆ F

2m−1
2 with

roots {α−1, α0, α1} ⊂ F2m where α is a primitive element of
F2m , then dp(C10) � 10.

Proof: Let n = 2m − 1. From the BCH bound [16] we
obtain dH (C10) � 6 (note that if α (α−1) is a root of the
generator polynomial then also all of its conjugates which
include α2 (α−2)). Hence, dp(C10) � 9 from (5). Suppose,
on the contrary that dp(C10) = 9 and let c(x) ∈ C10 be a
codeword in C10 with pair-weight 9. Then, there are three
possibilities to consider. Either a) c(x) is comprised of 3 runs
each of length 2, or b) c(x) is comprised of 3 runs where there
is a run of length 1, 2, and 3 in c(x), or c) c(x) is comprised
of 3 runs where there are 2 runs of length 1 and one run of
length 4.

We first consider case a) so assume c(x) is comprised of 3
runs each of length 2. Then we can write c(x) = (1 + x)(1 +
xi + x j ) for i � 3 and j − i � 3. Since g(x) is the generator
polynomial for C10, g(x)|c(x) and so

(1 + x)(1 + x j + x j ) =
q(x) · (x + α−1) · (x + 1) · (x + α) mod xn + 1

where q(x) ∈ F2[x]. This implies (x + α) · (x + α−1)|(1 +
xi +x j ) which is a contradiction since from Lemma 14, a code
with a generator polynomial (x +α) · (x +α−1) has minimum
Hamming distance at least 4.

Assume case b) holds and that c(x) = 1+x +x2+xi +x j +
x j+1 �∈ C where i � 4 and j−i � 2. Then, the reverse of c(x),
c�(x) = 1+x +x j−i+1 +x j−1+x j +x j+1 ∈ C. However, then
c(x)+c�(x) ∈ C10 where c(x)+c�(x) = x2+xi+x j−i+1+x j−1

which is a contradiction since dH (C10) � 6.
In the previous paragraph we shows that C10 does not

contain any codewords of weight 6 where the first run has
length 3 the next run has length 1 and the last run has length 2.
Denote the set of sequences of Hamming weight 6 and length
n where the first run has length 3 the next run has length 1
and the last run has length 2 as V (3, 1, 2). In particular,
we showed in the previous paragraph that V (3, 1, 2)∩C10 = ∅
and also that V (2, 1, 3) ∩ C10 = ∅. Since the code C10 is
cyclic, we can also conclude that V (1, 2, 3) ∩ C10 = ∅ and
V (2, 3, 1) ∩ C10 = ∅ from the fact that V (3, 1, 2) ∩ C10 = ∅
and also that V (1, 3, 2) ∩ C10 = ∅, V (3, 2, 1) ∩ C10 = ∅ from
V (2, 1, 3)∩C10 = ∅. Thus, C10 cannot contain any codewords
of weight 6 comprised of runs of length 1, 2, and 3.

Assume case c) holds and c(x) = 1 + xi + xi+1 + xi+2 +
xi+3 + x j ∈ C10 where i � 3 and j − i � 5. Since the
codewords of C10 are reversible we know c�(x) = 1+x j−i−3+
x j−i−2 + x j−i−1 + x j−i + x j ∈ C10. However, then c(x) +
c�(x) = xi +xi+1 +xi+2 +xi+3 +x j−i−3 +x j−i−2 +x j−i−1 +
x j−i ∈ C10 which is a contradiction since any codeword in C10
has at least 3 runs from Lemma 2. Using similar logic as the
previous paragraph, it can be shown that since C10 is a linear,
cyclic code with reversible codewords case c) cannot hold.

In order to evaluate the redundancy of the code, we note
that since α and α−1 are primitive, the degree of the generator
polynomial is 2m + 1. Since m = log2(n + 1) we obtain that
the size of the code from Theorem 15 is 2n

2(n+1)2 , that is, its

redundancy is 2 log2(n) + 1. This follows since α (α−1) is
primitive and hence it corresponds to a polynomial of degree
m. This implies that the degree of the generator polynomial of
the code C10 is 2m + 1. Note that the best known construction
requires the Hamming distance of the code to be at least
seven and thus its redundancy is approximately 3 log2(n) [21].
Lastly, according to the sphere packing bound or Theorem 5,
the minimum redundancy of a code with minimum pair
distance ten is at least 2 log2(n + 1) + c, for some constant c.
Hence, the redundancy of the code C10 is at most a fixed
number of bits away from optimality.

V. CONCLUSIONS AND DISCUSSIONS

In this work we studied symbol-pair codes for the symbol-
pair read channel. First we derived new upper bounds on
the code cardinalities. Our new bounds improved upon the
best known bound which was based on the sphere packing
bound [3]. The new bounds are adaptations of the Johnson
bound and the linear programming bound to the symbol-pair
read channel. We then showed how to improve the codes
from [21] when the minimum pair distance is six, seven, and
ten. Our constructions are almost optimal in the sense that the
redundancy of our code constructions is at most a constant
number of bits away from the lower bound on the redundancy.

There are several new ideas that were introduced in the
paper. For the Johnson bound, we derive an upper bound on the
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number of codewords of weight w and pair-weight 2w based
on the idea that symbols and positions “occupy” columns of
the matrix M which contains all the codewords in the code.
The departure from the traditional result in the Hamming
metric here is that codewords need to occupy one additional
column (where there are no symbols) to account for the fact
that the pair distance is 2w. For the linear programming
bound, the mapping T on the output of the pair channel itself
π(x) was used. This created some surprising symmetries and
we believe the technique may be applicable to other types
of channels. One such relatively straightforward extension is
to consider the technique on the b-symbol channel. Another
potential application of the technique might be to consider it on
the error-burst channel whereby codewords should have runs
longer than the error-burst. The approach places conditions on
the number of runs of the codewords since it uses the output
of the pair channel. To the best of the our knowledge, there
is no linear programming bound which places constraints on
the structure of the ones in the underlying code. The classical
LP bound simply places conditions on the number of ones.

An interesting generalization is to consider the q-ary alpha-
bet. There are technical challenges to extending the bounds
to the non-binary setup. For the Johnson bound, the main
difficulty is in generalizing Theorem 5. Specifically, it requires
the calculation of the following value: For a given codeword
c with dp(c) = 2t + 1, how many vectors x are there with
dp(x) = t + 1 such that dp(c − x) = t? Regarding the LP
bound, one of the principal challenges would be to determine
an expression for the pair weight in terms of the number of
runs of zeros and consecutive non-binary symbols. We believe
that some new ideas would be required to make the derivations
work. In addition, running the LP bound itself to produce
results would be a challenge since, even for F2, the linear
programming bound required a prohibitive amount of time to
compute for code lengths beyond 7. The construction of codes
with minimum pair distance 6 relies on mapping between F4
and F2 and it also relies on some simple properties of the
elements of F4 (see Lemma 10). Hence, it will be interesting
to extend this to the non-binary case.

APPENDIX

PROOF OF LEMMA 10

Before proving Lemma 10 we highlight a property of the
matrices H �( j ) which will be useful later. For a sequence z ∈
F

�
4 let l(z) denote the minimum length between the first and the

last non-zero symbol in z, considered cyclically. For instance
if z = (0, 1, α, 0, 0, α2, 0, 0, 0, 0, 0, 0) ∈ F

12
4 , then l(z) =

min {5, 10, 12} = 5 since the the minimum is obtained when
considering the first non-zero symbol in z to be in position 1
and the last non-zero symbol is in position 5. Note that taking
z� to be the 2-cyclic left shift of z, we obtain l(z�) = 12 and
taking z�� to be the 5-cyclic left shift of z we obtain l(z��) = 10.
Hence, l(z) = min {5, 10, 12} = 5.

Lemma 16. For a non-zero z ∈ F
4m− j−1
4 , if H �( j ) · z = 0, then

l(z) � 5 and wH (z) � 3.

Proof: The proof follows by noting that H �( j ) is a parity
check matrix for a cyclic code. This code has m − j −1 length
codewords over F4. Note also that the minimum distance of
the code is 3 since every two columns are linearly independent
thanks to the row of ones and since αm− j−1 is primitive.
We also have that the degree of the generator polynomial for
the code is at least m − j � 4. Therefore, any codeword
polynomial has degree at least 4 which implies l(x) � 5 for
any codeword x.

From Lemma 16 and noting that H ( j ) is the result of
removing a single column from H ( j )

H , we can prove Lemma 10
Proof: [Proof of Lemma 10]

1) By the construction of H , it is clear that H has a stairs-
like shape. First, it is clear that wH (z) �= 1. Assume
wH (z) = 2 and note that if H · z = 0 then z must
have 2 non-zero elements in positions which correspond
to a specific matrix H ( j ) for some j ∈ [m − 3]. This is
because each matrix H ( j ) has a row of ones. Moreover,
those non-zero elements in z must be equal. Since the
next lines contain powers of a primitive element, it results
in H · z �= 0. Hence, wH (z) � 3.

2) This is a direct consequence of Lemma 16. Since if z� is
such that H �( j )z = 0 then l(z�) � 5. This means that if
H ( j )z = 0 then l(z) � 4 and hence wH (z) = 3 implies
r(z) � 2.

3) This property follows directly from the construction of
the matrix H .

ACKNOWLEDGMENT

The authors would like to thank the associate editor and
the anonymous reviewers, whose comments helped improve
the presentation of the paper.

REFERENCES

[1] K. Abdel-Ghaffar, R. McEliece, A. Odlyzko, and H. van Tilborg, “On the
existence of optimum cyclic burst- correcting codes,” IEEE Trans. Inf.
Theory, vol. IT-32, no. 6, pp. 768–775, Nov. 1986.

[2] Y. Cassuto and S. Litsyn, “Symbol-pair codes: Algebraic construc-
tions and asymptotic bounds,” in Proc. IEEE Int. Symp. Inf. Theory
(ISIT2011), Saint Petersburg, Russia, Jul./Aug. 2011, pp. 2348–2352.

[3] Y. Cassuto and M. Blaum, “Codes for symbol-pair read channels,” IEEE
Trans. Inf. Theory, vol. 57, no. 12, pp. 8011–8020, Dec. 2011.

[4] Y. M. Chee, L. Ji, H. M. Kiah, C. Wang, and J. Yin, “Maximum distance
separable codes for symbol-pair read channels,” IEEE Trans. Inf. Theory,
vol. 59, no. 11, pp. 7259–7267, Nov. 2013.

[5] B. Ding, G. Ge, J. Zhang, T. Zhang, and Y. Zhang, “New constructions
of MDS symbol-pair codes,” Des. Codes Cryptogr., vol. 86, no. 4,
pp. 841–859, Apr. 2018.

[6] H. Q. Dinh, B. T. Nguyen, A. K. Singh, and S. Sriboonchitta,
“On the symbol-pair distance of repeated-root constacyclic codes
of prime power lengths,” IEEE Trans. Inf. Theory, vol. 64, no. 4,
pp. 2417–2430, Apr. 2018.

[7] O. Elishco, R. Gabrys, and E. Yaakobi, “Bounds and constructions of
codes over symbol-pair read channels,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Jun. 2018, pp. 2505–2509.

[8] J. I. Hall. (2013). Notes on Coding Theory. [Online]. Available:
http://www.mth.msu.edu/~jhall/classes/codenotes/coding-notes.html

[9] M. Hirotomo, M. Takita, and M. Morii, “Syndrome decoding of
symbol-pair codes,” in Proc. IEEE Inf. Theory Workshop, Hobart, TAS,
Australia, Nov. 2014, pp. 162–166.

[10] S. Horii, T. Matsushima, and S. Hirasawa, “Linear programming
decoding of binary linear codes for symbol-pair read channel,” IEICE
Trans. Fund. Electron., Commun. Comput. Sci., vol. E99-A, no. 12,
pp. 2170–2178, 2016.

Authorized licensed use limited to: Eitan Yaakobi. Downloaded on February 22,2020 at 23:28:55 UTC from IEEE Xplore.  Restrictions apply. 



ELISHCO et al.: BOUNDS AND CONSTRUCTIONS OF CODES OVER SYMBOL-PAIR READ CHANNELS 1395

[11] W. Huffman and V. Pless, Fundamentals of Error Correcting Codes.
Cambridge, U.K.: Cambridge Univ. Press, 2003.

[12] X. Kai, S. Zhu, and P. Li, “A construction of new MDS symbol-
pair codes,” IEEE Trans. Inf. Theory, vol. 61, no. 11, pp. 5828–5834,
Nov. 2015.

[13] S. Li and G. Ge, “Constructions of maximum distance separable symbol-
pair codes using cyclic and constacyclic codes,” Des. Codes Cryptogr.,
vol. 84, no. 3, pp. 359–372, Sep. 2017.

[14] O. Milenkovic and N. Kashyap, “On the design of codes for DNA
computing,” in Coding and Cryptography (Lecture Notes in Computer
Science), vol. 3969. Berlin, Germany: Springer, 2006, pp. 100–119.

[15] M. Morii, M. Hirotomo, and M. Takita, “Error-trapping decoding for
cyclic codes over symbol-pair read channels,” in Proc. Int. Symp. Inf.
Theory Appl., Monterey, CA, USA, Nov. 2016, pp. 681–685.

[16] R. Roth, Introduction to Coding Theory. Cambridge, U.K.:
Cambridge Univ. Press, 2006.

[17] Z. Sun, S. Zhu, and L. Wang, “The symbol-pair distance distribution
of a class of repeated-root cyclic codes over F

m
p ,” Cryptogr. Commun.,

vol. 10, no. 4, pp. 643–653, Nov. 2017.
[18] M. Takita, M. Hirotomo, and M. Morii, “A decoding algorithm for cyclic

codes over symbol-pair read channels,” IEICE Trans. Fundam. Electron.,
Commun. Comput. Sci., vol. E98-A, no. 12, pp. 2415–2422, 2015.

[19] M. Takita, M. Hirotomo, and M. Morii, “Algebraic decoding of BCH
codes over symbol-pair read channels: Cases of two-pair and three-pair
error correction,” IEICE Trans. Fundam. Electron., Commun. Comput.
Sci., vol. E99-A, no. 12, pp. 2179–2191, 2016.

[20] M. Takita, M. Hirotomo, and M. Morii, “Error-trapping decoding for
cyclic codes over symbol-pair read channels,” IEICE Trans. Fundam.
Electron., Commun. Comput. Sci., vol. E100-A, no. 12, pp. 2578–2584,
2017.

[21] E. Yaakobi, J. Bruck, and P. H. Siegel, “Constructions and decoding of
cyclic codes over b-symbol read channels,” IEEE Trans. Inf. Theory,
vol. 62, no. 4, pp. 1541–1551, Apr. 2016.

Ohad Elishco (S’12–M’18) received the B.Sc. degree in mathematics,
the B.Sc. in electrical engineering, and the M.Sc. and Ph.D. degrees in
electrical engineering from the Ben-Gurion University of the Negev, Israel,
in 2012, 2013, and 2017, respectively. From 2017 to 2018, he held a post-
doctoral researcher position with the Department of Electrical Engineer-
ing, Massachusetts Institute of Technology. He is currently a Post-Doctoral
Researcher with the Department of Electrical Engineering, University of
Maryland at College Park. His research interests are coding and dynamical
systems.

Ryan Gabrys received the B.S. degree in mathematics and computer science
from the University of Illinois at Urbana-Champaign in 2005 and the Ph.D.
degree in electrical engineering from the University of California at Los Ange-
les, in 2014. He is currently a Scientist with the Naval Information Warfare
Center. His research interests broadly lie in the areas of theoretical computer
science and electrical engineering, including coding theory, combinatorics,
and communication theory.

Eitan Yaakobi (S’07–M’12–SM’17) received the B.A. degree in computer
science and mathematics and the M.Sc. degree in computer science from
the Technion — Israel Institute of Technology, Haifa, Israel, in 2005 and
2007, respectively, and the Ph.D. degree in electrical engineering from the
University of California at San Diego, in 2011. From 2011 to 2013, he was
a Postdoctoral Researcher with the Department of Electrical Engineering,
California Institute of Technology and with the Center for Memory and
Recording Research, University of California at San Diego. He is currently
an Associate Professor with the Computer Science Department, Technion
— Israel Institute of Technology. His research interests include information
and coding theory with applications to non-volatile memories, associative
memories, DNA storage, data storage and retrieval, and private information
retrieval. He received the Marconi Society Young Scholar in 2009 and the
Intel Ph.D. Fellowship in 2010.

Authorized licensed use limited to: Eitan Yaakobi. Downloaded on February 22,2020 at 23:28:55 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


