
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 9, SEPTEMBER 2019 5433

Codes for Graph Erasures
Lev Yohananov, Student Member, IEEE, and Eitan Yaakobi , Senior Member, IEEE

Abstract— Motivated by systems, where the information is rep-
resented by a graph such as neural networks, associative mem-
ories, and distributed systems. In this paper, we present a new
class of codes, called codes over graphs. Under this paradigm,
the information is stored on the edges of undirected or directed
complete graphs, and a code over graphs is a set of graphs.
A node failure is the event, where all edges in the neighborhood
of the erased node have been erased. We say that a code over
graphs can tolerate ρ node failures, if it can correct the erased
edges of any ρ failed nodes in the graph. While the construc-
tion of optimal codes over graphs can be easily accomplished by
MDS codes, their field size has to be at least O(n2), when n is
the number of nodes in the graph. In this paper, we present sev-
eral constructions of codes over graphs with smaller field size.
To accomplish this task, we use constructions of product codes
and rank metric codes. Furthermore, we present optimal codes
over graphs correcting two node failures over the binary field,
when the number of nodes in the graph is a prime number. Last,
we also provide upper bound on the number of nodes for optimal
codes.

Index Terms— Array codes, codes over graphs, EVENODD
codes, product codes, rank metric codes.

I. INTRODUCTION

THE traditional setup to represent information is by a
vector over some fixed alphabet. Although this com-

monly used model is the most practical one, especially for
storage and communication applications, it does not neces-
sarily fit all information systems. In this work we study a
different approach where the information is represented by
a graph. This model is motivated by several information
systems. For example, in neural networks, the neural units
are connected via links which store and transmit informa-
tion between the neural units [7]. Similarly, in associative
memories, the information is stored by associations between
different data items [20]. These two examples mimic the
brain functionality which stores and processes information
by associations between the information units. Furthermore,
representing information in a graph can model a distrib-
uted storage systems [4] while every two nodes can share a
link with the information that is stored between the nodes.

Manuscript received June 23, 2018; revised January 31, 2019; accepted
April 1, 2019. Date of publication April 11, 2019; date of current version
August 16, 2019. This work was supported in part by the Israel Science Foun-
dation under Grant 1624/14. This paper was presented in part at the IEEE
International Symposium on Information Theory [23] and in part at the IEEE
Information Theory Workshop [24].

The authors are with the Department of Computer Science, Technion—
Israel Institute of Technology, Haifa 32000, Israel (e-mail: levy-
ohananov@cs.technion.ac.il; yaakobi@cs.technion.ac.il).

Communicated by A. Jiang, Associate Editor for Coding Theory.
Color versions of one or more of the figures in this paper are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2019.2910040

For example, a node may correspond to a user and the edges
are files which are shared between two users, while self loops
are the user’s files.

A set of graphs called, code over graphs, is a new class
of codes storing the information on the edges of the graph.
In other words, each codeword of such a code is a graph with
n nodes (vertices) and each edge stores a symbol over some
fixed alphabet. There are two families of such codes. The first
family consists of undirected complete graphs with self loops.

In this case, the information is stored on each of the
�n+1

2

�

edges. Similarly, the second family consists of directed com-
plete graphs with self loops and the information is stored on
the n2 edges of the graph. A node failure is the event where
all the edges in the node’s neighborhood have been erased,
and the goal of this work is to construct codes over graphs
that can efficiently correct node failures. Namely, we say that
a code over graphs can correct ρ node failures if it is possi-
ble to correct the erased edges in the neighborhoods of any
ρ failed nodes. We study node failures since they correspond
to the events of failing neural units in a neural network, data
loss in an associative memory, and unavailable or failed nodes
in distributed storage systems. In case every node corresponds
to a user, a node failure implies that the user’s files as well as
the ones that are shared with the user are erased. Furthermore,
the information stored in a complete graph can be represented
by an n× n array and a failure of the i th node corresponds to
the erasure of the i th row and i th column in the array. Hence,
this problem is translated to the problem of correcting symmet-
ric crisscross erasures in square symmetric or non-symmetric
arrays [14], [16], [17].

Assume a code over undirected graphs with n nodes such
that every edge stores a symbol. If ρ nodes have failed then
the number of edges that were erased is

�
n + 1

2

�
−

�
n − ρ + 1

2

�
= nρ −

�
ρ

2

�
. (1)

Therefore, according to the Singleton bound, the number of
redundancy edges for every code which tolerates ρ node fail-
ures is at least nρ−�ρ

2

�
. Similarly, for the directed case, the fail-

ure of any ρ nodes translated to 2nρ − ρ2 failed edges in the
graph and thus the minimum number of redundancy edges of
such a code is at least

n2 − (n − ρ)2 = 2nρ − ρ2. (2)

A code over undirected, directed graphs which meets the lower
bound (1), (2) on the number of redundancy edges, respec-
tively, will be called an optimal code over graphs. While the
construction of optimal codes meeting these bounds can be

0018-9448 c� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-9851-5234

5434 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 9, SEPTEMBER 2019

easily accomplished by MDS codes, their field size has to be
at least O(n2). Our main goal in this work is the construction
of codes over graphs with smaller fields.

Since every graph can be represented by its adjacency
matrix, a natural approach to construct codes over graphs is by
their adjacency matrices. Thus, this class of codes is quite sim-
ilar to the class of array codes, such as maximum-rank array
codes [14], d-codes [16], [17], B-codes [19], EVENODD
codes [2], STAR codes [8], RDP code [9], X-codes [10],
and regenerating codes [6], [12], [13], [15], [18], [21], [22].
However, there are several differences between classical array
codes and codes over graphs. First, the adjacency matrix of a
graph is a square matrix. Second, when the graphs are undi-
rected, the adjacency matrices are symmetric. Third, a failure
of the i th node in the graph corresponds to the failure of the
i th row and the i th column in the adjacency matrix.

Most existing constructions of array codes are not designed
for symmetric arrays, and they do not support this special
row–column failure model. However, it is still possible to
use existing code constructions and modify them to the spe-
cial structure of the above erasure model in graphs. There
are several candidates for this approach, such as prod-
uct codes [1], [5], rank-metric codes [14], [16], [17], and
variants of EVENODD codes [2].

The rest of this paper is organized as follows. In Section II,
we formally define the graph models studied in this paper
and some preliminary results. In Section III, we present codes
over graphs correcting arbitrary number of node failures over
a field of size at least n− 1. In Section IV, we present binary
non-optimal constructions with respect to the bound in (3)
and (4). Our main result in the paper, presented in Section V,
is an optimal binary code over undirected graphs correcting
two node failures, when the number of nodes is prime. Then,
in Section VI we show how to extend this construction for
directed graphs. Lastly, in Section VII, we study bounds on
the existence of optimal codes over graphs correcting ρ node
failures. Section VIII concludes the paper.

II. DEFINITIONS AND PRELIMINARIES

In this section we formally define the tools and the defini-
tions used throughout the paper. For a positive integer n, the set
{0, 1, . . . , n − 1} will be denoted by [n]. For a prime power
q , Fq is a finite field of size q . A linear code of length n and
dimension k over Fq will be denoted by [n, k]q or [n, k, d]q ,
where d denotes its minimum distance.

We will denote a graph by G = (Vn, E), where Vn =
{v0, v1, . . . , vn−1} is the set of n nodes (vertices) and E ⊆
Vn × Vn is its edge set. In this paper, we only study complete
graphs with self loops that can be directed or undirected. The
edge set of a directed graph G over � will be defined by E =
Vn×Vn , with a labeling function LD : Vn×Vn → �. We will
use the notation G = (Vn, LD) for such graphs, since we can
fully characterize the graph G by its vertex set Vn and its label-
ing function LD . Similarly, the edge set of an undirected graph
G over � will be defined by E = {(vi , v j) | (vi , v j) ∈ Vn ×
Vn, i � j}, with a labeling function LU : Vn × Vn → � and
we will use the notation G = (Vn, LU) for such graphs. By a

Fig. 1. The undirected graph G , its adjacency matrix AG , and its lower-
triangle-adjacency matrix A�G .

slight abuse of notation, every undirected edge in the graph
will be denoted by �vi , v j � where the order in this pair does not
matter, that is, the notation �vi , v j � is identical to the notation
�v j , vi �. Note that a directed, undirected graph with n vertices
has n2,

�n+1
2

�
edges, respectively. A graph G = (Vn, L) is a

general definition that refers to both directed and undirected
graphs, while it will be clear from the context which case the
notation refers to.

The adjacency matrix of a graph G = (Vn, L) is an n × n
matrix over � denoted by AG = [ai, j]n−1,n−1

i=0, j=0 , where ai, j =
L(vi , v j) for a directed graph, and ai, j = L�vi , v j � for an
undirected graph, while i, j ∈ [n]. Notice that the adjacency
matrix of an undirected graph is symmetric. For undirected
graphs, we also define the lower-triangle-adjacency matrix
of G to be the n × n matrix A�G = [a�i, j]n−1,n−1

i=0, j=0 such that
a�i, j = ai, j if i � j and otherwise a�i, j = 0. The upper-
triangle-adjacency matrix is defined similarly. We define the
zero graph by G0 if for all i, j ∈ [n], we have ai, j = 0.

The next example demonstrates the above definitions for
undirected graphs.

Example 1. Let G be a complete undirected graph with self
loops over F2 and let V4 = {v0, v1, v2, v3} be its node set.
The graph G, its adjacency matrix AG , and lower-triangle-
adjacency matrix A�G are shown in Fig. 1, where the edges
�v0, v1�, �v0, v2�, �v0, v3� and �v1, v2� are labeled with 1 and
the rest of the edges are labeled with 0.

Let � be a ring and G1 and G2 be two graphs over � with
the same node set V . The operator “+” between G1 and G2
over �, is defined by G1+G2 = G3, where G3 is the unique
graph satisfying AG1+ AG2 = AG3 . Similarly, the operator “·”
between G1 and an element α ∈ �, is denoted by α ·G1 = G3,
where G3 is the unique graph satisfying α · AG1 = AG3 .

Definition 1. Let Vn be the set of nodes Vn = {v0, . . . , vn−1}.
A code over directed graphs over � of length n and size M is
a set of directed graphs CD = {Gi = (Vn, LDi)|i ∈ [M]} over
�, denoted by D-(n, M)� . Similarly a code over undirected
graphs over � of length n and size M is a set of undirected
graphs CU = {Gi = (Vn, LUi)|i ∈ [M]} over �, denoted by
U-(n, M)� . In case that � = {0, 1}, the directed and the undi-
rected codes over graphs will simply be denoted by D-(n, M)
and U-(n, M). A code over graphs CG is a general definition
that refers to both codes over directed graphs and codes over
undirected graphs, while the meaning will be clear from the
context.

YOHANANOV AND YAAKOBI: CODES FOR GRAPH ERASURES 5435

The dimension of a code over directed, undirected graphs
CD, CU is kD = log|�| M, kU = log|�| M, respectively.
The rate of a code over directed, undirected graphs is
RD = kD/n2, RU = kU/

�n+1
2

�
and the redundancy is defined

to be rD = n2 − kD, rU =
�n+1

2

�− kU , respectively.
A code over directed graphs CD over a ring � will be called

linear if for every G1, G2 ∈ CD and α, β ∈ � it holds that
αG1 + βG2 ∈ CD. A linear code over undirected graphs is
defined similarly. We denote such codes over directed, undi-
rected graphs by D-[n, kD]� , U-[n, kU]� , respectively.

A linear code over directed, undirected graphs will be called
systematic if the first k nodes contain the k2,

�k+1
2

�
unmodi-

fied information symbols on their edges, respectively. All other
n2−k2,

�n+1
2

�−�k+1
2

�
edges in the graph are called redundancy

edges, respectively. In this case we say that there are k infor-
mation nodes and r = n− k, redundancy nodes. The number
of information edges is kD = k2, kU =

�k+1
2

�
, the redun-

dancy is rD = n2 − k2, rU =
�n+1

2

� − �k+1
2

�
, and the rate

is RD = k2/n2, RU =
�k+1

2

�
/
�n+1

2

�
for directed, undirected

codes over graphs, respectively. We denote such a code by
SD-[n, k]� for directed codes over graphs and SU-[n, k]�
for undirected codes over graphs.

Definition 2. Let G = (Vn, LD) be a directed graph. For i ∈
[n], the out-neighborhood edge set, in-neighborhood edge
set, of the i -th node is defined to be the set

Nout
i = {(vi , v j) | j ∈ [n]}, N in

i = {(v j , vi) | j ∈ [n]},
respectively, and the neighborhood edge set of the i -th node is
the set Ni = Nout

i ∪ N in
i . Note that the i -th out-neighborhood,

in-neighborhood edge set, corresponds to the i -th row, col-
umn, in an adjacency matrix AG, respectively, and the
i -th neighborhood edge set is the union of the i -th column
and the i -th row in the adjacency matrix. Similarly, the neigh-
borhood edge set of the i -th node of an undirected graph
G = (Vn, LU) is defined by Ni = {�vi , v j � | j ∈ [n]}, which
corresponds to the i -th column and row in an adjacency
matrix AG.

The node failure of the i -th node is the event in which all
the edges in the neighborhood set of the i -th node, i.e. Ni ,
are erased. We will also denote this edge set by Fi and refer
to it by the failure set of the i -th node. For convenience, for
directed graphs we also define the out-failure set, in-failure
set of the i -th node by Fout

i = Nout
i , F in

i = N in
i , respectively.

A code over directed graphs is called a directed
ρ-node-erasure-correcting code if it can correct any
failure of at most ρ nodes in each of its graphs. An undi-
rected ρ-node-erasure-correcting code is defined similarly.
A ρ-node-erasure-correcting code is a general definition that
refers to both codes over directed and undirected graphs.

According to the Singleton bound, we deduce that the min-
imum redundancy rD , rU of any directed, undirected ρ-node-
erasure-correcting code of length n, satisfies

rD � n2 − (n − ρ)2 = 2nρ − ρ2, (3)

rU �
�

n + 1

2

�
−

�
n − ρ + 1

2

�
= nρ −

�
ρ

2

�
, (4)

Fig. 2. Two constructions of optimal binary single-node-erasure-correcting
codes SG-[3, 2]. (a) Undirected case. (b) Directed case.

respectively. A code over directed, undirected graphs satisfy-
ing the first, second inequality with equality will be called
optimal, respectively. In this paper we study only linear
codes. We also state that every optimal code according to the
bound (3) or (4) is systematic as it was defined above. Hence,
for systematic codes over graphs the number of redundancy
nodes is at least ρ. Note that for all n and ρ, one can always
construct an optimal directed ρ-node-erasure-correcting code
from an [n2, (n − ρ)2, 2nρ − ρ2 + 1] MDS code. Similarly,
one can always construct an optimal undirected ρ-node-
erasure-correcting code from an [�n+1

2

�
,
�n−ρ+1

2

�
, nρ− �ρ

2

�+1]
MDS code. However, in both cases the field size of the code
over graphs will be at least �(n2). Our goal in this work
is to construct ρ-node-erasure-correcting codes over smaller
fields. When possible, we seek the field size to be binary and
in any event at most O(n).

The next example exemplifies the definitions of codes over
undirected graphs.

Example 2. The following codes given in Fig. 2, are system-
atic binary single-node-erasure-correcting codes of length 3.
The left figure illustrates an undirected code over graphs,
and the right figure illustrates a directed code over graphs.
Both constructions store the information on edges of the
complete subgraph of nodes v0 and v1. For the undirected
case, the neighborhood set of each node belongs to a sim-
ple parity code of length 3. Similarly for the directed case,
the out-neighborhood set and the in-neighborhood set of each
node belongs to a simple parity code of length 3.

The code construction from Example 2 is easily extended
for arbitrary number of nodes. For undirected graphs this con-
struction is formulated as follows.

Construction 1 Let n � 2 be a positive integer. The code
over undirected graphs CU1 is defined as follows.

CU1 = {G = (Vn, LU) : ∀i ∈ [n],
n−1�

j=0

LU �vi , v j � = 0}.

As mentioned above, the constraints imposed in this construc-
tions state that the edges in the neighborhood of each vertex in
the graph form a simple parity code, so we call it a neighbor-
hood constraint. In the adjacency matrix, that means that each
row and column belongs to a simple parity code. The correct-
ness of this construction is proved in the following theorem.

5436 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 9, SEPTEMBER 2019

Theorem 3. The code CU1 is an optimal binary undirected
single-node-erasure-correcting code SU-[n, n − 1].

Proof: Suppose that the node vi is erased. Then, for each
node vs such that vs �= vi , the edge �vi , vs� is corrected by

LU �vi , vs� =
n−1�

j=0, j �=i

LU �vs , v j �,

and the only uncorrected edge left is the self loop �vi , vi �.
Therefore, the edge �vi , vi � is corrected by

LU �vi , vi � =
n−1�

j=0, j �=i

LU �vi , v j �.

Notice that the code CU1 is of size
�n

2

�
, so its redundancy

satisfies the bound in (4) with equality and thus the code is
optimal.
The construction of an optimal binary directed single-node-
erasure-correcting code SD-[n, n − 1] is similar.

Next we define a distance metric over graphs that will be
used in the construction of codes correcting node failures.

Definition 4. Let G = (Vn, L) be a graph and let E be the
set of all nonzero labeled edges of G, i.e., E = {e ∈ Vn ×
Vn | L(e) �= 0}. A vertex cover W of G is a subset of Vn such
that for each (vi , v j) ∈ E (or �vi , v j � ∈ E in an undirected
case) either vi ∈ W or v j ∈ W. Then, the graph weight of G
is defined by

wG(G) = min
W is a vertex cover of G

{|W |}.

Intuitively, the value wG(G1−G2) is simply the minimum num-
ber of nodes whose removals make G1 and G2 identical. The
graph distance between two graphs G1, G2 will be denoted
by dG(G1, G2) and it holds that dG(G1, G2) = wG(G1−G2).

Lemma 5. The graph distance is a metric.

Proof:

1) Clearly, dG(G1, G2) � 0 since the vertex cover is defined
to be non-negative, and by definition of the graph weight
dG(G1, G2) = 0 if and only if G1 = G2.

2) Symmetry: dG(G1, G2) = wG(G1 − G2) = wG(G2 −
G1) = dG(G2, G1), since each edge of the graph G =
(G1 − G2) has a non-zero label if and only if it has a
non-zero label in the graph G� = (G2 − G1).

3) The triangle inequality:

dG(G1, G2) = wG(G1−G2)=wG(G1−G3+G3−G2)

= min
W v.c. of (G1 − G3)+ (G3 − G2)

{|W |}
� min

W v.c. of G1 − G3
{|W |}+ min

W v.c. of G3 − G2
{|W |}

= wG(G1 − G3)+wG(G3 − G2)

= dG(G1, G3)+ dG(G3, G2),

where the inequality holds since each non-zero labeled
edge of the graph G = ((G1 − G3) + (G3 − G2)) is a
non-zero labeled edge of either the graph G� = (G1 −
G3) or G�� = (G3 − G2).

The minimum distance of a code over graphs CG , denoted
by d(CG), is a minimum graph distance between any two dis-
tinct graphs in CG , that is

d(CG) = min
G1 �=G2 G1,G2∈CG

{dG(G1, G2)},
and in case the code is linear

d(CG) = min
G∈CG ,G �=G0

{wG(G)}.

Theorem 6. A linear code over graphs CG is a ρ-node-
erasure-correcting code if and only if its minimum distance
satisfies d(CG) � ρ + 1.

Proof: Assume that the minimum distance of CG satis-
fies d(CG) � ρ + 1. Let Z be a received graph after having
ρ node failures of a graph G ∈ CG . Let D be a decoder
of CG , D(Z) ∈ CG such that D(Z) is consistent with Z on all
non-erased edges. We will show that D(Z) = G is the unique
solution tolerating ρ node failures. Assume that there are two
different graphs G1, G2 ∈ CG that are consistent with Z on
all the non-erased edges. Therefore, we have wG(G1−G2) =
dG(G1, G2) � ρ � d(CG) − 1, since all of the edges of the
graph G� = (G1 − G2) can be covered only by the failed
nodes. Thus, we get a contradiction.

Next, suppose that CG has a minimum distance less than
ρ + 1. We will show that there is no decoder that can cor-
rect any ρ node failures. Assume that there are two distinct
graphs G1, G2 ∈ CG such that dG(G1, G2) � d(CG)− 1 < ρ.
Denote by G the graph G1 − G2, where wG(G) = wG(G1 −
G2) = dG(G1, G2), so wG(G) < ρ. Let W be a vertex cover
of G and assume that the nodes of W in G1 were erased.
Since G = (G1 − G2), the graphs G1 and G2 are consistent
on all the non-erased edges of G1, and the decoder of CG will
not be able to correct such node failures.

III. OPTIMAL MULTIPLE-NODE-ERASURE-CORRECTING

CODES OVER LINEAR FIELD SIZE

In the previous section we saw that optimal ρ-node-erasure-
correcting codes are easy to construct over a field of size
�(n2). In this section we will present two constructions that
reduce the large field to �(n). Namely, we show an optimal
construction of directed, undirected ρ-node-erasure-correcting
codes SD-[n, n − ρ]Fq , SU-[n, n − ρ]Fq for all n and ρ,
where q is a prime power greater than n − 1, respectively.
This result is developed using the construction of product
codes that were introduced by Elias in [5] and was discussed
by Abramson in [1].

A. Optimal Codes Over Directed Graphs

We first review the construction of product codes. Let C1, C2
be a linear code with parameters [n1, k1, d1]q, [n2, k2, d2]q ,
respectively. Denote by H1, H2 the parity-check matrix of
C1, C2, respectively. Then, the product code of C1, C2, denoted
by P(C1, C2), is defined by

P(C1, C2) = {A ∈ F
n1×n2
q | H1 A = AH�2 = 0}.

It was shown in [11] that P(C1, C2) is an [N, K , D]q linear
code with N = n1n2, K = k1k2 and D = d1d2. Therefore,

YOHANANOV AND YAAKOBI: CODES FOR GRAPH ERASURES 5437

according to the definition of P(C1, C2), each column of A ∈
P(C1, C2) is a codeword of C1 and each row of A ∈ P(C1, C2)
is a codeword of C2. In case where C1 = C2 = C, the code
is denoted by P(C). If C is an [n, k, d]q code, then P(C) =
{A ∈ F

n×n
q | H A = AH� = 0} is an [N, K , D] linear code

with N = n2, K = k2 and D = d2, where each row and each
column of A ∈ P(C) is a codeword of C [11].

We are now ready to present a construction of optimal
ρ-node-erasure-correcting codes over directed graphs with a
field size not smaller than n − 1. Let us consider the adja-
cency matrix of each graph in the code in order to explain
the main idea of the construction. Each row and column in
the adjacency matrix belongs to an [n, n − ρ, ρ + 1]q MDS
code, which will be denoted by C, where q � n − 1. Equiva-
lently, each in-neighborhood edge set and out-neighborhood
edge set of every node v, v ∈ Vn is a codeword in C. This
construction is formalized as follows.

Construction 2 Let n and ρ be two positive integers such
that ρ < n. Let C be an [n, n − ρ, ρ + 1]q MDS code, for
q � n− 1, and let P(C) be its product code. The code CD1 is
defined as follows,

CD1 = {G = (Vn, LD) | AG ∈ P(C)}.
The correctness of Construction 2 is proved in the next the-

orem.

Theorem 7. For all ρ and n such that ρ < n, the code
CD1 is an optimal directed ρ-node-erasure-correcting code
D-[n, kD = (n − ρ)2]Fq , where q � n − 1.

Proof: As mentioned before, the dimension of P(C) is
(n−ρ)2, therefore CD1 is a linear code over graphs with dimen-
sion kD = (n − ρ)2. Let G = (Vn, LD), G ∈ CD1 be a graph
and assume that ρ of its nodes are erased, where their indices
are denoted by the set J ⊆ [n]. Let U = {vi ∈ Vn | i ∈ J } and
W = Vn \U . The decoding of the erased edges is invoked in
two steps. In the first step, all incoming and outgoing edges of
each w ∈ W are corrected, and in the second step the remain-
ing incoming and outgoing edges of each u ∈ U are corrected.

1) Since every row and every column of AG is a codeword
of C, the rows and columns with at most ρ erasures can
be corrected. For every i ∈ [n] \ J the i -th row and col-
umn has exactly ρ erasures, and therefore the incoming
and outgoing edges of each w ∈ W are corrected.

2) For each w ∈ W exactly one incoming edge and exactly
one outgoing edge of each u ∈ U was corrected in the
first step. Since |W | = n − ρ, the number of uncor-
rected incoming and outgoing edges for each u ∈ U is
ρ. Therefore the incoming and outgoing neighborhoods
of each u ∈ U can be corrected by the decoder of C as
well. �

Note that the code CD1 is also systematic where its first n−ρ
nodes are the information nodes. In the adjacency matrix, this
corresponds to having the information symbols in the upper
left (n − ρ) × (n − ρ) matrix. Then, each of the first n − ρ
columns encoded with the systematic MDS code C, and then
the same procedure is invoked on each of the n rows. In the
next section, we will construct similar codes over undirected
graphs.

B. Optimal Codes Over Undirected Graphs

The construction of optimal codes over undirected graphs
can be established by taking a sub-code of the product code
P(C) which consists of only symmetric matrices. Let C be
a linear code with parameters [n, k, d]q . Denote by H the
parity-check matrix of C and denote by G a generator matrix
of C. Then, the symmetric product code of C, denoted by
H(C), is defined by

H(C) = {A ∈ F
n×n
q | H A = 0, A = A�}.

First we will show that H(C) is an [N, K , D] linear code with
N = n2, K = �k+1

2

�
and D = d2.

Lemma 8. The symmetric product code H(C) is an [N, K , D]
linear code with N = n2, K = �k+1

2

�
and D = d2.

Proof: The code H(C) is linear since it is defined by
parity-check equations. Since H(C) is a product code, its mini-
mum distance is D = d2. Let u0, u1, . . . , u(k+1

2)−1 be informa-
tion symbols over Fq that will be stored in a symmetric matrix
U that will be called an information matrix. Each information
matrix U ∈ F

k×k
q , will be encoded by A = G�U G, and it is

straightforward to verify that H A = AH� = 0. We show that
if U = U� then,

A = G�U G = G�U�G= (U G)�(G�)�= (G�U G)� = A�.

Moreover, if A = A� then

A = A�

G�U G = (G�U G)�

G�U G = (U G)�(G�)�

G�U G = G�U�G,

and since G is a full row rank matrix, it implies that U = U�.
Therefore, the dimension of H(C) is equal to the dimension
of {U ∈ F

k×k
q | U = U�}, that is

�k+1
2

�
.

This construction for undirected graphs is formalized as
follows.

Construction 3 Let n and ρ be two positive integers such
that n > ρ. Let C be an [n, n − ρ, ρ + 1]q MDS code, for
q � n − 1, and let H(C) be its symmetric product code. The
code CU2 is defined as follows,

CU2 = {G = (Vn, LU) | AG ∈ H(C)}.
Notice that by Lemma 8 the dimension of code H(C) is�n−ρ+1
2

�
, and therefore by the definition of the code CU2 , its

dimension is kU =
�n−ρ+1

2

�
. All other details for the cor-

rectness proof of Construction 3 are identical to the one of
Theorem 7, and thus we only state here the next theorem.

Theorem 9. For all ρ and n such that ρ < n, the code
CU2 is an optimal undirected ρ-node-erasure-correcting code
U-[n, kU =

�n−ρ+1
2

�]Fq , where q � n − 1.

Similarly to the code CD1 , the code CU2 is also systematic.

5438 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 9, SEPTEMBER 2019

IV. BINARY-NODE-ERASURE-CORRECTING CODES

In this section we study binary constructions of codes over
directed and undirected graphs based upon the results by Roth
from [14] and Schmidt from [16], [17].

An [n × n, k, μ] linear array code C over a field F is a
k-dimensional linear subspace of n×n matrices over F, where
the minimum rank of all nonzero matrices in C is at least μ.
It was shown in [14] that such codes can correct μ−1 row or
column erasures. Furthermore, the bound on such array codes
states that k � n(n − μ + 1) [14]. In this section we present
non-optimal binary constructions for undirected and directed
codes over graphs based upon the results from [14], [16], [17].

A. Binary Construction of Codes Over Directed Graphs

A construction of binary [n × n, k, μ] linear array codes
where k = n(n − μ+ 1) and μ = 2ρ + 1 was shown in [14].
Based on these codes, we present the following construction
of binary directed codes over graphs.

Construction 4 Let C be an [n×n, n(n−2ρ), 2ρ+1] binary
optimal array code from [14], where ρ < n/2. The code over
graphs CD3 is defined as follows,

CD3 = {G = (Vn, LD) | AG ∈ C} .

Next the correctness of Construction 4 is proved.

Theorem 10. For all ρ < n/2, the code CD3 is a linear
binary directed ρ-node-erasure-correcting code D-[n, kD =
n(n − 2ρ)].

Proof: Notice that since the code C is linear, the code CD3

is also linear. Let G be a graph in the code CD3 and let AG be
its adjacency matrix. Assume some ρ nodes failed in G. The
failure of these ρ nodes corresponds to erasure of the same ρ
rows and columns in AG . Since AG ∈ C the minimum rank
of AG is 2ρ + 1, and any 2ρ row or column erasures can be
corrected. In particular, the erased ρ rows and ρ columns can
be corrected as well, thereby correcting the ρ failed nodes.

Note that this construction does not provide optimal
ρ-node-erasure-correcting codes since rU = 2nρ, which does
not meet the bound in (3). For example, for ρ = 2 the dif-
ference between the code redundancy and the bound is 4
redundancy bits.

The construction of binary optimal array codes [n ×
n, n(n − r), r + 1] from [14] has also a systematic construc-
tion, where the first n − 2ρ rows of each matrix store the
information bits and the last 2ρ rows store the redundancy
bits. Therefore, we can use this family of codes also for the
construction of systematic binary ρ-node-erasure-correcting
codes over directed graphs SD-[n, k = n − 2ρ] for ρ < n/2.
In this case, the number of redundancy edges will be
n2 − (n − 2ρ)2 = 4nρ − 4ρ2. Therefore, the redundancy of
this code is (4nρ − 4ρ2)− (2nρ − ρ2) = 2nρ − 3ρ2 far from
optimality.

B. Binary Construction of Codes Over Undirected Graphs

A construction of binary [n×n, k, μ] symmetric linear array
codes where

k =
�

n(n − μ+ 2)/2 , n − μ is even,

(n + 1)(n − μ+ 1)/2 , n − μ is odd,

was shown in [16]. Based on these codes, we present the
following construction of binary undirected ρ-node-erasure-
correcting codes.

Construction 5 Let C be an [n×n, k, μ = 2ρ+1] symmetric
binary array code from [16], where

k =
�

n(n − 2ρ + 1)/2 , n is odd,

(n + 1)(n − 2ρ)/2 , n is even,

and ρ < n/2. The code over graphs CU4 is defined as follows,

CU4 = {G = (Vn, LU) | AG ∈ C} .
The proof of the correctness of Construction 5 is identical to
the one of Theorem 10 and is stated in the next theorem.

Theorem 11. For all ρ < n/2 and

kU =
�

n(n − 2ρ + 1)/2 , n is odd,

(n + 1)(n − 2ρ)/2 , n is even,

the code CU4 is a linear binary undirected ρ-node-erasure-
correcting code U-[n, kU].

This construction also does not provide optimal ρ-node-
erasure-correcting codes since

rU =
�

nρ , n is odd,

(n + 1)ρ , n is even,

which does not achieve the bound in (4). For example, for
ρ = 2 the difference between the code redundancy and the
bound is one redundancy bit when n is odd and three bits
when n is even.

In Section III we saw constructions for optimal codes over
graphs over a field of size at least n − 1, and in this section
we saw binary constructions that do not provide optimal codes
over graphs. Our next task is to achieve these two proper-
ties simultaneously, that is, optimal binary codes over graphs.
In the next section we show how to accomplish this task for
two node failures, when the number of nodes is a prime num-
ber. The general case for arbitrary number of node failures is
left for future work.

V. OPTIMAL BINARY UNDIRECTED DOUBLE-
NODE-ERASURE-CORRECTING CODES

In this section we present a construction of binary double-
node-erasure-correcting codes for undirected graphs. We use
the notation �a�n to denote the value of (a mod n).

Throughout this section we assume that n � 5 is a prime
number. Let G = (Vn, LU) be a graph with n vertices. Let us
define for h ∈ [n − 1]

Sh =
���vh , v�� | � ∈ [n − 1]	 , h ∈ [n − 2],

��v�, v�� | � ∈ [n − 1]	 , h = n − 2.
(5)

YOHANANOV AND YAAKOBI: CODES FOR GRAPH ERASURES 5439

Fig. 3. The neighborhood and the diagonal sets. (a) Neighborhood parity
paths. (b) Diagonal parity paths.

and for m ∈ [n]
Dm =

��vk ,v��|k, �∈[n]\{n−2},�k+��n=m
	∪��vn−1,vn−2�

	
.

(6)

Each set Sh where h ∈ [n − 2], will be used to represent the
parity constraint on the neighborhood of node vh , which cor-
respond to row and column h in the adjacency matrix AG .
Similarly, for m ∈ [n], each set Dm will represent parity con-
straints on the diagonals of AG . We first show the following
properties on the sets Sh and Dm , which their proof appear in
Appendix A.

Claim 1. For all h ∈ [n−1], |Sh | = n−1 and for all m ∈ [n],
|Dm | = n+1

2 .

Example 3. The sets Sh , Dm for n = 7 are marked in Fig. 3.
Note that the entries on lines with the same color belong to
the same parity constraints.

Recall that for t ∈ [n] the failure set Ft of the t-th node
is its neighborhood set which we denote by Ft = {�vt , v��
| � ∈ [n]}. The following connections between the sets
Sh , Dm , Ft hold and will be used in the correctness of the
construction we present in this section.

The following claim will be in use in the proof of
Theorem 12 and its proof is given in Appendix B.

Claim 2. The sets Sh, Dm , Ft satisfy the following properties.
(a) For all distinct h, i ∈ [n − 2], Sh ∩ Fi = {�vh , vi �}.
(b) For all i ∈ [n − 2], Sn−2 ∩ Fi = {�vi , vi �}.
(c) For all pairwise distinct i, j, h ∈ [n−2], Sh ∩ (Fi ∪ Fj) =
{�vh , vi �, �vh , v j �}.

(d) For all distinct i, j ∈ [n − 2], Sn−2 ∩ (Fi ∪ Fj) =
{�vi , vi �, �v j , v j �}.

(e) For all i ∈ [n − 2], D�i−2�n ∩ Fi = ∅ and for i = n − 1,
D�n−3�n ∩ Fn−1 = {�vn−2, vn−1�}.

(f) For all i ∈ [n − 2], s ∈ [n] \ {�i − 2�n}, Ds ∩ Fi =
{�v�s-i�n , vi �}. For i such that i = n − 1, Ds ∩ Fn−1 =
{�v�s+1�n , vn−1�, �vn−2, vn−1�}

(g) For all distinct i, j ∈ [n − 2], D�i+ j �n ∩ Fj = {�vi , v j �}.
(h) For all distinct i, j ∈ [n − 2], D� j−2�n ∩ (Fi ∪ Fj) =
{�v� j−i−2�n , vi �}

(i) For all distinct i, j ∈ [n − 2], D�i+ j �n ∩ (Fi ∪ Fj) =
{�vi , v j �}.

(j) For all i ∈ [n−2], D�i−2�n ∩(Fi∪Fn−2) = {�vn−1, vn−2�}.
We are now ready to present the construction of optimal

binary undirected double-node-erasure-correcting codes.

Construction 6 For all n � 5 prime number, let CU5 be the
following code.

CU5=
�

G=(Vn, LU)

(a)

�
�vi ,v j �∈Sh

LU �vi , v j �=0, h∈[n − 1]
(b)

�
�vi ,v j �∈Dm

LU �vi , v j � = 0, m ∈ [n]
�

.

Note that in this binary construction we have two sets of con-
straints, (a) and (b). The first set has n− 1 constraints and we
call each one of them constraint Sh , h ∈ [n − 1]. Similarly,
the second set has n constraints that will be called constraint
Dm , m ∈ [n]. Note that the edge �vn−1, vn−2� appears in each
of the diagonal sets, and therefore for m �= n−3 the constraints
Dm are dependent on the constraint Dn−3. We will need that
in order to have successful decoding when the failed nodes are
i ∈ [n − 2] and j = n − 2, as will be shown for this case in
the proof. Lastly, the correctness of this construction could be
proved using Theorem 6 by showing that the minimum graph
distance of this code is three, however, this will not provide a
decoding algorithm as we present in the following proof.

Theorem 12. The code CU5 is an optimal binary undirected
double-node-erasure-correcting code.

Proof: Assume that nodes i, j ∈ [n], where i < j are
the failed nodes. We distinguish between the following three
cases.

Case 1: i ∈ [n − 1], j = n − 1. Using the Sh constraints,
h ∈ [n − 1] \ {i}, the edge set Fi \ {�vi , vn−2�, �vi , vn−1�} can
be corrected by

LU �vi , vh� =
�

�vk ,vh �∈Sh\{�vi ,vh�}
LU �vk , vh� : h �= n − 2,

LU �vi , vi � =
�

�vk ,vk�∈Sn−2\{�vi ,vi �}
LU �vk , vk� : h = n − 2,

since for h �= i, n − 2 by Claim 2(a) Sh ∩ Fi = {�vh , vi �},
and for h = n − 2 by Claim 2(b) Sn−2 ∩ Fi = {�vi , vi �}. The
constraint Si then can be used to correct �vi , vn−2� by

LU �vi , vn−2� =
�

�vk ,vi �∈Si\{�vi ,vn−2�}
LU �vk, vi �.

Notice that Fn−1 is the set of all the uncorrected edges left.
By Claim 2(e), Dn−3∩ Fn−1 = {�vn−2, vn−1�}, so we first use
the constraint Dn−3 to correct the edge �vn−2, vn−1� by

LU �vn−2, vn−1� =
�

�vk ,v��∈Dn−3\{�vn−2,vn−1�}
LU �vk , v��.

By Claim 2(f) for m ∈ [n] \ {n − 3},
Dm ∩ Fn−1 = {�v�m+1�n , vn−1�, �vn−2, vn−1�},

and since the edge �vn−2, vn−1� is corrected, the Dm con-
straints can be used. Therefore, the remaining edges of the set
Fn−1 are corrected by

LU �v�m+1�n , vn−1� =
�

�vk ,v��∈Dm\{�v�m+1�n ,vn−1�}
LU �vk , v��,

and that finishes the decoding of this case.

5440 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 9, SEPTEMBER 2019

Case 2: i ∈ [n − 2], j = n − 2. By Claim 2(j) D�i−2�n ∩
(Fi ∪ Fn−2) = {�vn−1, vn−2�}, so using the constraint D�i−2�n ,
the edge �vn−1, vn−2� is corrected by

LU �vn−1, vn−2� =
�

�vk ,v��∈D�i−2�n \{�vn−1,vn−2�}
LU �vk , v��.

By Claim 2(f) for all m ∈ [n] \ {�i − 2�n}, Dm ∩ Fi =
{�v�m-i�n , vi �}, and since �vn−1, vn−2� is the only edge that
intersects between constraints Dm and Fn−2, Dm ∩ (Fi ∪
Fn−2) = {�v�m-i�n , vi �, �vn−1, vn−2�}. Since edge �vn−1, vn−2�
is corrected, the edges in the set Fi \{�vi , vn−2�} are corrected
by the constraints Dm as follows,

LU �v�m-i�n , vi � =
�

�vk ,v��∈Dm\{�v�m-i�n ,vi �}
LU �vk , v��.

Notice that Fn−2 \ {�vn−2, vn−1�} is the set of all the uncor-
rected edges left. Thus, it is corrected using the Sh constraints,
h ∈ [n − 1], similarly to the first case.

Case 3: j < n − 2. In this case we show an explicit algo-
rithm which decodes all the erased edges. First, we denote
the single parity syndromes for h ∈ [n − 1] \ {i, j}
by

Sh =
�

�vk ,v��∈Sh\(Fi∪Fj)

LU �vk , v��,

and the diagonal parity syndromes for m ∈ [n] by

Dm =
�

�vk ,v��∈Dm\(Fi∪Fj)

LU �vk , v��.

Algorithm 1

1: bprev ← 0
2: for t = 0, 1, . . . , x do
3: s1 ← �−d(t + 1)− 2�n
4: s2 ← �s1 + j �n
5: if (s1 /∈ {i, j, n − 1}) then
6: LU �vs1 , v j � ← Ds2 + bprev
7: LU �vs1 , vi � ← Ss1+LU �vs1 , v j �
8: bprev ← LU �vs1 , vi �
9: if (s1 = j) then

10: LU �v j , v j � ← Ds2 + bprev
11: LU �vi , vi �←Sn−2+LU �v j , v j �
12: bprev ← LU �vi , vi �
13: if s1 = n − 1 then
14: LU �vn−1, v j � ← Ds2 + bprev

15: bprev ← 0
16: for t = 0, 1, . . . , y do
17: s1 ← �d(t + 1)− 2�n
18: s2 ← �s1 + i�n
19: if (s1 /∈ {i, j, n − 1}) then
20: LU �vs1 , vi � ← Ds2 + bprev
21: LU �vs1 , v j � ← Ss1+LU �vs1 , vi �
22: bprev ← LU �vs1 , v j �
23: if (s1 = i) then
24: LU �vi , vi � ← Ds2 + bprev
25: LU �v j , v j �←Sn−2+LU �vi , vi �
26: bprev ← LU �v j , v j �
27: if s1 = n − 1 then
28: LU �vn−1, vi � ← Ds2 + bprev

Let d = � j-i�n , x = �−1 − d−1�n and y = �−1 + d−1�n .
The decoding procedure is described in Algorithm 1.

In order to prove the correctness of the algorithm, we define
an auxiliary parameter which describes the set of uncorrected
edges at the beginning of each iteration of the algorithm. More
specifically, denote F (t) as the set of uncorrected edges in the
first loop and �F (t) in the second loop, so F (0) = Fi ∪ Fj and
�F (0) = F (x). Denote by s(t)

1 , s(t)
2 the values of s1, s2, respec-

tively on iteration t in the first loop. The values of �s(t)
1 and �s(t)

2
will be defined similarly for the second loop.

The values of s(t)
1 and s(t)

2 are given by:

s(t)
1 = �−d(t + 1)− 2�n, s(t)

2 = �s(t)
1 + j�n = �−dt + i − 2�n .

Similar expressions can be derived for �s(t)
1 and �s(t)

2 . We also
denote the following sets,

A = {s(t1)
1 |0 � t1 � x}, B = {�s(t2)

1 |0 � t2 � y}. (7)

Before proving the correctness of the algorithm, we show
some more useful properties while their proofs are deferred to
Appendix C.

Claim 3. The following properties hold:

(a) x �= y and x + y = n − 2.
(b) s(x)

1 =�s(y)
1 = n − 1.

(c) i, j ∈ A or i, j ∈ B but not in both.
(d) n − 2 /∈ A ∪ B.
(e) A ∩ B = {n − 1}.
(f) |A| = x + 1 and |B| = y + 1.
(g) s(0)

1 �= i and �s(0)
1 �= j .

(h) For 0 < t � x, s(t−1)
1 = j if and only if s(t)

1 = i .
(i) For 0 < t � x, s(t)

2 /∈ {�i − 2�n, � j − 2�n}.
According to Claim 3(c), the variable s1 in Algorithm 1

gets the values of i and j either in the first or in the second
loop. Let us assume for the rest of the proof that this happens
in the first loop, i.e., i, j ∈ A, while the second case is proved
similarly. We are now ready to show the correctness of the
first loop by induction while the proof for the second loop is
very similar.

Lemma 13. For all 0 � t � x, the following properties hold:

1) If s(t)
1 /∈ {i, j, n − 1} then D

s(t)
2
∩ F (t) = {�v

s(t)
1

, v j �},
S

s(t)
1
∩ F (t) = {�v

s(t)
1

, vi �, �vs(t)
1

, v j �}, and the edges
�v

s(t)
1

, v j �, �vs(t)
1

, vi � are corrected on the t-th iteration.

2) If s(t)
1 = j then D

s(t)
2
∩ F (t) = {�v j , v j �}, Sn−2 ∩ F (t) =

{�vi , vi �, �v j , v j �} and the edges �vi , vi �, �v j , v j � are cor-
rected on the t-th iteration.

3) If s(t)
1 = n − 1 then D

s(t)
2
∩ F (t) = {�vn−1, v j �} and the

edge �vn−1, v j � is corrected on the t-th iteration.

Proof: We prove this claim by induction on t . First note
that for all t ∈ [n], it holds that s(t)

1 �= n − 2 as it was proved
in Claim 3(d).

Base: For t = 0 we have s(0)
1 = �−d −2�n , s(0)

2 = �i −2�n ,
and F (0) = Fi ∪ Fj . By Claim 3(g), s(0)

1 �= i . We first prove
the case where s(0)

1 /∈ { j, n−1}. Hence, we need to show that,

1) D�i−2�n ∩ (Fi ∪ Fj) = {�v�−d−2�n , v j �},
2) S�−d−2�n ∩ (Fi ∪ Fj) = {�v�−d−2�n , vi �, �v�−d−2�n , v j �}.
3) The edges �v�−d−2�n , v j � and �v�−d−2�n , vi � are corrected

on this iteration.

The proof consists of the following observations:
• According to Claim 2(h) we deduce that

D�i−2�n ∩ (Fi ∪ Fj)={�v�i− j−2�n , v j �}={�v�−d−2�n , v j �}
and therefore the edge �v�−d−2�n , v j � is corrected in
Step 6 according to the constraint D�i−2�n , therefore,
LU �v�−d−2�n , v j � = D�i−2�n .

• According to Claim 2(c) we get

S�−d−2�n ∩ (Fi ∪ Fj) = {�v�−d−2�n , vi �, �v�−d−2�n , v j �},

YOHANANOV AND YAAKOBI: CODES FOR GRAPH ERASURES 5441

and therefore the edge �v�−d−2�n , vi � is corrected in Step 7
according to the constraint S�−d−2�n , by

LU �v�−d−2�n , vi � = S�−d−2�n + LU �v�−d−2�n , v j �.
Notice that Steps 6,10 and 14 are identical. Therefore, if s(0)

1
equals to j, n− 1, the edge �v j , v j �, �vn−1, v j � is corrected in
Step 10,14 according to the constraint D�i−2�n , respectively.
If s(0)

1 = j , according to Claim 2(d) we get

Sn−2 ∩ (Fi ∪ Fj) = {�vi , vi �, �v j , v j �},
and therefore the edge �vi , vi � is corrected in Step 11 accord-
ing to the constraint Sn−2, by

LU �vi , vi � = Sn−2 + LU �v j , v j �.
Step: Assume that the induction assumption holds for t − 1,
where t � x and we prove its correctness for t . In this case,
by Claim 3(b) and Claim 3(f), only s(x)

1 in A is equal to n−1,
so we have that s(t−1)

1 �= n − 1. If s(t−1)
1 /∈ {i, j}, we assume

that the edges �v
s(t−1)

1
, v j � and �v

s(t−1)
1

, vi �, were corrected on

the t − 1 iteration. If s(t−1)
1 = j , by Claim 3(h) it holds if

and only if s(t)
1 = i . Notice that the algorithm do nothing on

this iteration and it can be assumed that the edges �v j , v j � and
�vi , vi � were corrected on the t−1 iteration. Therefore, we left
to analyze the case where s(t−1)

1 /∈ { j, n−1}. We consider the
following cases:

1) s(t)
1 /∈ { j, n− 1}: By Claim 3(i) s(t)

2 /∈ {�i − 2�n, � j − 2�n}
and by Claim 2(f), we deduce that

D
s(t)

2
∩ (Fi ∪ Fj) = {�v�s(t)

2 −i�n , vi �, �v�s(t)
2 − j �n , v j �}

= {�v
s(t−1)

1
, vi �, �vs(t)

1
, v j �}.

By the induction assumption �v
s(t−1)

1
, vi � was corrected,

so,
D

s(t)
2
∩ (F (t)

i ∪ F (t)
j) = {�v

s(t)
1

, v j �},
and the edge �v

s(t)
1

, v j � is successfully corrected in Step 6

by D
s(t)

2
constraint. Furthermore, since s(t)

1 �= n − 1,
by Claim 2(c),

S
s(t)

1
∩ (Fi ∪ Fj) = {�vs(t)

1
, vi �, �vs(t)

1
, v j �},

so it holds that S
s(t)

1
∩(F (t)

i ∪F (t)
j)={�v

s(t)
1

, vi �, �vs(t)
1

, v j �}
and therefore the edge �v

s(t)
1

, vi � can be successfully
corrected in Step 7 by constraint S

s(t)
1

and the value of

LU �vs(t)
1

, v j �. Notice that in this case s(t−1)
1 can also be

equal to i .
2) s(t)

1 = j or s(t)
1 = n − 1: Since Steps 6,10 and 14 are

identical, we first correct the edge �v
s(t)

1
, v j � by the D

s(t)
2

constraint. In case that s(t)
1 = j , by Claim 2(d), Sn−2 ∩

(Fi ∪ Fj) = {�vi , vi �, �v j , v j �} so it holds that Sn−2 ∩
(F (t)

i ∪ F (t)
j) = {�vi , vi �, �v j , v j �}. Therefore the edge

�vi , vi � is corrected in Step 11 by the Sn−2 constraint
and the value of LU �v j , v j �. �

A similar lemma for the second loop is stated as fol-
lows. We omit its proof since it is very similar to the one of
Lemma 13.

Lemma 14. For all 0 � t � y, by assumption that i, j /∈ B
the following properties hold:

1) If �s(t)
1 �= n − 1 then D�s(t)

2
∩ F (t) = {�v�s(t)

1
, v j �},

S�s(t)
1
∩ F (t) = {�v�s(t)

1
, vi �, �v�s(t)

1
, v j �}, and the edges

�v�s(t)
1

, v j �, �v�s(t)
1

, vi � are corrected on the t-th iteration.

2) If �s(t)
1 = n − 1 then D�s(t)

2
∩ F (t) = {�vn−1, v j �} and the

edge �vn−1, v j � is corrected on the t-th iteration.

Let V1, V2 be the set of edges which were corrected in the
first, second loop, respectively. Hence,

V1 ={�vs1, vi �, �vs1 , v j � : s1 ∈ A \ {n − 1}} ∪ {�vn−1, v j �},
V2 ={�v�s1, v j �, �v�s1 , vi � :�s1 ∈ B \ {n − 1}} ∪ {�vn−1, vi �}.

We also define V = V1 ∪ V2, and prove the following claim
in Appendix D.

Claim 4. The following properties hold:

(a) V1 ∩ V2 = ∅.
(b) |V | = 2n − 4.
(c) �vi , v j � /∈ V .
(d) �vn−2, vi � /∈ V and �vn−2, v j � /∈ V .

Lastly, at the end of the algorithm the following property
on the set of uncorrected edges holds.

Claim 5. At the end of the algorithm,

�F (y) = {�vi , v j �, �vn−2, vi �, �vn−2, v j �}
Proof: Since the number of erased edges is 2n−1, we get

that

|�F (y)| = (2n − 1)− |V | = (2n − 1)− (2n − 4) = 3.

By Claim 4(c) and Claim 4(d), the edges that were not decoded
yet are {�vi , v j �, �vn−2, vi �, �vn−2, v j �} and therefore,

�F (y) = {�vi , v j �, �vn−2, vi �, �vn−2, v j �}.

According to Claim 2(i) D�i+ j �n ∩ (Fi ∪ Fj) = {�vi , v j �}
and therefore the edge �vi , v j � can be reconstructed by
the constraint D�i+ j �n , that is, LU �vi , v j � = D�i+ j �n .
Since the only uncorrected edges of nodes vi and v j are
�vi , vn−2�, �v j , vn−2�, they are corrected by the constraints Si

and Sj . The number of constraints of this code is 2n − 1,
which meets the bound in (4) so it is an optimal code.
As mentioned before, each optimal code is also a systematic
code, and thus this code is systematic.

Note that for the systematic version of the code CU5 , where
the last two nodes are the redundancy nodes, we sometimes
refer the first node among them by the single parity node and
the second one by the diagonal parity node. The decoding
algorithm presented in the proof of Theorem 12 is demon-
strated in the next example.

Example 4. In this example we show a decoding scheme of
CU5 code SU-[11, 9]. We consider the case where the failed
nodes are v3 and v5, that is, i = 3, j = 5. Therefore d = 2
and x = 4, y = 5. The undirected graph is represented by a
lower-triangle-adjacency matrix. The yellow cells of the matrix

5442 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 9, SEPTEMBER 2019

Fig. 4. A decoding scheme of an optimal binary undirected double-
node-erasure-correcting code SU -[11, 9]. (a) Simulation of the algorithm.
(b) Corrected edge order.

Fig. 5. The neighborhood and the diagonal sets. (a) Neighborhood parity
paths. (b) Diagonal parity paths.

represent the erased edges. As mentioned before, the decoding
procedure in Algorithm 1 corrects all the erased edges using
two loops. The first loop is represented by Steps 1-14 and
the second loop is represented by Steps 15-28. In each itera-
tion of both loops we calculate s1 and s2 that we show in the
tables of Figure 4. Thus, we get the sets A and B , that is, A =
{7, 5, 3, 1, 10} and B = {0, 2, 4, 6, 8, 10}. Therefore, the first
loop starts with the edge �v7, v5�, since s(0)

1 = �−d − 2�n =
�−2− 2�11 = 7 and ends with the edge �v10, v5�, since s(4)

1 =�−d(x + 1) − 2�n = �−2 · 5 − 2�11 = 10. Similarly, the sec-
ond loop starts with the edge �v3, v0� and ends with the edge
�v10, v3�. Notice that 5, 3 ∈ A, so the first loop corrects the
self loop edges �v5, v5� and �v3, v3�. At the end of this algo-
rithm the edge �v5, v3�, �v9, v3�, �v9, v5� that is marked with
gray, is corrected with the constraint D8, S3, S5, respectively.

We finish this section by showing another construction of
systematic binary undirected double-node-erasure-correcting
code SU-[n, n − 2] which is very similar to the code from
Construction 6. Here, we present this construction by show-
ing the constraints of graphs on their upper-triangle-adjacency
matrices. We have this construction since it will be used in
Section VI for the construction of optimal binary directed
double-node-erasure-correcting codes SD-[n, n − 2]. This
construction is almost a symmetric reflection of Construc-
tion 6 with respect to the main diagonal. However, we had
to introduce only a single modification in which we changed
between the roles of the redundancy nodes vn−2 and vn−1.

Let G = (Vn, LU) be a graph with n vertices. Let us define
for h ∈ [n − 1]

S�h =
���vh , v�� | � ∈ [n] \ {n − 2}	 , h ∈ [n − 2],

��v�, v�� | � ∈ [n] \ {n − 2}	 , h = n − 2,
(8)

and for m ∈ [n],
D�m =

��vk,v��|k, �∈[n − 1]},�k+��n=m
	∪��vn−2,vn−1�

	
.

(9)

As before, the sets S�h for h ∈ [n−1] and D�m for m ∈ [n], will
be used to represent parity constraints on the upper-triangle-
adjacency matrix of each graph.

Example 5. The sets S�h, D�m for n = 7 are marked in Fig. 5.
Entries on lines with the same color belong to the same parity
constraint.

Our second construction of optimal binary undirected
double-node-erasure-correcting codes SU-[n, n − 2] works as
follows.

Construction 7 For all n � 5 prime number let CU6 be the
following code over graphs,

CU6=
�

G=(Vn, LU)

(a)

�
�vi ,v j �∈S �hLU �vi , v j �=0, h∈[n−1]

(b)
�
�vi ,v j �∈D�m LU �vi , v j �=0, m∈[n]

�

.

Theorem 15. The code CU6 is an optimal binary undirected
double-node-erasure-correcting code.

We will not prove here the correctness of the code CU6 since
its construction is very similar to one of the code CU5 . How-
ever, note that when constructing the code CU6 , we switched
the roles of the last two redundancy nodes such that the first
node is the diagonal parity node and the second node is the
single parity node. We still present here a decoding algorithm
of this code for the more challenging case when the failed
nodes are vi , v j and i, j ∈ [n − 2]. Its correctness is similar
to the one of Algorithm 1 and is thus omitted.

First, we denote the single parity syndromes for
h ∈ [n − 1] \ {i, j} by

S�h =
�

�vk ,v��∈S �h\(Fi∪Fj)

LU �vk , v��,

and the diagonal parity syndromes for m ∈ [n] by

D�m =
�

�vk ,v��∈D�m\(Fi∪Fj)

LU �vk , v��.

Let x � = �−1+d−1�n and y � = �−1−d−1�n . The decoding
procedure for this case is described in Algorithm 2.

Algorithm 2

1: bprev ← 0
2: for t = 0, 1, . . . , x� do
3: s1 ← �−d(t + 1)− 1�n
4: s2 ← �s1 + j �n
5: if (s1 /∈ {i, j, n − 2}) then
6: LU �vs1 , v j � ← D�s2

+ bprev

7: LU �vs1 , vi � ← S�s1
+LU �vs1 , v j �

8: bprev ← LU �vs1 , vi �
9: if (s1 = j) then

10: LU �v j , v j � ← D�s2
+ bprev

11: LU �vi , vi �←S�n−2+LU �v j , v j �
12: bprev ← LU �vi , vi �
13: if s1 = n − 2 then
14: LU �vn−2, v j � ← D�s2

+ bprev

15: bprev ← 0
16: for t = 0, 1, . . . , y� do
17: s1 ← �d(t + 1)− 1�n
18: s2 ← �s1 + i�n
19: if (s1 /∈ {i, j, n − 2}) then
20: LU �vs1 , vi � ← D�s2

+ bprev

21: LU �vs1 , v j � ← S�s1
+LU �vs1 , vi �

22: bprev ← LU �vs1 , v j �
23: if (s1 = i) then
24: LU �vi , vi � ← D�s2

+ bprev

25: LU �v j , v j �←S�n−2+LU �vi , vi �
26: bprev ← LU �v j , v j �
27: if s1 = n − 2 then
28: LU �vn−2, vi � ← D�s2

+ bprev

YOHANANOV AND YAAKOBI: CODES FOR GRAPH ERASURES 5443

Fig. 6. A decoding scheme of an optimal binary undirected double-
node-erasure-correcting code SU -[11, 9]. (a) Simulation of the algorithm.
(b) Corrected edge order.

The decoding algorithm presented in the proof of
Theorem 15 is demonstrated in the next example.

Example 6. In this example we show a decoding scheme of
the code CU6 for n = 11. We consider the case where the
failed nodes are v3 and v5, that is, i = 3, j = 5. There-
fore d = 2 and x = 5, y = 4. The undirected graph is rep-
resented by an upper-triangle-adjacency matrix. The yellow
cells of the matrix represent the erased edges. As mentioned
before, the decoding procedure in Algorithm 2 corrects all
erased edges using two loops. The first loop is represented by
Steps 1-14 and the second loop is represented by Steps 15-28.
In each iteration of both loops we calculate s1 and s2 that we
show in the tables of Figure 6. Thus, we get the sets A and
B to be A = {8, 6, 4, 2, 0, 9} and B = {1, 3, 5, 7, 9}. There-
fore, the first loop starts with the edge �v8, v5�, since s(0)

1 =�−d − 1�n = �−2− 1�11 = 8 and ends with the edge �v9, v5�,
since s(5)

1 = �−d(x+1)−1�n = �−2 ·6−1�11 = 9. Similarly,
the second loop starts with the edge �v1, v3� and ends with
the edge �v9, v3�. Notice that 3, 5 ∈ B , so the second loop
corrects the self loop edges �v3, v3� and �v5, v5�. At the end
of this algorithm the edge �v5, v3�, �v10, v3�, �v10, v5� that is
marked with gray, is corrected using the constraint D�8, S�3, S�5,
respectively.

Note, that the code CU6 is also an optimal and therefore it
is systematic.

VI. OPTIMAL BINARY DIRECTED DOUBLE-
NODE-ERASURE-CORRECTING CODES

In this section we combine between Constructions 6
and 7 in order to generate an optimal binary directed
double-node-erasure-correcting code. The main idea here is
to use Construction 6 in order to correct the backward edges
(vi , v j) for i > j , i.e. the edges in the lower part of
the matrix, and Construction 7 for the correction of the
forward edges (vi , v j) for i < j which are the edges in the
upper part of the matrix. However, since the self loops are
involved in both of these parts, we will have to carefully
interleave between the two constructions. In particular, this

Fig. 7. The neighborhood and the diagonal sets. (a) Neighborhood Parity
Paths. (b) Diagonal parity paths.

dependency affects also the decoding of the two construc-
tions which will have to be combined as well. Throughout
this section we assume that n � 5 is a prime number.

Let G = (Vn, LD) be a directed graph with n vertices and
let G2 = (Vn, LU) be an undirected graph. We use the same
definitions of the sets Sh , S�h , Dm , D�m , h ∈ [n − 2], m ∈ [n]
from (5), (8), (6), (9), respectively, and let Ft , t ∈ [n] be a
failure set.

For i, j ∈ [n], not necessarily distinct, let �vi , v j �↓ be
the edge directed from vmax{i, j } to vmin{i, j }, i.e., �vi , v j �↓ =
(vmax{i, j }, vmin{i, j }), and similarly �vi , v j �↑ = (vmin{i, j },
vmax{i, j }) is the edge directed from vmin{i, j } to vmax{i, j }. Next
we define the constraint sets for G.

For h ∈ [n − 2] the neighborhood-edge sets S↓h , S↑h are
defined by

S↓h ={�vi , v j �↓|�vi , v j � ∈ Sh},
S↑h ={�vi , v j �↑|�vi , v j � ∈ S�h}.

Furthermore, for m ∈ [n] the diagonal-edge sets D↓m , D↑m are
defined by

D↓m={�vi , v j �↓|�vi , v j �∈Dm },
D↑m={�vi , v j �↑|�vi , v j �∈D�m },

and lastly for t ∈ [n] the failure-edge sets F↓t , F↑t are
defined by

F↓t ={�vi , v j �↓|�vi , v j � ∈ Ft },
F↑t ={�vi , v j �↑|�vi , v j � ∈ Ft }.

Example 7. The sets S↓h , S↑h , D↓m , D↑m for n = 7 are marked
in Fig. 7. Entries on lines with the same color belong to the
same parity constraint.

The following claim for the directed case is very similar
to the corresponding one from Claim 2. Thus, we omit its
proof.

Claim 6.
(a) For all distinct h, i ∈ [n − 2], S↑h ∩ F↑i = {�vh , vi �↑}.
(b) For all i ∈ [n−2], D↓�i−2�n∩(F↓i ∪F↓n−2) = {(vn−1, vn−2)}.
(c) For all i ∈ [n − 2], s ∈ [n] \ {�i − 2�n}, D↓s ∩ F↓i ={�v�s-i�n , vi �↓}.
(d) For all distinct i, j ∈ [n − 2], D↓�i+ j �n ∩ F↓j = {(v j , vi)}

and D↑�i+ j �n ∩ F↑j = {(vi , v j)}.

5444 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 9, SEPTEMBER 2019

We are now ready to present the construction of optimal
binary directed double-node-erasure-correcting codes.

Construction 8 For all n � 5 prime number let CD7 be the
following code.

CD7=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

G=(Vn, L)

(a)
�

(vi ,v j)∈S↓h
LD(vi , v j)=0, h∈[n−2]

(b)
�

(vi ,v j)∈D↓m LD(vi , v j) = 0, m ∈ [n]
(c)

�
(vi ,v j)∈S↑h

LD(vi , v j)=0, h∈[n−2]
(d)

�
(vi ,v j)∈D↑m

LD(vi , v j) = 0, m ∈ [n]

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

In this binary construction we did not use the con-
straints that were derived from the two sets Sn−2 and S�n−2
(i.e., the constraints on the main diagonal). We will show that
an encoding scheme of this code is also systematic. Assume
the first n − 2 nodes carry the information symbols on their
edges. It can be verified that for all i ∈ [n − 2] the encoding
with each of the constraints S↓i , S↑i , D↓n−3 and D↑n−3 is pos-
sible since each of them encodes its appropriate redundancy
edge using a simple parity code. For all m ∈ [n] \ {n − 3}
the encoding with constraints D↓m and D↑m , is also possible
since the edges (vn−1, vn−2) and (vn−2, vn−1) were encoded
with respect to D↓n−3 and D↑n−3. Hence, in the next proof for
the correctness of the construction we will refer to it as a
systematic construction.

Theorem 16. The code CD7 is an optimal binary directed
double-node-erasure-correcting code.

Proof: Assume that the nodes i, j ∈ [n], i < j are failed.
We will show the correctness of this construction by splitting
it into three cases.

Case 1: i = n − 2, j = n − 1. In this case the informa-
tion edges have not been erased, therefore, we can use the
encoding rules of CD7 to correct the failed redundancy nodes.

Case 2: i ∈ [n− 2], j = n− 2. In this case, by Claim 6(a)
for h ∈ [n − 2] \ {i}, S↑h ∩ F↑i = {�vh , vi �↑} so the following
n − 3 edges connected to the i -th node can be corrected by
constraint (c) of Construction 8, that is,

LD�vh , vi �↑ =
�

(vk ,v�)∈S↑h \{�vh ,vi �↑}
LD(vk , v�).

Notice that we corrected n − 3 information edges on the
upper-triangle-adjacency matrix of the graph, where the edges
(vi , vi), (vi , vn−2) and (vi , vn−1) are not corrected yet. From
Claim 6(b) we get that D↓�i−2�n∩(F↓i ∪F↓n−2) = {(vn−1, vn−2)}.
Therefore the edge (vn−1, vn−2) can be corrected using con-
straint (b) of Construction 8,

LD(vn−1, vn−2) =
�

(vk ,v�)∈D↓�i−2�n \{(vn−1,vn−2)}
LD(vk, v�).

By Claim 6(c) for all m ∈ [n] \ {�i − 2�n}, D↓m ∩ F↓i ={�v�m-i�n , vi �↓}. Since (vn−1, vn−2) is the only edge that

intersects between constraints D↓m and F↓n−2, we get

that D↓m ∩ (F↓i ∪ F↓n−2) = {�v�m-i�n , vi �↓, (vn−1, vn−2)}.

Therefore, the following edges connected to the node vi are
decoded by constraint (b) of Construction 8,

LD�v�m-i�n , vi �↓ =
�

(vk ,v�)∈D↓m\{�v�m-i�n ,vi �↓}
LD(vk, v�).

It can be verified that we corrected another n edges on the
lower-triangle-adjacency matrix of the graph, where there are
no uncorrected information edges left. Thus, the remaining
edges can be successfully decoded according to the encoding
rules of the code. For j = n− 1 the proof is very similar and
thus we omit its details.

Case 3: The neighborhood syndromes S↓h ,S↑h are
defined by

S↓h =
�

(vk,v�)∈S↓h \(F↓i ∪ F↓j)

LD(vk, v�),

S↑h =
�

(vk,v�)∈S↑h \(F↑i ∪ F↑j)

LD(vk, v�),

and the diagonal syndromes D↓m , D↑m are defined by

D↓m =
�

(vk,v�)∈D↓m\(F↓i ∪F↓j)

LD(vk, v�),

D↑m =
�

(vk,v�)∈D↑m\(F↑i ∪F↑j)

LD(vk, v�).

Let d = �j-i�n , x = �−1 − d−1�n , y = �−1 + d−1�n , x � =
�−1+ d−1�n and y � = �−1− d−1�n . The decoding procedure
for the code CD7 in this case is described in Algorithm 3.

This algorithm consists of four loops marked as
Loop I, II, III, and IV. For Y ∈ {I, II, III, IV}, denote
by s(t)

1,Y the value of the variable s1 on iteration t of Loop Y .

These values of s(t)
1,Y are given by:

s(t)
1,I = �−d(t + 1)− 2�n, s(t)

1,II = �d(t + 1)− 2�n,

s(t)
1,III = �−d(t + 1)− 1�n, s(t)

1,IV = �d(t + 1)− 1�n.
Next, we denote the following four sets:

A = {s(t)
1,I : t ∈ [x + 1]}, B = {s(t)

1,II : t ∈ [y + 1]},
A� = {s(t �)

1,III : t � ∈ [x � + 1]}, B � = {s(t �)
1,IV : t ∈ [y � + 1]}.

Claim 7. The indices i, j satisfy the following property: i, j ∈
A ∩ B � or i, j ∈ A� ∩ B, but not in both.

Proof: Notice that sets A and B are defined similarly
to (7). In Claim 3(c), it was stated that i, j ∈ A or i, j ∈
B , but not in both, and it is possible to show that the same
property holds for A� and B �. Without loss of generality, let
us assume that i, j ∈ A. Let 0 � t < x − 1 be a step in which
s(t)

1,I = j and therefore s(t+1)
1,I = i . Therefore we can calculate

s(x−(t+1))
1,IV by,

s(x−(t+1))
1,IV − j = s(x−(t+1))

1,IV − s(t)
1,I =

�d(x − (t + 1)+ 1)− 1�n − �−d(t + 1)− 2�n =
�d(x − t)+ d(t + 1)+ 1�n = �d(x + 1)+ 1�n =
�d((−1− d−1)+ 1)+ 1�n = −1+ 1 = 0,

YOHANANOV AND YAAKOBI: CODES FOR GRAPH ERASURES 5445

Algorithm 3
Loop I Loop II Loop III Loop IV
1: bprev ← 0
2: for t = 0, 1, . . . , x do
3: s1 ← �−d(t + 1)− 2�n
4: s2 ← �s1 + j �n
5: if (s1 /∈ {i, j, n − 1}) then
6: LD�vs1 , v j �↓ ← D↓s2

+ bprev

7: LD�vs1 , vi �↓←S↓s1
+LD�vs1 , v j �↓

8: bprev ← LD�vs1 , vi �↓
9: if (s1 = j) then

10: LD(v j , v j)← D↓s2
+ bprev

11: Wait until (vi , vi) is corrected.
12: bprev ← LD(vi , vi)

13: if s1 = n − 1 then
14: LD(vn−1, v j)← D↓s2

+ bprev

15: bprev ← 0
16: for t = 0, 1, . . . , y do
17: s1 ← �d(t + 1)− 2�n
18: s2 ← �s1 + i�n
19: if (s1 /∈ {i, j, n − 1}) then
20: LD�vs1 , vi �↓ ← D↓s2

+ bprev

21: LD�vs1 , v j �↓←S↓s1+LD�vs1 , vi �↓
22: bprev ← LD�vs1 , v j �↓
23: if (s1 = i) then
24: LD(vi , vi)← D↓s2

+ bprev
25: Wait until (v j , v j) is corrected.
26: bprev ← LD(v j , v j)

27: if s1 = n − 1 then
28: LD(vn−1, vi)← D↓s2

+ bprev

29: bprev ← 0
30: for t = 0, 1, . . . , x� do
31: s1 ← �−d(t + 1)− 1�n
32: s2 ← �s1 + j �n
33: if (s1 /∈ {i, j, n − 2}) then
34: LD�vs1 , v j �↑ ← D↑s2

+ bprev

35: LD�vs1 , vi �↑←S↑s1
+LD�vs1 , v j �↑

36: bprev ← LD�vs1 , vi �↑
37: if (s1 = j) then
38: LD(v j , v j)← D↑s2 + bprev
39: Wait until (vi , vi) is corrected.
40: bprev ← LD(vi , vi)

41: if s1 = n − 2 then
42: LD(v j , vn−2)← D↑s2 + bprev

43: bprev ← 0
44: for t = 0, 1, . . . , y� do
45: s1 ← �d(t + 1)− 1�n
46: s2 ← �s1 + i�n
47: if (s1 /∈ {i, j, n − 2}) then
48: LD�vs1 , vi �↑ ← D↑s2

+ bprev

49: LD�vs1 , v j �↑←S↑s1
+LD �vs1 , vi �↑

50: bprev ← LD�vs1 , v j �↑
51: if (s1 = i) then
52: LD(vi , vi)← D↑s2

+ bprev
53: Wait until (v j , v j) is corrected.
54: bprev ← LD(v j , v j)

55: if s1 = n − 2 then
56: LD(vi , vn−2)← D↑s2

+ bprev

and therefore s(x−(t+1))
1,IV = j . By definition of s(t)

1,IV we can see
that

s(x−(t+2))
1,IV = s(x−(t+1))

1,IV −d = i,

where t+2 � x and therefore i, j ∈ B �. The opposite direction
is proved similarly.

The decoding Algorithm 3 for this case combines
Algorithm 1 and Algorithm 2, where Algorithm 1 is used to
decode the lower-triangle-adjacency matrix and Algorithm 2
is used to decode the upper-triangle-adjacency matrix. How-
ever, since we did not use the constraints of the two sets Sn−2
and S�n−2 on the main diagonal, we had to replace Step 11,
25 in Algorithm 1, Algorithm 2 with the command wait
until (vi , vi) is corrected, wait until (v j , v j) is corrected,
respectively. According to Claim 7, the indices i, j satisfy
i, j ∈ A ∩ B � or i, j ∈ A� ∩ B but not both. Without loss of
generality, assume that i, j ∈ A ∩ B �. Therefore, in this case,
Loops II and III of Algorithm 3 will not be affected by the
main diagonal constraint. This holds since the edges (vi , vi)
and (v j , v j) are not corrected in these two loops as the con-
ditions in Steps 23 and 37 will not hold. Hence, these two
loops operate and succeed exactly as done in Algorithm 1
and Algorithm 2. This does not hold for Loops I and IV.
Namely, Loop I, IV operates exactly as Algorithm 1, Algo-
rithm 2 until Loop I, IV reaches Step 11, 53, respectively.
Here we notice that according to Algorithm 1, in Step 11,
the algorithm was supposed to correct the edge (vi , vi)
according to the constraint on the mail diagonal. Similarly,
in Step 53, the algorithm was supposed to correct the edge
(v j , v j) according to the constraint on the mail diagonal.
However, since the edge (vi , vi) is corrected in Loop IV and
the edge (v j , v j) is corrected in Loop I, all we need to do in
Step 11 is to wait for the edge (vi , vi) to be corrected and
in the same way in Step 53 for the edge (v j , v j) to be cor-
rected. Then, the rest of these two loops proceed to correct
the remaining edges as done in Algorithm 1 and Algorithm 2.

Lastly, from Claim 6(d), D↓�i+ j �n ∩ F↓j = {(v j , vi)}
and D↑�i+ j �n ∩ F↑j = {(vi , v j)}, so the last two informa-
tion edges (v j , vi) and (vi , v j) are corrected by constraints
D↓�i+ j �n and D↑�i+ j �n , respectively. Since all of the information
edges were corrected, we can correct the remaining uncor-
rected redundancy edges (vn−2, vi),(vn−2, v j),(vi , vn−1) and
(v j , vn−1) using our encoding rules.

Notice, that the number of constraints of this code is 4n − 4,
which meets the bound in (3) so it is an optimal code.

The decoding algorithm presented in the proof of
Theorem 16 is demonstrated in the next example.

Example 8. In this example we show a decoding scheme of
the code CD7 for n = 11. We consider the case where the
failed nodes are v3 and v5, that is, i = 3, j = 5. There-
fore d = 2 and x = y � = 4, x � = y = 5. The decoding
procedure in Algorithm 3 corrects all the erased edges
using four loops, where Loop I, II, III, IV is represented
by Steps 1-14, 15-28, 29-42 Steps 43-56, respectively.
We use here the lower-triangle-adjacency matrix for Loop I
(red) and Loop II (green) and the upper-triangle-adjacency
matrix for Loop III (black) and Loop IV (blue). The
yellow cells of the matrix represent the erased edges.
In each iteration of both loops we calculate the values of
s1,I, s2,I, s1,II, s2,II, s1,III, s2,III, s1,IV and s2,IV, that we show
in the tables of Figure 8. Thus, we get the sets A, B, A� and
B �, where A = {7, 5, 3, 1, 10}, B = {0, 2, 4, 6, 8, 10}, A� =
{8, 6, 4, 2, 0, 9} and B � = {1, 3, 5, 7, 9}. Loop I starts with the
edge (v7, v5), and ends with the edge (v10, v5) and Loop II
starts with the edge (v3, v0) and ends with the edges (v10, v3).
Similarly, Loop III starts with the edge (v5, v8), and ends
with the edge (v5, v9) and finally Loop IV starts with the
edge (v1, v3) and ends with the edge (v3, v9). Loop I, IV
corrects the self loop (v5, v5), (v3, v3), respectively. At the
end of this algorithm, the edge (v5, v3), (v9, v3), (v9, v5) that
is marked with gray in the lower-triangle-adjacency matrix,
is corrected using the constraint D↓8 , S↓3 , S↓5 , respectively.
Similarly, the edge (v3, v5), (v3, v10), (v5, v10) that is marked
with gray in the upper-triangle-adjacency matrix, is corrected
using the constraint D↑8 , S↑3 , S↑5 , respectively.

VII. BOUNDS ON OPTIMAL UNDIRECTED ρ-NODE-
ERASURE-CORRECTING CODES OVER Fq

In this section we study necessary conditions on the exis-
tence of optimal undirected ρ-node-erasure-correcting codes
over Fq with n nodes. For the special case of ρ = n − 2 we
will show a necessary and sufficient condition and explicitly
find the number of such codes.

Every linear code over undirected graphs U-[n, kU]Fq

can be represented by a generator matrix G of dimensions

5446 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 9, SEPTEMBER 2019

Fig. 8. A decoding scheme of an optimal binary directed double-
node-erasure-correcting code SD-[11, 9]. (a) Simulation of the algorithm.
(b) Lower tringle corrected edge order. (c) Upper tringle corrected edge order.

kU ×
�n+1

2

�
over Fq . We denote the columns of the genera-

tor matrix G by the indices of the set {(i, j) ∈ [n]2 |i � j},
in their lexicographic order, so the column indexed by (i, j)
is gi, j . For all 1 � � � n, let S� be the set of all subsets of
[n] of size �, that is,

S� = {B | B ⊆ [n], |B| = �}. (10)

For each B ∈ S�, denote the column set VB by,

VB = {gi, j |(i, j) ∈ B2, i � j}. (11)

Clearly, the size of VB , where B ∈ S�, is |VB | =
��+1

2

�
. The

following lemma states a necessary and sufficient condition
on the generator matrix of codes over undirected graphs to be
optimal codes.

Lemma 17. Let CU be a linear code over undirected graphs
U-[n, kU =

�k+1
2

�]Fq and let G be its generator matrix. Then,
CU is an optimal undirected (n − k)-node-erasure-correcting
code over Fq if and only if for all B ∈ Sk , the columns of VB

are linearly independent.

Proof: Let u = (u1, u2, . . . , u(k+1
2)) ∈ F

(k+1
2)

q be an infor-
mation vector encoded with the matrix G. Assume that there
was an erasure of ρ = n − k nodes and let B ∈ Sk be the set

of k remaining nodes. Let c1, c2, . . . , c(k+1
2) be the informa-

tion symbols on the edges of the k remaining nodes in their
lexicographic order. Similarly, let g1, g2, . . . , g(k+1

2) be the
columns of VB in their lexicographic order. Finding the infor-
mation vector u = (u1, u2, . . . , u(k+1

2)) is achieved by solving
the following equations system

[u1, u2, . . . , u(k+1
2)]·[g1, g2, . . . , g(k+1

2)] = [c1, c2, . . . , c(k+1
2)],

that has a unique solution if and only if the columns of VB

are linearly independent.

A. The ρ = n − 2 Case

In this section we show necessary and sufficient conditions
for the existence of optimal undirected (n − 2)-node-erasure-
correcting codes over Fq , and we also find the number of such
codes.

Theorem 18. For all positive integer n � 3 and prime power
q, there exists an optimal undirected (n − 2)-node-erasure-
correcting code over Fq if and only if

q2 + q + 2 > n, (12)

and in this case, the number of such codes is

q2(n
2)(q − 1)(

n+1
2) (q2 + q + 1)!

(q2 + q + 1− n)! .

Proof: Let C be an optimal code over undirected graphs
U-[n, 3]Fq , and let G be its generator matrix. In this case, for
0 � i < j � n − 1 each column (i, j) of G is a vector from
F

3
q . According to Lemma 17, for all i, j ∈ [n], the columns

gi,i , gi, j , g j, j are linearly independent. We will first find the
number of possible columns for gi,i and then for gi, j . For all
distinct i, j ∈ [n], the columns gi,i , g j, j have to be linearly

independent. First, for g0,0 we have q3 − 1 options, all the
vectors of F

3
q except for the zero vector. Then, for 1 � i �

n − 1 we deduce that the number of valid options for gi,i is

(q3 − 1)− (q − 1)i,

since it cannot be a linear combination of any previous column
gk,k for 0 � k < i . Hence, for i = n − 1 we require that
(q3 − 1)− (q − 1)(n − 1) > 0, that is,

q2 + q + 2 > n,

which is a necessary condition for the existence of the code C.
Next, for all 0 � i < j � n − 1 the column gi, j cannot be

linearly dependent on the columns gi,i and g j, j , and therefore
there are

(q3 − 1)− (q2 − 1) = q2(q − 1)

options to choose the column gi, j . Together, we conclude
that the number of such codes will be the composition of all

YOHANANOV AND YAAKOBI: CODES FOR GRAPH ERASURES 5447

possible options, that is,

[q2(q − 1)](n
2)

n−1�

i=0

[(q3 − 1)− (q − 1)i]

=[q2(q − 1)](n
2)

n−1�

i=0

[(q − 1)(q2 + q + 1)− (q − 1)i]

=[q2(q − 1)](n
2)

n−1�

i=0

[(q − 1)(q2 + q + 1− i)]

=[q2(q − 1)](n
2)(q − 1)n

n−1�

i=0

[(q2 + q + 1− i)]

=q2(n
2)(q − 1)(

n+1
2) (q2 + q + 1)!

(q2 + q + 1− n)! .

Since for n = q2+q+1 the number of such codes is a positive
number, the condition in (12) is necessary and sufficient.

B. Arbitrary ρ

In this section we study a sufficient condition on the exis-
tence of optimal undirected ρ-node-erasure-correcting codes
over Fq , where ρ = n − k. For the rest of this section,
we assume that k is even, t = k/2, and we let CU be an
optimal undirected (n − k)-node-erasure-correcting code
U-[n,

�k+1
2

�]Fq , and G is its generator matrix. In order to find
a necessary condition for the existence of CU , we find a lower
bound on the number of vectors in the set

�
B∈St

span VB ,
which is then translated into an upper bound on the value
of n, since

�
B∈St

span VB ⊆ Fq
(k+1

2). We first prove the
following claim.

Claim 8. For all two distinct B1, B2 ⊆ [n], such that |B1 ∪
B2| � k, the columns of the set VB1 ∪ VB2 are linearly inde-
pendent and

�
span VB1 ∩ span VB2

�
= span

�
VB1 ∩ VB2

�
.

Proof: According to Lemma 17, for all B ∈ Sk ,
the columns of VB are linearly independent, and this property
holds for any set B of size at most k. For all B1, B2 ⊆ [n],
such that |B1 ∪ B2| � k, the columns of VB1∪B2 are linearly
independent and in particular also the columns of the set
VB1 ∪ VB2 .

To prove the second part of this claim, first note that VB1 ∩
VB2 ⊆ VB1 and hence span

�
VB1 ∩ VB2

�
⊆ span VB1 and sim-

ilarly span
�

VB1 ∩ VB2

�
⊆ span VB2 , that is,

span
�

VB1 ∩ VB2

�
⊆

�
span VB1 ∩ span VB2

�
.

Next, assume that v ∈
�

span VB1 ∩ span VB2

�
. Denote

the vector set of VB1, VB2 by {u0, u1, . . . , u|VB1 |−1},
{w0,w1, . . . ,w|VB2 |−1}, respectively. Therefore, there are
coefficients α0, α1, . . . , α|VB1 |−1 over Fq not all of them zero,
and coefficients β0, β1, . . . , β|VB2 |−1 over Fq not all of them
zero, such that,

v =
|VB1 |−1�

i=0

αi ui =
|VB2 |−1�

i=0

βiwi ,

or equivalently,

|VB1 |−1�

i=0

αi ui −
|VB2 |−1�

i=0

βiwi = 0.

Since |B1 ∪ B2| � k, the columns of the set VB1 ∪ VB2 are

linearly independent. Since
�|VB1 |−1

i=0 αi ui −�|VB2 |−1
i=0 βiwi =

0, we deduce that for all ui ∈ VB1 \ VB2 , αi = 0 and for all

wi ∈ VB2 \ VB1 , βi = 0. Therefore, v ∈ span
�

VB1 ∩ VB2

�
.

Next we will prove the following Lemma.

Lemma 19. For all r such that 2 � r � |St |, and r distinct
sets B1, B2, . . . , Br ∈ St ,

� �

1�i�r

span VBi

�
= span

� �

1�i�r

VBi

�
.

Proof: We prove this lemma by induction on the value
of r . The base case was already proved in Claim 8.

The step case for r > 2 is proved as follows. Suppose that
� �

1�i�r−1

span VBi

�
= span

� �

1�i�r−1

VBi

�
,

and we will prove that
� �

1�i�r

span VBi

�
= span

� �

1�i�r

VBi

�
.

Since
� �

1�i�r

span VBi

�
=

� �

1�i�r−1

span VBi

�
∩ span VBr

we use the induction assumption to get that
� �

1�i�r−1

span VBi

�
∩ span VBr=span

� �

1�i�r−1

VBi

�
∩ span VBr ,

and now we apply Claim 8 on the sets
�

1�i�r−1 VBi and VBr

to get that

span
� �

1�i�r−1

VBi

�
∩ span VBr = span

� �

1�i�r

VBi

�
,

which concludes the proof.
Next, for all 1 � r � |St |, let f (n, t, r, s) be the number

of options to choose r sets from St where their intersection is
of size s, that it,

f (n, t, r, s) = |{{B1, . . . , Br } ⊆ St | |
�

1���r

B�| = s}|.

The value of f (n, t, r, s) is calculated in the next lemma and
its proof appears in Appendix E.

Lemma 20. For 1 � r � |St |, the value f (n, t, r, s) satisfies

f (n, t, r, s) =
�

n

s

� t−s�

m=0

(−1)m
�

n − s

m

���n−s−m
t−s−m

�

r

�
.

In the next claim, we list several combinatorial identities,
which their proof is omitted as an exercise for the reader.

5448 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 9, SEPTEMBER 2019

Claim 9.

(a) For all positive integer a it holds

a�

i=1

(−1)i+1
�

a

i

�
= 1.

(b) For all positive integers a and b such that b � a it holds

a�

i=0

(−1)i
�

b

i

�
= (−1)a

�
b − 1

a

�
.

(c) For all positive integers a, b and c such that c � b � a
it holds �

c

a

��
c − a

b − a

�
=

�
c

b

��
b

a

�
.

(d) For all positive integers a, b and c such that c � b � a
it holds �

c − a − 1

b − a

�
=

�
c − a

b − a

�
c − b

c − a
.

We are now ready to prove the main result of this section.

Theorem 21. For all positive integer n, prime power q and
even k, t = k/2, any optimal undirected (n−k)-node-erasure-
correcting code over Fq satisfies

q(2t+1
2) �

t�

s=0

(−1)t−sq(s+1
2)

�
n

t

��
t

s

�
n − t

n − s
.

Proof: Let CU be an optimal undirected (n − k)-node-
erasure-correcting code over Fq and let G be its generator
matrix. We will use the inclusion-exclusion principle to cal-
culate the number of columns that are not in

�
B∈St

span VB ,
where VB is defined in (11).

We denote by W the number of options to choose every
column of the matrix G, that is, W = q(k+1

2) = q(2t+1
2).

We will calculate |�B∈St
span VB | by the inclusion-exclusion

principle,

|
�

B∈St

span VB | =

=
|St |�

r=1

(−1)r+1
� �

B1,B2,...,Br∈St

| span VB1 ∩ · · · ∩ span VBr |
�
.

Next, we present the following calculations and explain each
step afterwards.

|
�

B∈St

span VB | =

=
|St |�

r=1

(−1)r+1
� �

B1,B2,...,Br∈St

| span VB1 ∩ · · · ∩ span VBr |
�

(I)=
|St |�

r=1

(−1)r+1
� �

B1,B2,...,Br∈St

| span(VB1 ∩ · · · ∩ VBr)|
�

(II)=
|St |�

r=1

(−1)r+1
� �

B1,B2,...,Br∈St|�1�i�r Bi |=s

q(s+1
2)

�

(III)=
|St |�

r=1

(−1)r+1
� t�

s=0

q(s+1
2) f (n, t, r, s)

�

(IV)=
|St |�

r=1

(−1)r+1
� t�

s=0

q(s+1
2)

�
n

s

�� t−s�

m=0

(−1)m
�

n−s

m

���n−s−m
t−s−m

�

r

���

=
t�

s=0

q(s+1
2)

�
n

s

�� t−s�

m=0

(−1)m
�

n−s

m

�� |St |�

r=1

(−1)r+1
��n−s−m

t−s−m

�

r

���

(V)=
t�

s=0

q(s+1
2)

�
n

s

�� t−s�

m=0

(−1)m
�

n − s

m

��(n−s−m
t−s−m)�

r=1

(−1)r+1
��n−s−m

t−s−m

�

r

���

(VI)=
t�

s=0

q(s+1
2)

�
n

s

�� t−s�

m=0

(−1)m
�

n − s

m

��

(VII)=
t�

s=0

q(s+1
2)

�
n

s

�
(−1)t−s

�
n − s − 1

t − s

�

(VIII)=
t�

s=0

(−1)t−sq(s+1
2)

�
n

s

��
n − s

t − s

�
n − t

n − s

(IX)=
t�

s=0

(−1)t−sq(s+1
2)

�
n

t

��
t

s

�
n − t

n − s
.

Equality (I) holds since by Lemma 19, |
��

1�i�r span VBi

�
| =

| span
��

1� j�r VBi

�
|. Equality (II) holds since for 0 � s � t ,

if |�1�i�r Bi | = s then | span
��

1�i�r VBi

�
| = q(s+1

2).
Equality (III) holds since by definition the number of
options such that |�1�i�r Bi | = s is f (n, t, r, s). Equal-
ity (IV) holds by Lemma 20. Equality (V) holds since
|St | =

�n
t

�
>

�n−s−m
t−s−m

�
, and for r >

�n−s−m
t−s−m

�
,

�(n−s−m
t−s−m)

r

�

will be zero. Equality (VI), (VII), (VIII), (IX) holds by
Claim 9(a), 9(b), 9(c), 9(d), respectively.

Denote by E , the number of columns of F
(k+1

2)
q that are

not in
�

B∈St
span VB , that is, E = W − |�B∈St

span VB |.
Therefore, the code CU exists only if E is not smaller than 0,
or, W � |�B∈St

span VB |, that is,

q(2t+1
2) �

t�

s=0

(−1)t−sq(s+1
2)

�
n

t

��
t

s

�
n − t

n − s
.

For k = 2 (t = 1) the bound from Theorem 21 states that

q3 �
1�

s=0

(−1)1−sq(s+1
2)

�
n

1

��
1

s

�
n − 1

n − s

=− n · n − 1

n
+ q · n · n − 1

n − 1
=− n + 1+ q · n = 1+ (q − 1)n,

or, q3 − 1 � (q − 1)n, that is equivalent to

q2 + q + 2 > n,

which is the result of Theorem 18. For q = 2 we get that there
is no binary code for n > 7. Similarly, it can be verified that
for k = 4, there is no binary code for n > 20, and for k = 6
there is no binary code for n > 69.

YOHANANOV AND YAAKOBI: CODES FOR GRAPH ERASURES 5449

In the next corollary, for fixed values of k and q , we find
an upper bound on the value of n for the existence of optimal
undirected (n − k)-node-erasure-correcting code over Fq .

Corollary 22. Let k be a fixed positive integer and let q
be a prime power. For all n such that logq(n) > 3

4 k +
logq(k) + 3

2 , there does not exist an optimal undirected
(n − k)-node-erasure-correcting code over Fq .

Proof: We present the following calculations and explain
each step afterwards. From Theorem 21 we get that for t =
k/2 the following inequality holds.

q(2t+1
2) �

t�

s=0

(−1)t−sq(s+1
2)

�
n

t

��
t

s

�
n − t

n − s

=q(t+1
2)

�
n

t

�
−

�
n

t

� t−1�

s=0

(−1)t−sq(s+1
2)

�
t

s

�
n − t

n − s

(I)
�q(t+1

2)
�

n

t

�
−

�
n

t

� t−1�

s=0

(−1)t−sq(s+1
2)

�
t

s

�

(II)
�q(t+1

2)
�

n

t

�
−

�
n

t

� �

s∈[t]
(t−s) is even

q(s+1
2)

�
t

s

�

(III)
� q(t+1

2)
�

n

t

�
− q(t

2)
�

n

t

� �

s∈[t]
(t−s) is even

�
t

t − s

�

=q(t+1
2)

�
n

t

�
− q(t

2)
�

n

t

� �t/2��

i=0

�
t

2i

�

(IV)= q(t+1
2)

�
n

t

�
− q(t

2)
�

n

t

�
2t−1

(V)
� q(t+1

2)
�

n

t

�
− 1

2
q(t

2)
�

n

t

�
qt

=q(t+1
2)

�
n

t

�
− 1

2
q(t+1

2)
�

n

t

�

=1

2
q(t+1

2)
�

n

t

�
.

Inequality (I) holds since 0 � s � t , so n−t
n−s � 1. Inequal-

ity (II) holds since we remove all the cases where (−1)t−s is

negative. Inequality (III) holds since for all s ∈ [t], q(s+1
2) �

q(t
2) and

�t
s

� = � t
t−s

�
. Equality (IV) holds based upon the for-

mula
��t/2�

i=0

� t
2i

� = 2t−1. Inequality (V) holds since 2t � qt .
Therefore, we deduce that for any optimal undirected

(n − k)-node-erasure-correcting code over Fq

q(k+1
2) � 1

2
q(k/2+1

2)
�

n

k/2

�
.

Since for positive integer a and fixed b, such that b � a,
�a

b

�
�

(a−b)b

b! , we get that

q(k+1
2)−(k/2+1

2) � 1

2

�
n

k/2

�
� (n − k)k/2

2(k/2)! ,

q
3
8 k2+ 1

4 k2(k/2)! � (n − k)k/2,

q
3
4 k+ 1

2 k/2
�

2(k/2)! � n − k,

q
3
4 k+ 1

2 k/2
�

2(k/2)! + k � n.

Since k/2
√

2(k/2)! � 2 k/2
√

(k/2)! � 2k/2 we can write

q
3
4 k+ 1

2 k + k � n,

(q
3
4 k+ 1

2 + 1)k � n.

and

logq(q
3
4 k+ 1

2 + 1)+ logq(k) � logq(n).

Since for all a > 1, logq (a)+ 1 � logq(a + 1), we conclude
that

3

4
k + 3

2
+ logq(k) � logq(n).

Therefore, for all n such that logq(n) > 3
4 k + logq(k)+ 3

2 an
optimal undirected (n − k)-node-erasure-correcting code over
Fq does not exist.

For odd k by the same method we can deduce that for all
n satisfying the same inequality logq(n) > 3

4 k + logq(k) +
3
2 an optimal undirected (n− k)-node-erasure-correcting code
over Fq does not exist. Moreover, for directed graphs and any
fixed k, for all n satisfying the inequality logq(n) > 3

2 k +
logq(k)+1 an optimal directed (n−k)-node-erasure-correcting
code over Fq does not exist.

VIII. CONCLUSION

In this paper we proposed a new construction of codes,
called codes over graphs. We studied here complete undirected
or directed graphs and the goal was to construct codes over
graphs which are capable to correct the erasure of node fail-
ures. We built upon previous constructions of product codes
and rank metric codes. The former set of codes provided us
with optimal codes with linear field size and the latter was used
for the construction of non-optimal binary codes. We were then
aspired by the construction of EVENODD codes in order to
construct optimal codes over graphs correcting two node fail-
ures over the binary field. Lastly, we studied upper bounds on
the number of nodes of optimal codes.

APPENDIX A

Claim 1 For all h ∈ [n−1], |Sh | = n−1 and for all m ∈ [n],
|Dm | = n+1

2 .

Proof: The first part of the claim is readily verified. For
m ∈ [n], by the definition of Dm ,

{�vk , v�� | k, � ∈ [n] \ {n − 2}, �k + ��n = m}
∩{�vn−1, vn−2�} = ∅.

Note that,

|{�vk, v�� | k, � ∈ [n] \ {n − 2}, �k + ��n = m}|
=|{�vk, v�m−k�n � | k, �m − k�n ∈ [n] \ {n − 2}}|
=|{�vk, v�m−k�n � | k ∈ [n] \ {n − 2, �m + 2�n}}|.

If �m+2�n �= n−2 then k gets n−2 distinct values and there
are n−2 options for edge �vk , v�m−k�n �. For each of the n−2
options either k �= �m − k�n and we get each edge counted

5450 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 9, SEPTEMBER 2019

twice since �vk , v�m−k�n � = �v�m−k�n , vk�, or k = �m − k�n
and we get the self loop �vk , vk�. Therefore,

|{�vk, v�m−k�n � | k ∈ [n] \ {n − 2, �m + 2�n}}| =
n − 3

2
+ 1 = n − 1

2
.

If �m + 2�n = n − 2 then k gets n − 1 distinct values and
there are n − 1 options for edge �vk , v�m−k�n �. For each of
the n − 1 options if k �= �m − k�n we get each edge counted
twice since �vk , v�m−k�n � = �v�m−k�n , vk�. Notice that there is
no option for self loop �vk , vk� since it can be generated only
for k = n − 2. Therefore, in this case we also have that

|{�vk , v�m−k�n � | k ∈ [n] \ {n − 2}}| = n − 1

2
.

Therefore for all m ∈ [n] we have that

|Dm | =|{�vk, v�� | k, � ∈ [n] \ {n − 2}, �k + ��n = m}|+
|{�vn−1, vn−2�}| = n − 1

2
+ 1 = n + 1

2
.

APPENDIX B

Claim 2 The sets Sh , Dm , Ft satisfy the following properties.
(a) For all distinct h, i ∈ [n − 2], Sh ∩ Fi = {�vh , vi �}.
(b) For all i ∈ [n − 2], Sn−2 ∩ Fi = {�vi , vi �}.
(c) For all pairwise distinct i, j, h ∈ [n−2], Sh ∩ (Fi ∪ Fj) =
{�vh , vi �, �vh , v j �}.

(d) For all distinct i, j ∈ [n − 2], Sn−2 ∩ (Fi ∪ Fj) =
{�vi , vi �, �v j , v j �}.

(e) For all i ∈ [n − 2], D�i−2�n ∩ Fi = ∅ and for i = n − 1,
D�n−3�n ∩ Fn−1 = {�vn−2, vn−1�}.

(f) For all i ∈ [n − 2], s ∈ [n] \ {�i − 2�n}, Ds ∩ Fi =
{�v�s-i�n , vi �}. For i such that i = n − 1, Ds ∩ Fn−1 =
{�v�s+1�n , vn−1�, �vn−2, vn−1�}

(g) For all distinct i, j ∈ [n − 2], D�i+ j �n ∩ Fj = {�vi , v j �}.
(h) For all distinct i, j ∈ [n − 2], D� j−2�n ∩ (Fi ∪ Fj) =
{�v� j−i−2�n , vi �}

(i) For all distinct i, j ∈ [n − 2], D�i+ j �n ∩ (Fi ∪ Fj) =
{�vi , v j �}.

(j) For all i ∈ [n−2], D�i−2�n ∩(Fi∪Fn−2) = {�vn−1, vn−2�}.
Proof:

(a) Assume that there is an edge �vh , v�� ∈ Sh ∩ Fi . Since
�vh , v�� ∈ Fi such that h �= i , deduce that � = i . There-
fore Sh ∩ Fi = {�vh , vi �}.

(b) Assume that there is an edge �vk , vk� ∈ Sn−2 ∩ Fi , thus,
k = i . Therefore Sn−2 ∩ Fi = {�vi , vi �}.

(c) Using (a) deduce,

Sh∩(Fi ∪Fj) = (Sh∩Fi)∪(Sh∩Fj) = {�vh , vi �, �vh , v j �}
(d) Using (b) deduce,

Sn−2 ∩ (Fi ∪ Fj) =
(Sn−2 ∩ Fi) ∪ (Sn−2 ∩ Fj) = {�vi , vi �, �v j , v j �}

(e) For i < n − 2, �vn−1, vn−2� /∈ Fi , it is enough to show
that

{�vk, v�� | k, � ∈ [n] \ {n − 2}, �k + ��n = �i − 2�n}∩
{�vi , v�� | � ∈ [n]} = ∅.

Assume that there is an edge �vk , v�� ∈ D�i−2�n∩Fi , where
k, � ∈ [n] \ {n−2} and in particular k, � �= n−2. Accord-
ing to the definition of the set Fi we have that k = i
or � = i . Without loss of generality assume that k = i
and according to the definition of the set D�i−2�n we have
that �i + ��n = �i − 2�n and thus � = n − 2, in contra-
diction. By the same concept, it is easy to verify that for
i = n−1, the only edge in intersection of Dn−3 and Fn−1
is �vn−1, vn−2�.

(f) Since i < n − 2, �vn−1, vn−2� /∈ Fi , so it is enough to
show that

{�vk, v�� | k, � ∈ [n] \ {n − 2}, �k + ��n = s}∩
{�vi , v�� | � ∈ [n]} = {�vi , v�s-i�n �}.

Assume that there is an edge �vk, v�� ∈ Ds ∩ Fi . Accord-
ing to the definition of the set Fi we have that k = i
or � = i . Without loss of generality assume that k = i .
By definition of the set Ds we deduce that �i + ��n = s,
so � = �s-i�n . In case where i = n − 1, we simply add
the �vn−1, vn−2� edge to the intersection between Ds and
Fn−1, and the remaining proof is similar.

(g) Let s = �i+ j�n. Since j < n−2, s = �i+ j�n �= �i−2�n,
therefore according to (f) we deduce that D�i+ j �n ∩ Fi =
{�vi , v j �}.

(h) Let s = � j − 2�n . Since i �= j , s = � j − 2�n �= �i − 2�n ,
therefore according to (f) we deduce that D� j−2�n ∩ Fi =
{�v� j−i−2�n , vi �}, and since j ∈ [n−2], by (e) deduce that
D� j−2�n ∩ Fj = ∅. Therefore:

D� j−2�n ∩ (Fi ∪ Fj) =
(D� j−2�n ∩ Fi) ∪ (D� j−2�n ∩ Fj) = {�v� j−i−2�n , vi �}.

(i) Let s = �i + j�n, therefore,

D�i+ j �n ∩ (Fi ∪ Fj) = (D�i+ j �n ∩ Fi) ∪ (D�i+ j �n ∩ Fj) =
{�vi , v j �} ∪ {�v j , vi �} = {�vi , v j �}
where equality holds according to (g).

(j) Since i ∈ [n − 2], by (e) we get that D�i−2�n ∩ Fi = ∅.
Since the set D�i−2�n has only one edge connecting the
node vn−2, we get that D�i−2�n ∩ Fn−2 = {�vn−1, vn−2�},
and therefore:

D�i−2�n ∩ (Fi ∪ Fn−2) =
(D�i−2�n ∩ Fi) ∪ (D�i−2�n ∩ Fn−2) = {�vn−1, vn−2�}.

APPENDIX C

Claim 3 The following properties hold:

(a) x �= y and x + y = n − 2.
(b) s(x)

1 =�s(y)
1 = n − 1.

(c) i, j ∈ A or i, j ∈ B but not in both.
(d) n − 2 /∈ A ∪ B.
(e) A ∩ B = {n − 1}.
(f) |A| = x + 1 and |B| = y + 1.
(g) s(0)

1 �= i and �s(0)
1 �= j .

(h) For 0 < t � x, s(t−1)
1 = j if and only if s(t)

1 = i .

YOHANANOV AND YAAKOBI: CODES FOR GRAPH ERASURES 5451

(i) For 0 < t � x, s(t)
2 /∈ {�i − 2�n, � j − 2�n}.

Proof: First we remind that n is a prime number.

(a) Since x = �−1− d−1�n and y = �−1+ d−1�n , we get

x − y = �−1− d−1�n − �−1+ d−1�n = �−2d−1�n .

Since n is a prime number, we deduce that �−2d−1�n �= 0
and so x �= y. By definition of x and y,

�x + y�n = �−1− d−1�n + �−1+ d−1�n = �−2�n .

Since x, y ∈ [n] and x �= y we conclude that x + y =
n − 2.

(b) According to the definition of s(t)
1 we get for t = x that

s(x)
1 = �−d(x + 1)− 2�n = �−d(−d−1)− 2�n =
�1− 2�n = n − 1.

The proof that �s(y)
1 = n − 1 is identical.

(c) Assume that j ∈ A. Since j �= n − 1 = s(x)
1 , there exists

t1 < x such that s(t1)
1 = �−d(t1 + 1)− 2�n = j . Hence,

s(t1+1)
1 = �s(t1)

1 −d�n = � j − (j − i)�n = i

and we get that i ∈ A. The proof that if i ∈ A then j ∈ A
is similar.
Assume again that j ∈ A, and on contrary that i ∈ B ,
Since i �= n − 1 = �s(y)

1 , there exists t2 < y such that
�s(t2)

1 = i , that is

�d(t2 + 1)− 2�n = i.

Therefore

d = j-i = �−d(t1 + 1)− 2�n − �d(t2 + 1)− 2�n,

and
�d(t1 + t2 + 3)�n = 0

which leads to a contradiction since t1+ t2+ 3 � x − 1+
y − 1+ 3 = n − 1. Similarly we prove that if i /∈ B then
j ∈ A.

(d) We will prove without loss of generality that n − 2 /∈ A.
Assume in contrary that n − 2 ∈ A, then there exists 0 �
t � x such that

s(t)
1 = �−d(t + 1)− 2�n = n − 2.

Therefore, �d(t+1)�n = 0, which leads to a contradiction.
(e) By (b), n − 1 ∈ A ∩ B . Assume on contrary that exists

h �= n−1 such that h ∈ A∩ B . Since h �= n−1 = s(x)
1 =

�s(y)
1 , there exist t1 < x, t2 < y such that

h = �−d(t1 + 1)− 2�n = �d(t2 + 1)− 2�n.
Hence we get

�d(t1 + t2 + 2)�n = 0,

and again we get a contradiction.

(f) Assume that |A| < x + 1. Therefore there are 0 � t2 <
t1 � x such that s(t1)

1 = s(t2)
1 . By definition of s(t1)

1 , s(t2)
1

we deduce,

�−d(t1 + 1)− 2�n = �−d(t2 + 1)− 2�n.
Hence we get

�d(t1 − t2)�n = 0,

and since 0 < t1− t2 � x � n− 2 we get a contradiction.
The |B| = y + 1 is proved similarly.

(g) Assume that s(0)
1 = i , therefore

�−d − 2�n = �i − j − 2�n = i,

�n − j − 2�n = 0,

n − 2 = j,

and that is a contradiction. The �s(0)
1 �= j is proved simi-

larly.
(h) If s(t−1)

1 = j then,

s(t)
1 = s(t−1)

1 − d = j − (j − i) = i.

If s(t)
1 = i then,

s(t−1)
1 = s(t)

1 + d = i + (j − i) = j.

(i) If s(t)
2 = � j − 2�n then

s(t)
1 = �s(t)

2 − j�n = �(j − 2)− j�n = n − 2,

and we know that s(t)
1 �= n − 2 by (d). If 0 < t � x and

s(t)
2 = �i − 2�n then

s(t)
1 = �s(t)

2 − j�n = �(i − 2)− j�n = �−d − 2�n = s(0)
1 ,

but since |A| = x + 1, s(t)
1 = s(0)

1 only for t = 0 and that
is a contradiction.

APPENDIX D

Claim 4 The following properties hold:

(a) V1 ∩ V2 = ∅.
(b) |V | = 2n − 4.
(c) �vi , v j � /∈ V .
(d) �vn−2, vi � /∈ V and �vn−2, v j � /∈ V .

Proof:

(a) According to Claim 3(e), A ∩ B = {n − 1} and we get

{�vs1, vi �, �vs1 , v j � : s1 ∈ A \ {n − 1}}∩
{�v�s1, v j �, �v�s1 , vi � :�s1 ∈ B \ {n − 1}} = ∅.

By the definition of V1 and V2,

{�vn−1, v j �, �vi , vi �, �v j , v j �} ⊆ V1 \ V2,

and �vn−1, vi � ∈ V2 \ V1, therefore V1 ∩ V2 = ∅.
(b) Since |A| = x + 1 and since i, j ∈ A we get that,

|{�vs1, vi �, �vs1 , v j � : s1 ∈ A \ {n − 1}}|
= 2(|A| − 1)− 2 = 2(x + 1− 1)− 2 = 2x − 2,

5452 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 9, SEPTEMBER 2019

thus, |V1| = 2x − 1. Similarly, since |B| = y + 1 and
since i, j /∈ B we get that,

|{�v�s1, v j �, �v�s1 , vi � :�s1 ∈ B \ {n − 1}}|
= 2(|B| − 1) = 2(y + 1− 1) = 2y,

thus, |V2| = 2y + 1. By (a), V1 ∩ V2 = ∅ we deduce,

|V | = |V1| ∪ |V2| = |V1| + |V2|
= 2x − 1+ 2y + 1 = 2(x + y) = 2(n − 2) = 2n − 4.

(c) According to the definition of V1 and V2, �vi , v j � /∈ V1
and �vi , v j � /∈ V2.

(d) By Claim 3(d), n − 2 /∈ A ∪ B , therefore by the def-
inition of V1 and V2, �vn−2, v j �, �vn−2, vi � /∈ V1 and
�vn−2, v j �, �vn−2, vi � /∈ V2.

APPENDIX E

Lemma 20 For 1 � r � |St |, the value f (n, t, r, s) satisfies

f (n, t, r, s) =
�

n

s

� t−s�

m=0

(−1)m
�

n − s

m

���n−s−m
t−s−m

�

r

�
.

Proof: Note that f (n, t, r, s) is the cardinality of the set

H = {{B1, . . . , Br } ⊆ St | |
�

1���r

B�| = s}.

For a fixed set B ⊆ [n] (e.g., B = [s]), we denote by HB the
set

HB = {{B1, . . . , Br } ⊆ St |
�

1���r

B� = B}.

Since there are
�n

s

�
options to choose the set B , we deduce

that

|H | =
�

B⊆[n]
|HB| =

�
n

s

�
|H[s]|.

For the remainder of the proof, we find the side of the set H[s].
We denote the set

W = {{B1, . . . , Br } ⊆ St | [s] ⊆
�

1���r

B�},

where |W | = �(n−s
t−s)
r

�
. For i ∈ ([n] \ [s]) we also define Ai as

follows

Ai = {{B1, . . . , Br } ∈ W |, i ∈
�

1���r

B�},

where it holds that |H[s]| = |W |− |�i∈([n]\[s]) Ai |. Therefore,
we calculate |�i∈([n]\[s]) Ai | by using the inclusion-exclusion
principle

|
�

i∈([n]\[s])
Ai | =

n−s�

m=1

(−1)m+1
� �

s�i1<···<im �n−1

|Ai1 ∩· · ·∩ Air |
�
.

For all 1 � m � n−s and 0 � i1 < · · · < im � n−1, it holds

|Ai1 ∩ · · · ∩ Aim | =
��n−s−m

t−s−m

�

r

�
,

since the intersection Ai1 ∩ · · · ∩ Aim includes at least the set
[s]∪{i1, . . . , im}. Notice that for m > t−s, |Ai1∩· · ·∩Aim | = 0
so we can take only the cases where 1 � m � t−s. Therefore
we can write

|
�

i∈([n]\[s])
Ai | =

n−s�

m=1

(−1)m+1
� �

s�i1<···<im �n−1

|Ai1 ∩ · · · ∩ Air |
�

=
t−s�

m=1

(−1)m+1
�

n − s

m

���n−s−m
t−s−m

�

r

�
.

Finally, we conclude that

|H[s]| = |W | − |
�

i∈([n]\[s])
Ai | =

t−s�

m=0

(−1)m
�

n − s

m

���n−s−m
t−s−m

�

r

�
,

and since f (n, t, r, s) = |H | we get

f (n, t, r, s)=
�

n

s

�
|H[s]|=

�
n

s

� t−s�

m=0

(−1)m
�

n − s

m

���n−s−m
t−s−m

�

r

�
.

ACKNOWLEDGMENTS

The authors would like to thank Jehoshua Bruck for valu-
able discussions and Ron M. Roth for his contribution to the
results in Section VII and sharing reference [16] with them.

REFERENCES

[1] N. Abramson, “Cascade decoding of cyclic product codes,” IEEE Trans.
Commun. Technol., vol. 16, no. 3, pp. 398–402, Jun. 1968.

[2] M. Blaum, J. Brady, J. Bruck, and J. Menon, “EVENODD: An efficient
scheme for tolerating double disk failures in RAID architectures,” IEEE
Trans. Comput., vol. 44, no. 2, pp. 192–202, Feb. 1995.

[3] M. Blaum, J. Bruck, and A. Vardy, “MDS array codes with independent
parity symbols,” IEEE Trans. Inf. Theory, vol. 42, no. 2, pp. 529–542,
Mar. 1996.

[4] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and
K. Ramchandran, “Network coding for distributed storage systems,”
IEEE Trans. Inf. Theory, vol. 56, no. 9, pp. 4539–4551, Sep. 2010.

[5] P. Elias, “Error-free coding,” IRE Trans. IRE Prof. Group Inf. Theory,
vol. 4, no. 4, pp. 29–37, Sep. 1954.

[6] E. E. Gad, R. Mateescu, F. Blagojevic, C. Guyot, and Z. Bandic, “Repair-
optimal MDS array codes over GF(2),” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Istanbul, Turkey, Jul. 2013, pp. 887–891.

[7] J. Hopfield, Neurocomputing: Foundations of Research. Cambridge,
MA, USA: MIT Press, 1988, pp. 457–464.

[8] C. Huang and L. Xu, “STAR : An efficient coding scheme for correct-
ing triple storage node failures,” IEEE Trans. Comput., vol. 57, no. 7,
pp. 889–901, Jul. 2008.

[9] P. Corbett et al., “Row-diagonal parity for double disk failure correc-
tion,” in Proc. 3rd USENIX Symp. File Storage Technol., San Francisco,
CA, USA, Apr. 2004, pp. 1–14.

[10] S. K. Mohammed, E. Viterbo, Y. Hong, and A. Chockalingam,
“X-codes: A low complexity full-rate high-diversity achieving pre-
coder for TDD MIMO systems,” in Proc. IEEE Int. Conf. Commun.,
Cape Town, South Africa, May 2010, pp. 1–5.

[11] H. D. Pfister, S. K. Emmadi, and K. Narayanan, “Symmetric product
codes,” in Proc. Inf. Theory Appl. Workshop (ITA), San Diego, CA, USA,
Feb. 2015, pp. 282–290.

[12] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal exact-regenerating
codes for distributed storage at the MSR and MBR points via a
product-matrix construction,” IEEE Trans. Inf. Theory, vol. 57, no. 8,
pp. 5227–5239, Aug. 2011.

[13] N. Raviv, N. Silberstein, and T. Etzion, “Constructions of high-rate min-
imum storage regenerating codes over small fields,” IEEE Trans. Inf.
Theory, vol. 63, no. 4, pp. 2015–2038, Apr. 2017.

YOHANANOV AND YAAKOBI: CODES FOR GRAPH ERASURES 5453

[14] R. M. Roth, “Maximum-rank array codes and their application to criss-
cross error correction,” IEEE Trans. Inf. Theory, vol. 37, no. 2, pp. 328–
336, Mar. 1991.

[15] B. Sasidharan, M. Vajha, and P. V. Kumar. (Sep. 2016). “An explicit,
coupled-layer construction of a high-rate MSR code with low sub-
packetization level, small field size and all-node repair.” [Online]. Avail-
able: https://arxiv.org/abs/1607.07335

[16] K.-U. Schmidt, “Symmetric bilinear forms over finite fields of even
characteristic,” J. Combinat. Theory, A, vol. 117, no. 8, pp. 1011–1026,
May 2010.

[17] K.-U. Schmidt, “Symmetric bilinear forms over finite fields with appli-
cations to coding theory,” J. Algebraic Combinatorics, vol. 42, no. 2,
pp. 635–670, Sep. 2015.

[18] I. Tamo, Z. Wang, and J. Bruck, “Zigzag codes: MDS array codes
with optimal rebuilding,” IEEE Trans. Inf. Theory, vol. 59, no. 3,
pp. 1597–1616, Mar. 2013.

[19] L. Xu, V. Bohossian, J. Bruck, and D. G. Wagner, “Low-density MDS
codes and factors of complete graphs,” IEEE Trans. Inf. Theory, vol. 45,
no. 6, pp. 1817–1836, Sep. 1999.

[20] E. Yaakobi and J. Bruck, “On the uncertainty of information retrieval in
associative memories,” in Proc. IEEE Int. Symp. Inf. Theory, Cambridge,
MA, USA, vol. 45, no. 6, Jul. 2012, pp. 106–110.

[21] M. Ye and A. Barg, “Explicit constructions of high-rate MDS array
codes with optimal repair bandwidth,” IEEE Trans. Inf. Theory, vol. 63,
no. 4, pp. 2001–2014, Apr. 2017.

[22] M. Ye and A. Barg, “Explicit constructions of optimal-access MDS
codes with nearly optimal sub-packetization,” IEEE Trans. Inf. Theory,
vol. 63, no. 10, pp. 6307–6317, Oct. 2017.

[23] L. Yohananov and E. Yaakobi, “Codes for graph erasures,” in Proc.
IEEE Int. Symp. Inf. Theory, Aachen, Germany, Jul. 2017, pp. 844–848.

[24] L. Yohananov and E. Yaakobi, “Codes for erasures over directed graphs,”
in Proc. IEEE Inf. Theory Workshop, Kaohsiung, Taiwan, Nov. 2017,
pp. 116–120.

Lev Yohananov is a Ph.D. student in the Computer Science Department at
the Technion—Israel Institute of Technology.

He received the B.Sc. and M.Sc. degrees in computer science from the
Technion—Israel Institute of Technology, Haifa, Israel, in 2016 and 2018,
respectively. His research interests include algebraic error correction coding,
coding on graphs, and combinatorics.

Eitan Yaakobi (S’07–M’12–SM’17) is an Assistant Professor at the Com-
puter Science Department at the Technion—Israel Institute of Technology.
He received the B.A. degrees in computer science and mathematics, and
the M.Sc. degree in computer science from the Technion—Israel Insti-
tute of Technology, Haifa, Israel, in 2005 and 2007, respectively, and the
Ph.D. degree in electrical engineering from the University of California,
San Diego, in 2011. Between 2011–2013, he was a postdoctoral researcher
in the Department of Electrical Engineering at the California Institute of
Technology. His research interests include information and coding theory
with applications to non-volatile memories, associative memories, data stor-
age and retrieval, and voting theory. He received the Marconi Society Young
Scholar in 2009 and the Intel Ph.D. Fellowship in 2010–2011.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

